
HAL Id: hal-03117077
https://hal.science/hal-03117077

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

METING: A Robust Log Parser Based on Frequent
n-Gram Mining

Oihana Coustié, Josiane Mothe, Olivier Teste, Xavier Baril

To cite this version:
Oihana Coustié, Josiane Mothe, Olivier Teste, Xavier Baril. METING: A Robust Log Parser Based on
Frequent n-Gram Mining. IEEE International Conference on Web Services (ICWS 2020), Oct 2020,
Beijing, China. pp.84-88, �10.1109/ICWS49710.2020.00018�. �hal-03117077�

https://hal.science/hal-03117077
https://hal.archives-ouvertes.fr

METING: A Robust Log Parser Based on Frequent
n-Gram Mining

Oihana Coustié, Josiane Mothe, Olivier Teste
IRIT UMR5505 CNRS, Université de Toulouse

Toulouse, France
Email: firstname.lastname@irit.fr

Xavier Baril
Airbus

Toulouse, France
Email: firstname.lastname@airbus.com

Abstract—Execution logs are a pervasive resource to monitor
modern information systems. Due to the lack of structure in raw
log datasets, log parsing methods are used to automatically re-
trieve the structure of logs and gather logs of common templates.
Parametric log parser are commonly preferred since they can
modulate their behaviour to fit different types of datasets. These
methods rely on strong syntactic assumptions on log structure
e.g. all logs of a common template have the same number of
words. Yet, some reference datasets do not comply with these
assumptions and are still not effectively treated by any of the
state-of-the-art log parsers. We propose a new parametric log
parser based on frequent n-gram mining: this soft text-driven
approach offers a more flexible syntactic representation of logs,
which fits a great majority of log data, especially the challenging
ones. Our comprehensive evaluations show that the approach
is robust and clearly outperforms existing methods on these
challenging datasets.

Index Terms—log parsing; log data; web service management;

I. INTRODUCTION

Execution logs constitute a pervasive resource for web
service management. Logs are recognized to be systematically-
available resources and to contain valuable run-time informa-
tion [1]. They are intensively used by service providers for
anomaly detection or performance analysis [2], [3], and by
service users for business process mining [4] or user behaviour
analysis [5].

A log can be defined as a semi-structured message, automat-
ically generated through a print command, and traces the
system execution. It contains valuable monitoring information,
such as the timestamp (time when the log occurred), the level
(the severity of the event), or the content, an unstructured free
text. The latter often follows a determined template, induced
by the generative code. The event type of a log denotes the type
of information being logged, and gathers logs with common
templates. The event type is a crucial information since most
log mining methods opt for a data representation based on the
event type [6], [7]. Unfortunately, the content part of the logs
do not contain any structural information and the event type is
often unavailable [8]. Therefore, there is a substantial need for
automated solutions to structure these messages and retrieve
their event types.

Log parsers are automated data-driven solutions to infer
the event types of logs [9]. They create groups of similar logs
and deduce the underlying structure of the retrieved groups.

The existence of an underlying structure and the high volumes
of log datasets motivate log parsers to exclusively rely on
syntactic analysis, discarding any semantic aspect. Yet, the
meaning of log statements influences the labelling of log
groups, introducing important syntactic heterogeneity among
the groups’ profiles. The ability of a log parser to modulate
its behaviour to different grouping profiles is therefore key
to insure its robustness. To achieve this modulation, most of
the existing log parsers [10], [11] are parametric : they rely
on hyper-parameters which can be tuned to propose different
versions of parsing groups. The results of the benchmark of
Zhu et al. [8] show the superiority both in accuracy and
robustness of these parametric methods over non-parametric
ones [12]. Hence, the robustness of a log parser across different
types of log data depends on its ability to modulate, which is
enhanced by the use of hyper-parameters.

The literature contains only few examples of such adaptive
log parsers [10], [11], [13]. These modern techniques rely on
strong syntactic assumptions; e.g. a group can only contain
logs of the same length (number of words) [11], [13]. Obvi-
ously, these assumptions do not comply with some real-life
datasets: Zhu et al.’ study [8] points out that some reference
datasets are challenging to parse because they do not comply
with the strong syntactic assumptions of the various state-of-
the-art methods. As a result, these datasets do not benefit from
any adaptive state-of-the-art log parsing solution, while they
include important log data, such as OpenStack, a reference for
the evaluation of anomaly detection [2], [3].

Finally, frequent pattern mining methods [14], [15], [16]
offer a more text-driven representation. These methods are
based on the soft and popular assumption that frequent patterns
are likely to be fix parts of the template and offer interesting
perspective to enhance flexibility around the syntax. Nonethe-
less, the existing frequent pattern mining techniques are not
robust and show very heterogeneous results [8] either because
they are parameter-free — and lack of modulation power —
[16] or because their functioning around the frequent patterns
still rely on strong assumptions; e.g. frequent tokens always
appear at the same position in the log [14].

To solve the challenge of robustness across datasets, we
introduce a new parametric log parser, named METING
(Modular Event Type Inference with N -Grams). METING
is modular, thanks to its two hyper-parameters, and uses the

frequent pattern mining approach in a new flexible way: it
extracts frequent n-grams, without any additional syntactic
assumptions. With a comprehensive evaluation on 16 datasets,
we show that METING is robust and globally outperforms
the state-of-the-art methods. METING is also able to tackle
challenging datasets, on which existing methods fail, with
some impressive accuracy improvements. We detail our log
parser in section II, before evaluating METING in comparison
to the state-of-the-art methods in section III.

II. THE METING PARSING METHOD

Fig. 1: METING dendrogram for the Proxifier dataset (a) the
original logs (with labels (En)) (b) the matching dendrogram
with the final groups, perfectly matching the labels (bottom
right corner) (c) an intermediate step with G divided in G1

and G2, based on the presence of the 2-gram mf (G)

METING is a parametric log parser that relies on frequent
pattern mining through the search of fix parts among frequent
n-grams. We first provide an overview of the method before
formally defining its functioning and its hyper-parameters.

a) Method overview: Log parsers aim at grouping the
logs of a datset. They are evaluated on their ability to retrieve
the original groups of logs, induced by the labels. In Fig-
ure 1(a), the log L1 is associated to the group E8 and shall
be gathered with the log L4, also labeled as E8. METING
generates these groups through the creation of a dendrogram,
a tree-like structure, inspired from the hierarchical clustering
techniques [17]. Starting from a group with all the logs, our
method recursively splits the groups into two sub-groups, as
shown in Figure 1(b). When the dendrogram is built, the
final groups are retrieved (represented by the capital letters
in Figure 1(b)). The dendrogram representation establishes

a hierarchy among the groups, and therefore, among the
distances between logs. In Figure 1(b) the logs of A have a
higher similarity with the logs of B than they do with those
of F. This hierarchy fits the nature of textual data: alternative
parsing results can be retrieved thanks to dendrogram cuts. In
the example, A and B could be gathered in a larger unique
group, with a more generic template. This convenience in
providing alternative results complies with the enhancement
of modulation power. Furthermore, at each separation step,
METING performs its parsing according to frequent n-gram
mining. We assume that logs generated by the same command
are likely to have common word sequences, and that frequent
n-grams might be the fix parts of group templates. The fol-
lowing paragraphs formally describe the method functioning.

b) Notations: We use parentheses notation (a1..ak) to
designate an ordered sequence of length k, while the curly
brackets {a1, .., ak} denotes a set of k unordered and unique
elements. We add the following nomenclature: a sequence
name is noted (a), while a set is named by a capital letter.

c) Problem statement: Let L be a dataset of logs. A log
` ∈ L of length |`| is composed of the words w`i , i < |`|.
We note (w`i) the sequence of these words and W` the
corresponding set of unique words. When L is labelled, each
log is associated to an event type, and all the logs with the
same event type form a group. In Figure 1(a), the log L1

belongs to the group E8. These groups form a partition of L,
noted EL. In the example of Figure 1(a), EL = {E1, E2...E8}.
A log parser α also creates a partition Eα, by associating a
group to each log. In the example, L1 is associated to the group
G and the partition Eα is the set of groups {A,B, ...F}. The
log parsing problem consists in maximizing an accuracy score
between EL and Eα.

d) Group splitting: To create the partition Eα, METING
recursively splits the logs. At each recursive step, illustrated
in Figure 1(c), a group of logs G ⊆ L is divided into two
disjoint sub-groups G1, G2 ⊂ G, with G1 ∩ G2 = ∅. This
split is based on the frequency of the n-grams in G, where
n is a hyper-parameter. For n ≤ |`|, an n-gram of ` is a n-
long sub-sequence of consecutive words. In Figure 1(a), the
log L2 contains, among others, the 2-grams “open through”
and “through proxy”. All the n-grams of ` constitute its set
of n-grams:

N` =
{
(w1..wn−1)..(wk−n+1..wk)

}
The n-grams of a group G form the set NG =

⋃
`∈GN`.

For each n-gram m ∈ NG, its frequency in G is the number
of logs of G in which it appears. We define the frequency
function by:

freqG : NG → N∗
m 7→ |{` ∈ G | m ∈ N`}|

In Figure 1(c), in the presented group G=
{L2, L3, L7, L8, L10}, the 2-gram “open through” appears
in L3, L8 and L10, so freqG(“open through”) = 3. We
propose to split G according to the presence of the most
frequent n-gram in G, mf (G) ∈ NG: the logs containing

mf (G) are gathered in G1 and the others in G2. Formally,
G1 = {` ∈ G|mf (G) ∈ N`}, and G2 = G − G1. Since
mf (G) is the most frequent n-gram in G, it is the most likely
to be a fix part. Splitting according to mf (G) therefore avoids
the gathering of logs that share common variable parts (e.g.
numbers). However, if mf (G) occurs in every logs of G, then
all the logs will be gathered in G1, preventing the division.
Hence, instead of searching mf (G) in NG, we rather restrict
the research to N∗G = {m ∈ NG | freqG(m) < |G|}.
Finally, the splitting n-gram mf (G) is defined as:

mf (G) = argmax
m∈N∗

G

freqG(m)

e) Stopping criteria: We define a condition so as to stop
the splitting iteration and render the final groups of logs. This
condition is based on the improvement of a homogeneity score,
score(G), calculated for each group G: the splitting process
is stopped iif score(G) > µ · score(G1), where µ is a
coefficient of homogeneity improvement. We now define both
the homogeneity score score(G) and µ, the coefficient of
homogeneity improvement.

We define the homogeneity score as the arithmetical mean
of two indicators of homogeneity:

score(G) =
fix word(G) + length stability(G)

2

First, fix word(G) measures the homogeneity of G as the
proportion of words appearing in all the logs of G:

fix word(G) =
|{wj | ∀` ∈ G,wj ∈ (w`i)}|
|{wj ∈ (w`i) | ` ∈ G}|

The numerator calculates the number of words present in all
the logs ` ∈ G and the denominator counts the total number
words in the logs. This indicator associates a high homogeneity
score to groups containing numerous common words.

Secondly, the length stability of a group measures the
variations among the lengths of logs, XG = (|`|, ` ∈ G). We
denote the p-percentile of X as Qp(X)1 and define:

length stability(G) = 1− Q95(XG)−Q5(XG)

Q95(XG)

The ratio in this formula is equivalent to a relative interquartile
range of the lengths distribution. This indicator attributes
a high homogeneity score to the groups that have a small
variability in their log lengths.

Finally, we define µ, the coefficient of homogeneity im-
provement, as the arithmetical mean of three indicators:

µ =
1

3

(1

ht
+

1

nb selection(G)
+ freqG(mf (G))

)
nb selection(G) is the number of times, during its divisive
creation process, that G was generated as a G1 of some other
group — or the number of left branches in the path-tree of
G. In Figure 1(b), B was selected twice while F was only
selected once. We observed that groups resulting from a lot of

1Qp(X) is the value so that p% of the values of X are inferior to Qp(X)

selections are far more homogeneous than unselected groups,
since their logs share more common n-grams, by construction.
This rate aims at promoting the split of unselected groups,
rather than already-selected ones. The rate µ also depends on
freqG(mf (G)). The assumption is that if the most frequent
n-gram mf (G) of a group G has a low frequency, then it is
likely that the final group is reached. For instance, if mf (G)
contains a number, it may have a low frequency in the group,
and splitting G according to mf (G) is not desirable. Finally,
ht, the homogeneity tolerance is a hyper-parameter, described
in the following paragraph.

f) Hyper-parameter description: As aforementioned, our
method censuses two hyper-parameters:
• n is the length of the n-grams. We mention the specific

case, for a log ` where n > |`|. Therefore, ` does not
contain any n-gram. Hence, the “short” logs of a dataset
are parsed apart from the others, thanks to 1-grams. n
should be carefully chosen so as to avoid splitting the logs
of a common group between the two categories. On the
contrary, this n-length threshold can promote a difficult
separation between two similar groups of logs.

• ht, the homogeneity tolerance is a rate, with 0 < ht ≤ 1,
that controls how divisive the algorithm is. High value
of ht implies small values of µ, leading to strict splitting
conditions, preventing the algorithm to be divisive. ht
enables the tuning of the algorithm divisibility.

III. EVALUATION

This section evaluates the performance of METING on
datasets from different sources and compare it to the state-
of-the-art references. We also conduce a failure analysis on
the various algorithms.

A. Parsing evaluation framework

Our evaluation relies on the complete framework of
Logpai [18], which evaluates 13 methods on 16 datasets.

1) Experimental protocol and evaluation measures: To
evaluate the methods, we perform the log parsing of the
16 datasets of LogPai. We first preprocess the logs (as
proposed in LogPai), apply the parsing method, retrieve the
corresponding event types, and compare them to the manually-
obtained labels. A good parsing algorithm gathers logs simi-
larly to the groups induced from the labels. External measures
(e.g. precision, recall and F-measure) are often employed to
calculate pairwise relationship matches [12], [13]. However,
as explained by Zhu et al., these indicators tend to provide
very smoothed positive results [8], due to a great number of
true negatives (logs that are successfully not gathered). The
authors define the more rigorous measure of parsing accuracy
as the ratio of logs that are exactly correctly parsed. If a log
sequence with ground-truth labels [E1, E2, E2] is parsed to
[E1, E2, E3], the accuracy is 1/3 since the first log is correctly
parsed alone while the two others are incorrectly separated.
We run the parametric methods several times in a grid-search
way and retrieve the best accuracy result recorded over 120
combinations for each log parser and each dataset.

TABLE I: Data description (size = number of groups) and accuracy results (as defined in III-A1) of the methods on 16
datasets. Rank: the rank of METING compared to the other methods. M: mean accuracy results over the datasets D: the mean
distance to best accuracy results (see III-B)

Dataset1 Mac Win Lin OS HD ZK Sp H TB BGL HPC An HA OH Ap Pr M D
Data description

Source 2 Operating sys. Distributed sys. Super computer Mobile sys. Server app. Sw
Size 341 50 118 43 14 50 36 114 149 120 46 166 75 37 6 8 86

Accuracy results
Drain 85,9 99,7 69,0 88,1 99,8 98,8 92,0 94,8 95,8 97,3 90,1 91,3 78,0 78,8 100 52,7 88,3 7,8
IPLoM 67,3 68,4 67,6 87,1 100 98,4 92,0 95,5 66,3 94,4 82,9 71,2 89,0 87,1 100 51,7 82,4 13,6
Spell 75,7 98,9 63,9 80,6 100 96,4 91,9 77,8 93,4 78,7 65,4 91,9 63,9 55,4 100 52,7 80,4 15,7
MoLFI 63,6 40,6 28,4 21,3 99,8 83,9 41,8 95,7 64,6 96,0 82,4 78,8 44,0 50,0 100 1,3 62,0 34,1
Logram 74,4 97,4 20,1 24,6 93,0 95,5 91,6 92,0 55,4 80,5 97,8 67,4 98,1 55,6 100 50,4 74,6 21,5
METING 82,4 99,6 92,2 96,9 100 96,5 99,6 91,1 93,1 88,9 91,8 91,1 68,8 55,5 100 100 90,5 5,6
Rank 2 2 1 1 1 3 1 5 3 4 2 3 4 4 1 1

2) State-of-the-art methods selection: Due to space con-
straints, we select the most promising methods among the
state-of-the-art algorithms, according to the first results of
Logpai’s evaluations [8], namely Drain[11], IPLoM[13] and
Spell[10]. To assess our proposition on the influence of
hyper-parameters on parsing results, we also select the recent
parameter-free algorithms MoLFI[12] and Logram[16]. By se-
lecting a fewer set of methods, we go further into the analysis
of results, deciphering the typical errors and weaknesses of
the methods.

3) Data presentation: The proposed log datasets were made
available with the Logpai tool. The framework gathers 16
datasets composed of 2000 log lines each, and manually
labelled. As shown in Table I, the different datasets present an
interesting variety both in term of structure (number of groups:
Size line in Table I) and on generation source types (Source
line in Table I).

B. Parsing results

Table I presents the best accuracy results obtained by a grid-
search optimization for the selected algorithms on the datasets.
We also mention the rank our method obtains. Finally, we
calculate the mean distance to the best scores for each method
D. For each method, column D is the difference between its
mean accuracy score and the mean accuracy of the best results.

We observe that our log parser, METING achieves overall
better results than the state-of-the-art propositions, with some
impressive improvements compared to the existing results, e.g.
+47.3% for Pr (Proxifier), +22.3% for Lin (Linux) and +8.8%
for OS (OpenStack). These datasets are difficult to parse for
most of the existing log parsers: even the most promising ones
– namely Drain, IPLoM and Spell – show limited performance
on these log datasets. On the contrary, METING is robust and
is the only method that provides an effective solution for these
challenging datasets. METING is ranked best on 6 datasets
over the 16, and second on 3. Moreover, METING has a very
low mean distance to the best scores. That means that choosing

1Abbreviations: Win=Windows, Lin=Linux, OS=OpenStack, HD=HDFS,
ZK=Zookeeper, Sp=Spark, H=Hadoop, TB=Thunderbird, An=Android,
HA=HealthApp, OH=OpenSSH, Ap=Apache, Pr=Proxifier

2Abbreviations: sys=system, app=application, Sw= Standalone Software

METING as a unique solution – instead of selecting the best
method for each dataset individually – induces a small loss
in performance (only 5.6% on average). In comparison the
second best method, Drain, generates a loss of 7.8% and the
worst one, MoLFI, a loss of 34.1%. METING is therefore a
more reliable solution than its competitors.

C. Error analysis through parameter requirements

We analyse the parsing errors made by the methods. Rather
than simply censusing the splitting errors, we emphasize and
explain some typical and unavoidable mistakes of the different
methods. In a recommendation purpose, we focus on the more
accurate and robust parametric methods, namely Drain, Spell,
IPLoM and METING.

1) Logs of different lengths: The framework contains ex-
amples of groups gathering logs of different lengths (E8 in Pr,
E146 in TB). Since Drain and IPLoM rely on the assumption
that logs of a same group necessarily have the same length,
they fail in parsing these datasets. In turn, Spell and METING
opt for a more flexible representation of logs that allows to
group logs of different lengths.

2) Variable first words: Drain assumes that the fix tokens of
a log are positioned at the beginning, and imposes d common
first words in each group, where d is a hyper-parameter. Yet,
some groups violate this assumption, like in the OS dataset,
with the group E11:
[instance: 54b44eb-2d1a-4aa2-ba6b-074d35f8f12c] Terminating in-
stance AND [instance: 17288ea8-cbf4-4f0e-94fe-853fd2735f29]
Terminating instance

Since these logs only have one first word in common, d must
be set to 1. Otherwise, the two logs would be separated.
However, this strong constraint prevents the separation of other
groups of the dataset (E22 and E20). This example traduces
a problem of parameter optimization, with the necessity to
perform an arbitrage. METING succeeds in parsing this
dataset since it does not impose any constraint on the positions
of fix and variables words.

3) Template inclusion: In some datasets, the template of a
group is included in the template of another, such as in OH
with the groups E19 and E20, defined by the patterns:

E19 = pam unix(sshd:auth): authentication failure; logname=
uid=0 euid=0 tty=ssh ruser= rhost=.*
E20 = pam unix(sshd:auth): authentication failure; logname=
uid=0 euid=0 tty=ssh ruser= rhost=.* user=.*

Since the LCS of these two logs is the whole template of E19,
Spell regard these logs as very similar and fails in separating
them. In METING, the selected n-gram to separate these logs
necessarily comes from E20. Yet, in this example, E20 is
minority compared to E19, so the splitting n-gram has a very
low frequency and triggers the stopping criteria. Drain also
fails in splitting this group, since the logs share numerous
common first words. IPLoM is not concerned by this issue
and succeeds in parsing the dataset.

4) Alternation fix/variable words: Some group patterns in
the dataset show an important alternation, with consecutive
fix and variable words, such as the group E8 of Pr, presented
in logs L1 and L4 of Figure 1(a). Spell finds a low LCS
rate for these logs and separate them. IPLoM separates them
since they have different lengths. Drain would not stand
a chance to gather these logs: they have different lengths
and start with a variable token. Only METING is flexible
enough to retrieve the important similarity of these logs thanks
to their common 2-gram “received lifetime”. This explains
METING’s tremendous improvement of accuracy score for
the Pr dataset.

5) General observations: Apart from these situations, we
observed that IPLoM tends to have a limited division power.
Indeed, IPLoM gathers logs from the same length, then splits
them only if they have no common words, and performs a
last binary split according to its hyper-parameters. Hence,
the method sometimes lacks of division opportunities and
logs might be incorrectly gathered (E7 and E8 in ZK). In
opposition, METING has a dedicated hyper-parameter, ht,
which can modulate its division power.

Spell proceeds in a online way and builds the LCS of a
group on-the-fly. Hence, it is very dependant on the order in
which logs appear, and commits errors when a variable part is
chosen as LCS. Drain also suffers from this dependency: its
syntactic assumptions are actually used to point the arriving
logs to the right groups. Our solution to extend METING in
an online fashion cope with these issues thanks to a first offline
pass to build a first version of the dendrogram.

IV. CONCLUSION

In this paper, we proposed METING, a parametric log
parser based on frequent n-gram mining. We showed that it
performs all the state-of-the-art methods on many of the 16
reference data sets, and is better on average than the reference
log parsers. We also analysed some of the failures that the
various methods encounter when applied on the different
data sets. In future work, we will study the potential of
parameter sensitivity to enhance the modulation power and
will implement an online extension of our log parser, thanks
to its tree structure. We would like to generalize our method
in two ways (a) in the task of word stemming for IR [19] (b)
for online anomaly detection on parameter values.

REFERENCES

[1] B. Chen and Z. M. J. Jiang, “Characterizing logging practices in java-
based open source software projects - a replication study in apache
software foundation,” Empirical Software Engineering, vol. 22, no. 1,
pp. 330–374, 2017.

[2] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM
SIGSAC Conf. on Computer and Communications Security, B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds., 2017, pp. 1285–
1298.

[3] X. Baril, O. Coustié, J. Mothe, and O. Teste, “Application performance
anomaly detection with LSTM on temporal irregularities in logs,” in
CIKM ’20: The 29th ACM International Conference on Information
and Knowledge Management, Virtual Event, Ireland, October 19-23,
2020, M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-
Mauroux, Eds. ACM, 2020, pp. 1961–1964. [Online]. Available:
https://doi.org/10.1145/3340531.3412157

[4] H.-J. Cheng and A. Kumar, “Process mining on noisy logs—can log
sanitization help to improve performance?” Decision Support Systems,
vol. 79, pp. 138–149, 2015.

[5] X. Yu, M. Li, I. Paik, and K. H. Ryu, “Prediction of web user behavior
by discovering temporal relational rules from web log data,” in Int.
Conf. on Database and Expert Systems Applications. Springer, 2012,
pp. 31–38.

[6] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in 27th IEEE International Symposium
on Software Reliability Engineering, ISSRE. IEEE Computer Society,
2016, pp. 207–218.

[7] Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in ICDM 2009,
The Ninth IEEE International Conference on Data Mining, Miami,
Florida, USA, 6-9 December 2009, W. Wang, H. Kargupta, S. Ranka,
P. S. Yu, and X. Wu, Eds. IEEE Computer Society, 2009, pp. 149–158.

[8] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and
benchmarks for automated log parsing,” in International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP),
H. Sharp and M. Whalen, Eds. IEEE/ACM, 2019, pp. 121–130.

[9] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, “Toward fine-
grained, unsupervised, scalable performance diagnosis for production
cloud computing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 6, pp. 1245–1255, 2013.

[10] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
IEEE 16th International Conference on Data Mining, ICDM, F. Bonchi,
J. Domingo-Ferrer, R. Baeza-Yates, Z. Zhou, and X. Wu, Eds. IEEE
Computer Society, 2016, pp. 859–864.

[11] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in IEEE International Conference on
Web Services, ICWS, I. Altintas and S. Chen, Eds. IEEE, 2017, pp.
33–40.

[12] S. Messaoudi, A. Panichella, D. Bianculli, L. C. Briand, and R. Sas-
nauskas, “A search-based approach for accurate identification of log
message formats,” in Conference on Program Comprehension, ICPC,
F. Khomh, C. K. Roy, and J. Siegmund, Eds. ACM, 2018, pp. 167–
177.

[13] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 11, pp. 1921–1936, 2012.

[14] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IEEE Workhop on IP Operations & Management (IPOM).
IEEE, 2003, pp. 119–126.

[15] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event
types for mining software system logs,” in IEEE International Working
Conference on Mining Software Repositories, MSR, J. Whitehead and
T. Zimmermann, Eds., 2010, pp. 114–117.

[16] H. Dai, H. Li, W. Shang, T. Chen, and C. Chen, “Logram: Efficient log
parsing using n-gram dictionaries,” CoRR, vol. abs/2001.03038, 2020.

[17] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[18] J. Zhu, P. He, S. He, and J. Liu, “Logpai,”
https://github.com/logpai/logparser, 2019.

[19] X. Baril, O. Coustié, J. Mothe, and O. Teste, “Rfreestem: A
multilanguage rule-free stemmer,” in Actes du XXXVIIème Congrès

INFORSID, Paris, France, June 11-14, 2019, 2019, pp. 12–29. [Online].
Available: http://inforsid.fr/actes/2019/INFORSID 2019 p12-29.pdf

