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THE C*-ALGEBRA OF A TWISTED GROUPOID EXTENSION

JEAN N. RENAULT

Abstract. This written version of a talk given in July 2020 at the Western Sydney
Abend seminar and based on the joint work [6] gives a decomposition of the C*-algebra of
a locally compact groupoid with Haar system, possibly endowed with a twist, in presence
of a normal subgroupoid. The natural expression of this result uses Fell bundles over
groupoids. When the normal subgroupoid and the twist over it are abelian, one obtains
another twisted groupoid C*-algebra.

1. Introduction.

The Mackey normal subgroup analysis (also called the Mackey machine) describes the
representations of a group G in terms of a normal subgroup S and the quotient H = G/S.
A semidirect product of groups G = S ⋊ H such as the group of rigid motions or the
Poincaré group is the simplest example. From the C*-algebraic perspective, it gives a
description of C∗(G) as a crossed product. In the simple case of a semidirect product, we
easily have

C∗(S ⋊H) = C∗(S)⋊H = C∗(H,C∗(S))

A semidirect product is a trivial extension. When the extension is not trivial, a twist
appears:

Theorem 1.1 (Green [5]).

C∗(G) = C∗(G,C∗(S), τS)

where the right handside is a twisted crossed product.

When S is abelian, one can go one step further, namely use the Gelfand transform

C∗(S ⋊H) = C∗(H,C∗(S)) = C∗(H,C0(Ŝ)) = C∗(Ŝ ⋊H)

The last term is a groupoid C*-algebra, where the groupoid Ŝ⋊H has less isotropy than
the initial group S ⋊ H . One may want to iterate the process. It is then necessary to
extend the Mackey machine to a groupoid G rather than a group. The original motivation
was the analysis of nilpotent group C*-algebras. It is limited here to the example of the
Heisenberg group, which is presented in the last section.

This article is a written version of a talk I gave at the Western Sydney Abend seminar
in July 2020. It is based on a joint work [6] with M. Ionescu, A. Kumjian, A. Sims and
D. Williams, whom I thank for a stimulating and enjoyable collaboration. The situation
considered in the present version is more general than that of [6], since the initial groupoid
may be twisted. While most proofs are the same as in [6], it seems preferable to give a
separate presentation of the general result because it requires some changes all along.

Key words and phrases. groupoid extension, twist, Mackey machine, Fell bundle.
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Note however the case of a twisted groupoid extension considered here can be deduced
directly from the untwisted case considered in [6]. This is done in [7, Proposition 3.5].
There is an attempt to make this article self-contained but the reader is directed to [6]
(and also [7]) for some proofs. We also refer to [6] for unexplained notation. Here is a
notation which is frequently used: given two maps p : X → T and q : Y → T with the
same range, their fibre product over T is denoted by X ∗ Y when there is no ambiguity
about the maps.

2. Fell bundles and groupoid C*-dynamical systems

Definition 2.1. A groupoid extension is a short exact sequence of groupoids

S  G։ H

with common unit space G(0). Equivalently, an extension of the groupoid H is a surjective
homomorphism π : G ։ H such that π(0) : G(0) → H(0) is a bijection (we shall assume
that G(0) = H(0) and that π(0) is the identity map). We shall write γ̇ = π(γ) when there
is no ambiguity about the projection map.

Then S = Ker(π) is a subgroup bundle of the isotropy group bundle G′. Moreover, it
is normal in the sense that for all compatible pair (γ, s) ∈ G ∗ S, γsγ−1 belongs to S.
Note that subgroupoids which are normal in this sense are necessarily subgroup bundles
of the isotropy group bundle. Note also that H is naturally isomorphic to the quotient
groupoid G/S. Since the normal subgroupoid S of G determines the extension, we shall
often use the terminology of normal subgroupoid rather than extension. Then H is the
quotient groupoid. We assume that H and G are locally compact Hausdorff groupoids
and that π is continuous and open. In particular S is a closed normal subgroupoid of G.
We also assume that H has a Haar system α and that S has a Haar system β. There
is a homomorphism δ : G → R∗

+ such that for all γ ∈ G, γβs(γ)γ−1 = δ(γ)βr(γ). This
homomorphism is called the modular cocycle of the extension. Its cohomology class does
not depend on the choice of β. For all x ∈ G(0), its restriction to the group Sx is the
modular function of Sx. It is continuous (see [6, Lemma 2.4]). Given α and β, we define
the Haar system λ for G by the formula:

∫
f(γ)dλx(γ) =

∫

H

∫

S

f(γt)dβs(γ)(t)dαx(γ̇)

Definition 2.2. Under these assumptions, we say that S  G։ H is a locally compact
groupoid extension with Haar systems.

It will be convenient in the sequel to define an extension with Haar system as a pair
(G, S) where S is a closed normal subgroupoid of the locally compact groupoid G which
admits a Haar system and such that the quotient groupoid H = G/S admits a Haar
system.

Definition 2.3. [16] A groupoid C*-dynamical system (or dynamical system for short)
is a triple (G, S,A) where G is a locally compact groupoid, S is a closed normal sub-
groupoid, and A is an upper semi-continuous bundle of C*-algebras over G(0) endowed
with a continuous action G∗A → A such that S is unitarily implemented in the multiplier
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algebra bundle M(A), meaning the existence of a bundle homomorphism χ from S to the
unitary bundle of M(A), such that

(i) the map S ∗ A → A sending (s, a) to χ(s)a is continuous;
(ii) s.a = χ(s)aχ(s)−1 for all (s, a) ∈ S ∗ A;
(iii) χ(γsγ−1) = γ.χ(s) for all (γ, s) ∈ G ∗ S.

In [16, Section 3], it was assumed that the kernel S was abelian, in the sense that it was
a bundle of abelian groups. However, as shown in [6], this assumption is not necessary
and most results of [16] remain valid.
To distinguish bundles of algebras (or of linear spaces) from algebras, algebra bundles
will usually be denoted by calligraphic letters such as A while algebras will be denoted
by Roman letters such as A. For example, if p : G ։ X is a bundle of groupoids with
Haar systems, Cc(G) and C∗(G) denote the bundles with respective fibers Cc(G(x)) and
C∗(G(x)). On the other hand, Cc(G) and C∗(G) denote the usual ∗-algebras of the
groupoid G, which are the sectional algebras of the above bundle. Groupoid dynamical
systems fit into the more general framework of Fell bundles over groupoids.

Definition 2.4. [22, 10] A Fell bundle over a groupoid is a bundle B ։ H where H is
a locally compact groupoid and B is an upper semi-continuous bundle of Banach spaces
over H endowed with a continuous multiplication B ∗B → B and a continuous involution
B → B satisfying the C*-algebra axioms whenever they make sense.

This definition implies that the fibers Bx over x ∈ H(0) become C*-algebras, the fibres
Bh over h ∈ H become (Br(h), Bs(h))-C*-bimodules and h 7→ Bh is functorial. One says
that the Fell bundle is saturated if the Bh’s are equivalence C*-bimodules.

A groupoid C*-dynamical system (G, S,A) as above gives rise to a Fell bundle B over
H = G/S. This is [12, Example 7.3] which we recall now. We form

A ∗G = {(a, γ) ∈ A×G : a ∈ Ar(γ)}.

We let S act on it by s(a, γ) = (aχ(s−1), sγ) and consider the quotient B = (A ∗ G)/S.
The image of (a, γ) in B is denoted by [a, γ]. The bundle map p : B ։ H sends [a, γ] to
π(γ) where π : G → G/S is the quotient map. A choice of γ in π−1(h) gives a Banach
space isomorphism [a, γ] 7→ a from Bh to Ar(h). The multiplication in B is given by

[a, γ][b, γ′] = [a(γ.b), γγ′]

and the involution by
[a, γ]∗ = [γ−1.a∗, γ−1]

Lemma 2.1. [6, Lemma 1.5] The above bundle B ։ H is a saturated Fell bundle.

Definition 2.5. This bundle B ։ G/S is called the Fell bundle of the groupoid C*-
dynamical system (G, S,A).

Recall the construction of the crossed products (see [16, Section 3] and [22]). Let
(G, S,A) be a groupoid C*-dynamical system. We assume that H = G/S has a Haar
system (αx)x∈G(0) and that S has a Haar system (βx)x∈G(0) . One first form the ∗-algebra
Cc(G, S,A). Its elements are continuous functions f : G→ A such that
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(i) f(γ) belongs to Ar(γ) for all γ ∈ G;
(ii) f(sγ) = f(γ)χ(s−1) for all (s, γ) ∈ S ∗G;
(iii) f has compact support modulo S.

The product and the involution are respectively given by

f ∗ g(γ) =

∫
f(τ)[τ.g(τ−1γ)]dαr(γ)(τ̇ )

and

f ∗(γ) = γ.(f(γ−1))∗

The crossed product C*-algebra C∗(G, S,A) is the completion of Cc(G, S,A) for the full
C*-norm.

On the other hand, the sectional C*-algebra of a Fell bundle B over a locally groupoidH
endowed with a Haar system α is constructed from the ∗-algebra Cc(H,B) whose elements
are continuous compactly supported sections F : H → B. The product and the involution
are respectively given by

F ∗G(h) =

∫
F (η)G(η−1h)dαr(h)(η)

and

F ∗(h) = F (h−1)∗

Again, the C*-algebra C∗(H,B) is obtained as the C*-completion for the full C*-norm.

Proposition 2.2. [6, Section 1.4] Let (G, S,A) be a groupoid C*-dynamical system where
S and H = G/S have a Haar system and let B ։ H be its Fell bundle. Then the
C*-algebras C∗(G, S,A) and C∗(H,B) are canonically isomorphic.

Proof. This is just a sketch of the proof. We refer the reader to [6] and the references
given there. Let f ∈ Cc(G, S,A). Note that [f(γ), γ] ∈ Bπ(γ) depends on h = π(γ) only.
Call this element F (h). Then check that

• F belongs to Cc(H,B);
• f 7→ F is a ∗-homomorphism;
• this ∗-homomorphism extends to an isomorphism C∗(G, S,A) → C∗(H,B).

�

Remark 2.1. The notion of groupoid Fell bundle (H,B) generalizes that of groupoid C*-
dynamical system (G, S,A), where H = G/S as above. A Fell bundle over a groupoid H
is sometimes called an action by C*-correspondences. The sectional C*-algebra C∗(H,B)
is then called its crossed-product C*-algebra (see for example [1]).

3. Mackey analysis of a twisted groupoid C*-algebra.

3.1. Twists. We have given earlier the general notion of an extension. The following
special case has been introduced by Kumjian in [9] in the framework of groupoids.
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Definition 3.1. A central groupoid extension

G(0) ×T  Σ ։ G

where T is the group of complex numbers of module 1, is called a twist. Then, we say
that (G,Σ) is a twisted groupoid.

We need to distinguish arbitrary extensions as above and twists, because they do not
play the same role in this study. While a twisted groupoid is denoted by (G,Σ) where
Σ is the middle term, an arbitrary extension will be determined by a closed normal
subgroupoid and denoted for example by (G, S) where S is the kernel of the extension.

3.2. Twisted extensions. Let (G,Σ) be a twisted groupoid. Then (Σ, G(0)×T, G(0)×C)
is a groupoid dynamical system with the action σ(s(σ), a) = (r(σ), a) for (σ, a) ∈ Σ×C

and χ(x, θ) = θ for (x, θ) ∈ G(0) × T. If G is a locally compact groupoid with Haar
system, we can construct the crossed product C*-algebra, which we denote by C∗(G,Σ)
rather than C∗(Σ, G(0)×T, G(0)×C) and which we call the twisted groupoid C*-algebra.
The principle of our version of Mackey analysis is to decompose this C*-algebra when G
possesses a closed normal subgroupoid S endowed with a Haar system. This is a strong
condition, which is often not satisfied by the isotropy bundle itself.

Definition 3.2. We call (G,Σ, S) a twisted extension with Haar systems when (G,Σ) is
a twisted groupoid, S is a closed normal subgroupoid of G with Haar system and G/S
has a Haar system.

In the sequel, we shall denote H = G/S the quotient groupoid and π : G → H the
quotient map. We shall denote by (αx)x∈G(0) [resp. (βx)x∈G(0)] the Haar system of H
[resp. S ]. We denote by (λx)x∈G(0) the Haar system of G described earlier. The following
diagram summarizes the situation:

G(0) ×T� _

��

G(0) ×T� _

��

Σ|S

��
��

� �
// Σ

p
��
��

πΣ
// // H

S � �
// G

π
// // H

3.3. The tautological Fell bundle. There is a Fell bundle C ։ H naturally associated
to a twisted extension (G,Σ, S). The construction below is a particular case of the
construction of Section 6 of [1], where the authors consider the more general framework
of fibrations. The idea is very clear: the twisted groupoid (G,Σ) defines a C*-category
over the groupoid H . We first note that Σ defines a Fell line bundle L = Σ⊗T C over G,
with multiplication (σ1 ⊗ λ1)(σ2 ⊗ λ2) = σ1σ2 ⊗ λ1λ2 and involution (σ ⊗ λ)∗ = σ−1 ⊗ λ.
In the next section, we shall view a section of L ։ G as a function f : Σ → C such that
f(θτ) = f(τ)θ for (θ, τ) ∈ T×Σ, but here we use the line bundle framework. We associate
to the unit x ∈ H(0) the C*-algebra Cx = C∗(Sx,Σ|Sx

). We want to associate to the arrow
h ∈ H a suitable completion Ch of Cc(G(h),L(h)) where G(h) = π−1(h) and L(h) is the
restriction to G(h) of the line bundle L. Let us write Σ(h) = π−1

Σ (h). Since Σ is a right



6 Jean Renault

principal Σ|S-space, a choice of τ ∈ Σ(h) defines a homeomorphism L(τ) : Σ(s(h)) → Σ(h)
sending σ to τσ. In fact, this defines a line bundle isomorphism, still denoted by L(τ), from
the line bundle L(s(h)) ։ Ss(h) to the line bundle L(h) ։ G(h), hence an isomorphism
L(τ)∗ : Cc(G(h),L(h)) → Cc(Ss(h),L(s(h))) ⊂ C∗(Ss(h),Σ|Ss(h)

). The norm ‖L(τ)∗(f)‖

of f ∈ Cc(G(h),L(h)) depends on h only and we write it ‖f‖h. We let Ch be the
completion of Cc(G(h),L(h)) with respect to this norm. We define C as the disjoint union
C =

⊔
h∈H Ch. We take Γ = Cc(G,L) as a fundamental family of continuous sections to

define its topology. One checks that the following conditions are satisfied.

(i) Γ is a linear subspace of the complex linear space Πh∈HCh;
(ii) for all h ∈ H , the evaluation map evh : Γ → Ch has a dense image;
(iii) for all ξ ∈ Γ, the norm map h 7→ ‖ξ(h)‖h is upper semicontinuous;
(iv) if η ∈ Πh∈HCh satisfies: for all h ∈ H and all ǫ > 0, there exists ξ ∈ Γ and a

neighborhood U of h in H such that ‖η(h′) − ξ(h′)‖h′ ≤ ǫ for all h′ ∈ U , then η
belongs to Γ.

Before describing the product and the involution of C, it is useful to define a system
of measures for the map π : G ։ H . Such a system of measures already appears in
[21] in the transitive case. Recall that, by assumption, the group bundle S is equipped
with a Haar system β = (βx)x∈G(0) . We extend it to a π-system by left invariance: for
h ∈ H , we set βh = γβs(h), where γ is an arbitrary element of G(h); it depends on h
only. It is a continuous π-system of measures. It is left-invariant: for (h, h′) ∈ H(2) and

γ ∈ G(h), γβh′
= βhh′

. Note also the relation (δ(γ)βh)−1 = βh−1
. Given (h1, h2) ∈ H(2),

f1 ∈ Cc(G(h1),L(h1)), f2 ∈ Cc(G(h2),L(h2)) and γ ∈ G(h1h2), we define

f1 ∗β f2(γ) =

∫
f1(γ

′)f2(γ
′−1γ)dβh1(γ′)

and for γ ∈ G(h−1),

f ∗(γ) = f(γ−1)∗

One checks that these operations extend to C and turn it into a Fell bundle over H . We
can also use the fact proved below that C is isomorphic to the Fell bundle of a groupoid
dynamical system to complete the proof.

Definition 3.3. The Fell bundle C constructed above is called the tautological Fell bundle
of the twisted extension (G,Σ, S).

The following result is a particular case of [1, Theorem 6.2].

Theorem 3.1 (Buss-Meyer [1]). Let (G,Σ, S) be a locally compact twisted groupoid exten-
sion with Haar systems. Let H = G/S be the quotient groupoid. Then the twisted groupoid
C*-algebra C∗(G,Σ) is canonically isomorphic to the sectional C*-algebra C∗(H, C) of the
tautological Fell bundle.

Proof. Recall that the topology of C has been defined by the fundamental family of con-
tinuous sections Γ. The bijective map which associates to f ∈ Cc(G,L) the corresponding
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section j(f) ∈ Γ is an isomorphism of ∗-algebras: let f, g ∈ Cc(G,L). On one hand,

f ∗λ g(γ) =

∫

Gr(γ)

f(γ′)g(γ′−1γ)dλr(γ)(γ′)

=

∫

Hr(γ)

∫

G(γ̇′)

f(γ′)g(γ′−1γ)dβ γ̇′

(γ′)dαr(γ)(γ̇′)

On the other hand, for h ∈ H ,

(j(f) ∗α j(g))h =

∫

Hr(h)

j(f)(h′) ∗β j(g)(h
′−1h)dαr(h)(h′)

Hence, for γ ∈ G(h)

(j(f) ∗α j(g))h(γ) =

∫

Hr(γ)

∫

G(γ̇′)

f(γ′)g(γ′−1γ)dβ γ̇′

(γ′)dαr(γ̇)(γ̇′)

The involution in Cc(G,L) and in Cc(H, C) are given by the same formula. The ∗-
homomorphism j : Cc(G,Σ) → C∗(H, C) extends to C∗(G,Σ) by continuity. It is surjec-
tive since its range contains the dense subalgebra Γ. To show its injectivity, one shows
by using the disintegration theorem [16, Théorème 4.1.] that for every representation L
of C∗(G,Σ), there exists a representation L′ of C∗(H, C) such that L = L′ ◦ j. �

3.4. The tautological groupoid dynamical system. The tautological Fell bundle
of the twisted extension (G,Σ, S) is in fact the Fell bundle of the following groupoid
dynamical system (Σ,Σ|S, C

∗(S,Σ|S)). It can be shown just as in the untwisted case
(see for example [11, Theorem 5.5]) that the twisted group bundle (S,Σ|S) with Haar

system β defines an upper semi-continuous bundle of C*-algebras over G(0), with fibres
C∗(Sx,Σ|Sx

) which we denote by C∗(S,Σ|S). Moreover, when the groups are amenable, it
is a continuous bundle. It is endowed with an action Σ ∗ C∗(S,Σ|S) → C∗(S,Σ|S), where

(τ.f)(σ) = δ(p(τ))f(τ−1στ), for τ ∈ Σ, f ∈ Cc(Ss(τ),Σ|Ss(τ)
), σ ∈ p−1(Sr(τ))

The introduction of δ is necessary in order to preserve the convolution product of the
twisted group C*-algebras C∗(Sx,Σ|Sx

).

Proposition 3.2. The triple (Σ,Σ|S, C
∗(S,Σ|S)) is a groupoid C*-dynamical system,

which we call the tautological groupoid dynamical system of the twisted extension.

Proof. The continuity of the action map Σ ∗ C∗(S,Σ|S) → C∗(S,Σ|S) is proved just as [6,
Proposition 2.7]. The action of Σ|S on C∗(S,Σ|S) is implemented by the bundle homomor-
phism χ : Σ|S → UM(C∗(S,Σ|S) which associates to σ ∈ p−1(Sx) the canonical unitary
χ(σ) in the multiplier algebra of C∗(Sx, p

−1(Sx)). Explicitly, for f ∈ Cc(Sx,Σ|Sx
) and

σ, τ ∈ p−1(Sx),

(χ(σ)f)(τ) = δ1/2(p(σ))f(σ−1τ)

One checks just as in [6, Section 2] that the conditions of Definition 2.3 are satisfied. �

Theorem 3.3. Let (G,Σ, S) be a locally compact twisted groupoid extension with Haar
systems. Its tautological Fell bundle C is isomorphic to the Fell bundle B of its tautological
groupoid dynamical system.
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Proof. As before, we denote by L = Σ ⊗T C the Fell line bundle over G associated
with Σ. Here, the sections of this bundle are viewed as functions f : Σ → C such that
f(θτ) = f(τ)θ for all (θ, τ) ∈ T × Σ. Recall that B = (C∗(S,Σ|S) ∗ Σ)/Σ|S. Let τ ∈ Σ
and h = πΣ(τ). Given f ∈ Cc(G(h),L(h)), we define ρτ (f) ∈ Cc(G(r(h)),L(r(h))) by

ρτ (f)(σ) = δ1/2(p(τ))f(στ), ∀σ ∈ p−1(G(r(h))

Then (ρτ (f), τ) ∈ C∗(S,Σ|S) ∗ Σ and for all σ ∈ Σ|S, we have:

(ρστ (f), στ) = (ρτ (f)χ(σ
−1), στ)

= σ(ρτ (f), τ)

Therefore, for all h ∈ H , there is a map jh : Cc(G(h),L(h)) → Bh such that

jh(f) = [ρτ (f), τ ]

where πΣ(τ) = h. By definition of the norm on Cc(G(h),L(h)), jh extends to a Banach
space isomorphism from Ch onto Bh and that this defines a bundle isomorphism j from
C to B. Then one deduces from [4, Propositions 13.6 and 13.7] that j is a Banach
bundle isomorphism. Let us check that j preserves the product and the involution. Let
(h1, h2) ∈ H(2). Choose τi ∈ Σ such that πΣ(τi) = hi for i = 1, 2. Let fi ∈ Cc(G(hi),L(hi))
for i = 1, 2. The equality

jh1h2(f1 ∗β f2) = jh1(f1)jh2(f2)

amounts to the equality

ρτ1τ2(f1 ∗β f2) = ρτ1(f1)[τ1.ρτ2(f2)]

We have for σ ∈ p−1(G(r(h1)):

ρτ1τ2(f1 ∗β f2)(σ) = δ1/2(p(τ1τ2))(f1 ∗β f2)(στ1τ2)

= δ1/2(p(τ1τ2))

∫
f1(τ)f2(τ

−1στ1τ2)dβ
h1(τ̇ )

where τ̇ = p(τ). On the other hand

ρτ1(f1)[τ1.ρτ2(f2)](σ) =

∫
ρτ1(f1)(σ

′)[τ1.ρτ2(f2)](σ
′−1σ)dβr(h1)(σ̇′)

=

∫
δ1/2(τ̇1)f1(σ

′τ1)δ(τ̇1)δ
1/2(τ̇2)f2(τ

−1
1 σ′−1στ1τ2)dβ

r(h1)(σ̇′)

= δ1/2(τ̇1)δ
1/2(τ̇2)

∫
f1(σ

′τ1)f2(τ
−1
1 σ′−1στ1τ2)δ(τ̇1)dβ

r(h1)(σ̇′)
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This last integral is of the form
∫
g(sτ̇1)δ(τ̇1)dβ

r(h1)(s) where g(τ̇) = f1(τ)f2(τ
−1στ1τ2).

The change of variable s = τ̇1tτ̇
−1
1 gives∫

g(sτ̇1)δ(τ̇1)dβ
r(h1)(u) =

∫
g(τ̇1t)dβ

s(h1)(t)

=

∫
g(t)dβh1(t)

which is the desired equality.
Let f ∈ Cc(G(h),L(h)). The equality

(jh(f))
∗ = jh−1(f ∗)

amounts to the equality
τ−1.(ρτ (f))

∗ = ρτ−1(f ∗)

where πΣ(τ) = h. For σ ∈ p−1(G(s(h)), we have

τ−1.(ρτ (f))
∗(σ) = δ(τ̇−1)(ρτ (f))

∗(τστ−1)

= δ(τ̇−1)(ρτ (f)(τσ
−1τ−1))∗

= δ(τ̇−1)δ1/2(τ̇ )f(τσ−1)∗

= δ1/2(τ̇−1)f(τσ−1)∗

On the other hand,

ρτ−1(f ∗)(σ) = δ1/2(τ̇−1)f ∗(στ−1)

= δ1/2(τ̇−1)f(τσ−1)∗

�

Corollary 3.4. Let (G,Σ, S) be a locally compact twisted groupoid extension with Haar
systems. Then the twisted groupoid C*-algebra C∗(G,Σ) is isomorphic to the crossed
product C*-algebra C∗(Σ,Σ|S, C

∗(S,Σ|S)) of the dynamical system (Σ,Σ|S, C
∗(S,Σ|S)).

Remark 3.1. This result can be obtained directly (without introducing the tautological
Fell bundle) by using the disintegration theorem of [16] (or rather its generalization to a
non abelian extension). This is the road followed in [6], where this result (in the untwisted
case) appears as Theorem 2.11. The authors also consider the reduced C*-algebras. The
main advantage of the Fell bundle is that it gives simple and natural formulas.

4. Abelian Fell bundles

When the normal subgroupoid S in the locally compact twisted groupoid extension
with Haar systems (G,Σ, S) is abelian and the restriction Σ|S of the twist is also abelian,
one can go one step further by using the Gelfand transform for the bundle of abelian
C*-algebras C∗(S,Σ|S)). Again, instead of doing this step directly, we make a detour via
abelian Fell bundles.
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4.1. Abelian Fell bundles. The structure of saturated abelian Fell bundles over a
groupoid has been established by V. Deaconu, A. Kumjian and B. Ramazan [2, The-
orem 5.6]. It is a direct consequence of the well-known following facts about Morita
equivalence of commutative C*-algebras.

Lemma 4.1. [14, Appendix A]

(i) Let X, Y be locally compact spaces, ϕ : Y → X a homeomorphism and L a
hermitian line bundle over X (with scalar product linear in the first variable).
Then (A = C0(X), E = C0(X,L), B = C0(Y )) is an imprimitivity bimodule
where
(a) for (a, ξ, b) ∈ A×E × B,

(bξ)(x) = b(x)ξ(x) (ξb)(x) = b(ϕ−1(x))ξ(x)

(b) for (ξ, η) ∈ E ×E,

A〈ξ, η〉(x) = (ξ(x) | η(x)x 〈ξ, η〉B(y) = (η(ϕ(y)) | ξ(ϕ(y))ϕ(y)

(ii) Conversely, every imprimitivity bimodule (A,E,B), where the C*-algebras A and
B are abelian, is isomorphic to an imprimitivity bimodule

(C0(X), C0(X,L), C0(Y ))

with (X, Y, h,L) as in (i). The homeomorphism ϕ : Y → X is uniquely deter-
mined by the relation ξb = α(b)ξ for all ξ ∈ E and b ∈ B and α(b) = b◦ϕ−1. The
quadruple (X, Y, ϕ,L), which is unique up to isomorphism, is called the spatial
realization of the Morita equivalence.

(iii) The spatial realization of the composition (A,E ⊗B F,C) of two Morita equiv-
alences (A,E,B) and (B,F, C) having (X, Y, ϕ,L) and (Y, Z, ψ,M) as spatial
realizations is the quadruple (X,Z, ϕ ◦ ψ,L⊗X ϕ∗M).

(iv) If the imprimitivity bimodule (A,E,B) admits the spatial realization (X, Y, ϕ,L),
then its inverse (B,E∗, A) admits the spatial realization (Y,X, ϕ−1, ϕ∗L), where
L is the conjugate line bundle.

Proof. The assertions (i), (iii) and (iv) are straightforward. A direct proof of the assertion
(ii) is given in [2]. It can also be obtained by introducing the imprimitivity algebra and by
using [17], to which we refer the reader for unexplained notations. There is a C*-algebra
C and complementary full projections p, q ∈ M(C) such that (A,E,B) is isomorphic
to (pCp, pCq, qCq). It is easily checked that D = pCp + qCq is a Cartan subalgebra
of C having the map c 7→ pcp + qcq as an expectation onto it. The spectrum Z of D
is the disjoint union of the open subsets X and Y , which are respectively the spectra
of A and B. Thus, according to [17, Theorem 5.9], there is an isomorphism Φ from C
onto C∗

r (G(D),Σ(D)), the reduced groupoid C*-algebra of the Weyl twist (G(D),Σ(D)),
which carries D onto C0(Z). The subsets pCp, pCq, qCp and qCq are contained in the
normalizer N(D) of D. Since X and Y are open, every germ of a partial homeomorphism
induced by an element of the normalizer can be obtained by an element of one of these
subsets. The partial homeomorphisms obtained from elements of pCp and qCq are partial
identity maps. Let n ∈ pCq and y ∈ Y such that n∗n(y) > 0. Then the germ of αn at y
does not depend on n. Indeed, let m ∈ pCq such that m∗m(y) > 0. Without changing
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the germ of αm at y, we may assume that the closed support of m∗m is contained in an
open neighborhood of y on which n∗n ≥ ǫ > 0. Then, there exists b ∈ B with b(y) 6= 0
and n∗m = (n∗n)b. Then, the equality (nn∗)m = (nn∗)nb implies that αm and αn have
the same germ at y. Moreover, since the projection q is full, every y ∈ Y is the domain of
some normalizer n ∈ pCq. Therefore there exists a unique homeomorphism ϕ : Y → X
such that αn(y) = ϕ(y) for all n ∈ pCq and y ∈ Y such that n∗n(y) > 0. This shows that
G(D) is the graph of the equivalence relation on Z = X ⊔ Y whose classes are {y, ϕ(y)}
for y ∈ Y and {x, ϕ−1(x)} for x ∈ X . It is a closed subset of Z×Z. Let F be the Fell line
bundle associated to the Σ(D). The restriction L of F to the subset {(x, ϕ−1(x)), x ∈ X},
which we identify to X , is a hermitian line bundle with scalar product (ξ|η) = ξη∗. Then
Φ maps isomorphically (pCp, pCq, qCq) onto (C0(X), C0(X,L), C0(Y )). �

We give now a construction of a saturated abelian Fell bundle over a groupoid. It will
turn out that every saturated abelian Fell bundle over a groupoid can be constructed
in this fashion. Let (H,α) be a locally compact groupoid with Haar system and let Z
be a right locally compact H-space. As usual, we write s : Z → H(0) the projection
and Zx = s−1(x) for x ∈ H(0). Let Σ be a twist over the semi-direct product Z ⋊ H .
We denote by L the associated Fell line bundle. Then, for each h ∈ H , we obtain by
restriction to Zr(h)×{h} a line bundle Lh over Zr(h) and consider the space of continuous
sections vanishing at infinity Bh := C0(Zr(h),Lh) endowed with the sup-norm. We turn
B :=

⊔
h∈H Bh into a Banach bundle with Cc(Z⋊H,L) as fundamental space of continuous

sections, where we identify f ∈ Cc(Z ⋊ H,L) with the section h → fh, where fh ∈
Cc(Zr(h),Lh) is defined by fh(z) = f(z, h). Given (h, h′) ∈ H(2), we define the product

Bh ⊗Bh′ → Bhh′ : b⊗ b′ 7→ b(hb′)

where, for z ∈ Zr(h), (b(hb
′))(z) = b(z)b′(zh). For h ∈ H , we define the involution

Bh → Bh−1 : b→ b∗

where, for z ∈ Zs(h), b
∗(z) = (b(zh−1))∗.

Proposition 4.2. Let Σ be a twist over the semi-direct product Z ⋊H, where (H,α) is
a locally compact groupoid with Haar system and Z a right locally compact H-space Z.
Construct B as above. Then

(i) B is a saturated abelian Fell bundle over H;
(ii) C∗(H,B) is isomorphic to C∗(Z ⋊H,Σ).

Proof. The first assertion is a straightforward verification. For the second assertion, one
checks that the map which sends f ∈ Cc(Z ⋊ H,L) into the section h 7→ fh is a ∗-
homomorphism from Cc(Z ⋊ H,Σ) to Cc(H,B). It is continuous in the inductive limit
topology and has a dense image. Hence it extends to a ∗-isomorphism from C∗(Z⋊H,Σ)
to C∗(H,B). �

Definition 4.1. We say that B is the Fell bundle of the twisted semi-direct product
(Z ⋊H,Σ).

Note that this terminology does not agree with Definition 2.5, because here B is a Fell
bundle over H and not over Z ⋊H . A coherent terminology would require the notion of
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fibration as in [1]. Let us show now that every saturated abelian Fell bundle is the Fell
bundle of a twisted semi-direct product.

Theorem 4.3. [2, Theorem 5.6] Let B be a saturated abelian Fell bundle over a locally
compact groupoidH. Then there exist a right locally compactH-space Z and a twist Σ over
the semi-direct product Z ⋊H such that B is isomorphic to the Fell bundle of (Z⋊H,Σ).
The pair (Z,Σ) is unique up to isomorphism. We call it the spatial realization of B.

Proof. Let B be a saturated abelian Fell bundle over a locally compact groupoid H . Its
restriction to H(0) is an abelian C*-bundle B(0) over H(0). The sectional C*-algebra
C0(H

(0),B(0)) is abelian, hence isomorphic to C0(Z), where Z is its spectrum. The space
Z is fibred above H(0). The bundle map, which is continuous, open and onto, is denoted
by s : Z → H(0) and the fibre above x ∈ H(0) is written Zx. We write Bx = C0(Zx).
For each h ∈ H , (Br(h), Bh, Bs(h)) is a Morita equivalence. We let (Zr(h), Zs(h), ϕh,Lh)
be its spatial realization. For z ∈ Zs(h), we define zh = ϕh(z). This defines a map
Z ∗H → Z. Given (z, h) ∈ Z ∗H , we write L(z,h) := (Lh)z and define the algebraic line

bundle L =
⊔

(z,h)∈Z∗H L(z,h) over Z ∗H . A section ξ ∈ Cc(H,B) defines a section ξ̃ of L

according to ξ̃(z, h) = ξ(h)(z). This defines a Banach bundle structure on L. Let us show
that (z, h) 7→ zh is an action map. The relation (zh)h′ = z(hh′) results from the lemma.
The continuity of the action can be obtained by applying the relation

b(zh)ξ̃(z, h) = ˜(ξb)(z, h)

where b ∈ Cc(Z) ⊂ Cc(H
(0),B(0)) and ξ ∈ Cc(H,B). The isomorphism Bh ⊗Bs(h)

Bh′ →
Bhh′ defined by the product in the Fell bundle B gives an isomorphism Lh⊗Zr(h)

h∗hLh′ →
Lhh′ which defines a product on L. Similarly, the involution Bh → Bh−1 gives an involution
Lh → Lh−1 on L. This turns L into a Fell line bundle over Z⋊H . We let Σ be the unitary
bundle of L. Then, by construction, B is isomorphic to the Fell bundle of (Z⋊H,Σ). �

Corollary 4.4. Let B be a saturated abelian Fell bundle over a locally compact groupoid H.
Then the spectrum Z of the sectional algebra C0(H

(0),B(0)) is a right locally compact H-
space and there exists a twist Σ over the semi-direct product Z⋊H such that the sectional
algebra C∗(H,B) is isomorphic to the twisted groupoid C*-algebra C∗(Z ⋊H,Σ).

4.2. Abelian groupoid dynamical system. We say that a groupoid dynamical system
(G, S,A) is abelian when A is a bundle of commutative C*-algebras over G(0). Note that
we do not assume here that the groups Sx are abelian. Then the associated Fell bundle
B over H = G/S is abelian and admits the above spatial realization. The twisted semi-
direct product (Z ⋊ H,Σ) of the previous section admits a convenient description. The
sectional C*-algebra A = C0(G

(0),A) is abelian, hence isomorphic to C0(Z), where Z is
the spectrum of A. As said earlier, the space Z is fibred above G(0). The bundle map is
denoted by s : Z → G(0) and the fibre above x ∈ G(0) is written Zx. We have A = C0(Z)
and Ax = C0(Zx). The action of G on A induces an action on Z which we write as a right
action so that (σ.f)(z) = f(zσ) where f ∈ C0(Zs(σ)) = As(σ) and z ∈ Zr(σ). Because the
action of S is unitarily implemented and A is abelian, S acts trivially on A. Therefore,
the action of G is in fact an action of H = G/S. This gives the semi-direct product
Z ⋊ H . Let us describe now the twist Σ over this semi-direct product. It is given by a
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pushout construction. We first observe that the homomorphism χ : S → UM(A) which
implements the restriction of the action to S gives a map

χ : Z ∗ S → T (z, t) 7→ (χ(t))(z)

It is a continuous groupoid homomorphism which satisfies χ(z, γtγ−1) = χ(zγ, t) for all
(γ, t) ∈ G ∗ S. Here is a general definition.

Definition 4.2. Given a groupoid extension S  G ։ H and an H-bundle of abelian
groups T , we say that a group bundle morphism ϕ : S → T is equivariant if ϕ(γsγ−1) =
γ̇ϕ(s) for all (γ, s) ∈ G ∗ S.

We give now the general pushout construction (the reader is directed to [7] for a full
exposition). It is summarized by the following diagram.

S −−−→ G −−−→ H

ϕ

y ϕ∗

y
∥∥∥

T −−−→ G −−−→ H

Here are the details.

Proposition 4.5. Let S  G ։ H be a groupoid extension, let T be locally compact
abelian group bundle endowed with an H-action and let ϕ : S → T be an equivariant group
bundle morphism. Then there is an extension T  G։ H and a morphism ϕ∗ : G→ G
that is compatible with ϕ. They are unique up to isomorphism.

Proof. We define
T ∗G = { (t, γ) ∈ T ×G, | pT (t) = r(γ) }

It is a groupoid over G(0) with multiplication

(t, γ)(t′, γ′) = (t(γ̇t′), γγ′)

and inverse
(t, γ)−1 = (γ̇−1(t−1), γ−1)

Endowed with the relative topology, it is a locally compact topological groupoid. Then S
embeds into it as a closed normal subgroupoid via i : S → T ∗G given by i(s) = (f(s−1), s).
We define G := T ∗G/i(S). Equivalently, G is the quotient of T ∗G for the left action of
S given by s(t, γ) = (tϕ(s−1), sγ). Its elements are of the form [t, γ] where (t, γ) ∈ T ∗G
and satisfy [t, γ] = [tϕ(s−1), sγ] for s ∈ Sr(γ). Let us spell out its groupoid structure. Its

unit space is G(0) with obvious range and source maps. The multiplication is given by

[t, γ][t′, γ′] = [t(γ̇t′), γγ′]

and its inverse map is given

[t, γ]−1 = [γ̇−1(t−1), γ−1]

The map π : G → H given by π[t, γ] = π(γ) is a surjective homomorphism and π(0)

is the identity map. Its kernel is identified to T via the map j : T → G defined by
j(t) = [t, pT (t)]. The map ϕ∗ : G→ G is given by ϕ∗(γ) = [r(γ), γ] for γ ∈ G.

�
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Definition 4.3. The above extension T  G։ H is called the pushout of the extension
S  G։ H by the morphism ϕ : S → T .

To apply this construction to our abelian groupoid C*-dynamical system (G, S,A), we
first consider the extension

S  G։ H

Taking the semi-direct product, we obtain a new extension

Z ∗ S  Z ⋊G։ Z ⋊H

We view Z ×T as a group bundle over Z with the trivial action of Z ⋊H . The map

ϕ : Z ∗ S → Z ×T given by ϕ(z, t) = (z, χ(z, t))

is a group bundle morphism which is equivariant in the above sense. We define the
extension

Z ×T  Σ ։ Z ⋊H

as the pushout by this morphism. Explicitly,

Σ = {[θ, z, γ] : θ ∈ T, (z, γ) ∈ Z ⋊G}

where
[θ, z, tγ] = [θ χ(z, t), z, γ], ∀(t, γ) ∈ S ∗G

Note that Σ is a twist over the semi-direct product Z ⋊H

Theorem 4.6. Let (G, S,A) a groupoid C*-dynamical system where A is abelian. Let Z
be the spectrum of the abelian C*-algebra C0(G

(0),A). Then the twisted crossed product
C∗(G, S,A) is isomorphic to C∗(Z ⋊H,Σ), where Σ is the above twist.

Proof. This is a particular case of Corollary 4.4 but we give here an independent proof.
We shall identify both Cc(G, S,A) and Cc(Z ⋊ H,Σ) as ∗-algebras of complex-valued
functions on Z ⋊G and observe that these ∗-algebras essentially coincide.
By definition, an element f ∈ Cc(G, S,A) is a map f : G→ A, continuous with compact
support modulo S and satisfying f(γ) ∈ Ar(γ) and f(sγ) = f(γ)χ(s−1). Writing Ar(γ) as
C0(Zr(γ)), we define

f(z, γ) = f(γ)(z), (z, γ) ∈ Z ⋊G

One can check that this complex-valued function defined on Z⋊G is continuous, satisfies

f(z, sγ) = f(s, γ)χ(z, s−1), (s, γ) ∈ S ∗G

there is a compact subset K of H such that f(z, γ) = 0 for all (z, γ) ∈ Z ⋊G such that
γ̇ /∈ K and for all ǫ > 0, there exists a compact subset L of Z such that |f(z, γ)| ≤ ǫ
for all (z, γ) ∈ Z ⋊ G such that z /∈ L. Conversely, every complex-valued function
defined on Z ⋊G satisfying these conditions defines an element of Cc(G, S,A). With this
identification of Cc(G, S,A), the ∗-algebra structure is given by

f ∗ g(z, γ) =

∫
f(z, τ)g(zτ, τ−1γ)dαr(γ)(τ̇), f ∗(z, γ) = f(zγ, γ−1)

On the other hand, an element of Cc(Z⋊H,Σ) is a continuous function f : Σ → C which
is compactly supported modulo T (since T is compact, this equivalent to be compactly
supported) and which satisfies f [θ′θ, z, γ] = f [θ, z, γ]θ′−1 for θ, θ′ ∈ T and (z, γ) ∈ Z ⋊G.
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It is completely determined by its restriction to θ = 1. Thus, with a slight abuse of
notation, we write f(z, γ) = f [1, z, γ]. We obtain a complex-valued function f defined on
Z ⋊G which is continuous with compact support and satisfies

f(z, sγ) = f(z, γ)χ(z, s)−1 ∀(s, z, γ) ∈ S ∗ Z ⋊G

Conversely, given such a function f , we retrieve the original element of Cc(Z ⋊ H,Σ)
by defining f(θ, s, z) = f(s, z)θ−1. When we express the product and the involution of
Cc(Z ⋊H,Σ) in terms of these functions, we obtain the same expressions as above. Thus
the elements of Cc(G, S,A) and Cc(Z ⋊ H,Σ) are both continuous functions on Z ⋊ G
satisfying

f(z, sγ) = f(z, γ)γ(z, s)−1 ∀(s, z, γ) ∈ S ∗ Z ⋊G

The only difference between the elements of Cc(G, S,A) and those of Cc(Z⋊H,Σ) is their
supports. Note that, for these functions f , the absolute value |f | is defined on Z ⋊ H .
For f ∈ Cc(Z ⋊ H,Σ), |f | has compact support. Therefore, f belongs to Cc(G, S,A).
Thus, we have realized Cc(Z ⋊H,Σ) as a ∗-subalgebra of Cc(H,Σ,A). Let us return to
the original description of Cc(G, S,A) as the space of compactly supported continuous
sections of a Banach bundle B over G. Cc(Z⋊G,Σ) is a linear subspace of Cc(G, S,A). It
satisfies conditions (I) and (II) of Proposition 14.6 of [Fell-Doran, vol I, page 139]. Indeed,
for h continuous function on G and f ∈ Cc(Z ⋊G,Σ), the function hf defined by

(hf)(z, γ) = h(γ̇)f(z, γ) ∀(z, γ) ∈ Z ⋊G

belongs to Cc(Z ⋊ G,Σ). The fibre Bh of the bundle B can be identified to the Banach
space C0(Zr(h)). In this identification, the evaluation at h of the elements of Cc(Z⋊G,Σ)
gives the whole subspace Cc(Zr(h)), which is dense in C0(Zr(h)). Therefore, Cc(Z ⋊G,Σ)
is dense in Cc(G, S,A) in the inductive limit topology. Since Cc(G, S,A) is complete in
the inductive limit topology, representations of Cc(Z ⋊G,Σ) which are continuous in the
inductive limit topology extend by continuity. Therefore, the inclusion of Cc(Z ⋊ G,Σ)
into Cc(G, S,A) gives an isomorphism C∗(Z ⋊G,Σ) ≃ C∗(G, S,A). �

4.3. Abelian twisted extensions. After this digression about abelian Fell bundles and
abelian groupoid dynamical systems, we return to our initial problem, which is the analysis
of a twisted groupoid C*-algebra C∗(G,Σ) in presence of a closed normal subgroupoid S
having a Haar system. As said earlier, we make a further assumption, whose present form
I owe to Alex Kumjian.

Definition 4.4. We say that a twisted extension (G,Σ, S) is abelian if

(i) the group bundle S is abelian and
(ii) the group bundle Σ|S is abelian.

We stated condition (i) for convenience only since it is implied by condition (ii). When
the twisted extension is abelian, the C*-algebra C∗(S,Σ|S)) is abelian and Corollary 3.4
can be completed. This gives our main result.

Theorem 4.7. Let (G,Σ, S) be a locally compact abelian twisted groupoid extension. Then
the twisted groupoid C*-algebra C∗(G,Σ) is isomorphic to the twisted groupoid C*-algebra
C∗(Z⋊H,Σ) where Z is the spectrum of C∗(S,Σ|S)), H = G/S and the twist Σ is obtained
by a pushout construction.
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Proof. We have seen that C∗(G,Σ) is isomorphic to the crossed product C*-algebra
C∗(Σ,Σ|S, C

∗(S,Σ|S)) of the tautological dynamical system (Σ,Σ|S, C
∗(S,Σ|S)). Since the

bundle of C*-algebras C∗(S,Σ|S) is abelian, we can apply Theorem 4.6. �

For applications, it is necessary to be more explicit about the space Z, the action of H
on it and the twist Σ. Recall that we assume that the abelian group bundle S has a Haar
system. Therefore, we endow its dual group bundle Ŝ with the topology of the spectrum
of C∗(S), as in [13, Section 3]. Since the abelian group bundle Σ|S, as an extension of S

by G(0) ×T has also a Haar system, its dual group bundle Σ̂|S has also a natural locally

compact topology. An element of Ŝ [resp. Σ̂|S] will be denoted by (x, χ), where x is a

base point and χ ∈ Ŝx [resp. (Σ̂|S)x . We first consider the general case of an abelian
twist (S,Σ).

Definition 4.5. Let X ×T  Σ ։ S be an abelian twist over an abelian group bundle
S. Its twisted spectrum is defined as

ŜΣ = {(x, χ) ∈ Σ̂ such that χ(θ) = θ ∀θ ∈ T}

The twisted spectrum ŜΣ is an affine space over the dual group bundle Ŝ: the action
of Ŝ on ŜΣ is the usual multiplication: given χ ∈ ŜΣ

x and ρ ∈ Ŝx, χρ ∈ ŜΣ
x is defined by

(χρ)(σ) = χ(σ)ρ(σ̇) for σ ∈ Σx and where σ̇ is the image of σ in Sx.

Remark 4.1. In [3], the authors give a similar description of the twisted spectrum when
the twist Σ is given by a symmetric 2-cocycle. Then, the twist is obviously abelian. It
may be useful to recall here that, according to [8, Lemma 7.2], a Borel 2-cocycle on a
locally compact abelian group is trivial if and only if it is symmetric. Moreover, if the
topology of the group is second countable, every twist is given by a Borel 2-cocycle. Thus,
a twist over a bundle of second countable locally compact abelian groups is abelian if and
only if it is pointwise trivial.

Lemma 4.8. Let (S,Σ) be an abelian twist over an abelian group bundle S. Assume that

S has a Haar system β. Then the twisted spectrum ŜΣ is the spectrum of the abelian
C*-algebra C∗(S,Σ).

Proof. When S is an abelian group and the twist Σ is trivial, this is, by the choice of
a trivialization, the well-known result that Ŝ is the spectrum of C∗(S). The explicit

correspondence between ŜΣ and the spectrum of C∗(S,Σ) is given by

χ(f) =

∫
f(σ)χ(σ)dβ(σ̇)

for χ ∈ SΣ and f ∈ Cc(S,Σ).

When S is an abelian group bundle, the C*-algebra C∗(S,Σ) is the C*-algebra defined
by the continuous field of C*-algebras x 7→ C∗(Sx,Σ|Sx

). As a set, its spectrum is the

disjoint union over X of the above spectra, which is ŜΣ. �

This turns ŜΣ into a locally compact space (in fact, a locally compact affine bundle).

We now return to our situation. We denote by ŜΣ rather than ŜΣ|S the twisted spectrum
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of (S,Σ|S). Let us describe the action of H = G/S on ŜΣ. The groupoid H acts on the
group bundle Σ|S by conjugation: h.σ = τστ−1, where πΣ(τ) = h. The transposed ac-

tion on the dual group bundle Σ̂|S, defined by (χh)(σ) = χ(τστ−1), preserves the twisted

spectrum ŜΣ. It is easily checked that this is the action arising from the action of H on
the bundle of C*-algebras C∗(S,Σ|S).

The above pushout diagram defining the twist Σ becomes:

ŜΣ ∗ Σ|S −−−→ ŜΣ
⋊ Σ −−−→ ŜΣ

⋊H

ϕ

y
y

∥∥∥
ŜΣ ×T −−−→ Σ −−−→ ŜΣ

⋊H

where ϕ(χ, σ) = (χ, χ(σ)) for (χ, σ) ∈ ŜΣ ∗ Σ|S.

Explicitly, Σ is the quotient of the groupoid (ŜΣ
⋊ Σ)×T by the equivalence relation

(χ, στ, θ) ∼ (χ, τ, χ(σ)θ), ∀σ ∈ Σ|S.

Remark 4.2. In [7, Proposition 3.5], the above Theorem 4.7 (the twisted case) is deduced
from the similar result for the untwisted case, established in the previous work [6, Theorem
3.3].

5. An application: deformation quantization

Rieffel has introduced a notion of C*-algebraic deformation quantization and illustrated
it by a number of examples in [18]. On the other hand, Ramazan, generalizing Connes’
tangent groupoid, has produced deformation quantization of Lie-Poisson manifolds by
using groupoid techniques (see [15, 11]). Our Theorem 4.7 shows that the two approaches
agree on some important examples. We consider here the basic example of a symplectic
finite-dimensional real vector space (V, ω). Then, for every ~ ∈ R, σ~ = ei~ω/2 is a T-
valued 2-cocycle on (V,+). It is shown in [19] that ~ 7→ C∗(V, σ~) can be made into
a continuous field of C*-algebras and in [20] that it gives a C*-algebraic deformation
quantization of the Lie-Poisson manifold (V, ω). Note that its sectional algebra can be
viewed as a twisted groupoid C*-algebra C∗(G,Σ), where G is the trivial group bundle
R×V over R and Σ is the twist defined by the 2-cocycle σ(~, .) = σ~. Let V = L⊕L′ be
a direct sum decomposition, where L and L′ are complementary Lagrangian subspaces.
This gives the extension

R× L G։ R× L′

The abelian group bundle S = R×L satisfies the conditions of Definition 3.2 with respect
to the twisted groupoid (G,Σ). Therefore, by Theorem 4.7, C∗(G,Σ) is isomorphic to
C∗(Z ⋊ (R×L′),Σ), where Z is the twisted spectrum and the twist Σ is obtained by the
pushout construction. Let us determine them explicitly. The action of H = R × L′ on
Σ|S = R× L×T is given by

(~, y).(~, x, θ) = (~, x, e−i~ω(x,y)θ), where ~ ∈ R, y ∈ L′, x ∈ L, θ ∈ T
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Since Σ|S = R×L×T, the twisted spectrum Z is R× L̂, where L̂ denotes the dual group
of the abelian locally compact group L. The action of H on Z is given by

(~, χ)(~, y) = (~, χϕ~(y)), where ~ ∈ R, χ ∈ L̂, y ∈ L′

and for ~ ∈ R, ϕ~ is the group homomorphism from L′ to L̂ such that

< ϕ~(y), x >= e−i~ω(x,y) where x ∈ L, y ∈ L′

The semi-direct product Z⋊H is a bundle of semi-direct products L̂⋊~L
′. For ~ 6= 0, ϕ~

is an isomorphism and L̂⋊~ L
′ is isomorphic to the trivial groupoid L̂× L̂. For ~ = 0, we

get L̂× L′, where the first term is a space and the second is a group. We use again ω to
identify L′ and the dual L∗, which is the tangent space of L̂. Thus L̂× L′ is isomorphic
to the tangent bundle T L̂ and the groupoid Z ⋊H is isomorphic to the tangent groupoid
of the manifold L̂. One can check that we have an isomorphism of topological groupoids.

It remains to determine the twist Σ.

Proposition 5.1. The above twist is trivial.

Proof. By construction, Σ is the quotient of (Z ⋊ Σ)×T by the equivalence relation

(~, χ, x+ v, σ~(x, v)ϕψ, χ(x)ϕθ) ∼ (~, χ, v, ψ, θ)

where ~ ∈ R, χ ∈ L̂, x ∈ L, v ∈ V and ϕ, ψ, θ ∈ T. The map

(Z ⋊ Σ)×T → (Z ⋊H)×T

sending (~, χ, x+ y, ψ, θ) to (~, χ, y, ψχ(x)σ~(x, y)θ) where ~ ∈ R, χ ∈ L̂, x ∈ L, y ∈ L′,
and ϕ, θ ∈ T identifies topologically this quotient. This is also a groupoid homomorphism.
Therefore, Σ is isomorphic to (Z ⋊H)×T.

�

The above example can also be presented via the Heisenberg group H = V ×R with
multiplication (v, s)(w, t) = (v + w, ω(v, w) + s+ t). Mackey’s normal subgroup analysis
(i.e. Theorem 4.7) applied to the center {0} × R gives the first deformation. The sec-
ond deformation can be obtained by applying this analysis to the subgroup L × R. In
conclusion, we have three isomorphic C*-algebras: C∗(H), C∗(G,Σ) and C∗(Z ⋊H).
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