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Abstract

Vegetal wools have the capacity to store atmospheric carbon dioxyde, one of the

main gases responsible for climate change. So, these insulating materials are used

as key elements for green buildings. Moreover, vegetal wools present high sound

absorption level performances contributing to the acoustic comfort of indoor

living spaces. These properties are directly related to the morphology and the

size of their vegetal fibres. Thus, to take their microstructural specificities into

account for the modeling of their sound absorption properties, a micro-macro

homogenization approach based on a cylindrical geometry is developed. This

modeling method, based on a mix between Homogenization of Periodic Media

(HPM) and Self-Consistent Method (SCM), is called SCMcyl. The macrosco-

pic behaviour laws of materials are rigorously obtained by using HPM . Then,

the SCM leads to the establishment of two possible analytical solutions (a velo-

city approach v and a pressure approach p) under the fundamental assumption

of the energy equivalence between a generic cylindrical inclusion, representative

of the vegetal wools physical and geometrical properties at microscopic scale,
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and the homogeneous equivalent medium at the macroscopic scale. The two

modeling approaches developed in this paper, SCMcyl − v and SCMcyl − p,

can be used to determine the sound absorption of fibrous materials using only

two parameters, an equivalent fibre radius value and the material porosity. Fi-

nally, these solutions are validated for the vegetal wools case by comparison

with experimental measurements.

Keywords: Sound absorption coefficient, Self-consistent method,

Homogenization of Periodic Media, Fibrous materials, Vegetal wools

1. Introduction

Vegetal wools provide an innovative and sustainable response to human

needs. Indeed, used as vegetal raw materials in green buildings insulation, they

bring a significant storage of atmospheric carbon dioxide [1, 2]. In addition, these

materials present high levels of performance in sound absorption [3, 4, 5, 6, 7]5

contributing significantly to the improvement of acoustic comfort inside buil-

dings. Vegetal wools are characterized by the morphological and shape specifi-

cities of their fibres. They display a strong variability in fibre size distribution

[5, 8]. Moreover, the organization of fibres in the materials leads to an aniso-

tropic behaviour [9, 10]. These aspects of the fibrous microstructure of vegetal10

wools have a direct impact on their sound absorption performances at macro-

scopic scale [5, 8, 11, 12, 13] and it is necessary to take them into account when

modeling sound absorption coefficient of vegetal wools. To do that, it seems

particularly relevant to use real parameters related to fibre geometry and wool

structure, such as fibre radius and porosity. Thus, empirical models dedicated to15

fibrous materials can be used. Some of them such as [14, 15] are approved and wi-

dely used in the literature. However, besides not being physically justified, these

models historically developed for conventional fibrous materials seem to be less

adapted to the high variability of vegetal fibres as shown in [8]. Moreover, they

can lead to unphysical predictions as for example negative real parts of complex20

dynamic density especially at low frequencies [16]. Semi-phenomenological mo-

2

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



dels, such as the Johnson-Champoux-Allard-Lafarge model (JCAL) [17, 18, 19],

exist and have proven their efficiency for fibrous materials [5, 8] but they usually

require five (or more) parameters related to pore configuration. Experimental

characterization of some of these parameters such as viscous and thermal cha-25

racteristic lengths or static thermal permeability is not always possible. So, the

work carried out in [20] led to a model limited to three parameters if information

on pore size distributions is available. However, semi-phenomenological models

have been developed for the geometry of general pore networks and are not di-

rectly linked to the microstructural geometry of fibrous media such as fibre sizes30

which may be an accessible parameter for manufacturers of fibrous insulators.

We can then focus on other approaches which are based on homogenization me-

thods that link the properties of an heterogeneous medium at the microstructure

scale to the properties of a macroscopic medium. One of the most widely used

methods is the Homogenization of Periodic Media (HPM), initially developed35

by [21, 22]. This modeling method can be applied regardless of the periodic mi-

crostructure. However, it requires the implementation of important numerical

simulations rather than analytical relationships. This approach has been adap-

ted to the case of fibrous materials in [11, 23], where simplifying assumptions

about the representative elementary volume (REV) had to be done in order to40

decrease the numerical calculations. Other micro-macro approaches are based

on 3D modeling of the REV, requiring numerical simulations to determine the

sound absorption properties [24]. In [25, 26] an hybrid approach is used on the

basis of a numerical homogenization mixed with the JCAL model by numeri-

cal calculations related to the finite element method. This approach has been45

adapted to the case of porous media such as melamine foam in [27] and more

recently to the special cases of a glass wool [28] and a vegetal fibrous materials

(milkweed fibres) [29]. These methods have several advantages. Indeed, based on

a relatively detailed REV, they lead to an accurate modeling of material acous-

tic properties. Moreover, it is possible to establish relationships between the50

characteristic parameters of the pore networks related to models such as JCAL

and those describing the microstructure of materials. Nevertheless, as this hy-
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brid approach requires numerical resolutions, microstructure parameters are not

directly related to the macroscopic properties of the materials through analy-

tical relationships. In order to avoid tomography or SEM characterizations, it55

seems particularly relevant to have direct micro-macro analytical relationships

to carry out rapid inverse analyses. To do this, it is possible to use a different

but complementary homogenization approach, called Self-Consistent Homoge-

nization (SCM) [30]. It is slightly different from the HPM method. Indeed, the

microstructure is not identified with the same precision, but it is reproduced by60

generic heterogeneities. Also, it is specified in [31] that the fundamental hypo-

thesis of this method is to consider that the material at the macroscopic scale

and the microstructural parameters follow the same behaviour laws. In the case

of a spherical geometry, coupled HPM-SCM approach has been developed in

dynamics by [32, 33]. The HPM method is used to rigorously obtain the macro-65

scopic behaviour laws of materials. The SCM approach is applied in a second

step by relying on a two-component spherical inclusion (solid phase included in

the fluid phase) in order to obtain relationships directly linking microstructural

parameters such as spherical grain sizes and macroscopic properties. However,

this method based on a spherical geometry is mainly dedicated to granular mate-70

rials. For fibrous materials having a cylindrical geometry, Boutin’s work [34] has

been limited to a static approach based on [35]. However, another SCM mode-

ling approach has been developed in the literature, but without the fundamental

self-consistent assumption, for example for a spherical geometry by [36]. For a

cylindrical geometry, the Tarnow model is frequently used in the literature for75

modeling the sound absorption properties of fibrous materials [37, 38, 39]. Thus,

in the light of all the above components and in order to directly relate both the

fibre characteristic parameters and the material structure to their macroscopic

properties, it seems particularly relevant to develop a cylindrical Self-Consistent

Modeling approach in dynamic (SCMcyl). Indeed, on the basis of the laws of80

macroscopic behaviour established by HPM, as in C. Boutin spherical approach,

this SCMcyl approach can lead to possible analytical solutions between specific

parameters of fibrous microstructural media and macroscale sound absorption

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



properties. Moreover, it can take the anisotropic nature of vegetal wools into

account, while respecting the fundamental hypothesis of energy conservation.85

Therefore, this paper is organised as follows : Section 2 describes very syntheti-

cally the determination of macroscopic behaviour laws by HPM approach. Then,

after presenting assumptions about the representative elementary volume, the

SCMcyl approach is exposed. In Section 3, the SCMcyl modeling approach is

validated by comparison with experimental data on two vegetal wools. Finally,90

in section 4, these results and the hypothesis done for the SCMcyl developments

are discussed by way of conclusion.

2. Modeling

2.1. Macroscopic laws from the HPM

The description of this method is widely available in the literature, especially95

for the general case of porous materials [32, 40, 41]. Thus, after a description

of the hypotheses and simplifications made in the present case for a fibrous

medium, the HPM main steps and results are recalled.

2.1.1. Basic hypothesis concerning the fibrous medium

We consider a biphasic fibrous medium composed by a solid phase (Ωs) and100

a fluid phase (Ωf ) saturating this medium. As a first approximation and to

take its anisotropic nature into account, the solid phase is represented by fibres

of constant cross-section over their entire length (which is considered large in

comparison with the cross-section size) [42]. Moreover, in our case, this medium

is represented by a regular layout of the fibres which are parallel to each other,105

as shown by Fig. 1. In the general case, the solid phase is considered elastic [43],

[44]. Nevertheless, the work carried out in [45] defines a decoupling frequency

(fd) above which it can be considered that only a compression wave propagates

in the fluid phase. Then, in this case, the hypothesis of a rigid solid phase is

acceptable. So, this assumption is used as a first approximation for the solid110

phase. Moreover, this phase is considered impermeable and its thermodynamic

5
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evolution is considered isothermal. The fluid phase is considered as a Newtonian

viscous and compressible fluid of viscosity µ and thermal conductivity λf (air

thermal conductivity). The porosity φ is considered to be open and the porous

network is interconnected. Moreover, the case of a single porosity medium is115

chosen and wavelengths are considered large in comparison with the pore sizes

in order to neglect diffraction effects.

𝐿
𝑙

Ω𝑠 Ω𝑠

Ω𝑠Ω𝑠

Ω𝑓

Γ Γ𝑠

Γ𝑓

𝒙𝟑

𝒙𝟏

𝒙𝟐 𝒚𝟏

𝒚𝟐

𝒚𝟑

Ω

Macroscopic scale Microscopic scale

Figure 1: Schematic representation of a fibrous medium at macroscopic and microscopic

scales by the periodic cell Ω. Ωs and Ωf correspond to volumes of the solid and fluid phases. Γ

is the solid-fluid interface. Γs and Γf are the solid and fluid interfaces with the cell boundary

Ω

Two specific orientations can be considered for the acoustic excitation. The

first one is in a plane defined by (x1,x3), perpendicular to the longitudinal axis

(x2) of fibres. The second limit case corresponds to an acoustic excitation paral-120

lel to the longitudinal axis of the fibre (x2). However, the parallel case does not

correspond to a conventional use of insulation panels in buildings. Even though

all orientations of the wave are possible between these two limits [9, 29], in this

paper, only a specific focus is done on the perpendicular case which corresponds

to most practical applications. To use a micro-macro homogenization method,125

two basic principles must be respected :

— the existence of a representative elementary volume (REV) ;

6
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— the scale separation between the medium macroscopic representation and

the microscopic characteristics of heterogeneities.

So, as shown by Fig. 1, the REV is related to the microscopic length (l) and the130

fibrous medium is associated to the macroscopic length (L). Both lengths are

related to the scale ratio ε = l
L � 1. The acoustic solicitation is represented by

the propagation of a harmonic plane wave of velocity c0 and of unit amplitude

in the fibrous medium. Then, this wave is subjected to dissipation phenomena

related to both visco-inertial and thermal effects. It is possible to establish local-135

level relationships for each of these phenomena.

2.1.2. Basic equations related to visco-inertial and thermal effects

An acoustic wave propagates through the fluid phase. The wave is considered

harmonic (ejωt dependency is supposed, with j2 = −1 and ω = 2πf is the

angular frequency, f being the frequency in hertz), so the linearized Navier-

Stokes equation governing the fluid phase is written :

µ∆v −∇p = jωρ0v (1)

with µ the dynamic viscosity, v the local speed of the fluid, p the pressure and

ρ0 the fluid phase bulk density at rest.

The local form of the linearized mass conservation equation is given by the

following relationship :

jωρ+ ρ0∇.v = 0 (2)

with ρ the bulk density.140

At the local scale, the temperature variation is governed by the linearized

heat equation, which is expressed by the relation :

λf∆T − jωρ0CpT = −jωp (3)

with λf the thermal conductivity of the fluid phase, T the temperature and Cp

the heat capacity at constant pressure.

7
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2.1.3. Scale separation condition

The next step of HPM is the scale separation condition. It consists in scaling

each term of the linearized equations (Eqs. 1 to 3). To do that, we define the

variable X. It can be related to the variable x = X
L at macroscopic scale and

to the variable y = X
l at microscopic scale. x and y are related to ε by the

following relationship : x = εy. Then, each vector and scalar field, v, p, ρ and

T can be expressed as an asymptotic development in powers of ε as follows :

f(x,y) =
∑∞
i=0 ε

if i(x,y). The gradient (∇), divergence (∇.) and Laplacian (∆)

operators are approximated by the following relationships : ∇ ' ∇x + ε−1∇y ;

∇. ' ∇x. + ε−1∇y. ; ∆ ' ∆x + 2ε−1∇x.∇y. After injecting the asymptotic

developments into the equations relating to viscous and thermal dissipation

phenomena, terms of the same order can then be identified. At the order o(ε−1),

we obtain the following relationships :

∇yp
0 = 0 (4)

The pressure is uniform in the pores at the first order. So, it can be expressed

by : p0 = p0(x) = P . We also find the hypothesis of incompressibility of the

fluid, in the first order, at the pore scale :

∇y.v
0 = 0 (5)

At the order o(1), we obtain the following relationships :

— Visco-inertial effects{
µ∆yv

0 −∇yp
1 −∇xp

0 = jωρ0v
0 (6)

jωρ0 +∇y.v
1 +∇x.v

0 = 0 (7)

— Thermal effects

{
λf∆yT

0 − jωρ0CpT
0 = −jωp0 (8)

2.1.4. Variational formulation resolution and energy conservation condition145

The resolution of the previous set of equations is traditionally realized in the

literature using a variational formulation. This mathematical operation consists

8
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in performing the scalar product of each terms by a w field belonging to the

vector space W , defined by : W = {w,Ω − periodic /∇y.w = 0,w/Γ = 0}.

Equations are then integrated over Ωf . For the visco-inertial effects, based on

Eq. 6 we can express the following relationship :

−
˚

Ωf

∇yp
1.wdΩ+µ

˚
Ωf

∆yv
0.wdΩ−

˚
Ωf

∇xp
0.wdΩ =

˚
Ωf

jωρ0v
0.wdΩ

(9)

To simplify Eq. 9, we use the flow-divergence theorem showing an equality bet-

ween the integral on a given volume (V ) of the vector field (F) divergence and

the flow of this field through the surface (dS) representing the volume boundary

(∂V ). By associating a scalar field (g) to the vector field (F), we can write this

theorem : ˚
V

(F.∇g + g (∇ · F)) dV =

"
∂V

gF · dS (10)

Based on this theorem, as well as the periodicity properties of the functions

belonging to the vector space W and assuming that −→w = v0, the conjugate of

the velocity v0, we obtain the following relation :
˚

Ωf

∇yv
0 · ∇yv0dΩ + j

ωρ0

µ

˚
Ωf

v0 · v0dΩ = − 1

µ
∇xP

˚
Ωf

v0dΩ (11)

This relationship demonstrates the energy conservation between the microscopic

and macroscopic descriptions of the fibrous medium, which is a fundamental

assumption of homogenization models. Then, the solution is classically written :

v0(x,y, ω) = − [π(y, ω)]

µ
∇xP (x, ω) (12)

π(y, ω) represents the local permeability tensor. By integrating v0(x,y, ω) over

Ω, we get the macroscopic velocity of the equivalent homogeneous medium :

〈v0〉Ω = − [Π(ω)]

µ
∇xP (x, ω) (13)

This equation corresponds to the Generalized Darcy’s Law, where [Π(ω)]

is the dynamic permeability tensor related to the dynamic density ρ with the

following relation : ρ(ω) = µ
jωΠ(ω) .

9
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For the thermal effect, applying the same procedure as for visco-inertial

effects, Eq. 8 leads to the following relationship :

λf

˚
Ωf

∇yT
0 · ∇yT 0dΩ + jωρ0Cp

˚
Ωf

T 0T 0dΩ = jωP

˚
Ωf

T 0dΩ (14)

This relationship represents the energy conservation for heat dissipation effects

between the local scale represented by the terms on the left and the equivalent

homogeneous medium, macroscopic scale, represented by the right term. The

solution of the variational formulation process is expressed according to the

following relationship where ξ(y, ω) represents the thermal permeability at the

local scale :

T 0(x,y) =
ξ(y, ω)

λf
jωP (x, ω) (15)

The relation governing the macroscopic temperature variation of the equivalent

homogeneous medium is obtained by integrating over Ω :

〈T 0〉Ω =
Ξ(ω)

λf
jωP (x) (16)

Eq. 16 is equivalent to Darcy’s law for visco-inertial effects. Ξ(ω) is the dynamic

thermal permeability of the equivalent homogeneous medium. It is related to150

the bulk modulus K with the following relation : K(ω) = γP0/φ

γ−j(γ−1)
Ξ(ω)

δ2t φ

.

Using the HPM approach, relationships can be established between the local

velocity, pressure and temperature fields and their macroscopic shape related to

the equivalent homogeneous medium. However, the HPM is used independently

of the morphology of the elementary cell and the implementation of numerical155

resolutions is necessary to determine solutions. Thus, in order to determine pos-

sible analytical solutions, a coupling of the HPM and the SCM homogenization

is performed. To do that, SCM is used on the basis of the equations governing

the laws of behaviour on a macroscopic scale that have been established in this

section and on the fundamental hypothesis of energy conservation.160

2.2. SCM with cylindrical geometry (SCMcyl) adapted to fibrous media

This method has been used in static for the determination of ρ, for fibrous

materials by [35] and for granular materials (spherical SCM) by [34]. Subse-

quently, work carried out in [32] and [33] led to the determination of ρ and of

10
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the bulk modulus K in dynamic, but only in the case of the granular materials165

with spherical geometry. To apply this method, it is first necessary to develop a

generic inclusion of simplified geometry and to establish the equations governing

the behaviour of the velocity, local pressure and temperature fields. Then, under

the constraint of an homogeneous macroscopic force, differential equations are

obtained and solved to determine solutions for the three characteristic quantities170

within the fluid phase. Then, the establishment of boundary conditions makes

it possible to propose two families of possible solutions for ρ and K, which can

be used for the modeling of fibrous materials acoustic properties.

2.2.1. Cylindrical generic inclusion for a fibrous medium

The selected generic inclusion (Ω) is a biphasic inclusion described by a

cylinder of radius (R) and surface (∂R). The solid phase, representative of a

fibre of volume (Ωs), has a radius (βR) constant along its entire length (Z)

considered, in first approximation, large in comparison with the cylinder cross-

section (Zr = ε� 1). The solid phase is included in an air cylinder (fluid phase)

with a hole in the middle. Its external radius is R and its internal radius is βR,

as shown in Fig. 2. Thus, we can express the porosity φ from the solid phase

radii βR and the inclusion R. φ = 1−
(
βR
R

)2

= 1− β2. The macroscopic stress

materialized by a pressure gradient∇P, has been represented in Fig. 2 in a plane

defined by (er, eθ), perpendicular to the longitudinal axis (ez) of the fibres. As

indicated in section 2.1.1, only this special limit case is investigated. To simplify

the writing of the acoustic pressure force, ∇P is replaced by a force noted

G = ∇P. So, at macroscopic scale in the equivalent homogeneous medium,

generalized Darcy law for the visco-inertial effects and equivalent Darcy law for

the thermal effects are expressed through the following relationships :

〈v〉 = V = −Π

µ
∇P = −Π

µ
G (17)

〈T 〉 =
Ξ

λf
jωP (18)

In the fluid phase of the cylindrical inclusion for βR < r < R :175
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Generic inclusion

𝑅

𝛽𝑅

Ω𝑆
Ω𝑓

𝜕Ω
𝑒𝑥

𝑒𝑧
𝑒𝑦

𝑒𝑧
𝑒𝜃
𝑒𝑟

𝑮

Equivalent homogeneous medium

Figure 2: Schematic representation of a fibrous medium at macroscopic and microscopic

scales by the periodic cell Ω. Ωs and Ωf correspond to volumes of the solid and fluid phases. Γ

is the solid-fluid interface. Γs and Γf are the solid and fluid interfaces with the cell boundary

Ω

— local fluid movements are governed by the linearized Navier-Stokes equa-

tion. For convenience, it is expressed as :

−∇p− 1

δ2
v

µv + ∆ (µv) = 0 (19)

with δv =
√

µ
jρ0ω

the viscous boundary layer thickness ;

— based on Eq. 5 the fluid phase is considered as incompressible at the first

order :

∇.v = 0 (20)

— no slip condition between the solid phase and the fluid phase is zero :

v/Γ = 0 (21)

— temperature field variations in the fluid phase are governed by the linea-

rized heat equation which is expressed as follows :

∆T − 1

δ2
t

T +
jωP

λf
= 0 (22)
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With δt =
√

λf
ρ0Cpω

the thermal boundary layer thickness ;

— the temperature condition at the solid/fluid interface is zero :

T/Γ = 0 (23)

2.2.2. The pressure field

In a first approximation and based on [46] works, which is also used in [32],

it is possible to expressed the pression field (p) as a function of both G and a

function denoted h (which has to be determined) depending on r by the following

relationship :

p = G.∇h(r) (24)

Using the divergence operator (∇.) on the linearized Navier-Stokes equation

(Eq. 19), we get :

∇.∇p− 1

δ2
v

µ∇.v + ω (µ∇.v) = 0 (25)

However, as the fluid is considered incompressible at the local scale (Eq. 20),

the previous expression (Eq. 25) can be simplified and we can write it :

∆p = 0 (26)

By combining Eqs. 24 and 26, we obtain :

∆ (G.∇h(r)) = G.∇(∆h(r)) = Gr
∂(∆h(r))

∂r
= 0 (27)

Then, it leads to the following differential equations :

∆h(r) = c0 (28)

Finally, the expression of h function can be obtained by the following relation-

ship :

h(r) = c0 ln(r) +
c1.r

2

4
(29)

The constant term is taken equal to zero because it has no physical meaning

and it does not participate in the establishment of boundary conditions.180
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2.2.3. The velocity field

As for the case of the scalar field p, it is possible to rely on [32, 46] to express

the local velocity vector field in the following form :

µv = G [∇⊗∇f(r) + g(r)I] (30)

with ⊗ representing the tensor product operator and I the identity matrix. Ap-

plying the divergence operator to Eq. 30, we obtain the following relationship :

G.∇. [∇⊗∇f(r) + g(r)I] = µ∇.v = 0 (31)

Then, Eq. 31 can be written in the following form :

G.∇ [∆f(r) + g(r)] = Gr

(
∂(∆f(r) + g(r))

∂r

)
= 0 (32)

Thus, we can write that ∆f(r) + g(r) = a0, or g(r) = −∆f(r) + a0 with a0 a

constant. By injecting the g(r) expression into Eq. 30, we obtain the following

relationship :

µv = G [∇⊗∇f(r)−∆f(r)I + a0I] (33)

On the other hand, we can include the term −a0

2 r
2 in the f(r) function in order

to remove the term a0I. Eq. 30 is finally written :

µv = G. [∇⊗∇f(r)−∆f(r)I] (34)

Now, we can replace both µv and p terms in the linearized Navier-Stokes equa-

tion (Eq 19) by their respectively expressions given by both Eq 24 and Eq 34.

Thus, we obtain the following relationship :

−∇.(G.∇h(r))− 1

δ2
v

G. [∇⊗∇f(r)−∆f(r)I]+∆ (G. [∇⊗∇f(r)−∆f(r)I]) = 0

(35)

This expression can also be written in the following simplified form :

−G.∆h(r)I + G. [∇⊗∇− I∆]

[
−h(r) + ∆f(r)− 1

δ2
v

f(r)

]
= 0 (36)

To further simplify Eq. 36, a m function is introduced. It is expressed by :

m(r) =
[
−h(r) + ∆f(r)− 1

δ2
v
f(r)

]
. Moreover, the h function is replaced by its
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expression given by Eq. 29. So, ∆h(r) = 1
r
∂
∂r

(
r ∂h∂r

)
= c1. Finally, Eq. 36 can be

written :

G. [−c1I +∇⊗∇m(r)− I∆m(r)] = 0 (37)

with ∇⊗∇m(r) =


∂
∂r

(
∂m(r)
∂r

)
0 0

0 1
r
∂m(r)
∂r 0

0 0 0

 and ∆m(r) = 1
r
∂m(r)
∂r + ∂2m(r)

∂r2 .

Eq. 37 can thus be written in matrix form as follows :

G.


−c1 − 1

r
∂m(r)
∂r 0 0

0 −c1 − ∂2m(r)
∂r2 0

0 0 −c1 − ∂2m(r)
∂r2 − 1

r
∂m(r)
∂r

 = 0 (38)

So, ∂m(r)
∂r = −c1r. Thus, we can express the m function by the following expres-

sion :

m(r) = −h(r) + ∆f(r)− 1

δ2
v

f(r) = −c0 ln(r)− c1
4
r2 + ∆f(r)− 1

δ2
v

f(r) = −c1
2
r2

(39)

Finally, for the function f , we obtain a second degree differential equation with

non-constant coefficients and with a second member. It is expressed by the

following relation :

∂2f(r)

∂r2
+

1

r

∂f(r)

∂r
− 1

δ2
v

f(r) = c0 ln(r)− c1
4
r2 (40)

The solution is :

f(r) = δ2
v

(
−c0 ln r +

c1
4
r2 − c1δ2

v

)
+ c2I0(r/δv) + c3K0(r/δv) (41)

With I0 and K0, modified Bessel functions of the first species.

2.2.4. The temperature field

By analogy with visco-inertial effects and by using the equations previously

established for heat dissipation in Section 2.1.4, the temperature T can be ex-

pressed as a function of local scale thermal permeability by the following rela-

tionship :

T (r) = ξ(r)
jωP

λf
(42)
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By injecting this T expression into Eq. 22, we obtain the following relationship :

∆ξ(r)− 1

δ2
t

ξ(r) + 1 = 0 (43)

By expressing ∆ξ(r) in cylindrical coordinates, we finally obtain the following

differential equation :

∂2ξ(r)

∂r2
+
∂ξ(r)

∂r
− 1

δ2
ξ = −1 (44)

The solution of this equation is :

ξ(r) = δ2
t + c4I0(r/δt) + c5K0(r/δt) (45)

The expressions of the functions relating to the pressure, velocity and tempe-

rature fields have been expressed locally. It is now necessary to determine the185

five constants used in these functions. To do that, we can use the boundary

conditions of the problem. First, concerning the velocity, boundary conditions

can be expressed at the solid-fluid boundary as well as at the inclusion boun-

dary. Then, concerning the pressure, strains on generic inclusion at the inclusion

boundary should also be expressed. In addition, concerning the temperature,190

boundary conditions can be expressed at the solid-fluid interface too. Finally,

it is necessary to take the energy conservation condition between inclusion, at

the local scale, and the equivalent homogeneous medium into account for both

visco-inertial and thermal effects.

2.2.5. Boundary conditions at the solid-fluid interface195

At the solid-fluid interface, r = βR, no slip condition (Eq. 21) leads to a zero

velocity, v(βR) = 0 and the temperature variation condition (Eq. 23) also leads

to zero. This condition concerning the temperature variation allows us to easily

and quickly establish the first boundary condition. Indeed, it can be expressed

by the following relationship :

ξ(βR) = 0 (46)

Concerning the velocity, based on both the cylindrical geometry and the hy-

pothesis of a perpendicular flow (in the plane (er, eθ)), it can be written v =

16
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vrer + vθeθ. Thus, based on Eq. 34, the velocity can be written as the following

relationship :
µvr

µvθ

0

 =


G cos θ

G sin θ

0



− 1
r
∂f(r)
∂r 0 0

0 −∂
2f(r)
∂r2 0

0 0 − 1
r
∂f(r)
∂r −

∂2f(r)
∂r2

 (47)

Thus, we obtain two relationships for the velocity vector at the local scale,

projected on (er, eθ) :

— On the er axis :

µvr(r) = −G cos θ
1

r

∂f(r)

∂r
(48)

— On the eθ axis :

µvθ(r) = −G sin θ
∂2f(r)

∂r2
(49)

In combination with no slip condition and Eqs. 48, 49, we obtain the second

and the third boundary conditions :

− 1

βR

∂f(βR)

∂r
= 0 (50)

−∆f(βR) = 0 (51)

To summarize, the three boundary conditions for local velocity and temperature

are given by Eqs.46, 50 and 51.

2.2.6. Boundary conditions at the inclusion frontier200

It is also possible to express a boundary velocity condition between the

generic inclusion and the equivalent homogeneous medium (r = R). Indeed, the

mean velocity within the inclusion is equal to the macroscopic velocity given

by the Darcy relation expressed by Eq. 17. This equality leads to the following

relationship :

V(r) =
1

Ω

˚
Ωf

v(r)dΩ (52)

It is possible to rewrite Eq. 52 as the following expression :
˚

Ωf

v(r)dΩ =

˚
Ωf

(v.∇rer + rer (∇ · v(r))) dΩ (53)
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Indeed, ∇r ·er = 1 and ∇.v = 0 (Eq. 20). Then, we can simplify this expression

by using the relation of the flow-divergence theorem exposed earlier by Eq. 10 :

˚
Ωf

v(r)dΩ =

"
∂Ω

rer · v(r) · dS (54)

for r = R, dS = R dθ dz er. Finally, by solving the surface integral, the mean

velocity can be obtained :

V(r) =
1

µR

∂f(R)

∂r
G (55)

By identifying V(r) with the Generalized Darcy Equation 17, we can write a

third boundary condition for r = R as a function of the permeability Π, by the

following relationship :

− 1

R

∂f(R)

∂r
+ Π = 0 (56)

The normal fluid velocity vr(r) is expressed as a function of ∂f(r)
∂r . So, this

boundary condition means that radial velocities are equal at any point on the

frontier surface between the inclusion and the equivalent homogeneous medium.

Thus, we can write the following relation :

vr(R) = Vr(R) (57)

Now, on the basis of [32, 33], we can express the stress on generic inclusion at

the inclusion boundary. So, it is physically possible to implement an equality

between the pressure P in the equivalent homogeneous medium and the inclusion

stress, which can be expressed as −pI + 2µD (v(r)) with D (v(r)) the tensor

of the deformation rates depending on the local velocity. This condition can be

written : "
∂Ω

[−(p− P )I + 2µD (v(r))] · dS = 0 (58)

At the inclusion frontier, r = R, dS = R dθ dz er. The integral of the three terms

forming Eq. 58 can be calculated separately. The first term is
!
∂Ω
−p I·dS. Using

the expression for p given by Eq. 24, we can write
!
∂Ω
−p I dS =

!
∂Ω
−G ·

∇h(r) · I · dS. So, the result is given by the following relationship :
"
∂Ω

−pIdS = −πRZ ∂h(R)

∂r
G (59)
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with Z the cylindrical inclusion height which will later vanish. Now, to resolve

the second integral, we can use the flow-divergence theorem presented by Eq.

10. Thus,
!
∂Ω
P I dS =

˝
Ωf

(I · ∇P + P∇.I) dΩ. With ∇.I = 0, ∇P = G and

dΩ = r dr dθ dz. So, the result is given by the following relationship :
"
∂Ω

P IdS = πR2ZG (60)

Finally, to obtain the third term of Eq. 58, it is necessary to use the tensor

D (v(r)) based on the expressions of vr(r) (Eq. 48) and vθ(r) (Eq. 49). The

expression of 2µD (v(r)) is given by the following relationship :

2µD (v(r)) =


−2(G · er) ∂∂r

(
1
r
∂f(r)
∂r

)
(G · eθ)

(
1
r
∂2f(r)
∂r2 − ∂3f(r)

∂r3

)
0

(G · eθ)
(

1
r
∂2f(r)
∂r2 − ∂3f(r)

∂r3

)
−2(G · er) 1

r2

∂f(r)
∂r 0

0 0 0


(61)

for r = R, dS = dS er = R dθ dz er. So, we can write :
"
∂Ω

2µD (v(R)) · erdS =

"
∂Ω

2µDrrdS +

"
∂Ω

2µDrθdS (62)

with 
2µDrr = −2G cos θ

∂

∂r

(
1

r

∂f(r)

∂r

)
(63)

2µDrθ = G sin θ

(
1

r

∂2f(r)

∂r2
− ∂3f(r)

∂r3

)
(64)

Thus, we obtain the following result :
"
∂Ω

2µD (v(r)) · erdS = πRZG

(
−∂

3f(R)

∂r3
+

1

R

∂2f(R)

∂r2
− 2

∂

∂r

(
1

R

∂f(R)

∂r

))
(65)

Finally, we can can write the solution by the following relationship :
"
∂Ω

2µD (v(r)) · erdS = πRZG

(
− ∂

∂r
(∆f(r))

)
(66)

So, by combining Eqs. 59, 60 and 66 with Eq. 58, we obtain the following

relationship :

πRZG

(
R− ∂h(R)

∂r
− ∂

∂r
(∆f(r))

)
= 0 (67)
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We finally obtain a fifth boundary condition :

R− ∂h(R)

∂r
− ∂

∂r
(∆f(R)) = 0 (68)

To summarize, at the inclusion frontier, we have set two new boundary condi-

tions. First for velocity which is given by Eq.57 and the second for the stress on

the inclusion which is given by Eq. 68.

2.2.7. Boundary conditions related to the energy conservation

Boundary conditions related to the energy conservation are determinated for

both visco-inertial and thermal effects. A preliminary operation is performed on

the Navier-Stokes Equation 19 which governs the fluid’s movements on local

scale. For practical reasons, it is written in the following useful form :

µ∆v(r)− jωρ0v(r) = ∇p (69)

Then, the variational formulation method used previously in Section 2.1.4 is

applied to Eq 69. However, instead of performing the scalar product by a w

field, the local velocity conjugate v is used. Thus the following relationship is

obtained :

µ

˚
Ωf

∆ (v(r)) · v(r)dΩ− jωρ0

˚
Ωf

v(r) · v(r)dΩ =

˚
Ωf

∇p · v(r)dΩ (70)

Now, it is possible to simplify Eq. 70 by using the flow-divergence theorem (Eq.

10) and by replacing (∇.v(r)) with 2D(v(r)). Thus, the first term of Eq. 70 can

be written :

2µ

˚
Ωf

(∇ (D (v(r))) · v(r) + D (v(r)) ·D (v(r))) dΩ = 2µ

"
∂Ω

D (v(r))v(r)·dS

(71)

The right-hand term of Eq. 70 can be written as :˚
Ωf

∇p · v(r)dΩ =

"
∂Ω

pv(r) · dS (72)

Now, Eq. 70 can be written as follows :

2µ

˚
Ωf

D (v(r)) ·D (v(r)) dΩ + jωρ0

˚
Ωf

v(r) · v(r)dΩ

= −
"
∂Ω

pv(r) · dS + 2µ

"
∂Ω

D (v(r))v(r) · dS
(73)
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Eq. 73 can be related to Eq. 11 established previously by the HPM method. In

order to adapt it to the SCMcyl case, it can be written again by the following

relation :

2µ

˚
Ωf

Dy (v(r))·Dy (v(r)) dΩ+jωρ0

˚
Ωf

v(r)·v(r)dΩ = − 1

µ
∇xP

˚
Ωf

v(r)dΩ

(74)

This relationship depicts the energy conservation between the local scale inclu-

sion (left-hand terms) and the equivalent homogeneous medium at the macro-

scopic scale (right-hand term). By analogy between Eqs. 73 and 74, the following

relationship can be established :

−
"
∂Ω

pv(r) · dS + 2µ

"
∂Ω

D (v(r))v(r) · dS = −∇P
˚

Ωf

v(r)dΩ (75)

By using the flow-divergence theorem on the right-hand term of Eq. 75, we

finally obtain the following relationship :

−
"
∂Ω

pv(r) · dS + 2µ

"
∂Ω

D (v(r))v(r) · dS = −
"
∂Ω

Pv(r) · dS (76)

In order to express the energy equivalence between the inclusion and the same

volume of the equivalent homogeneous medium, the approach previously used for

boundary stress conditions is implemented. So, V(R) is defined as the conjugate

of the mean velocity at the frontier between the inclusion and the equivalent

homogeneous medium. Then, the energy equivalence at r = R can be written

by the following relationship :

−
"
∂Ω

[(P − p) + 2µD (v(R))] ·
[
v(R)−V(R)

]
dSer = 0 (77)

By doing the scalar product with er, we get two relationships :
−
"
∂Ω

[(P − p) + 2µDrr]
[
vr(R)− Vr(R)

]
dS (78)

= 0 (79)

−
"
∂Ω

2µDrθ

[
vθ(R)− Vθ(R)

]
dS = 0 (80)

We saw previously that vr(R) = Vr(R), so Eq. 79 does not lead to the energy

conservation conditions. On the other hand, Eq. 80 allows two possible condi-
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tions. Indeed, either
[
vθ(R)− Vθ(R)

]
, or 2µDrθ =0. In the first case, by expres-

sing vθ(R) from Eq. 49 and Vθ(R) from generalized Darcy equation (Eq. 17),

we get the following relationship :

vθ(R)− Vθ(R) = −∂
2f(R)

∂r2

G · eθ
µ

+ Π
G · eθ
µ

(81)

So, we obtain :
∂2f(R)

∂r2
= Π (82)

Combining this result with the velocity boundary condition at the inclusion fron-

tier, given by Eq.57, we finally obtain a sixth boundary condition relationship :

−1

2
∆(f(R)) + Π = 0 (83)

In this case, at the frontier between the inclusion and the equivalent homoge-

neous medium, the fluid phase velocity is equal to the velocity of the equiva-

lent medium (radial and orthoradial components). On the other hand, there

is no equality between the pressure in the inclusion and the pressure of the

equivalent homogeneous medium. This kind of configuration has been named

flow approach [32], it is noted hereafter with the v index. In the second case,

by using the Drθ expression, given by Eq. 64, we get an alternative boundary

condition related to the energy conservation. It can be written by the following

relationship :
∂3f(R)

∂r3
=

1

R

∂2f(R)

∂r2
= 0 (84)

In this case, the shear stress is cancelled. Thus, the stress (−pI+2µD(v(R))) on205

the inclusion is equal to the pressure P in the equivalent homogeneous medium.

However, at the frontier between the inclusion and the equivalent homogeneous

medium the orthoradial velocities of the fluid phase and the homogeneous me-

dium are not equal. This configuration is called pressure approach and it is

written with the p index.210

As for the visco-inertial case, the first step for the determination of the

boundary condition related to thermal effect consists in applying the variational
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formulation to the heat equation (Eq 22). To do that, T is used. So, the following

relationship is obtained :

−λf
˚

Ωf

∆T (r)T (r)dΩ + jωρ0Cp

˚
Ωf

T (r)T (r)dΩ = jωP

˚
Ωf

T (r)dΩ

(85)

By applying the flow-divergence theorem to the first term of Eq. 85, we get

the following relationship :

λf

˚
Ωf

∇T (r) · ∇T (r)dΩ + jωρ0Cp

˚
Ωf

T (r)T (r)dΩ− λf
"
∂Ω

∇T (r)T (r)dS

= jωP

˚
Ωf

T (r)dΩ

(86)

At the inclusion frontier (r = R), by identifying the Eq 86 with the previously

established Eq. 14, we get the following relationship :

λf

"
∂Ω

∇T (R)T (R)dS = 0 (87)

It can also be written :

λf
∂T (R)

∂r
T (R)

ˆ Z

0

dz

ˆ 2π

0

dθ = 0 (88)

The first possibility is T (R) =0, but it is an artificial term used to apply the va-

riational formulation, so that does not make physical sense. The second solution

is ∂T (R)
∂r = 0. Taking the T expression given by the Eq 42, we can finally write

the boundary condition for the energy conservation of the thermal dissipation

effects by the following relationship :

∂ξ(R)

∂r
= 0 (89)

Now, it is possible to determine all the constants for both pressure p and velocity

v approaches. For each of them, we have 7 unknown constants c0, c1, c2, c3, c4,

c5 and Π (v or p) for 7 equations. To summarize, the both equation systems are

related to the following relationships :

— v-approach : Eqs. 46, 50, 51, 57, 68, 83 and 89 ;215

— p-approach : Eqs. 46, 50, 51, 57, 68, 84 and 89.
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2.2.8. Solutions for the SCMcyl modeling method

The solving of these systems leads to the expressions of both visco-inertial

and thermal permeabilities. To simplify the writing of the equations, four adi-

mensional parameters are defined p = r
δv
, q = p β, p′ = r

δt
and q′ = p′ β. To220

solve the equation systems, a formal calculation software has been used. So,

the visco-inertial permeabilities for both v and p approaches are given by the

following relationships :

— v-approach :

Πv = δ2
v

(
R2φA0 + 2δvR(βA1 +A2)

R2(1− φ)A0 + 2δv(−2Rβ2A3 +RβA4 +RA2 + 8βδvA5)

)
(90)

with A0, A1, A2, A3, A4 and A5 functions expressed by the following

relationships :

A0 = I0(p)K0(q)− I0(q)K0(p), (91)

A1 = I0(p)K1(q)− I0(q)K1(q) + I1(q)K0(p)− I1(q)K0(q), (92)

A2 = I0(p)K1(p)− I0(q)K1(p) + I1(p)K0(p)− I1(p)K0(q), (93)

A3 = I0(q)K1(p) + I1(p)K0(q), (94)

A4 = I0(p)K1(q) + I0(q)K1(q) + I1(q)K0(p) + I1(q)K0(q), (95)

A5 = −I1(p)K1(q) + I1(q)K1(p) (96)

— p-approach :

Πp = δ2
v

(
R3φA3 +R2δv(2βA5 − φA0) + 2δ2

vR(βA1 −A2)

φR3A3(R2 + 4β2δv)−R2δv(2− φ)A0 − 2Rδ2
v(A2 + βA4)− 2βδv(R2 + 4δ2

v)A5

)
(97)

The A0, A1, A2, A3, A4 and A5 functions are the same as for v-approach.

There are expressed by Eqs. 91, 92, 93, 94, 95 and 96.225

The thermal permability is given by the following relationship :

Ξ(ω) = δ2
t

(
1− 2δ3

t

RφA6
[A7 −A8]

)
(98)

with A6, A7 and A8 functions expressed by the following relationships :
A6 = I0(q′)K1(p′) +K0(q′)I1(p′), (99)

A7 = K1(p′)(βI1(q′)− I1(p′)), (100)

A8 = I1(p′)(βK1(q′)−K1(p′)), (101)
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Then, by associating each dynamic visco-inertial permeability (Πv or Πp) with

the thermal permeability (Ξ), it is possible to get both parameter couples :

(ρv,K) or (ρp,K). Finally, we can get two possible sound absorption coefficients

αv or αp. To summarize, based on both a mean fibre radius and a porosity value,

the SCMcyl method developed in this paper leads to two possible solutions :230

— v-approach ⇒ (Πv,Ξ) ⇒ (ρv,K) ⇒ αv

— p-approach ⇒ (Πp,Ξ) ⇒ (ρp,K) ⇒ αp.

3. Validation and discussion

In this section, the SCMcyl method is validated by comparison with experi-

mental measurements. Two vegetal wools are characterized at microscopic scale235

to obtain modeling approach input parameters as well as at macroscopic scale

to measure their sound absorption properties. Finally, the approach developed

in this paper is discussed.

3.1. Materials

Both materials used for the validation of the SCMcyl modeling approach are240

thermobonded vegetal wools manufactured as a single panel with one kind of

vegetal fibres over its entire thickness. The first one is a flax wool (refered as

"Flax") and the second one is a hemp wool (refered as "Hemp"). These both

types of fibrous materials have been chosen because they are among the most

widely used biobased insulation materials in green buildings. The both vegetal245

wools are shown in FIG 3. As shown in Table 1, the both materials have relatively

different thickness and bulk density values to lead to different sound absorption

coefficients. These wools characteristics are based on 5 measurements for every

4 samples of each material.

3.2. Methods250

3.2.1. Fibre size distribution

Microstructure pictures of the wools have been realized using a FEI Quanta

400 Scanning Electron Microscope (SEM) in secondary electron (SE) imaging

25
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(a) (b)

Figure 3: The materials, (a) "Flax", (b) "Hemp"

mode in low vacuum. Then, these pictures are analysed to characterize the

vegetal fibre specificities. As shown in FIG 4 (a), vegetal fibres are present either255

in the form of a single fibre or fibre bundles. However, due to the 2D nature of the

images and the great variability in the vegetal fibre shapes and morphologies,

it is generally difficult to really distinguish them. Thus, in the following of

this paper, as a first approach, all characterized elements will be assimilated to

fibres and represented by a fibre radius value. Although fibres are not perfectly260

circular, it is assumed that they can be considered as cylinders of constant radius

over their entire length, as shown in FIG 4 (a). This hypothesis is corroborated

by the results carried out in [47] for which the circularity of flax fibres had been

estimated at 0.907. To determine the fibre radii distribution, we rely on the works

carried out in [8, 13, 48, 49]. So, using Mesurim c© software, the measurements265

are performed by drawing a transversal segment to the longitudinal axis of the

fibre, as shown in Fig. 4 (b).

In order to comply with these work recommendations, for each material,

at least 300 fibre diameters are recorded from a minimum of 20 pictures. The

26
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Material Thickness (mm) Bulk density (kg.m−3) Porosity (%) Mean fibre radius (µm)

Flax 48± 1 26.6± 1.1 98.4± 0.2 11.8± 1.6

Hemp 107± 2 40.8± 2.7 97.4± 0.2 16.7± 1.7

Table 1: Experimental characteristics of the vegetal wools obtained under a thermal condition

of T = 25 ± 0.8̊ C and a relative humidity of RH = 40 ± 2%. Data are presented with mean

value ±

standard deviation.

Single 
fibre

Fibre 
bundle

𝟐𝑹𝒇 𝟏

𝟐𝑹𝒇 𝟐

(a) (b)

Figure 4: Analysis and exploitation of SEM pictures, (a) flax single fibres and fibre bundle,

(b) radius measurements of hemp wool fibres with Mesurim c© software

measured fibre radius distributions for flax and hemp wools are represented270

by bar charts as shown in Fig. 5. The smallest measured fibres have radii of

approximately 3µm. For the biggest ones, radii values are around 80µm for

the hemp fibres and around 90µm for the flax fibres. Although the bar charts

are relatively similar, the distribution of hemp fibre radii shows more elements

above 30µm. On the other hand, as shown in Fig. 5, these are log-normal laws275

which better correspond to the vegetal fibre radii distributions. Nevertheless, as

the SCMcyl modeling approach is based on an equivalent fiber radius value, in

a first approach, we choose a single radius value corresponding to the mean of

the fibre radii [3, 8, 13, 48]. In [23, 28] the fibre radius is weighted according

27
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(a) (b)

Figure 5: Bar charts of fibre radii distributions, (a) flax wool, (b) hemp wool

to its corresponding fibre volume. This typically shifts the single fibre radius280

towards larger values. However, in our case, as the length of the fibres is not

known, it is not possible to apply this correction. Moreover, as shown in Fig. 5,

for both distributions, the arithmetic mean fibre radii value is greater than the

mean radii value related to the log-normal laws. Indeed, the arithmetic mean

better takes the influence and the presence of large size elements into account.285

The results are presented in Table 1.

3.2.2. Porosity

The porosity was experimentally characterized using the air volumes compa-

rison method described in [50]. This method leads to the determination of the

porosity directly accessible by air. It corresponds to the open porosity of mate-290

rials by determining directly the volume of their solid phase. Both the inter-fibre

porosity and the open intra-fibre porosity can be considered as the accessible

porosity of vegetal wools. Nevertheless, works carried out in [5] have estimated

that the intra-fibre porosity is lower than 0.2% of the total porosity for this type

of material. So, as a first approach, it can be neglected.295

The results presented in Table 1 were obtained from five measurements on

both materials.
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3.2.3. Sound absorption coefficient

A B&K c© type 4106 standing wave tube with an inner diameter of 100

mm, was used to experimentally characterize the sound absorption coefficient300

of the both sides of four samples for each vegetal wool. These measurements

were carried out at normal incidence according to standard ISO 10534-2 [51].

Taking the configuration of the impedance tube and the distance between the

two microphones located upstream of the sample (7.5 cm) into account, the

standard ISO 10534-2 leads to a validity limit value for low-frequency measure-305

ments of 226Hz.The validity limit of high-frequency measurements is estimated

to be around 2000Hz. The three position method without cavity, based on the

work carried out in [52] and adapted by [53] for microphones located outside

the tube, was used. This method leads to the determination of intrinsic material

parameters, the bulk modulus (K) and the dynamic density (ρ).310

3.3. Modeling validation

In a first step, the both dynamic density SCMcyl modeling, ρv and ρp, are

compared to the experimental ones. Then, in the same way, the bulk modulus

(Kexp and KSCM ) obtained by both experimental measurements and SCMcyl

modeling method are analyzed. Finally, the sound absorption coefficients (αv315

and αp) based on materials thickness, dynamic densities and bulk modulus are

modelized and compared to the experimental measurements.

3.3.1. Dynamic densities

For visco-inertial effects, the real and the imaginary parts of the normalized

dynamic density (ρ/ρ0) of the experimental measurements and both SCMcyl320

modeling approaches for the both vegetal wools are shown in Fig. 6. As ex-

pected for the both materials, Fig. 6 shows that both approaches give values

of the real part of the dynamic density close to 1 regardless of the frequency.

For the imaginary part, in a classic way, both modeling approaches of mate-

rials follow a trend in − σ
ω for low frequency and close to 0 when the frequency325

increases, as shown by Fig. 6. It should be noted that the differences between ex-
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(a) (b)

Figure 6: Experimental characterisation and SCMcyl modeling of the normalised dynamic

density as a function of frequency for (a) the flax wool and (b) the hemp wool

perimental and modeling results in the low-frequency regime for the imaginary

part of the normalized dynamic density are slightly larger for flax wool than for

hemp wool. This is confirmed by the airflow resistivity values determined by the

low-frequency limit from both experimental measurements and SCMcyl mode-330

ling. Indeed, for flax wool we obtain σexp = 4161N.m−4.s, σp = 5008N.m−4.s

and σv = 6432N.m−4.s, while the differences are smaller for hemp wool with

σexp = 3993N.m−4.s, σp = 4611N.m−4.s and σv = 6062N.m−4.s. For these

both materials, no significant limp behaviour was observed. If so, the SCM

modeling could have been mixed with the dynamic density related to a limp335

behaviour [54, 55]. However, a difference is observed between the curves of the

both approaches. Indeed, for both materials, the flow approach is slightly fur-

ther away than the pressure approach. This trend follows the same behaviour

already observed for spherical modeling. The cause of the differences between

the results of the flow and pressure approaches requires further investigation.340
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(a) (b)

Figure 7: Experimental characterisation and SCMcyl modeling of the normalised bulk mo-

dulus as a function of frequency for (a) the flax wool and (b) the hemp wool

3.3.2. Bulk modulus

For thermal effects, Fig. 6 shows both real and imaginary parts of the nor-

malized bulk modulus (K/P0) obtained by the experimental measurements and

the SCMcyl modeling approach for the both wools. For the real part of this

parameter, the modeling method remains between the two physical limit va-345

lues corresponding to Re(K/P0) ' 1/φ in low frequency (isothermal regime)

and Re(K/P0) ' γ/φ in high frequency (adiabatic regime). Thus, it is verified

that when the frequency is low (f → 0), the real part of the normalized bulk

modulus from SCMcyl modeling tends towards 1/φ. Concerning the imaginary

part of the normalized bulk modulus, as expected, at low frequency we have350

lim
f→0

Im(K/P0) = 0. Then it increases to the thermal transition frequency be-

fore decreasing again to zero. For both materials, as shown by Fig. 7, the SCMcyl

modeling approach is relatively close to the experimental measurements.

3.3.3. Sound absorption coefficient

The results of the SCMcyl modeling, shown in Fig. 8, are relatively close to355

the experimental measurements for both materials. In both cases, the pressure
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𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑝 𝑓𝑜𝑟 𝑅𝑓 𝑟𝑎𝑛𝑔𝑒 10.2 − 13.4 µ𝑚

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑝 𝑓𝑜𝑟 𝑅𝑓 = 11.8µ𝑚

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑀𝑒𝑎𝑛 exp.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑝 𝑓𝑜𝑟 𝑅𝑓 𝑟𝑎𝑛𝑔𝑒 15.0 − 18.4 µ𝑚

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑝 𝑓𝑜𝑟 𝑅𝑓 = 16.7µ𝑚

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑀𝑒𝑎𝑛 exp.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

(a) (b)

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑣 𝑓𝑜𝑟 𝑅𝑓 𝑟𝑎𝑛𝑔𝑒 10.2 − 13.4 µ𝑚

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑣 𝑓𝑜𝑟 𝑅𝑓 = 11.8µ𝑚

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑀𝑒𝑎𝑛 exp.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑣 𝑓𝑜𝑟 𝑅𝑓 𝑟𝑎𝑛𝑔𝑒 15.0 − 18.4 µ𝑚

𝑆𝐶𝑀𝑐𝑦𝑙 − 𝑣 𝑓𝑜𝑟 𝑅𝑓 = 16.7µ𝑚

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑀𝑒𝑎𝑛 exp.𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

(c) (d)

Figure 8: Experimental characterisation and modeling of the sound absorption coefficient as

a function of frequency for (a) the flax wool and the SCMcyl−p modeling, (b) the hemp wool

and the SCMcyl − p modeling, (c) the flax wool and the SCMcyl − v modeling and (d)the

hemp wool and the SCMcyl − v modeling

approach has a lower mean relative deviation than the experimental relative

deviation, as shown in Table 2. Indeed, both values are less than 10%. In the both

cases, the flow approach is slightly further away than the pressure approach. As

shown in Table 2, for the hemp wool, the relative deviation is less than 10%,360

but for the flax wool, it is higher but remains close to the experimental mean
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deviation.

Material Exp. mean relative Mean relative deviation (%)

deviation (%) p v

Flax 11.8 9.4 16.1

Hemp 11.7 6.4 8.9

Table 2: Relative deviation of the experimental measurements and mean relative deviation

between SCMcyl modeling and mean experimental values.

So, both SCMcyl − p and SCMcyl − v modeling approaches developed in

this paper can be validated in order to determine sound absorption coefficient

of vegetal wools.365

On the other hand, the sound absorption deviation as a function of fibre radii

dispersion (values are indicated in Table 1) is shown in Fig. 8. It gives an over-

view of the SCMcyl modeling sensitivity regarding the fiber radius value, which

is a key input parameter, in these two particular cases. The results are similar

for both pressure and flow approaches, but are different for each material. In370

our case, where the both materials have equivalent airflow resistivities, the sen-

sitivity decreases as the thickness of the material increases. However, this result

would require a more systematic study in order to better understand the rela-

tionship between the modeling sensitivity and parameters such as fibre radius,

porosity, airflow resistivity, material thickness etc. Finally, by using both sound375

absorption coefficient and porosity values, both of these modeling approaches

can also be used to obtained an equivalent fibre radius for a fibrous material or

more precisely, a range of fibre radii to be consistent with the previous result.

3.4. Limits and outlooks about the SCMcyl approaches

A huge benefit of the SCMcyl method developed here is that it is based on380

only two parameters, a porosity value and a mean fibre radius. However, vegetal

wools are often made up of other fibre types that may have different radii. So, to

take a second fibre type into account, it is possible to mix the SCMcyl modeling

33

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



method with a composite modeling approach as in [8]. This modeling approach

has been elaborated to describe materials including two types of microstructures.385

In the case of vegetal wools, the material is considered as a mixture of two fibrous

media represented by a volume fraction of polymer fibres within vegetal ones.

Moreover, in order to better model the behaviour of vegetal wools, it might also

be relevant to take the variability of vegetal fibre distributions into account,

using the whole size distribution of materials. Indeed, it could lead in extreme390

cases to double porosity effects as shown in [56] for hemp particles. In this paper,

the choice has been done to develop the SCMcyl modeling with a focus only on

the specific case of a perpendicular sound propagation. However, it would also be

relevant to take a mix of both perpendicular and parallel sound propagation into

account in the modeling approach. Indeed, during the manufacturing process,395

the fibres are not always arranged in regular parallel layers and may have a

low inclination. Finally, the SCMcyl modeling method has been validated for a

frequency range specific to the building field. Nevertheless, it also seems relevant

to study the low and high frequency limits of both visco-inertial and thermal

permeabilities (Π and Ξ) using the SCMcyl relationships. It would then be400

possible to relate the SCMcyl modeling approaches to the specific parameters

of the fluid-equivalent models used for porous materials.

4. Conclusion

In this paper, a self-consistent modeling approach for the sound absorption

properties of fibrous materials has been developed. It is called SCMcyl. By405

using HPM , it is based on the rigorous establishment of macroscopic behaviour

laws for fluid flow relating to the dissipation phenomena of visco-inertial and

thermal effects. In order to establish analytical relationships between specific

microscale fibrous parameters with their macroscopic properties, assumptions

are made to represent the microstructure as a generic cylindrical inclusion (a410

solid phase included in a fluid phase) which is close to the fibre morphology. So,

the development of the SCMcyl modeling led to equations for both the dynamic
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density ρ and the bulk modulus K. For ρ two possible solutions are obtained : a

velocity approach ρ−v and a pressure approach ρ−p. Finally, both SCMcyl−v

and SCMcyl−p approaches lead to a useful sound absorption modeling based on415

only two input parameters : a porosity value (φ) and a mean fibre radius (Rf).

These approaches has been validated for the vegetal wools case by showing

a fit between both SCMcyl − v and SCMcyl − p modeling predictions with

experimental measurements. It is also possible to reverse the SCMcyl modeling

in order to obtain an equivalent fibre radius value by using a porosity and a420

sound absorption coefficient values. Nevertheless, it is necessary to take the

dispersions related to the used parameters into account in this inversion. In

order to extend the field of use, the modeling approaches developed here can

be applied to other fibrous materials and even to the case of materials that

can be represented by cylindrical geometries and subjected to flow propagation.425

Finally, future work may also investigate the possibility of joint approaches

with SCM modeling methods developed for the determination of the fibrous

materials thermal properties.
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