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CARTAN SUBALGEBRAS IN C*-ALGEBRAS.
EXISTENCE AND UNIQUENESS

XIN LI AND JEAN RENAULT

Abstract. We initiate the study of Cartan subalgebras in C*-algebras, with a partic-
ular focus on existence and uniqueness questions. For homogeneous C*-algebras, these
questions can be analysed systematically using the theory of fibre bundles. For group
C*-algebras, while we are able to find Cartan subalgebras in C*-algebras of many
connected Lie groups, there are classes of (discrete) groups, for instance non-abelian
free groups, whose reduced group C*-algebras do not have any Cartan subalgebras.
Moreover, we show that uniqueness of Cartan subalgebras usually fails for classifi-
able C*-algebras. However, distinguished Cartan subalgebras exist in some cases, for
instance in nuclear Roe algebras.

1. Introduction

The construction of groupoid C*-algebras is an extremely powerful and general method
to produce C*-algebras. Many C*-algebras admit descriptions as groupoid C*-algebras,
either directly by construction or indirectly by – often explicitly given – identifications.
Having groupoid models at hand is very helpful to analyse the C*-algebraic structure,
be it for determining ideals, for nuclearity, computing K-theory, the UCT etc. With
this in mind, it is natural to ask the following questions: Which C*-algebras admit
groupoid models? And to what extent are these groupoid models unique? As we shall
explain below, these two questions are closely related to the existence and uniqueness
questions for Cartan subalgebras in C*-algebras.

Our goal in this paper is to initiate a systematic study of Cartan subalgebras in C*-
algebras, with a particular focus on existence and uniqueness. Classification of C*-
algebras has seen tremendous advances recently [66, 67, 34, 35, 55, 22, 14, 62]. However,
finer structures given by Cartan subalgebras have not yet been analysed in detail. Apart
from being of interest for C*-algebra theory itself, the notion of Cartan subalgebras also
builds a bridge to topological dynamical systems, as it is closely related to the notion
of continuous orbit equivalence [30]. The latter, in turn, establishes a connection to
geometric group theory via dynamic characterizations of quasi-isometry [32]. The loop
is closed by the observation in Theorem 6.2, building on [57, 32], that quasi-isometry
can also be characterized using Cartan subalgebras in Roe algebras.
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The situation we are describing here is completely analogous to the measurable frame-
work, where a fruitful interplay between Cartan subalgebras in von Neumann algebras
(vN-algebras), orbit equivalence for measure-preserving dynamical systems and geo-
metric group theory has been established [56, 20, 19]. Indeed, the comparison between
C*-algebraic and vN-algebraic Cartan subalgebras is one of the leading principles be-
hind our present work.

Coming back to our original questions on existence and uniqueness of groupoid mod-
els, we have to make our question more precise in order to get a satisfactory answer.
What kind of groupoids should be allowed? For example, group C*-algebras, which
are amongst the most challenging C*-algebras, are groupoid C*-algebras by definition;
however in some cases, e.g. abelian or ax + b-groups, they may admit more revealing
groupoid realisations. Usually, one looks for a groupoid which has as little isotropy as
possible. In the case of vN-algebras, it suffices to consider groupoids without isotropy
(also known as principal groupoids or equivalence relations). In the theory of C*-
algebras, we allow some isotropy and consider topologically principal groupoids (this
means that the points without isotropy are dense) to cover C*-algebras arising from
foliations or from pseudo-groups. In this paper, we work with groupoids which are topo-
logically principal, locally compact, Hausdorff and étale. The reason why we choose
such groupoids is that the reduced C*-algebras of such groupoids, equipped possibly
with a twist, admit a convenient C*-algebraic characterisation, namely the existence of
a Cartan subalgebra, a notion borrowed from the theory of vN-algebras: An abelian
sub-C*-algebra B of a C*-algebra A is called a Cartan subalgebra if it contains an ap-
proximate unit of A, is maximal abelian, regular and there exists a faithful conditional
expectation of A onto B. By [52], every Cartan pair (A,B) consisting of a Cartan
subalgebra B in a C*-algebra A is of the form (C∗

r (G,Σ), C0(G
(0))), where the groupoid

G is as above, G(0) is its unit space and Σ is a twist over G. The case when G is an
equivalence relation had been worked out earlier by A. Kumjian: G has no isotropy
if and only if the subalgebra B has in addition the unique extension property; then it
is called a diagonal. The original definition of a Cartan subalgebra in the theory of
vN-algebras is an abelian subalgebra A of a vN-algebra M which is a masa, regular
and there exists a faithful normal contional expectation of M onto A. The generic
Cartan pair is (M,A) = (M(R, σ), L∞(X)), where R is a countable standard measured
equivalence R on X and σ is a 2-cocycle (see [17]). Existence and uniqueness of Car-
tan subalgebras in vN-algebras is an active field of research [64, 40, 41, 42, 46, 47, 3].
The examples presented in this paper will show that the investigation of Cartan sub-
algebras in C*-algebras is no less interesting. It turns out that, unless a C*-algebra
contains a Cartan subalgebra from its very construction, showing the existence of a
Cartan subalgebra involves a variety of techniques. It will also turn out that, when
Cartan subalgebras exist, there are usually infinitely many of them, at least in case the
big C*-algebra is classifiable. Let us briefly describe the content of the paper section
by section.

The second section studies Cartan subalgebras in n-homogeneous C*-algebras. When
n is finite, it is shown that a Cartan pair is necessarily locally trivial. This puts the
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problem into the general theory of fibre bundles: the n-homogeneous C*-algebra A ad-
mits a Cartan subalgebra if and only the principal Aut(Mn)-bundle associated to A can
be reduced to the subgroup Aut(Mn, Dn). Using this theory, we give a complete enu-
meration of Cartan subalgebras of an n-homogeneous C*-algebra over a k-sphere. This
gives a conceptual explanation of the result of K.D. Gregson [23] and T. Natsume (see
appendix of [29]) that for k > 2, only the trivial n-homogeneous C*-algebra C(Sk,Mn)
admits a Cartan subalgebra; moreover, our study shows that this Cartan subalgebra is
essentially unique. A similar study is made when n is infinite, under the assumption
that the pair (A,B) is locally trivial.

The third section gives the existence of Cartan subalgebras in group C*-algebras of
certain connected Lie groups, building on [18, 37, 26, 63, 43]. Namely, it is shown
that the full group C*-algebras of SL(2,C), SL(2,R) as well as the reduced group C*-
algebras of every connected semi-simple Lie group with real rank one and finite center
and of every connected complex semi-simple Lie group have a Cartan subalgebra. The
proof uses the description of these C*-algebras as sub-C*-algebras of C0(M,K(H)),
where M is a locally compact Hausdorff space and H is an infinite dimensional Hilbert
space.

In the fourth section, we show that certain reduced group C*-algebras do not have
Cartan subalgebras. This is in particular the case for non-abelian free groups. Here the
strategy is to use the known corresponding results for the group vN-algebras [64, 24,
40, 41, 42, 46, 47, 3]. Note that some extra work is needed to show the non-existence
of Cartan subalgebras rather than diagonals.

The fifth section illustrates various techniques to construct infinitely many Cartan sub-
algebras in a given C*-algebra. The first one uses the recent construction of Deeley,
Putnam and Strung [9] of the Jiang-Su algebra Z as a groupoid C*-algebra. It applies
to unital C*-algebras which have a Cartan subalgebra whose spectrum has finite cov-
ering dimension and which are Z-stable. The second one, described by A. Kumjian in
[28], uses non-stable K-theory and applies to irrational rotation C*-algebras. In both
cases, the Cartan subalgebras are shown to be non-isomorphic. The last result is that
unital (resp. stable) UCT Kirchberg algebras have infinitely many inequivalent Car-
tan subalgebras which are all isomorphic to the algebra of continuous functions on the
Cantor space (or its locally compact non-compact analogue). It relies on a groupoid
realisation of these algebras due to J. Spielberg [58].

The phenomena presented in Section 5 show that in general, we cannot expect Cartan
subalgebras in C*-algebras to be rigid, i.e., uniqueness fails. However, it turns out that
in some cases, we can find distinguished Cartan subalgebras. This means that within a
class of C*-algebras, there are special Cartan subalgebras which are distinguished in the
sense that the existence of an arbitrary C*-algebra isomorphism implies the existence
of a C*-algebra isomorphism preserving our special Cartan subalgebras. In Section 6,
we present such examples by combining rigidity results by Spakula and Willett [57] and
by Whyte [65] with recent results of the first named author: Under the assumption
that the finitely generated groups Γ and Λ are exact, the isomorphism of their stable
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uniform Roe algebras implies the isomorphism of their stable groupoids; if moreover Γ
and Λ are non-amenable, this – and hence in particular isomorphism of uniform Roe
algebras – implies the isomorphism of their groupoids.

2. Cartan subalgebras in homogeneous C*-algebras

Let A be a n-homogeneous C*-algebra over a locally compact Hausdorff space T . A
is the C*-algebra of continuous sections of a C*-bundle A over T with fibre Mn :=
Mn(C) (see [10, 11, 12, 18]). We know that A is locally trivial (see for instance [18,
Theorem 3.2]). Furthermore, assume that B is a Cartan subalgebra of A. Then B is
the C*-algebra of continuous sections of a sub-C*-bundle B of A over the base space T .
The fibres of B are given by the C*-algebra Dn, which is the up to conjugacy unique
Cartan subalgebra of Mn (see for instance [23, § 2.1]).

Lemma 2.1. There exists a local trivialization for (A,B). This means that for every

t ∈ T , there exists a neighbourhood W of t and an isomorphism of C*-bundles A|W
∼=
−→

W ×Mn which identifies B|W with W ×Dn.

Proof. Fix t ∈ T . By local triviality, there exists an open neighbourhood V of t such

that A|V is trivial, i.e., we can find an isomorphism A|V
∼=
−→ V ×Mn, a 7→ (s, a(s)).

Using functional calculus, we can find elements b1, . . . , bn ∈ B and a neighbourhood W
of t with W ⊆ V such that for every s ∈ W , {b1(s), . . . , bn(s)} are non-zero pairwise
orthogonal projections. Let {ζ1, . . . , ζn} be an orthonormal basis of Cn with bi(t)ζi = ζi
for 1 ≤ i ≤ n. Then we must have bi(t)ζj = δijζi for all 1 ≤ i, j ≤ n. By replacing W by
a smaller neighbourhood if necessary, we may assume that bi(s)ζi 6= 0 for all 1 ≤ i ≤ n
and s ∈ W . Define

ηi(s) :=
bi(s)ζi
‖bi(s)ζi‖

for all s ∈ W . Since {b1(s), . . . , bn(s)} are pairwise orthogonal, {η1(s), . . . , ηn(s)} must
be an orthonormal basis of Cn for all s ∈ W . Moreover, bi(s)ξ = 〈ξ, ηi(s)〉 ηi(s) for all
s ∈ W and 1 ≤ i ≤ n. Here 〈·, ·〉 denotes the standard scalar product of Cn, linear in
the first variable. Define the unitary operator U(s) : Cn → Cn, (λi)i 7→

∑

i λiηi(s). We
obtain a C*-bundle isomorphism

A|W
∼=
−→W ×Mn

∼=
−→ W ×Mn, a 7→ (s, a(s)) 7→ (s, U(s)∗a(s)U(s)).

Under this isomorphism, bi is identified with U(s)∗bi(s)U(s). If {e1, . . . , en} is the
standard orthonormal basis of Cn, then

U(s)∗bi(s)U(s)ej = U(s)∗bi(s)ηj(s) = δijU(s)∗ηi(s) = δijei.

Thus, U(s)∗bi(s)U(s) is the rank one projection corresponding to ei. This shows that

B|W is identified with W ×Dn under the isomorphism A|W
∼=
−→ W ×Mn above. �

In the following, by a local trivialization of (A,B), we mean a covering of T by open

subspaces W together with isomorphisms A|W
∼=
−→ W ×Mn which identify B|W with

W ×Dn.
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2.1. Reformulation using the language of principal bundles. Lemma 2.1 allows
us to reformulate the existence and uniqueness question for Cartan subalgebras using
the language of principal bundles. In the following, let Aut (Mn) be the automorphism
group of the C*-algebra Mn, and define

Aut (Mn, Dn) := {ϕ ∈ Aut (Mn) : ϕ(Dn) = Dn} .

As explained in [60, Part I, § 8.2], isomorphism classes of locally trivial Mn-bundles
over T correspond to isomorphism classes of principal Aut (Mn)-bundles over T .

Proposition 2.2. An n-homogeneous C*-algebra A has a Cartan subalgebra if and
only if the principal Aut (Mn)-bundle of the Mn-bundle corresponding to A reduces to
a principal Aut (Mn, Dn)-bundle.

Proof. Lemma 2.1 shows the implication “⇒”: If α is the principal Aut (Mn)-bundle of
the Mn-bundle A corresponding to A, then Lemma 2.1 shows that there is a principal
Aut (Mn, Dn)-bundle β over T such that α is isomorphic to the principal Aut (Mn)-
bundles over T constructed from β and the canonical action Aut (Mn, Dn) y Aut (Mn)
by left multiplication (see for instance [25, Chapter 4, § 5] for the construction). This
is equivalent to saying that α reduces to a principal Aut (Mn, Dn)-bundle.

Conversely, assume that we can find a principal Aut (Mn, Dn)-bundle β over T such
that α is isomorphic to the principal Aut (Mn)-bundles over T constructed from β and
the canonical action Aut (Mn, Dn) y Aut (Mn) by left multiplication. Now use β to
construct an Mn-bundle A′ over T . As α is isomorphic to the principal Aut (Mn)-
bundles over T constructed from β and the canonical action Aut (Mn, Dn) y Aut (Mn)
by left multiplication, A′ can be identified with the Mn-bundle corresponding to A.
Moreover, use β to construct a Dn-bundle B′ over T . B′ is a sub-C*-bundle of A′.
Therefore, by going over to C*-algebras of continuous sections, we obtain a sub-C*-
algebra B′ of the C*-algebra A′ corresponding to A′. B′ is a Cartan subalgebra of
A′ because B′ and A′ correspond to locally trivial C*-bundles by construction, and it
is obvious that for an open subspace W of T , C0(W,Dn) is a Cartan subalgebra of
C0(W,Mn). �

Given a group G and two principal G-bundles β1, β2 over a base space T , we say that
β1 and β2 are isomorphic over T if there is a bundle isomorphism between β1 and β2

which fixes (every point of) the base space. We say that β1 and β2 are isomorphic,
written β1

∼= β2, if β1 and β2 are isomorphic via a bundle isomorphism which is allowed
to induce a non-trivial homeomorphism on T . It is the latter notion which corresponds
to isomorphism of C*-algebras of continuous sections (see [10, 10.5.5]).

Moreover, given two C*-algebras A1 and A2 with Cartan subalgebras B1 ⊆ A1 and

B2 ⊆ A2, we write (A1, B1) ∼= (A2, B2) if there exists an isomorphism ϕ : A1

∼=
−→ A2

satisfying ϕ(B1) = B2.

Proposition 2.3. Let B1 and B2 be Cartan subalgebras of an n-homogeneous C*-
algebra A over T . As B1 and B2 are C*-algebras of continuous sections of locally trivial
Dn-bundles over T , they correspond to principal Aut (Mn, Dn)-bundles β1 and β2. We
have (A,B1) ∼= (A,B2) if and only if β1

∼= β2 (as principal Aut (Mn, Dn)-bundles).
5



Proof. Let A be the Mn-bundle corresponding to A, and B1, B2 the Dn-bundles cor-
responding to B1, B2. If (A,B1) ∼= (A,B2), then there exists a bundle isomorphism

A
∼=
−→ A (possibly inducing a non-trivial homeomorphism on T ) which sends B1 to B2.

Looking at local trivializations for (A,B1) and (A,B2), we see that β1
∼= β2 as principal

Aut (Mn, Dn)-bundles.
Conversely, if β1

∼= β2, then for the Mn-bundles Ai and Dn-bundles Bi attached to βi

(i = 1, 2), we obtain an isomorphism A1

∼=
−→ A2 sending B1 to B2. Passing over to the

C*-algebras of continuous sections, we get (A,B1) ∼= (A,B2) because the C*-algebras
of continuous sections for A1 and A2 are both isomorphic to A. �

We summarize our discussion as follows: Fix a base space T (a locally compact Haus-
dorff space, as above). Consider the canonical map C from isomorphism classes of
principal Aut (Mn, Dn)-bundles over T to isomorphism classes of principal Aut (Mn)-
bundles over T , sending the isomorphism class of a principal Aut (Mn, Dn)-bundle α
over T to the isomorphism class of the principal Aut (Mn)-bundle constructed from α
and the canonical action Aut (Mn, Dn) y Aut (Mn) by left multiplication. Here our
isomorphisms are allowed to induce non-trivial homeomorphisms on T .

By Proposition 2.2, the n-homogeneous C*-algebras over T which have a Cartan sub-
algebra correspond exactly to the principal Aut (Mn)-bundles which are in the image
of C. Given [α] ∈ im (C) (here we denote isomorphism classes by [·]), let A be the
corresponding n-homogeneous C*-algebra. Two Cartan subalgebras B1 and B2 in A
are called equivalent if (A,B1) ∼= (A,B2). By Proposition 2.3, the equivalence classes
of Cartan subalgebras in A are in one-to-one correspondence with the pre-image C−1[α]
of [α].

We can also rephrase this observation using the language of classifying spaces, as long as
our base spaces are CW-complexes. Let G = Aut (Mn) andH = Aut (Mn, Dn). Clearly,
G ∼= U(n)/T, while H ∼= (Tn ⋊ Sn)/T ∼= (Tn/T) ⋊ Sn. Here U(n) is the (topological)
group of unitary n × n-matrices over C, and T sits in U(n) as diagonal matrices.
This identifies T with the center of U(n). For H , Sn is the group of permutations of
{1, . . . , n}, acting on Tn in the canonical way. This gives rise to the semidirect product
Tn ⋊ Sn. Again, we embed T into Tn, and hence into Tn ⋊ Sn in a canonical way as
diagonal matrices. Let [Homeo(T )] be the image of the group of homeomorphisms of
T in the set of homotopy classes [T, T ] of continuous maps from T to T . We view
[Homeo(T )] as a group under composition. Using [25, Chapter 4, § 13], the map C from
above becomes the following map induced by the inclusion H →֒ G:

(1) [T,BH ]/[Homeo(T )] −→ [T,BG]/[Homeo(T )]

where BH and BG are the classifying spaces of H and G, and [Homeo(T ) acts on
[T,BH ] and [T,BG] by pre-composition. As we have seen above, the discussion of
existence and uniqueness of Cartan subalgebras in n-homogeneous C*-algebras over T
boils down to studying the image and pre-images of the map (1), in exactly the same
way as we explained above.
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2.2. Cartan subalgebras in homogeneous C*-algebras over spheres. Let us
now restrict to the case where our base space T is given by the k-sphere

Sk =
{

(x1, . . . , xk+1) ∈ R
k+1 : x2

1 + . . .+ x2
k+1 = 1

}

.

As above, let H = Aut (Mn, Dn) and G = Aut (Mn). By [25, Chapter 8, Theorem 8.2],
isomorphism classes of principal H-bundles over Sk are in one-to-one correspondence
to C(Sk−1, H)/∼. Here C(Sk−1, H) is the set of continuous maps Sk−1 → H , and
we define an equivalence relation by saying c1 ∼ c2 if there is h ∈ H such that c1
and hc2h

−1 are homotopic, for c1, c2 ∈ C(Sk−1, H). Similarly, isomorphism classes of
principal G-bundles over Sk are in one-to-one correspondence to C(Sk−1, G)/∼.

As explained in [25, Chapter 8, Theorem 8.2], these one-to-one correspondences are
established by decomposing Sk into upper and lower hemispheres, finding a trivial-
ization of our principal bundle over these hemispheres, and taking the ∼-class of the
resulting transition function on Sk−1. Here we embed Sk−1 into Sk via (x1, . . . , xk) 7→
(x1, . . . , xk, 0). Thus the map C introduced above corresponds to the canonical map
C(Sk−1, H)/∼ → C(Sk−1, G)/∼ induced by the canonical inclusion H →֒ G. Note that
all the maps in C(Sk−1, H) and C(Sk−1, G) are supposed to send a fixed based point of
Sk−1 to the identity (in H or G, respectively). Also note that strictly speaking, [25] only
discusses isomorphism classes of principal bundles under isomorphisms which induce the

identity on the base space. However, every homeomorphism Sk
∼=
−→ Sk is homotopic to

the identity or to Sk → Sk, (x1, . . . , xk+1) 7→ (x1, . . . ,−xk+1), because the homotopy
class is determined by the degree. Both of these maps restrict to the identity on Sk−1,
which we embed into Sk via Sk−1 →֒ Sk, (x1, . . . , xk) 7→ (x1, . . . , xk, 0). Therefore, the
action of [Homeo(Sk)] is trivial, and in our case of spheres, it does not matter whether
we allow isomorphisms of principal bundles to induce non-trivial homeomorphisms on
the base space or not.

Using this, isomorphism classes of n-homogeneous C*-algebras over spheres were studied
in [27]. As explained in [27], it turns out that isomorphism classes of principalG-bundles
over Sk are in one-to-one correspondence to elements in πk−1(G). In particular, every
n-homogeneous C*-algebra over S1 is trivial, i.e., is isomorphic to C(S1,Mn). Over S2,
there are exactly n isomorphism classes of n-homogeneous C*-algebras, and an explicit
list of such C*-algebras, one from each isomorphism class, is given in [27].

In the following discussion, let us use the more precise notation Hn := Aut (Mn, Dn)
and Gn := Aut (Mn). Our goal is to determine the (number of) isomorphism classes
of principal Hn-bundles over spheres. We then apply our findings in § 2.1 to study
existence and uniqueness of Cartan subalgebras in n-homogeneous C*-algebras over
spheres.

Let us start with k = 1. It is clear that |C(S0, Hn)/∼| is given by p(n), the number of
conjugacy classes of Sn, which is the same as the number of partitions of {1, . . . , n}.
Therefore, we see that the n-homogeneous C*-algebra C(S1,Mn) has exactly p(n) pair-
wise inequivalent Cartan subalgebras. An explicit construction of these Cartan subalge-
bras is given as follows: Decompose S1 into D1

+ = {(x1, x2) ∈ S1 : x2 > −ε} and D1
− =

7



{(x1, x2) ∈ S1 : x2 < ε}, for some fixed ε ∈ (0, 1
4
). Choose representatives σ1, . . . , σp(n)

for the conjugacy classes of Sn. For every 1 ≤ i ≤ p(n), we obtain a Dn-bundle Bi
over S1 by gluing together the trivial Dn-bundles on D1

+ and D1
− using the identity

on
{

(x1, x2) ∈ D1
+ ∩D1

− : x1 > 0
}

and σi on
{

(x1, x2) ∈ D1
+ ∩D1

− : x1 < 0
}

. These Bi
give rise to a complete list of pairwise inequivalent Cartan subalgebras B1, . . . , Bp(n) of
C(S1,Mn) up to equivalence. For n = 2, we obtain the trivial bundle and the Möbius
bundle.

Let us consider k = 2. As we only consider continuous maps in C(S1, Hn) sending a fixed
based point of S1 to the identity of Hn, we have C(S1, Hn)/∼ = C(S1,Tn/T)/∼. Here,
given c1, c2 ∈ C(S1,Tn/T), we set c1 ∼ c2 if there exists σ ∈ Sn such that c1 and σc2σ

−1

are homotopic. It is then obvious that C(S1,Tn/T)/∼ ∼= Z/nZ. Moreover, combining
this observation with the discussion in [27], it is clear that the map C(S1, Hn)/∼ →
C(S1, Gn)/∼ induced by the canonical inclusion Hn →֒ Gn is one-to-one. So over
S2, every n-homogeneous C*-algebra has a Cartan subalgebra, and it is unique up to
equivalence.

Finally, we turn to the remaining case k > 2. As in the case k = 2, we have
C(Sk−1, Hn)/∼ = C(Sk−1,Tn/T)/∼. Since πk−1(T) is trivial for k > 2, we conclude
that

∣

∣C(Sk−1,Tn/T)/∼
∣

∣ = 1. This shows that over Sk, for k > 2, only the triv-

ial n-homogeneous C*-algebra C(Sk,Mn) has a Cartan subalgebra. Moreover, up to
equivalence, C(Sk,Mn) has a unique Cartan subalgebra given by C(Sk, Dn). This gives
a conceptual explanation for Gregson’s and Natsume’s examples of homogeneous C*-
algebras over spheres which do not admit Cartan subalgebras (see [23, § 2.2.5] and the
appendix of [29]).

Exactly the same methods allow us to study Cartan subalgebras of ℵ0-homogeneous C*-
algebras over spheres, at least those where the Cartan pair admits a local trivialization.
First of all, fix a countably infinite dimensional Hilbert space H and let K := K(H) be
the C*-algebra of compact operators on H. ℵ0-homogeneous C*-algebras over spheres
correspond to locally trivial K-bundles, and two such ℵ0-homogeneous C*-algebras
are isomorphic if their Dixmier-Douady invariants coincide (see for instance [2, Theo-
rem IV.1.7.15]). We know thatH3(Sk,Z) ∼= {0} if k 6= 3 andH3(S3,Z) ∼= Z. Hence over
Sk, for k 6= 3, every ℵ0-homogeneous C*-algebra is trivial, i.e., isomorphic to C(Sk,K),
while there are countably infinitely many pairwise non-isomorphic ℵ0-homogeneous C*-
algebras over S3. Moreover, by [50] (see also [52, § 6.4]), every ℵ0-homogeneous C*-
algebra over Sk has a Cartan subalgebra. Since ℵ0-homogeneous C*-algebras A over
a finite dimensional second countable Hausdorff locally compact space T are classified
up to isomorphism by their Dixmier-Douady invariant δ(A) ∈ H3(T,Z), it suffices to
construct a groupoid model for such an algebra. We realize the class δ(A) in H3(T,Z)
as a Čech cocycle (σijk) on an open cover (Ui)i∈I of T ; thus σijk is a continuous T-valued
function defined on Ui∩Uj ∩Uk. In order to get infinite fibers, we replace the index set

I by Ĩ : I×N and write U(i,n) := Ui. We let X := {(̃i, t) ∈ Ĩ×T : t ∈ Uĩ} be the disjoint
union of the Uĩs and π : X → T be the second projection. It is a local homeomorphism
with infinite fibers. The associated étale equivalence relation R = X ×T X carries the
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twist defined by the 2-cocycle σ ∈ Z2(R,T) defined by σ((̃i, t), (j̃, t), (k̃, t)) = σijk(t).
The twisted groupoid C*-algebra C∗(R, σ) has C(X) as a Cartan subalgebra. Since
π : X → T is usually not a covering map, the corresponding Cartan pair usually does
not admit local trivializations. Also, another choice of open cover may give another
Cartan pair. However, the twisted groupoids obtained from this construction are all
equivalent.

Note that the C*-algebras attached to groupoids twisted by a 2-cocycle are a special
case of C*-algebras of twisted groupoids. [49, Chapter I, Proposition 1.14] explains how
to construct the twist Σ = Eσ from a 2-cocycle σ. In that case, Σ is a trivial principal
T-bundle. In fact, a twist Σ is of the form Eσ if and only if it is a trivial principal
T-bundle. As an example of a twist which is not given by a 2-cocycle, just consider a
non-trivial principal T-bundle over a space G = X .

Let us study existence and uniqueness of Cartan subalgebras of ℵ0-homogeneous C*-
algebras where the corresponding Cartan pairs admit local trivializations. Let D be
a fixed Cartan subalgebra of K. It does not matter which one we choose as every
two such Cartan subalgebras are equivalent. Given an ℵ0-homogeneous C*-algebra A
over T and a Cartan subalgebra B, we let A and B be the corresponding K- and D-
bundles over T . Recall that a local trivialization of (A,B) is a covering of T by open

subsets W together with isomorphisms A|W
∼=
−→ W × K sending B|W to W × D. Let

G = Aut (K) ∼= U(H)/T and H = Aut (K,D) = (T∞/T) ⋊ S∞. Here S∞ is the group
of permutations of {1, 2, . . .}. The same argument as in the finite homogeneous case
shows that over T = Sk, ℵ0-homogeneous C*-algebras are in one-to-one correspondence
with C(Sk−1, G)/∼. Moreover, an ℵ0-homogeneous C*-algebra has a Cartan subalgebra
such that the corresponding Cartan pair has a local trivialization if and only if it
corresponds to an element in C(Sk−1, G)/∼ which lies in the image of the canonical map
C(Sk−1, H)/∼ → C(Sk−1, G)/∼. Given such an element in C(Sk−1, G)/∼, equivalence
classes of Cartan subalgebras in the corresponding ℵ0-homogeneous C*-algebra are in
one-to-one correspondence with the pre-image of that element under the canonical map
C(Sk−1, H)/∼ → C(Sk−1, G)/∼.

For k = 1, it is easy to see that C(Sk−1, H)/∼ is in one-to-one correspondence with
conjugacy classes in S∞, and there are uncountably many of these. For k ≥ 2, we have
∣

∣C(Sk−1, H)/∼
∣

∣ = 1.

This shows that for k = 1, the up to isomorphism unique ℵ0-homogeneous C*-algebra
C(S1,K) over S1 has uncountably many Cartan subalgebras whose Cartan pairs admit
local trivializations. For k = 2 or k ≥ 4, we see that the up to isomorphism unique
ℵ0-homogeneous C*-algebra C(Sk,K) over Sk has C(Sk,D) as its up to equivalence
unique Cartan subalgebra whose Cartan pair admit a local trivialization. For k = 3,
the only ℵ0-homogeneous C*-algebra over S3 which admits a Cartan subalgebra whose
Cartan pair has a local trivialization is the trivial one, i.e., isomorphic to C(S3,K).
And up to equivalence, the Cartan subalgebra of C(S3,K) whose Cartan pair admit
a local trivialization is given by C(S3,D). All the other non-trivial ℵ0-homogeneous
C*-algebra over S3 also have Cartan subalgebras, as we mentioned above. Therefore,
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these Cartan subalgebras do not have the property that the corresponding Cartan pairs
admit local trivializations.

The case k = 3 shows that not every Cartan subalgebra of an ℵ0-homogeneous C*-
algebra is such that the corresponding Cartan pair admits a local trivialization. It is also
interesting to point out that for k = 4, by [27], there exist non-trivial n-homogeneous
C*-algebras over S4, for every n ≥ 2. By our previous discussion, these non-trivial n-
homogeneous C*-algebras cannot have Cartan subalgebras. However, after stabilizing,
i.e., tensoring with K, we obtain the trivial ℵ0-homogeneous C*-algebra over S4, because
its Dixmier-Douady invariant has to vanish. And this trivial ℵ0-homogeneous C*-
algebra obviously has a Cartan subalgebra. Thus we have just obtained an example of
a C*-algebra which has no Cartan subalgebra, but whose stabilization admits a Cartan
subalgebra.

3. Cartan subalgebras in group C*-algebras of certain connected Lie
groups

The structure of reduced and full group C*-algebras of Lie groups have been studied
by many authors (see for instance [18, 37, 26, 63, 43]). Our aim is to show that many
of these group C*-algebras have a Cartan subalgebra.

We start with the full group C*-algebra C∗(SL(2,C)) of SL(2,C). Its structure has
been determined in [18]. Recall that by [18, § 5], the C*-algebra C∗(SL(2,C)) can be
described as follows: Let Z1 := {(m, ρ) : m ∈ Z≥0, ρ ∈ R, ρ ≥ 0 if m = 0}, and endow
Z1 with the subspace topology of Z × R. Let Z2 = [0, 1] with the usual topology.
Define Z to be the topological space obtained from the disjoint union of Z1 and Z2

by identifying (0, 0) ∈ Z1 with 0 ∈ Z2. Moreover, let H = ℓ2(Z≥0) with canonical
orthonormal basis e0, e1, e2, . . . , and let K be the closed subspace of H generated by
{en : n ≥ 1}. Let M : K → H be the unitary given by M(en) = en−1 for all n ≥ 1. We
write K(H) for the C*-algebra of compact operators on H . Let A be the C*-algebra of
all a ∈ C0(Z,K(H)) satisfying the condition that

a(1) ∈ K(Ce0)⊕M−1a(2, 0)M ⊆ K(Ce0)⊕K(K) ⊆ K(H).

Then [18, Theorem 5.4] tells us that C∗(SL(2,C)) ∼= A.

Let D be the C*-algebra of diagonal compact operators with respect to {en : n ∈ Z≥0},
i.e., D = {T ∈ K(H) : Ten ∈ Cen for all n ∈ Z≥0}.

Proposition 3.1. B := A ∩ C0(Z,D) is a Cartan subalgebra in A. In particular,
C∗(SL(2,C)) admits a Cartan subalgebra.

Proof. Since C0(Z,D) is obviously a Cartan subalgebra of C0(Z,K(H)), it is clear that
B contains an approximate unit for A, that B is maximal abelian in A, and that there
exists a faithful conditional expectation A ։ B. It remains to show that the normalizer

NA(B) = {n ∈ A : nBn∗ ⊆ B and n∗Bn ⊆ B}

generates A as a C*-algebra.
10



For g ∈ C0(R), f0 ∈ C0(R) with f0(−1) = 1 and f2 ∈ C0(R) with f2(2) = 1, consider
the function n : Z → K(H) given by

n(m, ρ) = δm,2f2(ρ)ei,j for (m, ρ) ∈ Z1, m > 0

n(0, ρ) = (g(ρ), f0(ρ)ei+1,j+1) ∈ K(Ce0)⊕K(K) for (0, ρ) ∈ Z1

n(t) = (g(−t), f0(−t)ei+1,j+1) ∈ K(Ce0)⊕K(K) for t ∈ Z2.

Here {ei,j}i,j are the canonical matrix units with respect to the orthonormal basis

{en}n.
It is clear that n ∈ A and n ∈ NA(B). Moreover, given a ∈ A arbitrary, we can

find elements ai ∈ A in the linear span of elements n as above such that limi→∞(a −
ai)(2, 0) = 0 and limi→∞(a− ai)(1) = 0. Therefore, it suffices to show that every a ∈ A
with a(2, 0) = a(1) = 0 lies in the C*-algebra generated by NA(B). The collection
of these elements obviously forms the ideal I := C0(Z \ {(2, 0), 1} ,K(H)). We have
I ∩ B = I ∩ C0(Z,D) = C0(Z \ {(2, 0), 1} ,D). It is clear that I ∩ B is a Cartan
subalgebra of I. In particular, I is generated as a C*-algebra by NI(I ∩ B). Hence all
we have to show is NI(I ∩ B) ⊆ NA(B). Choose h ∈ NI(I ∩ B) and b ∈ B. Moreover,
let hλ ∈ I ∩ B be an approximate unit for I. Then nbn∗ = limλ nhλbhλn

∗ ∈ I ∩ B as
hλbhλ ∈ I ∩B. Thus, indeed, NI(I ∩ B) ⊆ NA(B). �

To cover more group C*-algebras of Lie groups, we prove the following general result:
Let M be a locally compact Hausdorff space. Let H = ℓ2Z and {ei : i ∈ Z} be the
canonical orthonormal basis of H . Let K(H) be the C*-algebra of compact operators
on H and D the C*-algebra of compact operators on H which are diagonal with respect
to {ei : i ∈ Z}. Assume that for every p ∈ M , we are given a decomposition H =
H1,p⊕ . . .⊕Hk(p),p. Moreover, suppose that there exists an open covering V of M such
that for every V ∈ V, there is a continuous map V → U(H), p 7→ UV

p and

there is a partition Z = P1,p ⊔ . . . ⊔ Pk(p),p for every p ∈M with(2)

Hi,p =
〈{

UV
p (ej) : j ∈ Pi,p

}〉

for all 1 ≤ i ≤ k(p), and

(3)
{

UV
p (ei) : i ∈ Z

}

=
{

UW
p (ei) : i ∈ Z

}

for all V,W ∈ V and p ∈ V ∩W . The latter condition allows us to define, for every
p ∈M , Dp := UV

p D(U
V
p )∗, where V ∈ V satisfies p ∈ V (by (3), Dp does not depend on

the choice of V ). Define

A :=
{

a ∈ C0(M,K(H)) : a(p) ∈ K(H1,p)⊕ . . .⊕K(Hk(p),p) for all p ∈M
}

,

B := {b ∈ A : b(p) ∈ Dp for all p ∈M} .

Proposition 3.2. B is a Cartan subalgebra of A.

Proof. Our conditions allow us to work locally. And working locally, all we have to
show is that given an open subset V of M , and a sub-C*-algebra AV of C0(V,K(H))
containing BV := C0(V,D), BV is a Cartan subalgebra of AV .

It is clear thatBV has an approximate unit for AV , that BV is maximal abelian in AV ,
and that there is a faithful conditional expectation AV ։ BV . All we have to show is
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that the normalizer NAV
(BV ) = {n ∈ AV : nBV n

∗ ⊆ BV and n∗BV n ⊆ BV } generates
AV as a C*-algebra. Given an arbitrary element a ∈ AV , let ei,j be the canonical matrix
units attached to the orthonormal basis {ei : i ∈ Z}, and let di ∈ Cb(V,D) be given by
di(p) = ei,i for all p ∈ V . Obviously, a = limn→∞

∑n
i,j=1 diadj, and diadj clearly lies in

NAV
(BV ) for all i, j ∈ Z. �

Using this, let us describe a Cartan subalgebra in C∗(SL(2,R)). The full C*-algebra
of SL(2,R) has been described in [37]. We recall the description: Define

K :=
{

(x, 0) ∈ C
2 : x ∈ [0,∞) · i

}

∪
{

(y, 1) ∈ C
2 : y ∈ [0,∞) · i

}

∪
{

(z, 0) ∈ C
2 : z ∈ [0, 1]

}

equipped with the subspace topology of C2, and

M := K ⊔ Z≥2 ⊔ Z≥2,

where Z≥2 is endowed with the discrete topology. As above, let H = ℓ2Z. We use the
same notation as above. For all p ∈M , p 6= (0, 1), p 6= (1, 0), let k(p) = 1 andH1,p = H .
For p = (0, 1), let k(p) = 2 and H1,p = ℓ2(Z<0) ⊆ H and H2,p = ℓ2(Z≥0) ⊆ H . For
p = (1, 0), set k(p) := 3 and H1,p = ℓ2(Z<0), H2,p = Ce0 and H3,p = ℓ2(Z>0). Then A :=
{

a ∈ C0(M,K(H)) : a(p) ∈ K(H1,p)⊕ . . .⊕K(Hk(p),p) for all p ∈M
}

is isomorphic to
C∗(SL(2,R)) by [37].

To show that we can apply Proposition 3.2, let V = {M} and UM
p := idH . Obviously,

the conditions for Proposition 3.2 are satisfied. Let D be the C*-algebra of compact
operators on H which are diagonal with respect to {ei : i ∈ Z}. We obtain

Corollary 3.3. C0(M,D) is a Cartan subalgebra of A. In particular, C∗(SL(2,R)) has
a Cartan subalgebra.

Let us describe a Cartan subalgebra of the full group C*-algebra C∗(G) of the universal
covering group G of SL(2,R). Recall the description of C∗(G) in [26]: Let M =
{z ∈ C : 0 < |z| ≤ 1} ∪ [1, 2] equipped with the subspace topology of C. Let H = ℓ2Z
and U the unilateral shift. Choose a self-adjoint operator T ∈ L(H) such that U =
e2πiT . Define U : [0, 1] → U(H), t 7→ e2πitT . Clearly, U(0) = idH and U(1) = U . For
every t ∈ [0, 1], set Ht := U(t)∗(ℓ2(Z≥0)). Set k(p) = 1 if p ∈ M , 0 < |p| < 1, and
H1,p = H . Set k(p) = 2 if p ∈ M , |p| = 1, p 6= 1, and H1,p = H⊥

t , H2,p = Ht, where
p = e2πit for a uniquely determined t ∈ (0, 1). Set k(p) = 3 if p ∈ [1, 2] ⊆ M , and
H1,p := ℓ2(Z<0), H2,p := Ce0, H3,p := ℓ2(Z>0). Let

A :=
{

a ∈ C0(M,K(H)) : a(p) ∈ K(H1,p)⊕ . . .⊕ cK(Hk(p),p)
}

,

A1 := {a ∈ A : a(p)e0 = a(1)e0 for all p ∈ [1, 2] and a(2) ∈ Ce0,0} .

Then A1
∼= C∗(G) by [26].

Let

V :=
{

re2πit : r ∈ (0, 1], t ∈ (−
π

4
,
π

4
)
}

∪ [1, 2]

12



and
W :=

{

re2πit : r ∈ (0, 1], t ∈ (0, 1)
}

.

It is clear that M = V ∪W . Define UV
p := e−2πitT if p = re2πit (t ∈ (−π

4
, π
4
)), UV

p := idH

if p ∈ [1, 2] and UW
p := U(t)∗ if p = re2πit (t ∈ (0, 1)). In this way, we obviously obtain

continuous maps V → U(H), p 7→ UV
p and W → U(H), p 7→ UW

p .

Let us check condition (2): For p ∈M with 0 < |p| < 1, condition (2) obviously holds.
For p ∈M with p = e2πit, condition (2) is clearly satisfied for UW . For UV and p = e2πit

with t ∈ [0, π
4
), it is also obvious that (2) holds. For UV and p = e2πit with t ∈ (−π

4
, 0),

we have

H2,p = U(1 + t)∗ℓ2(Z≥0) = e−2πi(1+t)T ℓ2(Z≥0) = e−2πitT e−2πiT ℓ2(Z≥0)

= UV
p U∗ℓ2(Z≥0) = UV

p ℓ2(Z≥−1)

and H1,p = H⊥
2,p = UV

p ℓ2(Z≤−2). Hence (2) holds. For p ∈ [1, 2] ⊆M , it is again obvious
that condition (2) is true.

Let us check condition (3). We have

V ∩W =
{

re2πit ∈ C : r ∈ (0, 1], t ∈ (−
π

4
, 0) ∪ (0,

π

4
)
}

.

Clearly, (3) holds for p ∈ V ∩W of the form p = re2πit with r ∈ (0, 1] and t ∈ (0, π
4
).

For p = re2πit with r ∈ (0, 1] and t ∈ (−π
4
, 0), we have

{

UV
p (ei : i ∈ Z

}

=
{

e−2πitT (ei) : i ∈ Z
}

=
{

e−2πitT (ei−1) : i ∈ Z
}

=
{

e−2πitT e−2πiT (ei) : i ∈ Z
}

=
{

e−2πi(t+1)T (ei) : i ∈ Z
}

=
{

UW
p (ei) : i ∈ Z

}

.

Hence condition (3) holds as well.

Therefore, Proposition 3.2 applies and tells us that if we set Dp := UV
p D(U

V
p )∗ for p ∈ V

and Dp := UW
p D(U

W
p )∗ for p ∈ W , then B := {b ∈ A : b(p) ∈ Dp for all p ∈M} is a

Cartan subalgebra of A. Using this, it is now straightforward to check, using similar
methods as in the proof of Proposition 3.1, that B ∩ A1 is a Cartan subalgebra of A1.
Thus, we obtain

Corollary 3.4. The full C*-algebra of the universal covering group of SL(2,R) has a
Cartan subalgebra.

Using the description of full group C*-algebras for covering groups with finite center of
SO0(2, 1) in [26], the same explanation as for Corollary 3.3 gives

Corollary 3.5. The full group C*-algebra of a covering group with finite center of
SO0(2, 1) has a Cartan subalgebra.

Remark 3.6. Looking at the conjecture at the end of [26], it seems that our method
can be applied to show that for many connected semisimple Lie groups, the full group
C*-algebras have Cartan subalgebras.

We now turn to reduced group C*-algebras of certain Lie groups. We use the descrip-
tions of these C*-algebras in [4, 63, 43].
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Corollary 3.7. For every connected semi-simple Lie group with real rank one and finite
center, the reduced group C*-algebra has a Cartan subalgebra.

Proof. By the description of these reduced group C*-algebras in [4, 63], we see that
they are of the form as in Proposition 3.2, but with k(p) equal to 1 or 2 for all p ∈M ,
and if k(p) = 2, we can always choose H1,p = ℓ2(Z≤−1) and H2,p = ℓ2(Z≥0). Thus,
Proposition 3.2 applies because we can simply choose the trivial cover V = {M} and
the constant map UM ≡ idH . �

Corollary 3.8 (Corollary to Proposition 4.1 in [43]). For every connected, complex
semi-simple Lie group, the reduced group C*-algebra has a Cartan subalgebra.

Proof. Because of [43, Proposition 4.1], these reduced group C*-algebras are trivial
ℵ0-homogeneous C*-algebras. Hence they obviously admit Cartan subalgebras. �

Question 3.9. Is there a conceptual explanation why the group C*-algebras of (many)
connected Lie groups have Cartan subalgebras?

4. Non-existence of C*-diagonals and Cartan subalgebras in certain
reduced group C*-algebras

Using non-existence results for Cartan subalgebras in certain group vN-algebras [64,
24, 40, 41, 42, 46, 47, 3], we show that certain reduced group C*-algebras have no
diagonals, or even stronger, no Cartan subalgebras.

Let G be an étale second countable locally compact Hausdorff groupoid, and suppose

that we are given a twist T× G(0)
i
 Σ

j
։ G. As explained in [52], every Cartan pair

is of the form (C∗
r (G,Σ), C0(G

(0))), where G is in addition assumed to be topologically
principal. For the notion of twists and the construction of C∗

r (G,Σ), we refer to [52]
and the references therein.

4.1. Traces on twisted groupoid C*-algebras. Let X := G(0), and for simplicity,
let us assume that X is compact. Let S ⊆ G be an open bisection, i.e., the range and
source maps restrict to homeomorphisms r|S : S → r(S) and s|S : S → s(S). Let αS be
the homeomorphism s(S)→ r(S), x 7→ r((s|S)−1(x)). It is easily checked that a Borel
measure µ on X is invariant in the sense of [49, Definition I.3.12] if and only if for every
open bisection S in G and every f ∈ C0(r(S)), we have

∫

r(S)
f dµ =

∫

s(S)
f ◦ αS dµ. In

other words, we have µ|r(S) = αS(µ|s(S)). Now let τ be a trace on C∗
r (G,Σ). τ |C(X)

corresponds to a probability measure µ on X . The following lemma is certainly well-
known, but we include this result for completeness and because we were not able to
locate a reference.

Lemma 4.1. µ is invariant.

Proof. Let f ∈ Cc(s(S)) be positive. Define g ∈ Cc(j
−1(S)) by g(ζ) = f

1
2 (r(j(ζ)).

Then g ∗ g∗, g∗ ∗ g ∈ C(X). For x ∈ s(S), let γ ∈ S be determined by s(γ) = x.

We have g ∗ g∗(x) =
(

f
1
2 (r(γ−1))

)2

= f(s(γ)) = f(x). At the same time, since
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αS(x) = r(γ), we get g∗ ∗ g(x) =
(

f
1
2 (r(γ))

)2

= f(r(γ)) = f(αS(x)). Thus, as τ is a

trace,
∫

r(S)
f dµ = τ(f) = τ(g ∗ g∗) = τ(g∗ ∗ g) = τ(f ◦ αS) =

∫

s(S)
f ◦ αS dµ. �

Now let us assume that, in addition to the assumptions above, G is also topologically
principal. Let E : C∗

r (G,Σ) ։ C(X) be the canonical faithful conditional expectation.
Moreover, let µ be an invariant probability measure on X , viewed as a state on C(X).

Lemma 4.2. (see also [49, Proposition II.5.4]) µ ◦ E is a trace on C∗
r (G,Σ).

Proof. As in [52], we denote by Cc(G,Σ) the set of compactly supported, continuous
functions f : Σ→ C such that f(zζ) = f(ζ)z̄. Given f ∈ Cc(G,Σ), we set supp (f) :=
{γ ∈ G : f(ζ) 6= 0 for all ζ ∈ Σ with j(ζ) = γ}. Now, to prove the lemma, it suffices to
show that (µ ◦E)(f ∗ g) = (µ ◦E)(g ∗ f) for all f, g ∈ Cc(G,Σ) such that supp (f) ⊆ S
and supp (g) ⊆ T for some open bisections S and T . For x ∈ X , we have (f ∗ g)(x) =
f(ζ−1)g(ζ) if x ∈ s(S−1 ∩ T ) and ζ ∈ Σ satisfies s(j(ζ)) = x, j(ζ) ∈ S−1 ∩ T , and
(f ∗ g)(x) = 0 if x /∈ s(S−1 ∩ T ). Similarly, for y ∈ X , we have (g ∗ f)(y) = g(η−1)f(η)
if y ∈ s(S ∩ T−1) and η ∈ Σ satisfies s(j(η)) = y, j(ζ) ∈ S ∩ T−1, and (g ∗ f)(y) = 0
if y /∈ s(S ∩ T−1). Thus (f ∗ g)|X ∈ C0(s(S

−1 ∩ T )) and (g ∗ f)|X ∈ C0(s(S ∩ T−1)) =
C0(r(S

−1 ∩ T )). Moreover, for x ∈ s(S−1 ∩ T ), choose ζ ∈ Σ with s(j(ζ)) = x,
j(ζ) ∈ S−1 ∩ T . Then αS−1∩T (x) = r(j(ζ)) = s(j(ζ−1)) and j(ζ−1) ∈ S ∩ T−1. Hence
(f ∗ g)(x) = g(ζ)f(ζ−1) = (g ∗ f)(s(j(ζ−1)) = (g ∗ f)(αS−1∩T (x)). We conclude that
(µ◦E)(f ∗ g) = µ((f ∗ g)|X) = µ((g ∗f)|X ◦αS−1∩T ) = µ((g ∗f)|X) = (µ◦E)(g ∗f). �

Given a trace τ on C∗
r (G,Σ), when do we have τ = τ ◦ E?

Lemma 4.3. (see also [49, Proposition II.5.4]) Assume that G is principal. Then every
trace τ on C∗

r (G,Σ) satisfies τ = τ ◦ E.

Proof. It suffices to show that for f ∈ Cc(G,Σ) with f |X ≡ 0, we have τ(f) = 0. Since G
is principal, G\X can be covered by open bisections S with s(S)∩r(S) = ∅. So we may
assume that supp (f) ⊆ S for such an open bisection S. Choose h ∈ C(X) such that
supp (h) ⊆ s(S) and h|supp (f) ≡ 1. Then (f ∗ h)(ζ) = f(ζ) for all ζ ∈ Σ, i.e., f ∗ h = f .
Moreover, (h ∗ f)(ζ) = h(ζη−1)f(η) for some η ∈ j−1(S) with s(j(η)) = s(j(ζ)). As
s(j(ζη−1)) = s(j(η−1)) ∈ s(S−1) = r(S) and h|r(S) ≡ 0, we must have h(ζη−1) = 0 and
thus h ∗ f = 0. Therefore, τ(f) = τ(f ∗ h) = τ(h ∗ f) = 0. �

Corollary 4.4. Let A be a separable C*-algebra. Let B ⊆ A be a Cartan subalgebra
with faithful conditional expectation E : A ։ B. Assume that B is a C*-diagonal or
that A has unique trace. Then we have τ = τ ◦ E for every trace τ on A.

4.2. A relationship between C*-diagonals and Cartan subalgebras in vN-

algebras. Let G and T×G(0)
i
 Σ

j
։ G be as above. Let c : G→ Σ be a Borel map

such that j ◦ c = idG (i.e., c is a section for j), c|X = idX and c(g−1) = c(g)−1 for all
g ∈ G. Existence of such a Borel section was shown in the proof of [38, Lemma 3.2].
We then have for every ζ ∈ Σ: j(ζc(j(ζ))−1) = r(j(ζ)), so that there is a Borel map
t : Σ → T such that ζ = t(ζ)c(j(ζ)) for all ζ ∈ Σ. Set σ : G(2) → T, (g, h) 7→
t(c(gh)−1c(g)c(h)). σ is a normalized cocycle in the sense of [16, § 7]. Moreover, let µ
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be a S(G)-invariant Borel probability measure on X . Set B := C(X), A := C∗
r (G,Σ)

and let E : A ։ B be the unique faithful conditional expectation. Set τ := µ ◦E. τ is
a trace on A by Lemma 4.2. Let π := πτ be the GNS representation of A attached to τ ,
and denote by H := Hπ the underlying Hilbert space. Finally, let R be the equivalence
relation on X corresponding to G, i.e., R = {(r(g), s(g)) ∈ X ×X : g ∈ G}.

Lemma 4.5. π(A)′′ ∼= M(R, σ).

Here π(A)′′ is the von Neumann algebra generated by π(A) in L(H), and M(R, σ) is
the von Neumann algebra constructed in [17].

Proof. Let ν be the right counting measure of µ as in [16, Theorem 2]. Since we have
a Borel isomorphism G ∼= R, g 7→ (r(g), s(g)), we may view ν as a measure on G or R,
and we have L2(R, ν) ∼= L2(G, ν).

First of all, the map Cc(G,Σ)→ L2(R, ν), f 7→ ḟ , where ḟ(g) = f(c(g)), extends to
a unitary U : H ∼= L2(R, ν). Note that underlying this observation is the isomorphism
of Borel groupoids T×σ G→ Σ, (z, g) 7→ zc(g), with inverse given by (t(ζ), j(ζ))← [ ζ .
Here T×σ G is the groupoid with multiplication given by

(z1, γ1)(z2, γ2) = (z1z2σ(γ1, γ2), γ1γ2).

Secondly, it is straightforward to check that Uπ(A)′′U∗ = M(R, σ). �

Using [52, Proposition 5.11] and Lemma 4.3, we obtain

Corollary 4.6. Let A be a separable C*-algebra, B ⊆ A a C*-diagonal. Let τ be a
trace on A. Let π := πτ be the GNS representation of A attached to τ . Then π(A)′′ has
a Cartan subalgebra (in the sense of vN-algebras).

In other words, if π(A)′′ has no Cartan subalgebra (in the sense of vN-algebras), then A
cannot admit C*-diagonals. In particular, this applies to reduced group C*-algebras if
the corresponding group vN-algebras have no Cartan subalgebras. Classes of examples
of groups with this property are given in [8, 40, 41, 42, 46, 47], to mention just a few.
For instance, we obtain:

Corollary 4.7. Let Γ be a discrete group with property (HH)+ in the sense of [42], or
let Γ be an icc hyperbolic group. Then C∗

r (Γ) has no C*-diagonal.

In particular, this applies to non-abelian free groups. However, we will see later on that
for non-abelian free groups, and actually for many more of the groups mentioned in
Corollary 4.7, the reduced group C*-algebras have no Cartan subalgebras.

4.3. Non-existence of Cartan subalgebras in certain reduced group
C*-algebras. Our goal now is to show non-existence of Cartan subalgebras, not only
diagonals, in certain reduced group C*-algebras. This builds on recent results about
Cartan subalgebras in von Neumann algebras in [3], which go back to [64, 24, 40, 41,
42, 46, 47].

We start with the following observation: Let G and T×G(0)
i
 Σ

j
։ G be as above, and

let c : G→ Σ be a Borel section for j with c|X = idX and c(g−1) = c(g)−1 for all g ∈ G as
before. Assume that G is topologically principal, and let E : C∗

r (G,Σ) ։ C(X) be the
16



faithful conditional expectation. Let τ be a trace on C∗
r (G,Σ) and µ the corresponding

measure on X . Let (π,Hπ) be the GNS representation of τ . Let ν be the measure on G
given by

∫

G
fdν =

∫

X

∑

γ∈Gx f(γ)dµ(x). Just as in the proof of Lemma 4.5, we obtain

Lemma 4.8. The map Cc(G,Σ) → Cc(G), f 7→ f ◦ c extends to a unitary H
∼=
−→

L2(G, ν).

Lemma 4.9. We have π(C(X))′′ ∼= L∞(X, µ).

Proof. Let U be the unitary H
∼=
−→ L2(G, ν) from Lemma 4.8. It is clear that for

f ∈ C(X), (Uπ(f)U∗ξ)(γ) = f(r(γ))ξ(γ). Since we can cover G by countably many
open bisections, we can find a cover of G by countably many pairwise disjoint Borel
subsets Si ⊆ G which are bisections, i.e., G =

⊔

i Si. It is clear that ν|Si
is the

pushforward of µ|r(Si) under (r|Si
)−1 : r(Si)

∼=
−→ Si. For j ∈ N∪{∞} = {1, 2, . . .}∪{∞},

define Xj := {x ∈ X : |Gx| = j}. Clearly, Xj are Borel subsets of G because all the Sis
are. Define Ij := {1, . . . , j} for j ∈ N and Ij := N if j =∞. Then we have a canonical
unitary

V : L2(G, ν) =
⊕

i

L2(Si, ν) ∼=
⊕

i

L2(r(Si), µ|r(Si))
∼=

⊕

j∈N∪{∞}

L2(Xj , µ|Xj
)⊗ ℓ2(Ij).

Let Mj be the canonical representation of L∞(Xj, µ|Xj
) on L2(Xj , µ|Xj

). Then for every

f ∈ C(X), V π(f)V ∗ =
(

Mj(f)⊗ idℓ2(Ij)

)

j∈N∪{∞}
. Hence,

π(C(X))′′ =
∏

j∈N∪{∞}

L∞(Xj , µ|Xj
) ∼= L∞(X, µ).

�

Lemma 4.10. Assume that τ is a faithful trace on C∗
r (G,Σ), and that π(C∗

r (G,Σ))′′ is
a II1-factor. Then µ is non-atomic. In particular, π(C(X))′′ is diffuse.

Proof. Assume that µ is atomic, so that µ {x} > 0 for some x ∈ X . As µ is a probability
measure on X which is S(G)-invariant by Lemma 4.1, we deduce that the orbit O(x) :=
{r(γ) : γ ∈ Gx} is finite. But that would imply that the characteristic function 1O(x) of
the orbit of x lies in the center of π(C∗

r (G,Σ))′′, which is given by C1 by assumption.
Hence 1O(x) = 1. This means that X = O(x) is finite because τ is faithful. Hence G
must be finite, because otherwise G could not be topologically principal. The conclusion
is that π(C∗

r (G,Σ)) is finite dimensional and hence π(C∗
r (G,Σ))′′ cannot be a II1-factor.

�

Corollary 4.11. Let Γ be a countable discrete group. Assume that Γ is torsion-free.
Furthermore, suppose that Γ is non-amenable, and that Γ has the CMAP and admits
a proper 1-cocycle into an orthogonal representation that is weakly contained in the
regular representation. Then C∗

λ(Γ) has no Cartan subalgebra.

In particular, for r ≥ 2, C∗
λ(Fr) has no Cartan subalgebra, and more generally, icc hy-

perbolic hyperbolic groups have no Cartan subalgebras. More examples where Corol-
lary 4.11 applies appear in [42].

17



Proof. First of all, our assumptions imply that C∗
λ(Γ) has unique trace: As Γ is non-

amenable, and because Γ has the CMAP and admits a proper 1-cocycle into an orthog-
onal representation that is weakly contained in the regular representation, we know
that Γ has the property strong (HH)+, in the sense of [42, Definitions 1]. Hence, by
[42, Corollary 2.2], Γ has no infinite normal amenable subgroups. As Γ is in addi-
tion torsion-free, Γ has no non-trivial normal amenable subgroups. In other words,
the amenable radical of Γ is trivial. By [5, Theorem 1.3], we conclude that C∗

λ(Γ) has
unique trace.

Write A = C∗
λ(Γ). Assume that A has a Cartan subalgebra B, and let E : A ։ B

be the faithful conditional expectation. Then we can find a groupoid G with compact
unit space X := G(0) and a twist Σ of G such that (A,B) ∼= (C∗

r (G,Σ), C(X)). Let
µ be the probability measure on X corresponding to the state τ |C(X). Since C∗

λ(Γ)
has unique trace, we must have τ = τ ◦ E (see Corollary 4.4). Moreover, let π be the
GNS representation for τ , so that π(C∗

λ(Γ))
′′ = LΓ. By Lemma 4.9, we have π(B)′′ ∼=

L∞(X, µ). Since C∗
λ(Γ) has unique trace, Γ is icc, so that LΓ is a II1-factor. Lemma 4.10

implies that π(B)′′ is diffuse. Hence [3, Theorem 3.8] implies that (sNLΓ(π(B)′′))′′ is
amenable, where

sNLΓ(π(B)′′) = {x ∈ LΓ : xπ(B)′′x∗ ⊆ π(B)′′ and x∗π(B)′′x ⊆ π(B)′′} .

At the same time, it is clear that sNLΓ(π(B)′′) contains π(NA(B)), where

NA(B) = {n ∈ A : nBn∗ ⊆ B and n∗Bn ⊆ B} .

Since B is a Cartan subalgebra in A, we know that NA(B) generates A as a C*-algebra,
so that LΓ = π(NA(B))′′ = (sNLΓ(π(B)′′))′′ is amenable. This cannot be true as Γ is
not amenable. �

Question 4.12. Is there a C*-algebraic proof for the observation that for r ≥ 2, C∗
λ(Fr)

has no Cartan subalgebra?

5. Non-uniqueness of Cartan subalgebras

Now let us present several classes of C*-algebras which have infinitely many pairwise
inequivalent Cartan subalgebras.

The following is a consequence of [9]:

Proposition 5.1. Let A be a unital separable C*-algebra. Assume that A has a Cartan
subalgebra B with dim Spec (B) < ∞. If A ∼= A ⊗ Z, then A has infinitely many
pairwise inequivalent Cartan subalgebras.

Here dim stands for covering dimension, and Z is the Jiang-Su algebra.

Proof. By [9, Theorem 2.9], the Jiang-Su algebra Z has infinitely many Cartan subalge-
bras B1, B2, . . . with dimSpec (Bi) < ∞ for all i = 1, 2, . . . and limi→∞ dimSpecBi =
∞. Then, by [1, Lemma 5.1], B ⊗ B1, B ⊗ B2, . . . are Cartan subalgebras of A ⊗ Z.
We have

dimSpec (B ⊗ Bi) = dim (Spec (B)× Spec (Bi)) ≤ dimSpec (B) + dimSpec (Bi) <∞
18



for all i = 1, 2, . . . Moreover,

dimSpec (B ⊗Bi) = dim (Spec (B)× Spec (Bi)) ≥ 1 + dim Spec (Bi)

by [15, Chapter 2, § 6.3, (18)]. As limi→∞ 1 + dim Spec (Bi) = ∞, there must be
infinitely many j ∈ N such that dimSpec (B ⊗Bj) are pairwise distinct. Hence A⊗Z
contains infinitely many non-isomorphic Cartan subalgebras, and thus, so does A as
A ∼= A⊗ Z. �

Examples 5.2. Here are explicit examples where Proposition 5.1 applies:

• Generalized Bunce-Deddens algebras in the sense of [39], i.e., crossed products
C(Γ̄) ⋊r Γ attached to odometer actions Γ y Γ̄ of residually finite amenable
groups on their profinite completions. Z-stability follows from [39, 44] and [62,
Corollary 6.4].
• Crossed products C(X) ⋊r Γ attached to free minimal actions of finitely gen-
erated nilpotent infinite groups Γ on finite dimensional compact spaces X . Z-
stability follows from [61, 67].
• Examples of C*-algebras attached to equivalence relations constructed recently
in [48]. By construction, these C*-algebras have Cartan subalgebras isomorphic
to algebras of continuous functions on the Cantor space. It is shown in [48]
that these C*-algebras are tracially AF, hence AH algebras of slow dimension
growth (by a result of H. Lin, see [54, Theorem 3.3.5]), hence Z-stable by [67,
Last Corollary].

Remark 5.3. Since the irrational rotation C*-algebras are Z-stable, the previous
proposition shows that these C*-algebras have infinitely many pairwise inequivalent
Cartan subalgebras. A. Kumjian had already shown in his 1980 PhD thesis, published
as [28], that these algebras have diagonals whose spectrum is a disjoint union of an arbi-
trary finite number of circles. He gives an explicit construction of these diagonals. The
second author thanks him for explaining it to him. First, given a countable subgroup
Γ of R, one defines the groupoid of the action of Γ on R by translation

G(Γ) = {(x, y) ∈ R× R : x− y ∈ Γ}.

As a set, it is isomorphic to R × Γ; one equips it with the product topology, where
Γ has the discrete topology. Let α be an irrational number and let G = G(Z + αZ).
Fix a positive element s ∈ Z + αZ. Since the action of the subgroup sZ on R is free
and proper, the space Z(s) = G/G(sΓ) is a principal G-space. Its quotient space is
Z(s)/G = R/sZ. The construction of Section 3 of [51] produces a C*-module E(s) =
C∗(Z(s)) over C∗(G). Its algebra of compact operators A(s) is the C*-algebra of the
groupoid (Z(s) ∗ Z(s))/G, which is the groupoid of the action of the quotient group
(Z + αZ)/sZ on R/sZ. It is an irrational rotation C*-algebra if s = p + αq with
(p, q) relatively prime. Otherwise, it is a matrix algebra over an irrational rotation C*-
algebra. The crucial Lemma of Section 9 of [28] constructs an isometry from E(s + t)
onto E(s)⊕E(t) for positive s, t ∈ Z+αZ. The existence of such an isometry can also
be deduced from the cancellation theorem for projective modules over the irrational
rotation C*-algebras of [53]. Let B(s) be the canonical diagonal of A(s), viewed as the
groupoid C*-algebra C∗((Z(s) ∗ Z(s))/G). Then A(s + t) has a diagonal isomorphic
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to B(s) ⊕ B(t). In particular, A(1), which is the C*-algebra of the rotation 2πα, has
a diagonal whose spectrum is the disjoint union of two circles. Repeating the process,
one can obtain a diagonal whose spectrum is the disjoint union of an arbitrary finite
number of circles.

Remark 5.4. Further examples of C*-algebras with inequivalent Cartan subalgebras
can be found in [21] (see the second remark after [21, Theorem 2.4]) and [45]. These
C*-algebras are given as crossed products attached to certain topological dynamical
systems with acting group Z.

We present another non-uniqueness result for Cartan subalgebras. The difference to
the previous result is that this time, we will find infinitely many pairwise isomorphic,
but inequivalent Cartan subalgebras.

First of all, we need realizations of UCT Kirchberg algebras as groupoid C*-algebras.
This has been achieved by various authors. In the following, let us formulate a version
which is suitable for our purposes. Moreover, we explain how this version follows from
[58, 59]. The only difference to [58, 59] is that we want groupoid models (with prescribed
additional properties) in the unital case as well.

Lemma 5.5. For every unital UCT Kirchberg algebra A, there exists an étale second
countable locally compact Hausdorff groupoid G such that

(i) C∗
r (G) ∼= A;

(ii) G(0) is homeomorphic to the Cantor space;
(iii) G is topologically principal;
(iv) for every x ∈ G(0), the stabilizer group Gx

x is free abelian of rank at most 2.

Proof. This is a slight modification of the construction in [58]. Set

(G0, g, G1) := (K0(A), [1], K1(A)).

Using [59], find countable, irreducible graphs E0, E1, F0 and F1 with a (unique) vertex
emitting infinitely many edges, together with vertices v in E0 and w in F0 such that

• (K0(O(E0)), [Pv], K1(O(E0)) ∼= (G0, g, {0});
• (K0(O(F0)), [Pw], K1(O(F0)) ∼= (Z, 1, {0});
• (K0(O(E1)), K1(O(E1)) ∼= (G1, {0});
• (K0(O(F1)), K1(O(F1)) ∼= ({0} ,Z).

Now apply the construction in [58]. We obtain a “graph-like” (or rather “2-graph-like”)
object Ω out of the 2-graphs E0 × F0 and E1 × F1. For Ω we have a notion of finite
paths, denoted by Ω∗, and a length function l : Ω∗ → N2 (where N = {0, 1, 2, . . .}).
We also have infinite paths in Ω, and we can equip the set X of infinite paths with
a natural topology such that X becomes a totally disconnected, second countable,
locally compact Hausdorff space with no isolated points. Moreover, there is an obvious
way to concatenate finite paths with infinite paths, denoted by µz for a finite path
µ and an infinite path z. We can then define the groupoid G̃ consisting of all triples
(x, n, y) ∈ X × Z2 × X for which there exist finite paths µ, ν and an infinite path z
such that x = µz, y = νz and l(µ) − l(ν) = n. Inversion and multiplication are given
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by (x, n, y)−1 = (y,−n, x) and (x,m, y)(y, n, z) = (x,m+n), z). In particular, the unit
space of G̃ is given by all triples (x, 0, x), x ∈ X , and is canonically homeomorphic to

X . Spielberg shows in [58] that G̃ is topologically principal and that C∗
r (G̃) is a stable

UCT Kirchberg algebra and that there is canonical inclusion

i : (O(E0)⊗O(F0))⊕ (O(E1)⊗O(F1)) →֒ C∗
r (G̃).

We do not need the precise form of i, but only the following properties:

(i1) i induces an isomorphism in K-theory;
(i2) for every finite path µ ∈ E∗

0 in E0, i(SµS
∗
µ ⊗ Pw) is of the form 1Y for some

compact open subspace Y ⊆ X .

In (i2), Sµ is the partial isometry corresponding to µ in the graph C*-algebra O(E0),

and 1Y is the characteristic function of Y , viewed as an element in C0(X) ∼= C0(G̃
(0)) ⊆

C∗
r (G̃).

Let Z be the compact open subset of X such that 1Z = i(Pv ⊗ Pw). Then i induces an
isomorphism

(K0(C
∗
r (G̃)), [1Z ], K1(C

∗
r (G̃))) ∼= (G0, g, G1).

Hence the canonical inclusion C∗
r (G̃

Z
Z)
∼= 1ZC

∗
r (G̃)1Z →֒ C∗

r (G) induces an isomorphism

(K0(C
∗
r (G̃

Z
Z)), [1], K1(C

∗
r (G̃

Z
Z)))
∼= (G0, g, G1).

Therefore, we may set G := G̃Z
Z , and the classification theorem due to Kirchberg and

Phillips [54, Theorem 8.4.1] yields C∗
r (G) ∼= A. The unit space of G is obviously given

by Z and hence homeomorphic to the Cantor space as Z is totally disconnected, second
countable, compact Hausdorff and has no isolated points. Moreover, G has properties
(iii) and (iv) because it is equivalent to G̃ which has the same properties. �

With the help of this lemma, we obtain the desired non-uniqueness result for Cartan
subalgebras in unital UCT Kirchberg algebras.

Proposition 5.6. Every unital UCT Kirchberg algebra has infinitely many pairwise
inequivalent Cartan subalgebras, whose spectra are all homeomorphic to the Cantor
space.

Proof. Let A be a unital UCT Kirchberg algebra. By Lemma 5.5, we can find a
groupoid G with G(0) homeomorphic to the Cantor space such that C∗

r (G) ∼= A and
for every x ∈ G(0), the stabilizer group Gx

x = {γ ∈ G : r(γ) = s(γ) = x} is a free
abelian group with supx∈G(0) rkGx

x ≤ 2. We set rk Stab(G) := supx∈G(0) rkGx
x. In par-

ticular, for O∞, we obtain a Cartan subalgebra B∞ and a groupoid G∞ such that

(O∞, B∞) ∼= (C∗
r (G∞), C(G

(0)
∞ )). We can choose G∞ such that G

(0)
∞ is homeomorphic

to the Cantor space and rk Stab(G∞) = 1 (see for instance [49, Chapter III, § 2]).
For every i = 1, 2, . . . , we know that A ∼= A⊗ O⊗i

∞ because A is purely infinite. By
[1, Lemma 5.1], we have A ⊗ O⊗i

∞
∼= C∗

r (G × Gi
∞), where Gi

∞ means here the i-fold
Cartesian product. In this way, we obtain Cartan subalgebras Bi of A corresponding

to C(G(0) × (G
(0)
∞ )i) under the isomorphism A ∼= A ⊗ O⊗i

∞
∼= C∗

r (G× Gi
∞). Obviously,

Spec (Bi) is homeomorphic to the Cantor space for all i = 1, 2, . . . As

rk Stab(G×Gi
∞) = rk Stab(G) + i · rk Stab(G∞) = rk Stab(G) + i,
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we know that the groupoids {G×Gi
∞ : i = 1, 2, . . .} must be pairwise non-isomorphic.

Hence (A,Bi), i = 1, 2, . . . , must be pairwise inequivalent. �

An analogous non-uniqueness result for Cartan subalgebras holds for stable UCT Kirch-
berg algebras. The proof is the same as for Proposition 5.6. It is even simpler as we
can directly use the groupoid models from [58, 59].

Proposition 5.7. Every stable UCT Kirchberg algebra has infinitely many pairwise in-
equivalent Cartan subalgebras, whose spectra are all homeomorphic to the (up to home-
omorphism) unique totally disconnected, second countable, locally compact Hausdorff
space without isolated points.

Remark 5.8. In [6], many (but not all) UCT Kirchberg algebras have been realized
as C*-algebras of principal – not only topologically principal – groupoids.

Question 5.9. Does every classifiable C*-algebra (i.e., separable, unital, simple, with
finite nuclear dimension) have a Cartan subalgebra?

6. Cartan subalgebras in Roe algebras

Let us now observe that nuclear Roe algebras have distinguished Cartan subalgebras
(see Theorem 6.2). This follows from [57] and [32, § 2.5] (see also [36]). We refer to
[57, 32] and the references therein for background material concerning notions from
geometric group theory such as quasi-isometry or bilipschitz equivalence.

Let us start with the remark that although in [52], the groupoids are assumed to be
second countable, the proof of [52, Proposition 4.13] works without any change for
étale Hausdorff locally compact topologically principal groupoids which are σ-compact.
Hence, combining this observation with [32, § 2.5], we obtain the following result. Let
K be the C*-algebra of compact operators on ℓ2Z and D := K ∩ ℓ∞(Z).
Lemma 6.1. Let Γ, Λ be finitely generated groups. The following are equivalent:

(QI1) Γ and Λ are quasi-isometric;
(QI2) Γ y βΓ and Λ y βΛ are Kakutani equivalent, in the sense of [33, 32];
(QI3) Γ y βΓ and Λ y βΛ are stably continuously orbit equivalent, in the sense of

[7, 32];
(QI4) There exist projections p ∈ C(βΓ) ⊆ C(βΓ)⋊r Γ and q ∈ C(βΛ) ⊆ C(βΛ)⋊r Λ

which are full in C(βΓ)⋊r Γ and C(βΛ)⋊r Λ, respectively, such that

(p(C(βΓ)⋊r Γ)p, pC(βΓ)p) ∼= (q(C(βΛ)⋊r Λ)q, qC(βΛ)q);

(QI5) ((C(βΓ)⋊r Γ)⊗K, C(βΓ)⊗D) ∼= ((C(βΛ)⋊r Λ)⊗K, C(βΛ)⊗D).

Moreover, the following are equivalent:

(LIP1) Γ and Λ are bilipschitz equivalent;
(LIP2) Γ y βΓ and Λ y βΛ are continuously orbit equivalent, in the sense of [30];
(LIP3) (C(βΓ)⋊r Γ, C(βΓ)) ∼= (C(βΛ)⋊r Λ, C(βΛ)).

Here, Γ y βΓ and Λ y βΛ are the canonical actions of Γ and Λ on their Stone-Čech
compactifications.
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Let us now combine Lemma 6.1 with [57]. First of all, recall that for a finitely generated
group Γ, the uniform Roe algebra C∗

u(XΓ) is canonically isomorphic to C(βΓ)⋊rΓ, and
that the stable uniform Roe algebra C∗

s (XΓ) is canonically isomorphic to (C(βΓ) ⋊r

Γ)⊗K. We let Du(XΓ) be the canonical Cartan subalgebra of C∗
u(XΓ) corresponding to

the Cartan subalgebra C(βΓ) of C(βΓ)⋊r Γ. Similarly, Ds(XΓ) denotes the canonical
Cartan subalgebra of C∗

s (XΓ) corresponding to the Cartan subalgebra C(βΓ) ⊗ D of
(C(βΓ)⋊r Γ)⊗K.

Theorem 6.2. Let Γ, Λ be finitely generated groups. Consider the following statements:

(i) Γ and Λ are bilipschitz equivalent;
(ii) (C∗

u(XΓ), Du(XΓ)) ∼= (C∗
u(XΛ), Du(XΛ));

(iii) C∗
u(XΓ) ∼= C∗

u(XΛ);
(iv) Γ and Λ are quasi-isometric;
(v) There exist projections p ∈ Du(XΓ) ⊆ C∗

u(XΓ) and q ∈ Du(XΛ) ⊆ C∗
u(XΛ)

which are full in C∗
u(XΓ) and C∗

u(XΛ), respectively, such that

(pC∗
u(XΓ)p, pDu(XΓ)p) ∼= (qC∗

u(XΛ)q, qDu(XΛ)q);

(vi) (C∗
s (XΓ), Ds(XΓ)) ∼= (C∗

s (XΛ), Ds(XΛ));
(vii) C∗

s (XΓ) ∼= C∗
s (XΛ).

We always have (i) ⇔ (ii) and (iv) ⇔ (v) ⇔ (vi). Moreover, (ii) ⇒ (iii), (vi) ⇒ (vii),
(ii) ⇒ (v) and (iii) ⇒ (vii) are obvious. If Γ and Λ are exact, we have (vii) ⇒ (iv),
so that (iv) ⇔ (v) ⇔ (vi) ⇔ (vii). For non-amenable groups Γ and Λ, we have (iv)
⇒ (i). Hence for non-amenable, exact groups Γ and Λ, all these items (i) – (vii) are
equivalent.

Proof. (i) ⇔ (ii) and (iv) ⇔ (v) ⇔ (vi) follow from Lemma 6.1. For exact groups,
(vii) ⇒ (iv) is [57, Corollary 6.3]. Moreover, [65] tells us that (iv) ⇒ (i) holds for
non-amenable groups. �

Remark 6.3. We know by [13] that for amenable groups, (iv) does not imply (i) in
general. It would be interesting to find examples of groups where (v) holds but not
(iii), or where (iii) holds but not (ii). We know that for the groups in [13], at least one
of the implications (v) ⇒ (iii) or (iii) ⇒ (ii) must fail. But which one(s)?
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