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C∗-ALGEBRAS OF EXTENSIONS OF GROUPOIDS BY GROUP

BUNDLES

MARIUS IONESCU, ALEX KUMJIAN, JEAN N. RENAULT, AIDAN SIMS, AND DANA P. WILLIAMS

Abstract. Given a normal subgroup bundle A of the isotropy bundle of a groupoid Σ, we
obtain a twisted action of the quotient groupoid Σ/A on the bundle of group C∗-algebras
determined by A whose twisted crossed product recovers the groupoid C∗-algebra C∗(Σ).
Restricting to the case where A is abelian, we describe C∗(Σ) as the C∗-algebra associated
to a T-groupoid over the tranformation groupoid obtained from the canonical action of
Σ/A on the Pontryagin dual space of A. We give some illustrative examples of this result.

Introduction

The objective of this paper is to develop tools for analyzing C∗-algebras of very general
groupoids via a version of the Mackey machine, and also to construct Cartan subalgebras
in C∗-algebras of large classes of groupoids that are not necessarily étale. Specifically,
one of the fundamental components of the modern Mackey Subgroup Analysis for group
representations comes from Green’s [Gre78, Proposition 1]: if H is a normal subgroup of
a locally compact group G, then C∗(G) is a twisted crossed product C∗(G,C∗(H), κ) of
C∗(H) by G. The idea is then to describe the representation theory and the structure of
C∗(G) in terms of representations of H and the action of G on the spectrum of C∗(H)
induced by conjugation. Variants of this approach are sometimes called “Mackey’s Little
Group Method”.

Our main theorem generalizes Green’s theorem to the situation of a locally compact
Hausdorff groupoid Σ and a normal subgroup bundle A of the isotropy groupoid of Σ. Our
result says that the full C∗-algebra of Σ coincides with a twisted crossed product of C∗(A)
by Σ. If A is amenable, this descends to an isomorphism of reduced C∗-algebras. We pay
particular attention to the situation when A is abelian, and hence has a Pontryagin dual
space Â. The quotient G = Σ/A is a topological groupoid, and we use our main theorem to

prove that C∗(Σ) is isomorphic to the restricted C∗-algebra C∗(Â⋊G; Σ̂) of a T-groupoid Σ̂

over a transformation groupoid Â⋊G. As the theory of T-groupoids—also called twists—is
well studied, this provides powerful tools for studying C∗(Σ). This was the approach for the
main result in [MRW96], and in fact, our isomorphism result is a significant generalization
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of, and is motivated by, [MRW96, Proposition 4.5]. As an illustrative example, we discuss
the special case of a locally compact Hausdorff group Σ with a closed normal abelian
subgroup A; even in this special case, our results have something new to say.

Accordingly, in Section 2, we consider a second countable locally compact Hausdorff
groupoid and subgroup bundle A of the isotropy groupoid of Σ whose unit space coincides
with that of Σ. Then A acts on the left and right of Σ and we say that A is normal if the
orbits σA and Aσ coincide for all σ ∈ Σ. If A is normal, then the quotient G = Σ/A is
a groupoid and we can view Σ as an extension of A by G. Assuming that both Σ and A
have Haar systems, Σ acts by automorphisms on C∗(A). We show that there is a Green–
Renault twisting map κ for this action. This allows us to form a twisted crossed product
of which Green’s twisted crossed products are a special case. When A is an abelian group
bundle these twisted crossed products are the same as those in [Ren91,Ren87]. Our first
main result (Theorem 2.11) extends Green’s result by proving that C∗(Σ) is isomorphic
to the twisted crossed product; it also establishes a similar result for the reduced norm
when A is amenable. There is overlap with a result in [BM16]; we discuss this in detail in
Remark 2.13.

In Section 3 we restrict to the case that A is an abelian group bundle. Then the Gelfand
dual, Â, of C∗(A) is a locally compact right G-space and we can form the transformation

groupoid Â ⋊ G. We can build a natural T-groupoid, Σ̂, over Â ⋊ G. Our second main

result (3.3) is that C∗(Σ) is isomorphic to the restricted groupoid C∗-algebra C∗(Â⋊G; Σ̂)
of this T-groupoid with a similar assertion for the reduced norms. It follows from [BL17]
that C∗(Σ) belongs to the UCT class if and only if it is nuclear.

In Section 4, we give a number of applications and examples of our results. We first
consider in Section 4.1 the situation of a closed normal abelian subgroup H of a locally
compact group G. The quotient G/H acts on H by conjugation, and hence also on the

Pontryagin dual Ĥ viewed as a topological space. Our construction yields a T-groupoid

Σ̂ over Ĥ ⋊ (G/H). Our main theorem identifies the group C∗-algebra C∗(G) with the

C∗-algebra C∗(Ĥ ⋊ (G/H); Σ̂) of this T-groupoid, and similarly at the level of reduced C∗-
algebras (cf., [ZM68]). As specific examples of this result we demonstrate how to recover two
standard descriptions of the C∗-algebra of the integer Heisenberg group (see Example 4.2).
Our second class of examples is that of extensions of effective étale groupoids G by bundles
A of abelian groups. In this situation, the semidirect product Â ⋊ G is also étale, and we
prove in Theorem 4.6 that C0(Â) embeds as a Cartan subalgebra of C∗

r (Σ). This generalizes
a result in [BNR+16]. We conclude Section 4 with a few examples including applications
to higher-rank Deaconu–Renault groupoids and, in particular, groupoids associated to row-
finite higher rank graphs with no sources.

This paper is a revised and shortened version of [IKR+20a].

1. Preliminaries

Our results require that we work with Green–Renault twisted crossed products of C∗-
algebras by locally compact Hausdorff groupoids, and in particular, the theory of T-
groupoids and their restricted groupoid C∗-algebras. In order to take a unified approach,
we use the theory of Fell bundles over groupoids and their associated C∗-algebras. For
convenience, we give a brief overview of the required background with selected references.



C∗-ALGEBRAS OF EXTENSIONS OF GROUPOIDS BY GROUP BUNDLES 3

1.1. Open maps. Open maps are ubiquitous when working with groupoids and bundles.
An important tool we refer to frequently is known as Fell’s Criterion. For convenience we
recall the formal statement from [FD88a, Proposition II.13.2].

Lemma 1.1 (Fell’s Criterion). A surjection f : X → Y is an open map if and only if for
every x ∈ X and every net { yα } converging to f(x) in Y there is a subnet { yαj

} and a
net {xαj

} in Y such that f(xαj
) = yαj

for all j, and xαj
→ x.

1.2. Upper-semicontinuous Banach bundles. A (upper-semicontinuous) Banach bun-
dle over a space X is a topological space E together with a continuous open surjection
p : E → X and complex Banach space structures on each fibre E(x) := p−1(x) such that

(a) a 7→ ‖a‖ is upper-semicontinuous from E to R+,
(b) (a, b) 7→ a+ b is continuous from E ∗ E = { (a, b) ∈ E × E : p(a) = p(b) } to E ,
(c) (λ, a) 7→ λa is continuous from C× E to E , and
(d) If { ai } is a net in E such that p(ai) → x and ‖ai‖ → 0, then ai → 0x where 0x is

the zero element in E(x).
If in addition each fibre E(x) is a C∗-algebra and (a, b) 7→ ab and a 7→ a∗ are continuous on
E ∗E and E , respectively, then we call E a (upper-semicontinuous) C∗-bundle. If axiom (a)
is replaced by “a 7→ ‖a‖ is continuous”, then we call E either a continuous Banach bundle
or a continuous C∗-bundle. We normally drop the adjective “upper-semicontinuous” and
add “continuous” only when we specialize to that case.

An excellent reference for continuous Banach bundles is §§13–14 of [FD88a, Chap. II].
For more details in the general case see [MW08a, Appendix A] and, for the C∗-bundle
case, [Wil07, Appendix C]. If p : E → X is a Banach bundle, we will write Γ0(X;E ) for
the continuous sections of E which vanish at infinity. Lazar’s [Laz18, Theorem 2.9] shows
that every Banach bundle p : E → X is guaranteed to have sufficiently many sections in
the sense that given a ∈ E(x) there is a f ∈ Γ0(X;E ) such that f(x) = a. Futhermore,
Γ0(X;E ) is a Banach space with respect to the supremum norm. A primary motivation
for working with upper-semicontinuous bundles rather than restricting to continuous ones
is that a C0(X)-algebra A is always C0(X)-isomorphic to Γ0(X,A ) for an appropriate
upper-semicontinuous C∗-bundle A [Wil07, Theorem C.26].

In our constructions below, we need to work with Banach bundles that arise as quo-
tients of Banach bundles by isometric groupoid actions as in [KMRW98, §2] (where these
constructions were developed for continuous bundles). Specifically, we let G be a second
countable locally compact Hausdorff groupoid with a Haar system λ. We suppose that
p : E → G(0) is an Banach bundle admitting a continuous G-action γ · a = αγ(a) where
αγ : E(s(γ)) → E(r(γ)) is an isometric Banach space isomorphism of the fibres of E .

Now let X be a free and proper left G-space. We can form the pullback X ∗E = { (x, a) ∈
X × E : r(x) = p(a) }. Then X ∗ E is an Banach bundle over X which is a continuous
Banach bundle if E is. We get a left G-action on X ∗ E given by

γ · (x, a) = (γ · x, αγ(a)).

We will write E X for the orbit space G\(X ∗ E ) with its quotient topology, and write [x, a]
for the orbit of (x, a).

Lemma 1.2. The map pX : E X → G\X given by pX([x, a]) = G · x is a continuous open
surjection.
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Proof. Continuity is clear. To see that pX is open, we use Fell’s criterion (see Lemma 1.1).
Suppose that G · xi → G · x = pX([x, a]). It suffices to lift a subnet to E X . After passing
to a subnet, and relabeling, we can assume that xi → x. Since r(xi) → r(x) = p(a) in

G(0) and since p is open, we can pass to another subnet, relabel, and assume that there are
ai → a in E such that p(ai) = r(xi). But then [xi, ai] → [x, a] as required. �

To see that E X is an Banach bundle, we have to equip the fibres (pX)−1(G·x) with Banach
space structures. The map a 7→ [x, a] is a bijection of E(r(x)) onto (pX)−1(G ·x). Thus we
can define

∥∥[x, a]
∥∥ = ‖a‖, [x, a] + [x, b] = [x, a + b], and λ[x, a] = [x, λa]. These structures

are independent of our choice of representative x ∈ G · x and makes (pX)−1(G · x) into a
Banach space. Note that EX(G · x) := (pX)−1(G · x) is isomorphic to E(r(x)); however,
this identification is non-canonical as it depends on the choice of representative for G · x.

Lemma 1.3. Suppose that p : E → G(0) is a (continuous) Banach bundle on which G acts
by isometric isomorphisms αγ : E(s(γ)) → E(r(γ)). Let pX : E X → G\X be the quotient

bundle described above with the given Banach space structure on the fibres EX(G ·x). Then
E X is a (continuous) Banach bundle over G\X. In particular, if E is a C∗-bundle and G
acts by ∗-isomorphisms, then E X is a C∗-bundle.

Proof. The proof proceeds by checking that the axioms for a Banach bundle hold just as
in [KMRW98, Proposition 2.15]. The only “upgrade” from [KMRW98] is to include the
possibility that p is merely upper-semicontinuous. But if [xi, ai] → [x, a] in E X with ‖ai‖ ≥
ǫ > 0 for all i, then we can pass to a subnet, relabel, and assume that (γixi, αγi(ai)) → (x, a).
Since each αγi is isometric, ‖a‖ ≥ ǫ. �

It will be convenient to describe the sections of a quotient bundle in terms of the sections
of the original bundle. If G acts isometrically on E as above, then given f̌ ∈ Γ(G\X;E X),
since the G-action on X is free, there is a function f : X → E such that f(x) ∈ E(r(x))
and

f̌(G · x) = [x, f(x)].

Furthermore,

f(γ · x) = αγ(f(x)).

Now suppose that xi → x. Then

f̌(G · xi) = [x, f(xi)] → f̌(G · x) = [x, f(x)].

Since pX is open, we can pass to a subnet, relabel, and assume that there are γi such that
(
γi · xi, αγi(f(xi)

)
→

(
x, f(x)

)
in X ∗ E .

Since the G-action on X is free and proper, we can assume that γi → s(x). But then since
the G action onX∗E is continuous, (xi, f(xi)) → (x, f(x)), and in particular, f(xi) → f(x).
Since we can repeat this argument for any subnet of {f(xi)} it follows that the original
net converges to f(x) and f : X → E is continuous. As a consequence, we have the
following proposition where, as is standard, we have identified sections f ∈ Γ(X;X ∗ E ) of
the pullback with continuous functions f : X → E such that p(f(x)) = r(x).
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Proposition 1.4. The sections in f̌ ∈ Γ(G\X;E X) are in one-to-one correspondence with
sections f ∈ Γ(X;X ∗ E ) such that

(1.1) f(γ · x) = αγ

(
f(x)

)
for all (γ, x) ∈ G ∗X.

We have

f̌(G · x) = [x, f(x)].

In particular, we can identify Γc(G\X;E X) with the space Cc(G\X,X,E , α) of continuous
functions f : X → E which transform according to (1.1), and such that the support of f
has compact image in G\X.

We say a net { f̌i } in Γc(G\X;E X) converges to f̌ in the inductive-limit topology if
f̌i → f̌ uniformly and the supports of the f̌i are all contained in a fixed compact set. This
is equivalent to saying that the corresponding functions fi ∈ Cc(G\X,X,E , α) converge
uniformly to f with supports all contained in a set with compact image in G\X.

1.3. Fell bundles and their C∗-algebras. Fell bundles over groupoids are a natural
generalization of Fell’s Banach ∗-algebraic bundles from [FD88b, Chapter VIII]. They were
introduced in [Yam87]. For more details, see [Kum98,MW08a]. Roughly speaking a Fell
bundle B over a locally compact Hausdorff groupoid G is an upper-semicontinuous Banach
bundle p : B → G endowed with a continuous involution b 7→ b∗ and a continuous multipli-
cation (a, b) 7→ ab from B(2) = { (b, b′) : (p(b), p(b′) ∈ G(2) } to B such that—with respect to
the operations, actions, and inner products induced by the involution and multiplication—
the fibres B(x) = p−1(x) over units x ∈ G(0) are C∗-algebras and such that each fibre
B(γ) is a B(r(γ))–B(s(γ))-imprimitivity bimodule. We write Γc(G;B) for the ∗-algebra of
continuous compactly supported sections of B under convolution and involution.

Each Fell bundle has both a full and a reduced C∗-algebra. The full C∗-algebra C∗(G,B)
is universal for representations of the bundle that are continuous in the inductive-limit
topology. The reduced C∗-algebra is obtained from a representation of Cc(G;B) on the
Hilbert module H(B) defined as follows (see [Kum98,MT11,SW13,Hol17]).

The restriction of B to a bundle over the unit space is an upper-semicontinuous C∗-
bundle, and we write Γ0(G

(0);B) for the C∗-algebra of C0-sections of this bundle. Define
〈· , ·〉

C0(G
(0),B)

on Γc(G;B) by 〈f , g〉
C0(G

(0),B)
= (f∗ ∗ g)|G(0) . This is a pre-inner product,

and the completion

H(B) := Γc(G;B)
‖·‖

C0(G
(0),B)

is a Hilbert module. Left multiplication in Γc(G;B) extends to a left action φ : Γc(G;B) →
L(H(B)) by adjointable operators, and the reduced norm on Γc(G;B) is given by ‖f‖r =
‖φ(f)‖L(H(B)).

1.4. Twisted groupoid crossed products. There are a number of treatments of group-
oid crossed products and twisted crossed products in the literature. Here we use a Fell
bundle approach as in [MW08a, §2]. Thus a groupoid dynamical system (E ,Σ, ϑ) consists

of a C∗-bundle p : E → Σ(0), a locally compact Hausdorff groupoid Σ, and isomorphisms
ϑσ : E(s(σ)) → E(r(σ)) such that ϑστ = ϑσ ◦ϑτ and such that σ ·e := ϑσ(e) is a continuous
action of Σ on E . Often in the notation the bundle E is replaced by the corresponding
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C0(Σ
(0))-algebra A := Γ0(Σ

(0);E ), and we still call (A,Σ, ϑ) a groupoid dynamical system.
As in [MW08a, Example 2.1], we can form a Fell bundle B = r∗E = { (a, σ) : p(a) = r(σ) }
over Σ with multiplication and involution given by

(a, σ)(b, τ) =
(
aϑσ(b), στ

)
and (a, σ)∗ =

(
ϑ−1
σ (a), σ−1

)
.

Then, if Σ has a Haar system, the crossed product C∗(E ,Σ, ϑ) is the Fell bundle C∗-algebra
C∗(Σ;B) built out of Γc(Σ;B).

To get a twisted crossed product, we first require that Σ is a unit space fixing extension
of a subgroupoid group bundle A. That is, we have

(1.2)

A Σ G

Σ(0)

ι p

where ι is the inclusion map, G is a locally compact groupoid, and p is a continuous open
surjection with kernel ι(A) restricting to a homeomorphism of Σ(0) and G(0). Notice that
we can identify G with either of the orbit spaces A\Σ or Σ/A where the A-action is given
by multiplication in Σ.

Let U(E(u)) ⊂ M(E(u)) be the unitary group of E(u), and let
∐

u∈Σ(0) U(E(u)) be the

corresponding (algebraic) group bundle over Σ(0). A (Green–Renault) twisting map for ϑ
is a unit-space fixing homomorphism κ : A →

∐
u∈Σ(0) U(E(u)) that induces an action by

isometric Banach space isomorphisms of A on E so that (a, e) 7→ a ·e := κ(a)e is continuous
from A ∗ E → E such that

ϑa(e) = κ(a)eκ(a)∗ for all (a, e) ∈ A ∗ E , and(1.3)

κ(σaσ−1) = ϑ̄σ(κ(a)) for all (σ, a) ∈ Σ ∗ A.

Since e 7→ e∗ is continuous, so is (a, e) 7→ eκ(a)∗ = (κ(a)e∗)∗. Then we call (G,Σ,E , ϑ, κ) a
Green–Renault twisted groupoid dynamical system.

Given (G,Σ,E , ϑ, κ), we can form a Fell bundle B = B(E , ϑ, κ) over G as in [MW08a,
Example 2.5] as follows. Define a left A-action by isometric isomorphisms on r∗E = Σ∗E =
{ (σ, e) ∈ Σ× E : r(σ) = pE (e) } by

a · (σ, e) = (aσ, eκ(a)∗).

Then form a the Banach bundle quotient B = B(E , ϑ, κ) = E Σ over G = A\Σ by forming
the quotient A\r∗E . We will write [σ, e] for the orbit of (σ, e) in B. Thus pB : B → G is
given by pB([σ, e]) = σ̇.

If (σ̇, τ̇) ∈ G(2), then we can define

(1.4) (σ, e)(τ, f) =
(
στ, eϑσ(f)

)
,

and compute that

(aσ, eκ(a)∗)(bτ, fκ(b)∗) = (aσbσ−1) ·
(
στ, eϑσ(f)

)
.

Hence (1.4) is well defined on elements of B and defines a “multiplication map” on B(2) =

{ ([σ, e], [τ, f ]) ∈ B × B : (σ̇, τ̇) ∈ G(2) } given by

(1.5) [σ, e][τ, f ] := [στ, eϑσ(f)].
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Similarly, we get a well-defined involution on B defined by

(1.6) [σ, e]∗ := [σ−1, ϑ−1
σ (e∗)].

Lemma 1.5. With multiplication and involution defined by (1.5) and (1.6), respectively,
B(E , ϑ, κ) is a Fell bundle over G.

Proof. The continuity of multiplication and the involution follows from the openness of
the projection pB : B → G and the continuity of the action of Σ on E . The algebraic
properties of multiplication are routine to verify as are axioms (a), (b), and (c) of [MW08a,
Definition 1.1].

For (d) and (e), recall that the fibre B(σ̇) of B over σ̇ ∈ G is { [σ, e] } equipped with the
Banach-space structure induced by the map e 7→ [σ, e] for e ∈ E(r(σ)). So for u ∈ Σ(0),
the space B(u) is a C∗-algebra isomorphic to E(u) with the induced multiplication and
involution coming from B. This is (d).

For (e), we must show that B(σ̇) is a B(r(σ)) –B(s(σ))-imprimitivity bimodule under
the actions and inner products induced by B. These actions and inner products are exactly
those coming from viewing E(r(σ)) as a E(r(σ)) – E(s(σ)-imprimitivity bimodule using the
isomorphism ϑ−1

σ : E(r(σ)) → E(s(σ)) (see [MW08a, Example 2.1]). �

If G has a Haar system, then the twisted groupoid crossed product C∗(G,Σ,E , κ) is the
Fell bundle C∗-algebra C∗(G;B) where B = B(E , ϑ, κ) as above. Recall that sections
f̌ ∈ Γ(G;B) are determined by continuous functions f : Σ → E such that

f(aσ) = f(σ)κ(a)∗ for all (a, σ) ∈ A ∗ E .(1.7)

Then

f̌(σ̇) = [σ, f(σ)].

Thus Γc(G;B) is isomorphic to the space Cc(G,Σ,E , κ) of continuous functions f : Σ → E

that satisfy (1.7) and whose support has compact image in G, with operations

f ∗ g(σ) =

∫

G
f(τ)ϑτ (g(τ

−1σ) dαr(σ)(τ̇) and f∗(σ) = ϑσ(f(σ
−1)∗).

For example,

f̌ ∗ ǧ(σ̇) =

∫

G
f̌(τ̇)ǧ(τ̇−1σ̇) dαr(σ)(τ̇ ) =

∫

G
[σ, f(τ)ϑτ (g(τ

−1σ))] dαr(σ)(τ̇),

and since (σ, a) 7→ [σ, a] is an isomorphism of Banach spaces, this gives

f̌ ∗ ǧ(σ̇) =
[
σ,

∫

G
f(τ)ϑτ (g(τ

−1σ) dαr(σ)(τ̇ )
]
.

The I-norm on Cc(G,Σ,E , κ) is given by

‖f‖I = max
{

sup
u∈Σ(0)

∫

G
‖f(σ)‖ dαu(σ̇), sup

u∈Σ(0)

∫

G
‖f(σ)‖ dαu(σ̇)

}
.

Therefore the Fell bundle C∗-algebra C∗(G;B) is the completion of Cc(G,Σ,E , κ) uni-
versal for I-norm decreasing representations of Cc(G,Σ,E , κ).
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Remark 1.6. If Σ is a group G and A a normal subgroup N , then κ is a twisting map for
(N,G, ϑ) as in [Gre78]. The extension of twists to groupoid dynamical systems comes from
[Ren87, §3] where it was assumed that A was an abelian group bundle and that E was
continuous.

For our isomorphism result, we will need the special case of the twisted crossed product
whereA = Σ(0)×T. Such groupoids are called either T-groupoids or twists. As in [MW08a,
Example 2.3], the associated full and reduced C∗-algebras, C∗(G; Σ) and C∗

r (G; Σ) coincide
with the full and reduced C∗-algebras of the Fell line-bundle B over G. In particular,
both these C∗-algebras are completions of Cc(G; Σ) consisting of f ∈ Cc(Σ) such that
f(zσ) = zf(σ) for all z ∈ T and σ ∈ Σ (note that the complex conjugate appearing in
equation (2.3) following [MW08a, Example 2.3] is a typo).

Hence the reduced norm on Cc(G; Σ) is realized by the representation of Cc(G; Σ) on
the Hilbert module H(G; Σ) given by taking the completion of Cc(G; Σ) with respect to
〈f, g〉 := (f∗ ∗ g)|G(0) . Restricting to the special case where the twist Σ is the trivial
twist G × T, we see that the reduced norm on Cc(G) is realized by the representation of
Cc(G) on the Hilbert module H(G) obtained as the completion of Cc(G) with respect to
〈f, g〉 = (f∗ ∗ g)|G(0) .

2. Extensions of group bundles

Let Σ be a second-countable locally compact Hausdorff groupoid with a Haar system
λ = {λu}u∈Σ(0) . Let A be a closed subgroupoid of the the isotropy group bundle Σ′ :=

{σ ∈ Σ : s(σ) = r(σ) } such that A(0) = Σ(0). We summarize this by saying that A is a
wide subgroup bundle of Σ. We let pA = r|A = s|A be the projection from A onto Σ(0) and
write A(u) for the fibre of A over u.

We assume throughout that A has a Haar system {βu }u∈Σ(0) . Even though Σ is assumed
to have a Haar system, A has a Haar system only if the fibres of A are well-behaved as
described in the following result taken from [Ren91, §1] (see also [Wil19, Theorem 6.12]).

Lemma 2.1. Let A be a closed subgroup bundle of Σ. Then the following are equivalent.
(a) There is a Haar system β = {βu}u∈Σ(0) for A.

(b) The projection map pA : A → Σ(0) is open.

(c) The map u 7→ A(u) is continuous from Σ(0) into the space of closed subgroups of Σ
in the Fell topology.

Note that A acts freely and properly on the left as well as on the right of Σ. Since pA is
open, the orbit maps for A-actions are open [Wil19, Proposition 2.12], so both orbit spaces
A\Σ and Σ/A are locally compact Hausdorff in our situation. We say that A is normal if
the orbits Aσ and σA coincide for all σ ∈ Σ. Note that A is normal if and only if Σ acts
on A by conjugation.

If A is normal, then as subsets of Σ, (σ1A)(σ2A) = σ1σ2A whenever s(σ1) = r(σ2). This
allows us to impose a groupoid structure on G = Σ/A in the obvious way. Conversely, if
p : Σ → G is a continuous, open groupoid homomorphism which induces a homeomorphism
of Σ(0) onto G(0), then the kernel is a wide normal subgroup bundle and we can identify
Σ(0) and G(0). We can summarize these observations as follows where as usual we write σ̇
in place of p(σ) = σA.
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Lemma 2.2. Suppose that A is a wide normal subgroup bundle of Σ with a Haar system.
Consider the orbit space G = A\Σ = Σ/A. Define G(2) = {(σ̇1, σ̇2) : s(σ1) = r(σ2)}, and
define a multiplication map G(2) → G by (σ̇1)(σ̇2) = σ1σ2A. Then G is a locally compact

groupoid, and G(0) ∼= Σ(0) via uA 7→ u. Equivalently, A is a wide normal subgroup bundle of
Σ if and only if we have a unit space fixing groupoid extension (1.2) where ι is the inclusion

map, p is the orbit map, and we identify Σ(0) and G(0).

Remark 2.3. The isotropy bundle A = Σ′ is always a normal subgroup bundle. However,
Lemma 2.1 implies that Σ′ has a Haar system only when the isotropy map u 7→ Σ(u) := Σu

u

is continuous. Nevertheless, there are interesting examples whereA ( Σ′ has a Haar system
even when Σ′ does not. A number of such instances are given in Section 4.2.

For the remainder of this section, Σ will be a second countable locally compact Hausdorff
groupoid with a Haar system λ, and A will be a wide normal subgroup bundle with a Haar
system β. We will write G for the groupoid Σ/A as in Lemma 2.1 and p : Σ → G will be
the quotient map as in (1.2).

The following can be proved using the uniqueness of Haar measure on the A(u) exactly
as in [MRW96, Lemma 4.1].

Lemma 2.4. Let Σ and A be as above. Then there is a continuous homomorphism δ :
Σ → R+, called the modular map for the extension (1.2), such that

∫

A
f(σaσ−1) dβs(σ)(a) = δ(σ)

∫

A
f(a) dβr(σ)(a).

Note that if a ∈ A(u), then δ(a) = ∆A(u)(a).

Remark 2.5. Note that δ(σ) is the inverse of the similar constant ω(σ) used in [MRW96],
and δ has the advantage that it restricts to the modular function on each A(u).

We let Cc,p(Σ) be the collection of continuous functions on Σ such that supp b∩ p−1(K)
is compact for all K ⊂ G compact.

Lemma 2.6. Suppose that Σ, A, G, and p are as above.
(a) There is a b ∈ Cc,p(Σ), called a Bruhat section, such that

∫

A
b(σa) dβs(σ)(a) = 1 for all σ ∈ Σ.(2.1)

(b) There is a surjection Q : Cc(Σ) → Cc(G) given by

Q(f)(σ̇) =

∫

A
f(σa) dβs(σ)(a).

(c) There is a Haar system α = {αu}u∈Σ(0) on G such that for all f ∈ Cc(Σ) and

u ∈ Σ(0) we have

(2.2)

∫

Σ
f(σ) dλu(σ) =

∫

G

∫

A
f(σa) dβs(σ)(a) dαu(σ̇).

Proof. By left invariance, if f ∈ Cc(Σ) and σ̇ = τ̇ ∈ G then
∫

A
f(σa)dβs(σ)(a) =

∫

A
f(τa)dβs(τ)(a).
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Hence for f ∈ Cc(Σ) there is a well-defined map γ 7→ mγ(f) from G to C such that

mσ̇(f) =

∫

A
f(σa) dβs(σ)(a) for all σ ∈ Σ.

The collection m = {mγ}γ∈G is a p-system of measures by [Wil19, Lemma 2.21(b)]. The
existence of b follows from the paracompactness of G as in [Wil19, Proposition 3.18]. This
proves (a) and that Q(f) ∈ Cc(G). Surjectivity follows from from (a) and we have estab-
lished (b).

(c) To show that a Radon measure αu exists satisfying (2.2), it will suffice to see that
whenever

(2.3)

∫

A
f(σa) dβs(σ)(a) = 0 for all σ ∈ r−1(u)

it follows that
∫

Σ
f(σ) dλu(σ) = 0.

(Then we can define a linear functional on Cc(G) by αu(Q(f)) = λu(f).) But if (2.3) holds,
then for any h ∈ Cc(Σ),

∫

A
f ∗ h(a) dβu(a) =

∫

A

∫

Σ
f(aσ)h(σ−1) dλu(σ) dβu(a)(2.4)

=

∫

Σ

(
δ(σ)−1

∫

A
f(σa) dβs(σ)(a)

)
h(σ−1) dλu(σ) = 0.

Taking h to be a multiple of b in (2.1) by an appropriate function in Cc(Σ), we can assume
that

∫

A
h(σ−1a) dβu(a) = 1

for all σ ∈ supp f . Then the left-hand side of (2.4) is exactly
∫

Σ
f(σ) dλu(σ).

If F ∈ Cc(G), then
∫

G
F (γ) dαu(γ) =

∫

Σ
F (σ̇)b(σ) dλu(σ).

Hence u 7→ αu(F ) is continuous. For left-invariance, suppose that η = τ̇ . Then
∫

G
F (ηγ) dαs(η)(γ) =

∫

Σ
F (p(τσ))b(σ) dλs(τ)(σ)

=

∫

Σ
F (p(σ))b(τ−1σ) dλr(τ)(σ)

=

∫

G
F (γ) dαr(η)(γ). �
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Since A has a Haar system, we can form the C∗-algebra C∗(A). Then it is not hard

to verify that C∗(A) is a C0(Σ
(0))-algebra with fibres C∗(A)(u) identified with the group

C∗-algebras C∗(A(u)). (Since we are working in a groupoid context, we treat A(u) as a
groupoid with a single unit. This means that the modular function ∆A(u) does not appear
in the formula for the involution on Cc(A(u)).) To form a groupoid dynamical system we
need to exhibit C∗(A) as the section algebra of a C∗-bundle.

Using [Wil07, Theorem C.26], we can equip

E :=
∐

u∈Σ(0)

C∗(A(u))

with a topology such that it becomes an upper-semicontinuous C∗-bundle over Σ(0) such
that each f ∈ Cc(A) defines a continuous section f̌ ∈ Γc(Σ

(0);E ) given by f̌(u)(a) = f(a).
Then C∗(A) can be identified with Γ0(Σ

(0);E ).
For each σ ∈ Σ, we get an isomorphism

ϑσ : C∗
(
A(s(σ))

)
→ C∗

(
A(r(σ))

)

given on h ∈ Cc(A(s(σ))) by

ϑσ(h)(a) = δ(σ)h(σ−1aσ).

Proposition 2.7 (cf., [Goe12, Proposition 2.6]). With the notation just established, and
writing ϑ = {ϑσ}, the triple (E ,Σ, ϑ) is a groupoid dynamical system.

Proof. We have already established that each ϑσ is an isomorphism, and it is easy to check
that ϑστ = ϑσ ◦ ϑτ . It only remains to check the continuity of (σ, s) 7→ ϑσ(s) from Σ ∗ E to
E . We establish this using [MW08b, Lemma 4.3] (see also [KMRW98, Lemma 2.13]).

We must consider the pullbacks

r∗
(
C∗(A)

)
= Γ0(Σ; r

∗
E ) and s∗

(
C∗(A)

)
= Γ0(Σ; s

∗
E ).

But we can clearly identify sections in Γ(Σ; r∗E ) with continuous functions f : Σ → E

such that pE (f(σ)) = r(σ), and similarly for sections of s∗E . Hence we can define ϑ :
Γ0(Σ; r

∗E ) → Γ0(Σ; s
∗E ) by ϑ(f)(σ) = ϑσ

(
f(σ)

)
. Then ϑ is an isomorphism, and the

continuity of the action follows from [MW08b, Lemma 4.3]. �

If t ∈ A(u), then we can define κ(t) : Cc(A(u)) → Cc(A(u)) by

κ(t)h(a) = δ(t)
1
2h(t−1a) = ∆A(u)(t)

1
2h(t−1a).

Since (κ(t)h)∗ ∗ (κ(t)k) = h∗ ∗ k, it follows that κ(t) extends to a unitary in the multiplier
algebra M

(
C∗(A(u))

)
. It is straightforward to check that κ(tt′) = κ(t)κ(t′).

Lemma 2.8. The action of A on E is continuous. That is, the map (t, s) 7→ κ(t)s is
continuous from A ∗ E → E .

Proof. Suppose that we have a net (ti, si) → (t0, s0) in A ∗ E . We need to show that
κ(ti)si → κ(t0)s0 in E . Let ui = pA(ti) = pE (si). Using [Wil07, Proposition C.20], it will
suffice to show that given ǫ > 0, there are s′i → s′0 in E such that pE (s

′
i) = ui and that we

eventually have ‖s′i − κ(ti)si‖ < ǫ.

Let f ∈ Cc(A) be such that ‖f̌(u0)− s0‖ < ǫ. Then we eventually have ‖f̌(ui)− si‖ < ǫ.
Since A acts by unitaries, we eventually have ‖κ(ti)f̌(ui)− κ(ti)si‖ < ǫ.
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Therefore it will suffice to show that s′i := κ(ti)f̌(ui) → s′0 := κ(t0)f̌(u0) in E . For this,
we form the pullback bundle p∗AE = { (t, s) ∈ A×E : pA(t) = pE (s) }. If F ∈ Cc(A∗A), then

we get a section of p∗AE given by F̌ (t) = (t, F (t, ·)) ∈ Cc(A(pA(t)). If F (t, a) = f(t)g(a)

for f, g ∈ Cc(A), then we clearly have F̌ ∈ Γ(A; p∗AE ). Since finite sums of such functions

are dense in the inductive-limit topology on Cc(A ∗ A), we have F̌ ∈ Γ(A; p∗AE ) for all
F ∈ Cc(A ∗A).

We can assume that all the ti are in a compact neighborhood V of t0. Then if φ ∈ C+
c (A)

is such that φ ≡ 1 on V , then F (t, a) = φ(t)κ(t)f(a) defines an element of Cc(A ∗ A) and
F̌ (ti) = (ti, κ(ti)f̌(ui)). Since projection on the second factor is continuous from p∗AE to E ,
the result follows. �

Since hκ(t)∗(a) = δ(t)
1
2h(at), it is routine to check that ϑt(s) = κ(t)sκ(t)∗ for all (t, s) ∈

A∗ E , and that κ(σtσ−1) = ϑσ

(
κ(t)

)
for all (σ, t) ∈ Σ ∗A. It follows from Lemma 2.8 that

κ is a twisting map for (E ,Σ, ϑ). Then we can form the twisted groupoid crossed product
C∗(G,Σ,E , κ). Recall that as described in Section 1.4, the later is the Fell bundle C∗-
algebra for the Fell bundle B(E , ϑ, κ) = E Σ associated to the twist. Hence B(E , ϑ, κ) is the
quotient of r∗E = { (σ, a) ∈ Σ×A : r(σ) = pE (a) } by the A-action t · (σ, a) = (tσ, aκ(t)∗).

We can identify Γc(G;B(E , ϑ, κ)) with the collection Cc(G,Σ,E , κ) of continuous func-
tions f : Σ → E such that pE (f(σ)) = r(σ) and

(2.5) f(aσ) = f(σ)κ(a)∗

whose support has compact image in G. The ∗-algebra structure on Cc(G,Σ,E , κ) is given
by

f ∗ g(σ) =

∫

G
f(τ)ϑτ (g(τ

−1σ)) dαr(σ)(τ̇) and f∗(σ) = ϑσ(f(σ
−1)∗).(2.6)

If f ∈ Cc(Σ) and σ ∈ Σ, we let j(f)(σ) be the element of Cc(A(r(σ))) given by a 7→

δ(σ)
1
2 f(aσ). In particular, j(f) ∈ Γc(Σ; r

∗E ) and a quick computation verifies that it
satisfies (2.5) and is an element of Cc(G,Σ,E , κ).

Remark 2.9. Let {gi} be a net in Cc(G,Σ,E , κ). We say that gi → g in the inductive-limit
topology if gi → g uniformly and the supports of the gi are all contained in some B such
that p(B) is compact in G. This implies that ǧi → ǧ in the inductive-limit topology on
Γc(G;B(E , ϑ, κ)). Now suppose that fi → f in the inductive-limit topology on Σ so that
there is a compact set K ⊂ Σ such that supp fi ⊂ K for all i and fi → f uniformly. We
claim that j(fi) → j(f) in the inductive-limit topology on Cc(G,Σ,E , κ). Certainly we
have the supports of the j(fi) all contained in the image of K. Moreover if σ ∈ K, then
supp j(fi)(σ) ⊂ K−1K ∩A. Since u 7→ βu(K−1K ∩A) is bounded and δ is bounded on K,
it follows that j(fi) → j(f) uniformly on K. Since ‖j(fi)(σ) − j(f)(σ)‖ depends only on
σ̇, the claim follows.

Lemma 2.10. The map f 7→ j(f) is a ∗-homomorphism of Cc(Σ) into Cc(G,Σ,E , κ) and
the range of j is dense in Cc(G,Σ,E , κ) in the inductive limit topology.
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Proof. Using (2.6) we have

j(f ∗ g)(σ)(a′) = δ(σ)
1
2 f ∗ g(a′σ)

= δ(σ)
1
2

∫

Σ
f(τ)g(τ−1a′σ) dλr(σ)(τ)

= δ(σ)
1
2

∫

G

∫

A
f(τa)g(a−1τ−1a′σ)βs(τ)(a) dαr(σ)(τ̇)

= δ(σ)
1
2

∫

G
δ(τ)

∫

A
f(aτ)g(τ−1a−1a′σ) dβr(τ)(a) dαr(σ)(τ̇)

=

∫

G

∫

A
δ(τ)

1
2 f(aτ)δ(τ)δ(τ−1σ)

1
2 g(τ−1a−1a′σ) dβr(τ)(a) dαr(σ)(τ̇)

=

∫

G

∫

A
j(f)(τ)(a)ϑτ

(
j(g)(τ−1σ)

)
(a−1a′)βr(τ)(a) dαr(σ)(τ̇)

=

∫

G
j(f)(τ) ∗ ϑτ

(
j(g)(τ−1σ)

)
(a′) dαr(σ)(τ̇ )

which, arguing as in [Wil07, Lemma 1.108], is

=
(∫

G
j(f)(τ) ∗ ϑτ

(
j(g)(τ−1σ)

)
dαr(σ)(τ̇)

)
(a′).

Thus j(f ∗ g)(σ) = j(f) ∗ j(g)(σ) as required.
Similarly,

j(f∗)(σ)(a) = δ(σ)
1
2 f∗(aσ) = δ(σ)

1
2 f(σ−1a−1σσ−1)

= ϑσ

(
j(f)(σ−1)

)
(a−1) =

(
ϑσ

(
j(f)(σ−1)

))∗
(a).

Thus j(f∗) = j(f)∗, and we have shown that j is a ∗-homomorphism.
To see that the range is dense, let F ∈ Cc(G,Σ,E , κ). Let K be a compact neighborhood

of p(suppF ). Given ǫ > 0 it will suffice to find f ∈ Cc(Σ) such that p(supp j(f)) ⊂ K and
‖j(f)− F‖∞ < ǫ.

Given σ ∈ Σ, there exists fσ ∈ Cc(Σ) such that

‖j(fσ)(σ) − F (σ)‖ < ǫ.

Since r∗E is an upper-semicontinuous Banach bundle and κ is unitary-valued, there is an
open neighborhood, Vσ̇ of σ̇ in G such that

‖j(fσ)(τ)− F (τ)‖ < ǫ for all τ̇ ∈ Vσ̇.

Fix σ1, . . . , σn ∈ Σ such that the Vσ̇k
cover p(suppF ). Let {φk} ⊂ C+

c (G) be such that
suppφk ⊂ Vσ̇k

∩K and

n∑

k=1

φk(τ̇) = 1
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if τ ∈ p(suppF ) and bounded by 1 otherwise. Then

f(σ) =

n∑

k=1

φk(σ̇)fσk
(σ)

belongs to Cc(Σ), p(supp j(f)) ⊂ K, and

‖j(f)(σ) − F (σ)‖ ≤
n∑

k=1

∥∥φk(σ̇)
(
j(fσk

)(σ)− F (σ)
)∥∥ < ǫ

n∑

k=1

φk(σ̇) ≤ ǫ.

This suffices. �

Theorem 2.11. We let Σ, A, G, E , and ϑ be as above with twisting map κ. The ∗-

homomorphism j : Cc(Σ) → Cc(G,Σ,E , κ) defined by j(f)(σ)(a) = δ(σ)
1
2 f(aσ) in Lem-

ma 2.10 is isometric for the (universal) C∗-norm and therefore extends to an isomorphism
j : C∗(Σ) → C∗(G,Σ,E , κ). If A is amenable, then j is also isometric for reduced norms
and extends to an isomorphism jr : C

∗
r (Σ) → C∗

r (G,Σ,E , κ).

Remark 2.12. If A is not amenable, the situation is complicated. One might expect to
replace C∗(A) with C∗

r (A) in the construction of E to obtain a bundle Er and an isomor-
phism C∗

r (Σ)
∼= C∗

r (G,Σ,Er, κr). However, as shown in [Wil15,Arm19], while C∗
r (A) is a

C0(G
(0))-algebra, its fibre over u need not be isomorphic to C∗

r (A(u)). We have not pursued
this subtlety further.

Remark 2.13. With some effort, the assertion that C∗(Σ) and C∗(G,Σ,E , κ) are isomorphic
can be derived from a general result in a 2016 preprint due to Buss and Meyer [BM16]. The
map p : Σ → G from (1.2) is an example of what is called a “groupoid fibration with fibreA”
in [BM16]. The Fell bundle constructed in [BM16, §6] can be shown to be isomorphic (as Fell
bundles) to the Fell bundle B(E , ϑ, κ) = E Σ corresponding to C∗(G,Σ,E , κ) constructed
above. Then one can show that j is the composition of the isomorphism from [BM16,
Theorem 6.2] and the isomorphism induced by the Fell bundle isomorphism above. Since
our situation is considerably more concrete, we are able to explicitly describe both the
bundle and the isomorphism. This will be crucial in the next section where we specialize
to the case A is an abelian group bundle. Furthermore, the case of the reduced norm is not
considered in [BM16].

To prove Theorem 2.11 we will need the following technical result from [Ren91, Corol-
lary 1.8]. We have included the details for completeness.

Lemma 2.14. If µ is a quasi-invariant measure on Σ(0) with respect to Σ, then µ is also
quasi-invariant with respect to G. If ∆ is a modular function on G for µ, then ∆(σ) =
δ(σ)∆(σ̇) is a modular function on Σ for µ. In particular, we can assume both ∆ and ∆
are homomorphisms into R+.
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Proof. Let b ∈ C+
c,p(Σ) be a Bruhat section as in Lemma 2.6(a). Suppose f ∈ Cc(G). Then

νG(f) =

∫

Σ(0)

∫

G
f(λ) dαu(λ) dµ(u)

=

∫

Σ(0)

∫

G

∫

A
f(σ̇)b(σa) dβs(σ)(a) dαu(σ̇) dµ(u)

=

∫

Σ(0)

∫

Σ
f(σ̇)b(σ) dλu(σ) dµ(u).

So for any modular function ∆ for µ on Σ, we obtain

νG(f) =

∫

Σ(0)

∫

Σ
f(σ̇−1)b(σ−1)∆(σ−1) dλu(σ) dµ(u)

=

∫

Σ(0)

∫

G
f(σ̇−1)

∫

A
b(a−1σ−1)∆(a−1σ−1) dβs(σ)(a) dαu(σ̇) dµ(u).(2.7)

Define B : G → C by

B(σ̇) =

∫

A
b(a−1σ−1)∆(a−1σ−1) dβs(σ)(a).

Then (2.7) gives

νG(f) =

∫

Σ(0)

∫

G
f(γ−1)B(γ) dσu(γ) dµ(u) = ν−1

G (fB∗).

Since δ agrees with ∆A(u), we have

B(σ̇) = δ(σ)−1

∫

A
b(σ−1a−1)∆(σ−1a−1) dβr(σ)(a)

=

∫

A
b(σ−1a)∆(σ−1a)δ(σ−1a−1) dβr(σ)(a).

Since ∆ and δ never vanish, it follows from (2.1) that B never vanishes. Hence νG and
ν−1
G are equivalent. Thus, by definition, µ is G-quasi-invariant.
Let ∆ be a modular function for G (with respect to µ). Then

∫

Σ(0)

∫

Σ
f(σ−1)∆(σ̇−1)δ(σ)−1 dλu(σ) dµ(u)

=

∫

Σ(0)

∫

G
∆(σ̇−1)δ(σ)−1

∫

A
f(a−1σ−1)δ(a)−1 dβs(σ)(a) dαu(σ̇) dµ(u)

=

∫

Σ(0)

∫

G
Q(f)(σ̇−1)∆(σ̇−1) dαu(σ̇) dµ(u)

=

∫

Σ(0)

∫

G
Q(f)(σ̇) dαu(σ̇) dµ(u)

=

∫

Σ(0)

∫

Σ
f(σ) dλu(σ) dµ(u).

Hence ∆(σ̇)δ(σ) is a modular function for Σ. Work of Ramsay—see [Wil19, Proposi-
tion 7.6]—implies we can take ∆ to be a homomorphism. Then we can let ∆(σ) = ∆(σ̇)δ(σ).
This completes the proof. �
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Proof of Theorem 2.11. Suppose that fi → f in the inductive-limit topology on Cc(Σ).
Then as in Remark 2.9, j(fi) → j(f) in the inductive-limit topology on Cc(G,Σ,E , κ).
Thus if L is a nondegenerate representation of Γc(G;B(E , ϑ, κ)), then L◦ j is continuous in
the inductive-limit topology on Cc(Σ) and therefore bounded with respect to the C∗-norm:

‖L
(
j(f)

)
‖ ≤ ‖f‖ for all f ∈ Cc(Σ).

Since L is arbitrary, j extends to a homomorphism j : C∗(Σ) → C∗(G,Σ,E , κ).
Proving that j is isometric for universal norms requires considerably more work. The

idea is straightforward. Given a nondengenerate representation L of Cc(Σ), it will suffice to
produce a representation L of Γc(G;B(E , ϑ, κ)) such that L(f) = L(j(f)). Applying this
to a faithul L will show that j is isometric.

Using Renault’s Disintegration Theorem (cf., e.g., [Wil19, Theorem 8.2]), we can assume

that L is the integrated form of a unitary representation (µ,Σ(0) ∗ H , L̂) where µ is a

quasi-invariant measure on Σ(0), Σ(0) ∗ H is a Borel Hilbert bundle over Σ(0), and L̂ is a
groupoid homomorphism of Σ into Iso(Σ(0) ∗ H ) of the form L̂(σ) =

(
r(σ), Lσ, s(σ)

)
. By

Lemma 2.14, µ is quasi-invariant with respect to G. Furthermore, we may assume that ∆
is given by ∆(σ) = δ(σ)∆(σ̇) where δ is given by Lemma 2.4, and ∆ is a modular function
for G. We can also assume that ∆ and ∆ are homomorphisms.

We are going to realize L as the integrated form of a Borel ∗-functor π̂ : B(E , ϑ, κ) →
End(Σ(0)∗H ) as in [MW08a, Definition 4.5 and Proposition 4.10]. To start, consider σ ∈ Σ
and h ∈ Cc(A(r(σ))). Define π̄σ(h) : H(s(σ)) → H(r(σ)) by

π̄σ(h)ξ =

∫

A
h(a)Laσ(ξ)δ(a)

− 1
2 dβr(σ)(a).

It is routine to check that

(2.8) π̄tσ(h) = π̄σ(hκ(t)) for (t, σ) ∈ A ∗ Σ.

Since

(
π̄σ(h)ξ | η

)
=

∫

A
h(a)δ(a)−

1
2
(
Laσ(ξ) | η

)
dβr(σ),

it follows from the usual Cauchy–Schwarz estimate that

∣∣(π̄σ(h)ξ | η
)∣∣2 ≤ ‖ξ‖2‖η‖2

(∫

A
|h(a)|δ(a)−

1
2 dβr(σ)(a)

)2

≤ ‖ξ‖2‖η‖2‖h‖I,r‖h‖I,s ≤ ‖ξ‖2‖η‖2‖h‖2I .

Therefore π̄σ extends to all of C∗(A(r(σ))) and still satisfies (2.8). Hence we get a map
π : B(E , ϑ, κ) → End(Σ(0) ∗ H ) defined by

π([σ, s]) = π̄σ(s).

It is not hard to check that π determines a ∗-functor π̂(b) = (r(b), π(b), s(b)). To see that
π̂ is Borel we need to show that

σ̇ 7→
(
π(f̌(σ̇))(h(s(σ))) | k(r(σ))

)
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is Borel for all f̌ ∈ Γ(G;B(E , ϑ, κ))) and all Borel sections h and k of Σ(0) ∗ H . By
Lemma 2.10, we can assume that f̌ is defined by f ∈ Cc(G,Σ,E , κ) in the range of j. Thus
f(σ) ∈ Cc(A(r(σ))) for all σ ∈ Σ. Then

(
π(f̌(σ̇))(h(s(σ))) | k(r(σ))

)
=

(
πσ(f(σ))(h(s(σ))) | k(r(σ))

)

=

∫

A
f(σ)(a)

(
Laσ(h(s(σ))) | k(r(σ))

)
δ(a)−

1
2 dβr(σ)(a),

which is Borel since L is. Let L be the integrated form of π̂.
Take f ∈ Cc(Σ) and ξ ∈ L2(Σ(0) ∗ H , µ). Then

L(f)ξ(u) =

∫

Σ
f(σ)Lσ

(
ξ(s(σ))

)
∆(σ)−

1
2 dλu(σ)

=

∫

G

∫

A
f(σa)Lσa

(
ξ(s(σ))

)
∆(σa)−

1
2 dβs(σ)(a) dαu(σ̇)

=

∫

G
δ(σ)

∫

A
f(aσ)Laσ

(
ξ(s(σ))

)
∆(aσ)−

1
2 dβu(a) dαu(σ̇)

=

∫

G
δ(σ)

1
2

∫

A
j(f)(σ)(a)Laσ

(
ξ(s(σ))

)
∆(σ̇)−

1
2 δ(aσ)−

1
2 dβu(a) dαu(σ̇)

=

∫

G
π(j(f(γ)))(h(s(γ)))∆(γ)−

1
2 (γ)

= L(j(f))ξ(u).

This shows that j is isometric.
The surjectivity of j follows from Lemma 2.10. This finishes the proof that j extends to

an isomorphism j : C∗(Σ) → C∗(G,Σ,E , κ).
It remains to prove that j is isometric for reduced norms when A is amenable. First, note

that by [Hol17, Example 3.14] the space Cc(Σ) completes to a C∗(Σ)–C∗(A) correspondence
X(Σ) with actions given by convolution and inner product 〈f, g〉C∗(A) = (f∗ ∗ g)|A. Let
B denote the Fell bundle B(E , ϑ, κ) described above so that C∗(G,Σ,E , κ) is the C∗-
algebra C∗(G,B) of this bundle, and similarly for reduced C∗-algebras. Let H(B) be
the right-Hilbert C∗(A)-module of Section 1.3, so that the left action of Cc(G;B) on H(B)
determined by multiplication in Cc(G;B) is isometric for the reduced norm. By construction
of these maps, the map j : Cc(Σ) → C∗(G,Σ,E , κ) extends to a right-C∗(A)-module
isomorphism ρ : X(Σ) → H(B), which satisfies

(2.9) ρ(f · ξ) = j(f) · ρ(ξ) for f ∈ Cc(Σ) and ξ ∈ X(Σ).

Let H(Σ) and H(A) be the Hilbert modules described in Section 1.3 that carry faithful
representations of C∗

r (Σ) and C∗
r (A) respectively. We can form the modules X(Σ) ⊗C∗(A)

H(A) and H(B) ⊗C∗(A) H(A), and the isomorphism ρ : X(Σ) → H(B) defined above
determines an isomorphism ρ⊗ id : X(Σ)⊗C∗(A) H(A) → H(B)⊗C∗(A) H(A) which again
intertwines the left actions similarly to (2.9). Since the bundle A is an amenable groupoid,
the left action of C∗(A) = C∗

r (A) on H(A) is faithful, and it follows that the map T 7→ T⊗1
from L(H(B)) to L(H(B)⊗C∗(A) H(A)) is isometric. So for f ∈ Cc(Σ), we have

‖ρ(f)⊗ 1‖L(H(B)⊗C∗(A)H(A)) = ‖ρ(f)‖C∗
r (G,Σ,E ,κ).
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We will show that the map f ⊗ a 7→ f · a extends to an isomorphism X(Σ)⊗C∗(A) H(A) to
H(Σ). This will complete the proof since then

‖f‖C∗
r (Σ) = ‖f ⊗ 1‖L(X(Σ)⊗C∗(A)H(A)) = ‖ρ(f)⊗ 1‖L(H(B)⊗C∗(A)H(A)) = ‖ρ(f)‖C∗

r (G,Σ,E ,κ)

for all f ∈ Cc(Σ).
To see that f ⊗ a 7→ f · a extends to the desired isomorphism, we fix f, g ∈ Cc(Σ) and

a, b ∈ Cc(A), and calculate:

〈f ⊗ a, g ⊗ b〉C0(Σ(0)) =
(
a∗ ∗ (f∗ ∗ g)|A ∗ b

)
|C0(Σ(0)) and

〈f · a, g · b〉C0(Σ(0)) =
(
a∗ ∗ (f∗ ∗ g) ∗ b

)
|C0(Σ(0)).

For any h ∈ Cc(Σ), and any x ∈ Σ(0), we have

(a∗ ∗ h ∗ b)(x) =

∫

Σ

∫

Σ
a∗(β)h(γ)b((βγ)−1x) dλx(β) dλs(β)(γ).

Since a, b ∈ Cc(A), the integrand is nonzero only when β, β−1γ ∈ Ax, and this forces
γ ∈ Ax. So (

a∗ ∗ (f∗ ∗ g) ∗ b
)
|Σ(0) =

(
a∗ ∗ (f∗ ∗ g)|A ∗ b

)
|Σ(0) .

This completes the proof of Theorem 2.11. �

3. The abelian case

In this section, we specialize to the case where A is a normal abelian subgroup bundle of
Σ with a Haar system β as above. Then C∗(A) is a commutative C∗-algebra. Let Â be the
Gelfand dual space of nonzero complex homomorphisms χ : C∗(A) → C, then the Gelfand

transform F is an isomorphism of C∗(A) onto C0(Â). As usual, we write f̂ = F(f) for all

f ∈ C∗(A). As shown in [MRW96, Corollary 3.4], the Gelfand dual Â is an abelian group

bundle π̂ : Â → Σ(0) with fibres Â(u) := (A(u))∧. If χ ∈ Â, the corresponding complex
homomorphism on Cc(A) is given by

(3.1) χ(f) =

∫

A(π̂(χ))
f(a)χ(a) dβπ̂(χ)(a) = f̂(χ).

(The complex conjugate appearing on the right-hand side of (3.1) is included to match up
with our prejudice for the form of the Fourier transform.)

Since A is abelian in this section, δ(σ) depends only on σ̇ and each βu is bi-invariant.

The right action of Σ on Â given by

χ · σ(a) := χ(σaσ−1)

factors through a right action of G on Â. So we may form the transformation groupoid
Â⋊G for the action of G on the space Â. Recall that we identify the unit space Â⋊G with
Â. Thus r(χ, γ) = χ, s(χ, σ) = χ · σ, and (χ, γ)(χ · γ, η) = (χ, γη). We can equip Â ⋊ G
with the Haar system α = {αχ}χ∈Â = {δχ × απ̂(χ)}.
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3.1. The associated T-groupoid. We want to build a T-groupoid associated to Σ just
as in [MRW96, §4] except that there G was assumed to be principal. We start by defining

D = { (χ, z, σ) ∈ Â ×T× Σ : π̂(χ) = r(σ) }.

We can make D into a locally compact Hausdorff groupoid by identifying it with Â⋊Σ×T.
Thus,

(χ, z1, σ1)(χ · σ1, z2, σ2) = (χ, z1z2, σ1σ2) and (χ, z, σ)−1 = (χ · σ, z̄, σ−1).

We can identify D(0) with Â, and then

r(χ, z, σ) = χ and s(χ, z, σ) = χ · σ.

Let H be the subgroupoid of D consisting of triples of the form (χ, χ(a), a) for a ∈

A(π̂(χ)). Note that if (χn, χn(an), an) → (χ, z, σ) in D, then an → σ and σ = a ∈ A(π̂(χ))
since A is closed in Σ. Then χn(an) → χ(a) by [MRW96, Proposition 3.3]. Hence H is

closed in D with H(0) = D(0). To see that H has an open range map, we use Fell’s Criterion
(Lemma 1.1).

So suppose that χn → χ = r(χ, χ(a), a) in Â × Σ(0). Since p : A → Σ(0) is open, we can
pass to a subnet, relabel, and assume that there are an → a in A such that p(an) = π̂(χn).

Then (χn, χn(an), an) → (χ, χ(a), a) in D.
We have now showed that H has open range and source maps. Hence the quotient map

q : D → D/H is open. Furthermore, if d ∈ D, then it is not hard to see that dH = Hd.

Thus, as in Lemma 2.2, we can form the locally compact Hausdorff groupoid Σ̂ := D/H,

and the elements of Σ̂ are given by triples [χ, z, σ] where [χ, z, aσ] = [χ, χ(a)z, σ] for all

a ∈ A. Thus we can define maps i : (Â ×T) → Σ̂ and j : Σ̂ → Â⋊ G by

i(χ, z) = [χ, z, π̂(χ)] and j([χ, z, σ]) = (χ, σ̇).

Proposition 3.1. With respect to the maps i and j above, Σ̂ is a T-groupoid over Â⋊ G:

(3.2)

Â ×T Σ̂ Â⋊ G

Â

i j

Proof. The map i is clearly injective. Suppose that i(χn, zn) = [χn, zn, π̂(χn)] → [χ, z, σ].

Since q : D → Σ̂ is open, we may assume that there exist an → a in A such that
(χn, χn(an)zn, an) → (χ, z, σ). But then σ = a and zn → χ(a)z. Thus [χ, z, σ] = [χ, z, a] =

[χ, χ(a)z, π̂(χ)] ∈ i(Â×T) and i has closed range. Replacing σ by π̂(χ) in the above shows
that zn → z and it follows that i is a homeomorphism onto its range as required.

If j([χ, z, σ]) is a unit, then σ̇ = π̂(χ) and σ = a ∈ A(π̂(χ)). But then

[χ, z, a] = [χ, χ(a)z, π̂(χ)] ∈ i(Â ×T).

In other words, (3.2) is “exact” at Σ̂.
We still need to check that j is open. Again, we employ Fell’s criterion (see Lemma 1.1).

Suppose that (χn, γn) → (χ, σ̇) = [χ, z, σ] in Â ⋊ G. Since p is open, we can pass to
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a subnet, relabel, and assume that there are σn → σ such that p(σn) = γn. But then
(χn, z, σn) → (χ, z, σ). This suffices. �

Given our Haar system on Â⋊ G, we can build the restricted C∗-algebra C∗(Â⋊ G; Σ̂).

Recall that this C∗-algebra is built from functions F̃ ∈ Cc(Σ̂) such that

z′F̃ ([χ, z, σ]) = F̃ ([χ, z′z, σ]) for all z′ ∈ T.

Also recall that we write Cc(Â ⋊ G; Σ̂) for the space of all such functions. To make the

notation easier to work with, notice that any F̃ ∈ Cc(Â⋊ G; Σ̂) is determined by its values

on classes of the form [χ, 1, σ]. Hence we identify Cc(Â⋊G; Σ̂) with the collection CΣ̂
c (Â⋊Σ)

of continuous functions F on Â⋊ Σ such that

F (χ, aσ) = χ(a)F (χ, σ) for all a ∈ A(r(σ))

and such that the support of F has compact image in Â⋊ G.

If F,G ∈ CΣ̂
c (Â⋊ Σ), then

F ∗G(χ, σ) =

∫

G
F (χ, τ)G(χ · τ, τ−1σ) dαr(σ)(p(τ))

and

F ∗(χ, σ) = F (χ · σ, σ−1).

3.2. The isomorphism. The Gelfand transform gives us an isomorphism of C∗(A) =

Γ0(Σ
(0);E ) onto C0(Â) = Γ0(Σ

(0); Ê ) where Ê =
∐

C0(Â(u)) is the bundle described just
before (3.1).

Our constructions in the previous section give us a dynamical system (Ê ,Σ, ϑ̂) where

ϑ̂σ : C0(Â(s(σ))) → C0(Â(r(σ))) is given by

ϑ̂σ(ĥ)(χ) = ĥ(χ · σ).

The corresponding left-action of A on r∗Ê is determined on ĥ ∈ C0(Â(u)) by

κ̂(t)ĥ(χ) = χ(t)ĥ(χ).

We form the Fell bundle B̂(Ê , ϑ̂, κ̂) = A\r∗Ê for the twist κ̂ on (Ê ,Σ, ϑ̂). Sections ǧ ∈

Γc(G; B̂(Ê , ϑ̂, κ̂)) are determined by g ∈ Cc(G,Σ, Ê , κ̂) where g : Σ → Ê is continuous, and
satisfies

g(tσ)(χ) = χ(t)g(σ)(χ)

for all (t, σ) ∈ A ∗ Σ, and has support with compact image in G.

From Theorem 2.11, we get isomorphisms C∗(Σ) → C∗(G; B̂(Ê , ϑ̂, κ̂)) and C∗
r (Σ) →

C∗
r (G; B̂(Ê , ϑ̂, κ̂)) that send f ∈ Cc(Σ) to the section ĵ(f) given by ĵ(σ) = (j(f)(σ))̂ .

Hence

ĵ(f)(σ)(χ) = δ(σ)
1
2

∫

A
f(aσ)χ(a) dβr(σ)(a).
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Let CΣ̂
∞(Â ⋊ Σ) be the collection of all f ∈ C0(Â ∗r Σ) such that there is a compact set

K ⊂ G such that f(χ, σ) = 0 if σ̇ /∈ K. Since r∗
(
C0(Â)

)
∼= C0(Σ ∗r Â), we obtain a one-to-

one correspondence between CΣ̂
∞(Â⋊Σ) and Cc(G,Σ, Ê , κ̂) that carries f ∈ CΣ̂

∞(Â⋊Σ) to

the element Ff ∈ Cc(G,Σ, Ê , κ̂) given by

Ff (σ)(χ) = f(χ, σ).

Proposition 3.2. The map f 7→ Ff is a ∗-isomorphism of CΣ̂
c (Â⋊ Σ) into Cc(G,Σ, Ê , κ̂)

which extends to isomorphisms

C∗(Â ⋊ G; Σ̂) ∼= C∗(G,Σ, Ê , κ̂) and C∗
r (Â⋊ G; Σ̂) ∼= C∗

r (G,Σ, Ê , κ̂).

Proof. We first prove the isomorphism of full C∗-algebras. If χ ∈ Â(r(σ)), then since
evaluation at χ passes through the integral,

Ff ∗ Fg(σ)(χ) =

∫

G
Ff (τ)(χ)ϑ̂τ (Fg(τ

−1σ)(χ) dαr(σ)(τ̇)

=

∫

G
Ff (τ)(χ)Fg(τ

−1σ)(χ · τ) dαr(σ)(τ̇)

=

∫

G
f(χ, τ)g(χ · τ, τ−1σ) dαr(σ)(τ̇).

Hence Ff∗g = Ff ∗ Fg. A similar computation shows that Ff∗ = F ∗
f . Thus f 7→ Ff is a

∗-isomorphism onto its range.
The ‖ · ‖I -norm on Cc(G,Σ, Ê , κ̂) is given by

‖Ff‖I = max
{
‖Ff‖I,r, ‖Ff‖I,s

}
,

where

‖Ff‖I,r = sup
u∈Σ(0)

∫

G
‖Ff (σ)‖∞ dαu(σ̇) and ‖Ff‖I,s = sup

u∈Σ(0)

∫

G
‖Ff (σ)‖∞ dαu(σ̇).

The set {Ff : f ∈ CΣ̂
c (Â⋊ Σ) } is clearly dense in Cc(G,Σ, Ê , κ̂) in this ‖ · ‖I -norm.

There exists χσ ∈ Â(r(σ)) such that ‖Ff (σ)‖∞ = |f(χσ, σ)|. Thus

‖Ff‖I,r = sup
u∈Σ(0)

∫

G
|f(χσ, σ)| dα

u(σ̇)

= sup
u∈Σ(0)

π̂(χ)=u

∫

G
|f(χ, σ)| dαu(σ̇)

= sup
χ∈Â

∫

G
|f(χ, σ)| dαπ̂(χ)(σ̇)

= ‖f‖I,r.

Similarly, ‖Ff‖I,s = ‖f‖I,s, and f 7→ Ff is isometric for the respective I-norms. The
isomorphism of full C∗-algebras follows.

For the isomorphism of reduced C∗-algebras, letH(B̂) be the right-Hilbert C0(Â)-module

described in Section 1.3 for the Fell bundle B̂. Regard H(B̂) as a right C0(Â)-module
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by identifying C0(G
(0); Ê ) with C0(Â) via f 7→

(
χ 7→ f(p(χ))(χ)

)
. Then Cc(G, B̂) acts

on the left of H(B̂) by convolution, and the map implementing this action is isometric

for the reduced norm on Cc(G, B̂). Now consider the Hilbert module H(Â ⋊ G; Σ̂)C0(Â)

obtained from the twist Σ̂ as described in Section 1.3, so that the left action of Cc(Â⋊G; Σ̂)

on H(Â ⋊ G; Σ̂) by convolution is isometric for the reduced norm on Cc(Â ⋊ G; Σ̂). A
straightforward calculation shows that 〈f, g〉C0(Â) = 〈Ff , Fg〉C0(Â) and so f 7→ Ff extends

to an isomorphism of Hilbert modules H(Â ⋊ G; Σ̂) ∼= H(B̂), which intertwines the left
actions because f 7→ Ff is a homomorphism. Hence

‖f‖
C∗

r (Â⋊G;Σ̂)
= ‖f‖L(H(Â⋊G;Σ̂)) = ‖Ff‖L(H(B̂)) = ‖Ff‖C∗

r (G,Σ,Ê ,κ̂). �

Since we can identify CΣ̂
∞(Â⋊Σ) and Cc(G,Σ, Ê , κ̂), we can view CΣ̂

∞(Â⋊Σ) as a dense

subalgebra of C∗(Â ⋊ G; Σ̂). Furthermore, if f ∈ Cc(Σ), then

(3.3) Φ(f)(χ, σ) = δ(σ)
1
2

∫

A
f(aσ)χ(a) dβr(σ)(a)

defines an element of CΣ̂
∞(Â⋊Σ). Noticing that Φ(f)(χ, σ) = j(f)(σ)(χ), we can combine

Theorem 2.11 and Proposition 3.2 to obtain the main result in this section.

Theorem 3.3. Let Σ be a second countable locally compact groupoid with a Haar system
λ. Suppose that A is a closed abelian normal subgroup bundle with a Haar system β. Then

the map Φ : Cc(Σ) → CΣ̂
∞(Â ⋊ Σ) given in (3.3) extends to an isomorphism of C∗(Σ)

onto the restricted C∗-algebra C∗(Â ⋊ G; Σ̂). Moreover, this isomorphism descends to an

isomorphism C∗
r (Σ)

∼= C∗
r (Â⋊ G; Σ̂).

Remark 3.4. Theorem 3.3 generalizes [MRW96, Proposition 4.5] where it was assumed that
A = Σ′, so that G is principal, and that C∗(Σ) is CCR.

4. Examples and applications

4.1. Closed normal abelian subgroups. Let G be a locally compact group, and let
H ≤ G be a closed normal abelian subgroup. Putting A := H, Σ := G and G := G/H,
we obtain an instance of the situation of Section 3, in which the groupoids involved have a
single unit.

The group G acts on the left of H by conjugation, this descends to an action of G/H
because H is abelian, and these left actions induce right actions of G and G/H on the space

Ĥ. So we obtain an extension of groupoids

Ĥ ×H Ĥ ⋊G Ĥ ⋊ (G/H)

with common unit space Ĥ (regarded as a topological space).

The groupoid D of Section 3.1 is the cartesian product (Ĥ⋊G)×T of the transformation

groupoid for the action of G on Ĥ, with the circle group. The closed subgroupoid ι(Ĥ×H)

is the set {((χ, h), χ(h)) : (χ, h) ∈ Ĥ ×H}. So the associated T-groupoid of Section 3.1 is
the quotient

Σ̂ := {[(χ, g), z] : (χ, g) ∈ Ĥ ⋊G, z ∈ T},
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in which [(χ, g), z] = [(χ, hg), χ(h)z] for any h ∈ H.

The inclusion ι : (χ, h) 7→ [(χ, h), χ(h)] and the groupoid homomorphism π : [(χ, g), z] 7→
(χ, gH) yield the twist

Ĥ ×T Σ̂ Ĥ ⋊ (G/H),ι π

and Theorem 3.3 yields an isomorphism C∗(G) ∼= C∗(Ĥ ⋊ (G/H); Σ̂).

Remark 4.1. An interesting special case of the construction described above occurs when
the closed normal abelian subgroup H is a clopen subgroup as studied by Zeller-Meier
[ZM68, 2.31]. This implies first that the quotient group G/H is a discrete group, and

second that the group C∗-algebra C∗(H) ∼= C0(Ĥ) is a subalgebra of C∗(G) that contains
an approximate identity for C∗(G). Since G/H is discrete, there exists a continuous section

Ĥ⋊ (G/H) → G for the quotient map. Therefore the twist Σ̂ is topologically trivial, in the

sense that it is determined by a continuous T-valued 2-cocycle on Ĥ ⋊ (G/H).

Example 4.2. As an illustrative example, consider the integer Heisenberg group

G = 〈 a, b, c | ab = cba, ca = ac, cb = bc 〉.

(A similar analysis applies for the Heisenberg group of upper-triangular 3× 3 real matrices
with diagonal entries equal to 1, but the integer example is slightly easier to describe.) We
consider two natural (clopen) normal abelian subgroups of G in the context of our result.

(a) First consider the subgroup Hc
∼= Z generated by the element c. This Hc is precisely

the center Z(G), and so the action of G/Hc
∼= Z2 on Ĥc

∼= T is trivial. Hence

the semidirect product Ĥc ⋊ (G/Hc) is just the product Ĥc × (G/Hc) ∼= T × Z2

regarded as group bundle. As discussed in Remark 4.1, C∗(Hc) ∼= C(T) embeds as
a unital subalgebra of C∗(G) which is central because Hc is central, and therefore

makes C∗(G) into a C(T)-algebra. For z ∈ T, the fibre of Σ̂ corresponding to the
character χz : c 7→ z of Hc is the extension of Z2 corresponding to the 2-cocycle(
(m1,m2), (n1, n2)

)
7→ zm2n1 . The corresponding fibre of C∗(H) is isomorphic to the

rotation algebra Aθ where z = e2πiθ. So we recover, in this instance, Anderson and
Paschke’s description [AP89] of C∗(G) as the section algebra of a field of rotation
algebras.

(b) Now consider the subgroup Hb,c
∼= Z2 of G generated by b and c, so that Ĥb,c

∼= T2.
The quotient G/Hb,c is isomorphic to Z via aHb,c 7→ 1, and acts on T2 by 1 ·(w, z) =

(zw, z), inducing an action α of Z on C(T2). The twist Σ̂ is the trivial twist over

T2 ⋊ Z, and so we recover the well-known description C∗(G) ∼= C∗(T2 ⋊ Z; Σ̂) ∼=
C∗(T2 ⋊ Z) as the crossed-product algebra C(T2)⋊α Z.

Remark 4.3. Williams proved in [Wil81, pp 357–358] that when G/H is abelian and G is

a semidirect product, G ∼= H ⋊ (G/H), then C∗(G) ∼= C∗(Ĥ ⋊ (G/H)). Note that the

extension Σ̂ is trivial.

Remark 4.4. The situation described in Example 4.2(a) generalises as follows. If H is
any closed subgroup of Z(G), then C∗(H) embeds in the centre of the multiplier algebra

of C∗(G), making C∗(G) into a C0(Ĥ)-algebra. The transformation group Ĥ ⋊ (G/H)
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coincides with the group bundle Ĥ × (G/H). Each χ ∈ Ĥ determines a central extension

T −→ Σ̂χ −→ G/H in which Σ̂χ coincides with the quotient group (G × T)/{(h, χ(h)) :
h ∈ H}. The fibre of C∗(G) corresponding to a character χ of H is the twisted group
C∗-algebra of this extension.

4.2. Extensions of effective étale groupoids. For the convenience of the reader we re-
call our standing hypotheses and the extension (1.2) where Σ is a unit space fixing extension
of a subgroupoid group bundle A. That is, we have

(4.1)

A Σ G

Σ(0)

ι p

where ι is the inclusion map and p is a continuous open surjection restricting to a homeomor-
phism of Σ(0) and G(0). We require that all groupoids in the extension are second countable
locally compact, Hausdorff, both Σ and A have Haar systems and A is an abelian group
bundle.

In this section, we consider the situation where the groupoid G in the extension (4.1)

is an effective étale groupoid; that is, r, s : G → G(0) are local homeomorphisms, and the
topological interior of the isotropy bundle of G is G(0). Since our standing hypotheses
include that G is second-countable and Hausdorff, the latter is equivalent to the condition
that G is topologically principal in the sense that the set {x ∈ G(0) : Gx

x = {x}} is dense in

G(0) [Ren08, Proposition 3.6].

It follows that the transformation groupoid Â ⋊ G is also étale and effective; this is
certainly well known but also easy to prove directly:

Lemma 4.5. Let G be a locally compact, Hausdorff groupoid acting on the right of a locally
compact Hausdorff space X. If G is étale (resp., effective) then so is X ⋊ G.

Proof. Suppose that G is étale and fix (x, γ) ∈ X⋊G. Fix an open bisection neighbourhood
U of γ in G and an open neighbourhood W of x ∈ X. Then (W ×U)∩ (X ⋊G) = {(y, η) ∈
W × U | s(y) = r(γ)} is an open bisection neighbourhood of (x, γ). Hence X ⋊ G is étale.

Now suppose that G is effective. Suppose that U ⊆ X ⋊ G is open and consists entirely
of isotropy. Then it is a union of sets of the form W ∗V where W ⊆ X is open, and V ⊆ G
is an open bisection consisting of isotropy. For any such set, since G is effective, we have
V ⊆ G(0), and so W ∗ V ⊆ X ∗ G(0) = (X ⋊ G)(0). �

It follows from our main theorem that C∗
r (Σ) is equal to the reduced C∗-algebra of a twist

Σ̂ over the étale effective groupoid Â ⋊ G, and so Renault’s theory of Cartan subalgebras
of C∗-algebras applies. In the case where Σ is étale the first assertion in the following
theorem may be deduced from [BNR+16, Corollary 4.5]. In addition, we provide an explicit
construction of the Weyl twist which is not included in [BNR+16]. Our result is also related
to Theorem 5.8 of [DGN+20]: in their case Σ is étale but they also consider a continuous
T-valued 2-cocycle.

Theorem 4.6. Suppose that Σ is an extension of a wide normal abelian subgroup bundle
with a Haar system as in (4.1). Further assume that G is étale and effective. Then C∗(A) ∼=
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C0(Â) is a Cartan subalgebra of C∗
r (Σ). The Weyl twist of the Cartan pair (C∗

r (Σ), C
∗(A))

is (Â⋊ G, Σ̂).

Proof. We apply [Ren08, Theorem 5.2] to the twist Â×T −→ Σ̂ −→ Â⋊G to see that the

pair (C∗
r (Â ⋊ G; Σ̂), C0(Â)) is a Cartan pair with Weyl twist (Â ⋊ G; Σ̂). The result then

follows from the final statement of Theorem 3.3. �

Many of our examples do not require the full power of our theorem. Note, though, that
in the next example Σ is not étale and so [BNR+16, Corollary 4.5] cannot be used.

Example 4.7. Let (A,B) be a Cartan pair and let (G,Σ) be the associated Weyl twist.

Then Σ is an extension of G by the wide normal abelian subgroup bundle A ∼= T × G(0).
Moreover, since (A,B) is a Cartan pair, G is étale and effective. Hence, by Theorem 4.6,
C∗(A) ∼= C0(Z× G(0)) is a Cartan subalgebra of C∗

r (Σ).

Example 4.8. Let X be a locally compact Hausdorff space and let n 7→ σn be an action of
Nk by local homeomorphisms of X. Let Σ be the associated Deaconu–Renault groupoid
{(x,m−n, y) : σm(x) = σn(y)}. Let A denote the interior of the isotropy in Σ, and suppose
that A is a clopen subset of Σ (this may seem like a restrictive hypothesis but it is automatic
if Σ is minimal by [KPS16, Proposition 2.1] applied to the cocycle c(x,m, y) = m, in which
case it is given by A = {(x,m, x) : (y,m, y) ∈ Σ for all y ∈ X} [SW16, Proposition 3.10]).
Then A is an abelian group bundle. Specifically, for each x ∈ X, the set

Stabessx {p − q : p, q ∈ Zk and σp = σq on a neighbourhood of x}

is a subgroup of Zk, we have Stabessx = Stabessy whenever Σx
y 6= ∅, and as a set,

A =
⊔

x∈X

{x} × Stabessx .

Since A is clopen, we can form the quotient groupoid G = Σ/A, which is étale and effective.
A quick calculation shows that the action of G on A is given by γ · (s(γ),m) = (r(γ),m),

and so the induced action of G on Â is given by (r(γ), χ) · γ = (s(γ), χ) for χ ∈ (Stabr(γ))̂ .

So, as a groupoid, Â⋊G is just the fibred product Â ∗G—for example if G is minimal, then
Â⋊G ∼= Âx×G for any x ∈ X. Since A is open in Σ, the map pA is open and Theorem 3.3

applies. Combining with Theorem 4.6, this implies that (C∗(Â⋊ G; Σ̂), C0(Â)) is a Cartan

pair with Weyl twist (Â⋊ G; Σ̂).

Example 4.9. As a particular case of the preceding example, let Λ be a row-finite k-graph
with no sources, and let GΛ be the associated infinite-path groupoid, which is the Deaconu–
Renault groupoid for the action of Nk on Λ∞ by shift maps [KP00]. Suppose that the
interior I of the isotropy in GΛ is closed—for example, this is automatic if Λ is cofinal,
in which case I ∼= Λ∞ × Per(Λ) [KPS16, Corollary 2.2]. (See [BLY17, Theorem 4.4] for a
characterisation of when I is closed in GΛ.) Then our main theorem implies that C∗(I) ∼=
C0(Î) is a Cartan subalgebra of C∗(Λ), recovering (c) =⇒ (b) of [BNR+16, Corollary 4.6],
and also gives a recipe for describing the associated Weyl twist.



26 M. IONESCU, A. KUMJIAN, JEAN N. RENAULT, A. SIMS, AND D. P. WILLIAMS

4.3. Transformation groupoids. Assume that Γ is a locally compact Hausdorff groupoid
with Haar system which acts on the right on a locally compact space X. We write sX :
X → Γ(0) for the moment map and we let Σ := X ⋊ Γ be the transformation groupoid.
Recall that X ⋊ Γ = { (x, γ) ∈ X × Γ : sX(x) = r(γ) } with the topology inherited
from the product topology and the range and source maps given by r(x, γ) = (x, r(γ)) and
s(x, γ) = (x·γ, s(γ)). Then (x, γ)(x·γ, η) = (x, γη) while (x, γ)−1 = (x·γ, γ−1). We identify
the unit space of X ⋊ Γ with X as usual via the map (x, r(γ)) → x. Assume that N is a
wide normal subgroup bundle of Γ which acts trivially on X: x · a = x for all x ∈ X and
a ∈ N . Then the action of Γ on X descends to an action of Γ/N on X. Therefore, if we let
A := X∗N be the pull-back bundle and let G := X⋊Γ/A, we obtain a groupoid extension as

in (1.2) with Σ(0) = X. IfN is abelian, thenA = X∗N is also abelian. Then theT-groupoid

Σ̂ constructed in Section 3.1 can be viewed as equivalence classes with x ∈ X, χ ∈ N̂s(x),

γ ∈ Γ and z ∈ T such that
[
(χ, z, x, aγ)

]
=

[
(χ, χ(a)z, x, γ)

]
. The transformation groupoid

Â⋊ G is represented by triples { (χ, x, γ̇) : χ ∈ N̂s(x) and r(γ) = s(x) }. Then Theorem 3.3
implies that the transformation groupoid C∗-algebra C∗(Σ) is isomorphic to the restricted

groupoid C∗-algebra C∗(Â⋊ G; Σ̂) and similarly for the reduced algebras.

Example 4.10 (Rational Rotation Algebra). We consider the group Γ = Z acting on T via
rotation by α ∈ Q: z · k := ze2πikα. If α = m/n with m and n relatively prime, then nZ
fixes the action. Hence we get an instance of the above situation with N the group nZ,
Γ = Z and G = Zn. Therefore the groupoid extension is

T× nZ T⋊ Z T⋊ Zn.
i p

The C∗-algebra C∗(T⋊Z) is the rational rotation C∗-algebra Aα (see, for example, [DB84]).

If we let Tn = T/Zn be the dual of nZ, then Σ̂ consists of equivalence classes of elements
of Tn ×T2 ×Z where [χ,w, z, nl + k] = [χnl, w, z, k]. In particular, we realize the rotation
algebra Aα as the appropriate completion of continuous functions F on Tn × T × Z such
that F (χ,w, nl + k) = χnlF (χ,w, k).

Remark 4.11. The arguments from the above example can be easily extended to actions of Z
on compact spaces by periodic homeomorphisms. These ideas can be sharpened by viewing

the construction of Σ̂ in Section 3.1 as an instance of general “pushout” construction that
will purse in a future project [IKR+20b].

Example 4.12. A large class of examples is given by twisted groupoid crossed products
(G,Σ,E , ϑ, κ) as defined in Section 1.4 under the assumption that the C∗-bundle E consists

of abelian C∗-algebras. Then the C0(Σ
(0))-algebra A = Γ0(Σ

(0);E ) is an abelian C∗-algebra
and, thus, isomorphic to C0(X), where X is the Gelfand spectrum of A. Since A is a

C0(Σ
(0))-algebra the bundle map s : X → Σ(0) is continuous. Moreover, X =

⊔
Xu, where

Xu is the spectrum of the fibre E(u). The action of Σ on E induces a right action on X via
ϑ(f)(x) = f(x·σ) for all f ∈ C0(Xs(σ)). Since the action of A on E is unitarily implemented
as in (1.3) and since E(u) is abelian, A acts trivially on X. Thus we obtain an extension
as above with N := A and Γ := Σ. Moreover, C∗(G,Σ,E , κ) is isomorphic to C∗(X ⋊ Σ).

Indeed one can prove that the map that sends f ∈ Cc(X ⋊Σ) to f̂ ∈ Cc(G,Σ,E , κ) defined
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via

f̂(σ)(x) := δ(σ)1/2
∫

A
f(x, aσ)κ(a) dβr(σ)(a)

extends to an isomorphism of C∗-algebras. In the above equation {βu} is the Haar system on
A and δ is the modular map defined in Lemma 2.4. Theorem 3.3 implies that C∗(G,Σ,E , κ)

is isomorphic to the restricted C∗-algebra C∗(Â⋊ G; Σ̂), where Σ̂ and Â⋊ G are described
above. Moreover, the isomorphism descends to the level of reduced C∗-algebras.
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