
HAL Id: hal-03117074
https://hal.science/hal-03117074

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application Performance Anomaly Detection with
LSTM on Temporal Irregularities in Logs

Xavier Baril, Oihana Coustié, Josiane Mothe, Olivier Teste

To cite this version:
Xavier Baril, Oihana Coustié, Josiane Mothe, Olivier Teste. Application Performance Anomaly De-
tection with LSTM on Temporal Irregularities in Logs. CIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management, Oct 2020, Virtual Event Ireland, Ireland.
pp.1961-1964, �10.1145/3340531.3412157�. �hal-03117074�

https://hal.science/hal-03117074
https://hal.archives-ouvertes.fr

Application Performance Anomaly Detection with LSTM on
Temporal Irregularities in Logs

Xavier Baril
Oihana Coustié

xavier.baril@airbus.com
oihana.coustie@irit.fr

Airbus
Toulouse, France

Josiane Mothe
Olivier Teste

josiane.mothe@irit.fr
olivier.teste@irit.fr

ESPE, UT2J, Univ. de Toulouse, IRIT, UMR5505 CNRS
Toulouse, France

ABSTRACT
Performance anomalies are a core problem in modern information
systems, that affects the execution of the hosted applications. The
detection of these anomalies often relies on the analysis of the
application execution logs. The current most effective approach is
to detect samples that differ from a learnt nominal model. However,
current methods often focus on detecting sequential anomalies in
logs, neglecting the time elapsed between logs, which is a core
component of the performance anomaly detection. In this paper,
we develop a new model for performance anomaly detection that
captures temporal deviations from the nominal model, by means
of a sliding window data representation. This nominal model is
trained by a Long Short-Term Memory neural network, which
is appropriate to represent complex sequential dependencies. We
assess the effectiveness of our model on both simulated and real
datasets. We show that it is more robust to temporal variations than
current state-of-the-art approaches, while remaining as effective.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; • Theory of computation → Semi-supervised learning;
• Computing methodologies → Anomaly detection; Neural
networks.
KEYWORDS
information system, event logs, anomaly detection

ACM Reference Format:
Xavier Baril, Oihana Coustié, Josiane Mothe, and Olivier Teste. 2020. Ap-
plication Performance Anomaly Detection with LSTM on Temporal Ir-
regularities in Logs. In Proceedings of the 29th ACM International Con-
ference on Information and Knowledge Management (CIKM ’20), October
19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3340531.3412157

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412157

1 INTRODUCTION
With the fast growing of their size and complexity, modern infor-
mation technology systems contain numerous sources of potential
faults and vulnerabilities [3, 6, 8]. The failure of their services can
have significant consequences, ranging from degraded user’s experi-
ence [11] to important financial losses [15]. The ability to accurately
detect anomalies is therefore considered as a major issue [15]. Log
analysis constitute a promising solution to system anomaly detec-
tion, since large-scale systems generate numerous execution logs
[6, 11]. A log is a semi-structured message tracing the system exe-
cution [8]. It contains valuable monitoring information, such as the
timestamp (time of occurrence) or the content, an often unstructured
free text. The event type of a log describes the type of information
being logged in the content part [1]. The sequence_id of a log is an
optional field, gathering logs from a same sequence.

A log anomaly is an unexpected behaviour of the log data, and
can be paired to a system anomaly. For instance, a late appearance
of logs in a sequence may indicate a performance anomaly corre-
sponding to an abnormal temporal irregularity in a service response.
Hence, log anomaly detection is recognized as an efficient mean to
perform system anomaly detection [3]. Manually analyzing large
and complex log datasets represents a cumbersome and error-prone
task [3, 8], justifying the need for automated data-driven solutions.

Supervised methods are the first historically used to detect anom-
alies in logs [5, 9]. They train binary classifiers, based on both nor-
mal and abnormal samples. Despite their encouraging results on
balanced data, they suffer from the scarcity of abnormal samples in
real datasets. In addition, they only detect anomalies matching the
learnt abnormal class, preventing the detection of new anomalies.
Unsupervised outlier detection [10, 14] overcome both the scarcity
of anomalies, and the frequent unavailability of labels. These clus-
tering techniques isolate the nominal samples in polluted datasets.
However, they tend to simply detect samples that are significantly
different from the majority regarding selected features [8].

Finally, novelty detection methods focus on detecting deviations
from the nominal behaviour. Following a semi-supervised approach,
a nominal behaviour model is learnt on anomaly-free data. New
coming data are compared to this model and detected as anomalies
if their behaviour does not match the nominal one. In thesemethods,
logs are often represented as temporally-ordered sequences of event
types. Fu et al. [7] train a Finite State Automaton to model these
sequences as a unique workflow. Yet, the unique aspect of the
model prevents the treatment of sequences that contain parallel
tasks [6]. The DeepLog method [6] rather train a prediction task

https://doi.org/10.1145/3340531.3412157
https://doi.org/10.1145/3340531.3412157

with a Long-Short Term Memory (LSTM) neural network, which
efficiently represents complex sequential dependencies based on
multiple previous logs. DeepLog is regarded as one of the most
up-to-date and accurate reference.

Nonetheless, representing the logs as sequences of event types
raises challenging issues. Firstly, the sequences creation requires
the knowledge of the sequence_id, which is not always available.
Secondly, this representation discards the time-frame separating
logs. This information is however key to define performance anom-
alies. The performance anomaly detection field focuses on detecting
periods of slowdown or unavailability of a system or a service [2],
and ranges from the detection of deny-of-service attacks [6] to the
performance monitoring of cloud infrastructures [12]. For these
anomalies, the sequential representation of the logs is insufficient:
the time elapsed between logs must be integrated to the model in
order to detect temporal irregularities in logs’ appearance.

This paper focuses on the detection of performance anomalies
and presents a new novelty detection approach named NoTIL,
Novelty detection based on Temporal Irregularities in Logs. Based
on the idea of counting the event types over time with a sliding
window, NoTIL takes the time elapsed between logs into account
by capturing the frequency of logs’ appearance. NoTIL takes advan-
tage of the LSTM ability to model complex temporal dependencies
and applies it to model temporal correlations and detect temporal
irregularities. In the following, section 2 details our NoTIL method.
Section 3 evaluates its efficiency and section 4 concludes the paper.

2 NOTIL ANOMALY DETECTION METHOD
As a novelty detection method, NoTIL models the nominal be-
haviour of logs and detects anomalies as violations of the trained
model. Especially, NoTIL trains a forecasting model and detects the
samples with low prediction results as anomalies. In the context
of performance anomaly detection, the prediction tasks and the
data representation should be chosen so as to take into account
the time elapsed between logs. Indeed, a performance anomaly
is manifested within the logs as an abnormally long time-frame
separating two consecutive logs. Contrary to the state-of-the-art
methods, NoTIL represents the logs with a counting time window of
the event types, taking into account the time elapsed between logs.
We use an LSTM network for the prediction model, since they can
model complex temporal relations [6, 11]. This section formalizes
the problem of detecting performance anomalies before describing
the data representation and the prediction model.

Notations. We use curly brackets {𝑎1, .., 𝑎𝑘 } to designate a set of
𝑘 unique elements; (𝑎1 ..𝑎𝑘) denotes a sequence and J𝑎..𝑏K stands
for the sequence of integers between 𝑎 and 𝑏 (included). |𝐸 | is the
number of elements of a set 𝐸 and P(𝐸) is its power set. The 𝑓 𝑙𝑜𝑜𝑟
function ⌊ ⌋ is defined by: ∀𝑥 ∈ R, ⌊𝑥⌋ =𝑚𝑎𝑥{𝑚 ∈ Z |𝑚 ≤ 𝑥}. We
note ∧ the logical AND between conditions. Finally, for a random
variable 𝑋 on an event space Ω, 𝐹𝑋 is its cumulative distribution
function. ∀𝛼 ∈ J0..1K, 𝑋𝛼 is the 𝛼-upper critical value of the prob-
ability distribution of 𝑋 , define by 𝐹𝑋 (𝑋𝛼) = 1 − 𝛼 ; ∀𝑥 ∈ Ω, 𝑥 is
significantly higher than 𝑋 , noted 𝑥 ≫ 𝑋 , if 𝑥 > 𝑋𝛼 .

Problem statement. Let 𝐿 be a dataset of logs, occurring in a
discrete time-frame J1..𝑇 K, 𝑇 ∈ N+. 𝐸 is the set of possible event

types in 𝐿. For a log ℓ ∈ 𝐿, we note 𝑒ℓ ∈ 𝐸 its event type and
𝑡ℓ ∈ J1..𝑇 K its timestamp. For any ℓ ∈ 𝐿 and 𝑒 ∈ 𝐸, we define
next𝑒 (ℓ) ∈ 𝐿 as the next closest log of type 𝑒: the first log of
type 𝑒 that happens after ℓ . We define 𝑑𝑒 (ℓ) = 𝑡next𝑒 (ℓ) − 𝑡ℓ , the
duration between ℓ and next𝑒 (ℓ). We assume that the nominal
value of such a duration is a random variable 𝐷𝑒ℓ𝑒 following an
unknown distribution. The actual duration 𝑑𝑒 (ℓ) corresponds to a
performance anomaly if 𝑑𝑒 (ℓ) ≫ 𝐷𝑒ℓ𝑒 . We assume that anomalies
concern instants 𝑡 ∈ J1..𝑇 K and we define a labelling strategy 𝑓

as a function indicating which instant(s) are labelled abnormal:
𝑓 : 𝐿 × 𝐸 → P(J1..𝑇 K). The performance anomaly detection
problem consists in retrieving the set of temporal anomalies in 𝐿:
𝑇𝐴
𝐿

= {𝑓 (ℓ, 𝑒) | ℓ ∈ 𝐿, 𝑒 ∈ 𝐸 ∧ 𝑑𝑒 (ℓ) ≫ 𝐷𝑒ℓ𝑒 } ⊂ J1..𝑇 K.

Data representation. We define a window size 𝑤 ∈ N∗ and a
temporal window𝑊𝑖 , with a beginning time 𝑡𝑊𝑖

and an ending time
𝑡𝑊𝑖

+ 𝑤 , with 𝑡𝑊𝑖
< 𝑡𝑊𝑖

+ 𝑤 ≤ 𝑇 . A log ℓ belongs to a window
𝑊𝑖 iff 𝑡𝑊𝑖

≤ 𝑡ℓ < 𝑡𝑊𝑖
+ 𝑤 . We represent𝑊𝑖 by a counting vector

𝐶𝑖 ∈ N |𝐸 | that counts, for each event type 𝑒 ∈ 𝐸, the number
of occurrences of 𝑒 in the window𝑊𝑖 . The 𝑗𝑡ℎ element of 𝐶𝑖 is
expressed as 𝐶 (𝑗)

𝑖
=

���{ ℓ ∈ 𝐿
�� 𝑡ℓ ∈ J𝑡𝑊𝑖

..𝑡𝑊𝑖
+𝑤K ∧ 𝑒ℓ = 𝑒 𝑗

}���. We
opt for a sliding window mechanism, and define 𝑠 as the sliding
offset and 𝑁 the number of sliding windows is 𝐿.

Figure 1: A set of ℎ = 2 input windows of size 𝑤 = 6 and
shifted by 𝑠 = 2 (blue) and its associated output (green) in an
overlapping scenario (a) and a non-overlapping one (b)

The prediction task. As in Deeplog, we train a model for the task
of forecasting the next window. We define a hyper-parameter ℎ,
called look-back [6] so that ℎ consecutive windows are used to
forecast the next window. Due to the sliding window mechanism,
consecutive windows share common instants. To avoid the intro-
duction of a bias between input and output — as depicted in the
overlapping scenario in Figure 1(a) — we predict the output count-
ing vector 𝐶𝑖 with the input matrix 𝑀𝑖 formed by the previous
vectors (𝐶𝑖−𝛼−ℎ ...𝐶𝑖−𝛼), where 𝛼 = 𝑤

𝑠 − 1 (Figure 1(b)). As afore-
mentioned, we opt for a LSTM model to train the prediction task.
We formalize its role as a function LSTM that associates to an input
matrix 𝑀𝑖 a predicted output LSTM(𝑀𝑖). This predicted output is
then compared to the real output 𝐶𝑖 thanks to an error measure Δ,
a function defined as Δ : N |𝐸 | × N |𝐸 | → R+.

Finally, a threshold 𝜏 , learned during the validation, enables to
split the windows into normal and abnormal subsets. The abnormal
windows𝑊 (𝐴) retrieved by NoTIL are defined as:

𝑊 (𝐴) =
{
𝑊𝑖 | 𝛼 + ℎ ≤ 𝑖 < 𝑁, Δ

(
𝐶𝑖 , LSTM(𝑀𝑖)

)
> 𝜏

}

Figure 2: Generation scenario of Simu_binary. Top: nominal
model. Center: temporal sequence with performance anom-
aly in 𝐴3 - 𝐵3. Bottom: labelling strategies for the anomaly.

To compare this set to 𝑇 (𝐴)
𝐿

, the set of actual temporal anomalies
of 𝐿, we transpose this latter into a set of abnormal windows:

𝑊
(𝐴)
𝑟𝑒𝑎𝑙

=
{
𝑊𝑖 | 𝛼 + ℎ ≤ 𝑖 < 𝑁 ∧ ∃ 𝑡 ∈ 𝑇

(𝐴)
𝐿

, 𝑡𝑊𝑖
≤ 𝑡 ≤ 𝑡𝑊𝑖

+𝑤
}

3 EVALUATION
We assess the accuracy of NoTIL on different scenarios and compare
it with that of DeepLog [6]. We present the evaluation framework
before commenting the experimental results.

Data presentation. We evaluate our proposition on both simu-
lated and real-world datasets. We first generate an artificial dataset
Simu_binary to study the behaviour of the methods in a minimal
configuration. As depicted in Figure 2, Simu_binary contains 2
event types𝐴 and 𝐵.𝐷𝐴𝐴 and𝐷𝐴𝐵 represent the nominal durations
between consecutive logs of the corresponding event types. We
inject performance anomalies in some transitions between 𝐴 and
𝐵: in Figure 2, the transition between 𝐴3 and 𝐵3 is abnormal since
𝑑𝐵 (𝐴3) ≫ 𝐷𝐴𝐵 . 𝐷𝐴𝐴 and 𝐷𝐴𝐵 are Gaussian distributions with low
variances (for steady scenarios). We generate several scenarios by
changing the mean values. We then generate scenarios with higher
variances to study the robustness of the methods to temporal irregu-
larity. We also generate Simu_nevents, with new contextual event
types that happen regularly, independently from one another and
from the sequence of interest. This context matches better a real
situation, where numerous types of logs are generated in parallel.
In these artificial scenarios, we simulate a time-frame of 𝑇 = 10000
for each of the training, validation and testing sets, and inject 1%
of anomalies in the validation and testing sets.

We finally experiment on a real dataset. Openstack logs moni-
tors the creation and use of virtual machine (VM) instances. The
authors of DeepLog generated and made available their own Open-
stack dataset with injected performance anomalies. The dataset
contains 47 event types, among which 23 are implied in a sequence
(a VM instance). 4 sequences contain temporal anomalies, in the
same transition time, for a global rate of 0.7% of abnormal sequences.

State-of-the-art methods selection. We study the behaviour of
DeepLog towards performance anomalies. DeepLog proposes two
independent anomaly detectors: we note SDL its sequence anom-
aly detector, and PDL its performance anomaly detector. SDL only

considers the sequence of event types, and is not specifically de-
signed for performance anomalies. PDL processes each event type
individually and analyses the time elapsed between consecutive
logs. PDL is therefore eligible for performance anomaly detection:
theoretically, it can catch temporal irregularities, but might strug-
gle to detect abnormal correlations between logs of different event
types. We also study the reference state-of-the-art unsupervised
method noted PCA [14], in order to prove the superiority of the
novelty approach.

Labelling strategy. For the simulated data, we propose differ-
ent labelling strategies, defining the aforementioned function 𝑓

and graphically represented in the example of Figure 2. In these
strategies, the abnormal instants 𝑓 (𝐴3, 𝐵) are:

• (first) the time when the log should have occurred, 𝑡𝐴3+𝐷𝐴𝐵 ,
• (last) the time when the delayed log occurred, 𝑡𝐵3 ,
• (2-ano) both,
• (middle) the middle instant between both, 𝑡𝐵3+𝑡𝐴3+𝐷𝐴𝐵

2 .
We study the impact of the labelling strategies on the results of the
understudied methods in order to select a strategy that does not
introduce any bias.

Implementation considerations. DeepLog and NoTIL are imple-
mented with Pytorch framework and with the same hyperparam-
eters provided in [13]. For our hyperparameters, we set 𝑠 = 1 to
observe all the possible window combinations and experimentally
determined the𝑤 and ℎ values at𝑤 = 𝐷𝐴𝐵 −𝑑𝐵 (𝐴3) (the difference
between expected and observed duration) and ℎ = 2×𝑤 . PCA is not
based on a prediction task, so the detection should be performed
on a window size that covers both the input and the output of the
other methods. Hence, we chose a window size of𝑤𝑃𝐶𝐴 = 𝑤 +ℎ×𝑠 .

Figure 3: F1_scores of the understudied methods on simu-
lated datasets and OpenStack.

Evaluation measures. Measuring the accuracy of an anomaly de-
tector in our context consists in comparing the aforementioned
sets𝑊 (𝐴)

𝑟𝑒𝑎𝑙
, the real abnormal windows and𝑊 (𝐴) , the predicted

ones. The traditional F1-measure is not suitable for the perfor-
mance anomaly context, since it does not tolerate any temporal
delay between detected and real anomalies. Hence, we refine the
definition of false positive and negative: for 𝑞 ∈ N, a real (resp.
predicted) anomaly in𝑊𝑖 is a false negative (resp. positive) if no
detected (resp. real) anomaly is observable within the sequence

(𝑊𝑖−𝑞 ...𝑊𝑖+𝑞), otherwise it is a true positive. We chose 𝑞 = ⌊𝐷𝐴𝐴

2 ⌋,
in order to detect anomalies at a sequence-level temporal precision.

As most of the novelty detection methods, NoTIL learns a thresh-
old to distinguish abnormal and normal samples. This threshold
is learnt during a validation phase and is a lever to balance false
positive and false negative. This step can be used to avoid detecting
nominal outliers: novelty detection can detect anomalies that are
more frequent than some nominal outliers, as long as they were
not seen during the training phase.

Detection results. Figure 3 presents the F1-scores of the methods
for the aforementioned datasets. For all the simulated data, we
generated multiple scenarios — with different 𝐷𝐴𝐴 and 𝐷𝐴𝐵 values
— and calculated the average score for each understudied method.

In the noise-free version of Simu_binary, both PDL and NoTIL
present overall good results, with a slight overall advantage for
NoTIL. Unsurprisingly, PDL benefits from the (last) labelling strat-
egy, since it detects anomalies from the time elapsed since the
previous log. 𝐵3 and 𝐵4 carry high anomaly scores since 𝐵3 is
abnormally far from 𝐵2 and close to 𝐵4. NoTIL also detects two
abnormal instants, yet, these instants are aligned with the (2-ano)
labels. The SDL proposal shows very disappointing results since
the understudied anomalies have no signature at a sequence level,
and are not observable if time is neglected. PCA method shows
mitigate results, mainly due to the temporal imprecision necessary
to encompass both the input and the output in the studied window.

The noisy version results highlight the limit of the PDL’s repre-
sentation of time. Since the occurrences of𝐴 are not regular, neither
are those of 𝐵. Hence, the method struggles in learning the nominal
behaviour of the event type 𝐵, and fails to detect the actual anom-
alies. PCA also collapses: the multitude of nominal samples induces
a lack of distinction between rare nominal profiles and anomalies.
NoTIL is only slightly impacted by the irregularity of this scenario
and still presents reliable results. Here, (2-ano) is unanimously the
most advantageous labelling strategy: it is bias-free to select it for
the next evaluations.

The experiments on Simu_nevents show an impact of the con-
textual framework on all methods: the already-low results of the
state-of-the-art methods collapse, while NoTIL remains the only
reliable solution, despite a fair decrease.

Finally, PDL presents very disappointing results in the rawOpen-
Stack dataset (column Raw data): it tries to find a common fore-
casting error threshold, whatever the event type is. Since half of
the event types are not implied in a sequence (contextual logs) and
do not bear any signature of the anomalies, applying a threshold on
these event types leads to numerous false positives. To confirm this
hypothesis, we propose an alternative version of the dataset (col-
umn No_context), which only contains the 23 event types involved
in a sequence execution. This process is not innocuous: it requires
domain knowledge to identify the sequence_id and eliminates 61%
of the logs. Yet, it is not sufficient: an event type occurs twice in
each instance, hence why there are two nominal durations between
consecutive occurrences: (a) a short one, between occurrences of
the same instance, (b) a much longer one between distinct instances.
PDL fails in learning this nominal behaviour and triggers many
false positives. On the contrary, NoTIL results are enhanced by
this simplification process. Our analysis of NoTIL results however

highlighted some false positive cases, that seem reasonable. For
instance, a rare event type appears at an unusually high frequency
in the testing dataset which is detected as abnormal by NoTIL.

4 CONCLUSION
We present a new method to perform anomaly detection, while
maintaining the quantitative aspect of time, using a count of event
types over time. NoTIL efficiently detects temporal irregularities
in logs’ appearance, which can be the signatures of performance
anomalies. Our evaluations show a much more robust behaviour to-
wards nominal temporal fluctuations than current approaches such
as DeepLog. As a future work, we plan to extend our evaluation to a
larger set of anomaly types. We also aim at extending the anomaly
detection to parameters anomalies: logs contain variable parts that
can be converted into numerical time series. We will also exper-
iment other deep learning algorithms, with a focus on attention
mechanisms [4, 11] in order to enhance both the computational
performance and the interpretability of the model.

REFERENCES
[1] Xavier Baril, Oihana Coustié, Josiane Mothe, and Olivier Teste. 2020.

METING: A Robust Log Parser Based on Frequent n-Gram Mining.
IEEE The International Conference on Web Services (ICWS) (2020).

[2] Stéphane Bonnevay, Jairo Cugliari, and Victoria Granger. 2019. Predictive Mainte-
nance from Event Logs Using Wavelet-Based Features: An Industrial Application.
In 14th Inter. Conf. on Soft Computing Models in Industrial and Environmental
Applications (SOCO) (Advances in Intelligent Systems and Computing,
Vol. 950). 132–141.

[3] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini. 2019. Online
Anomaly Detection in HPC Systems. In IEEE Inter. Conf. onArtificial Intelligence
Circuits and Systems, AICAS. 229–233.

[4] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. 2018. Recurrent
Neural Network Attention Mechanisms for Interpretable System Log Anomaly
Detection. CoRR abs/1803.04967 (2018). arXiv:1803.04967

[5] Mike Y. Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, and Eric A. Brewer.
2004. Failure Diagnosis Using Decision Trees. In 1st Inter. Conf. on Autonomic
Computing (ICAC). 36–43.

[6] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In Proc. of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS. 1285–1298.

[7] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anom-
aly detection in distributed systems through unstructured log analysis. In
9th IEEE Inter. Conf. on data mining. 149–158.

[8] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience Re-
port: System Log Analysis for Anomaly Detection. In 27th IEEE International
Symposium on Software Reliability Engineering, ISSRE. 207–218.

[9] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra K. Sahoo. 2007.
Failure Prediction in IBM BlueGene/L Event Logs. In Proc. of the 7th IEEE Inter.
Conf. on Data Mining (ICDM 2007). 583–588.

[10] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining
Invariants from Console Logs for System Problem Detection. In USENIX Annual
Technical Conference, 2010, Paul Barham and Timothy Roscoe (Eds.).

[11] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. LogAnomaly: Un-
supervised Detection of Sequential and Quantitative Anomalies in Unstructured
Logs. In Proc. of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI, Sarit Kraus (Ed.). 4739–4745.

[12] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani,
and Deepak Rajan. 2012. PREPARE: Predictive Performance Anomaly Preven-
tion for Virtualized Cloud Systems. In IEEE 32nd Inter. Conf. on Distributed
Computing Systems. 285–294.

[13] Yifan Wu. 2018. DeepLog. https://github.com/wuyifan18/DeepLog.
[14] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.

Largescale system problem detection by mining console logs. (2009).
[15] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechri-

nis, and Hui Zhang. 2016. Automated IT system failure prediction: A deep
learning approach. In IEEE Inter. Conf. on Big Data,. 1291–1300.

http://arxiv.org/abs/1803.04967
https://github.com/wuyifan18/DeepLog

	Abstract
	1 Introduction
	2 NoTIL anomaly detection method
	3 Evaluation
	4 Conclusion
	References

