N
N

N

HAL

open science

Expressive Notation Package (ENP), a Tool for Creating
Complex Musical Output

Mika Kuuskankare, Mikael Laurson

» To cite this version:

Mika Kuuskankare, Mikael Laurson. Expressive Notation Package (ENP), a Tool for Creating Com-
plex Musical Output. Journées d’informatique musicale 2000, 2000, Bordeaux, France. 7 p. hal-

03116878

HAL Id: hal-03116878
https://hal.science/hal-03116878v1

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03116878v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Expressive Notation Package (ENP), a Tool
for Creating Complex Musical Output

Mika Kuuskankare and Mikael Laurson

Sibelius Academy
Centre for Music Technology
P.O. Box 86, 00251, Helsinki, Finland
mkuuskan@siba.fi, laurson@.siba.fi

Abstract

This paper presents a new notation package called Expressive Notation
Package or ENP. ENP is a PatchWork (PW, Laurson and Duthen 1989,
Laurson 1996) user-library. PW, in turn, is a visual language with an
emphasis on producing and analysing musical material. PW provides a
rich set of applications in computer assisted composition. In this paper we
will discuss the structure and properties of ENP at its present state. Several
notation examples are provided. Finally we give a musical example
created with ENP.

Keywords: music notation, representation of musical structures, computer
assisted composition

1. Introduction

ENP is written in Common Lisp and CLOS. It can be further extended and
customised by the user. It has a graphical interface requiring no textual
input. Musical objects and their properties are editable with the mouse or
with specialised editors. The system provides full access to the musical
structures behind the notation. Thus ENP can be controlled
algorithmically. Furthermore, ENP provides both standard and user
definable expressions. The user can create new expressions using
inheritance. Note-heads, stem-lengths and slur-shapes can be set either
locally or by using global preferences. Scores can be saved as MIDI-,
ENIGMA- or ENP-files or they can be exported and printed as PostScript.

ENP has already been used to solve constraint-based problems and to
produce control information for several model-based instruments
(Laurson 1999a and Laurson et al 1999b). The main purpose of ENP is to
provide in the same package both professional notation capabilities and
powerful object structures for compositional use.

2. ENP Overview

One of the most important concepts behind ENP is a PW-beat. A PW-beat
can be represented in Lisp as a beat-list. A beat-list, in turn, is constructed
out of beat-counts and rtm-lists - for more details see Laurson (1996). A



beat-list can be converted into a hierarchical tree structure consisting of
beat-objects. The tree can be arbitrary deep. The leaves of the tree structure
can contain either chord-objects or rests. A single chord-object, finally,
consists of one or several note-objects. A beat-list example with its
notational counterpart is given in Figure 1:

(1 (-1 1))

(1 (1 1))

(1 (1 1))

(1 (11 1)) ¢l (1111

s

THE C——

[,f'—"'.
£aEE
———|

—

¢

o

#; b

k.,

fa
1t

-
[

;.3._]

mf

Figure 1. A beat-list example.

The beat hierarchy defines besides the rhythmic structure of the musical
material also some important ENP user-interface issues. It allows the user
to select meaningful musical entities directly by pointing to the respective
beat hierarchy level. Thus ENP can distinguish between different musical
hierarchies: a note, a chord, a beat (in any depth), a measure, a voice
within a part, a part, or even the whole score. For example, in many
notation programs the transposition of a note, a chord, or a measure often
requires several steps. Furthermore, different modes may have to be
utilised. In ENP this operation can be done in one step (Figure 2).

&

Figure 2. A beat is transposed by dragging it from the primary beat level.

Let us consider next an example where the user wants to transpose a
complete measure. In many notation programs (such as Finale or Encore)
this would mean selecting the measure, opening a dialog, typing some
values, maybe selecting a transpose mode and so on. The operation in
ENP, by contrast, is done by pointing on the time signature area (the access
point to a measure object) and dragging up or down. The effect of the
transposition operation can be seen as ENP updates the measure while the
user drags the mouse (Figure 3).

T T
fES= =

& £

llll‘;
7 ¥ T ¢

—_—

Figure 3. A measure is transposed by dragging the time signature area.

ENP contains a set of different edit modes in order to determine the
meaning of user actions. In pitch-mode, dragging a note up or down will
result in different transpositions. (The previous examples have assumed
that the user has operated in the pitch-mode.) In the following we will
demonstrate how some other edit modes work. The first mode is the



time-offset-mode (or grace note-mode) and second one is the velocity-
mode.

Grace notes are created in PW by editing the time-offset parameter of a
note-object. In ENP this is done by dragging the selected object or objects
horizontally. Dragging left creates negative offset times and dragging right
positive ones. The screen is updated as the user changes the offsets. The
spacing between the notes is automatically adjusted. Furthermore, the
extra space needed by the grace notes changes the positioning of
subsequent notes. (Figure 4).

P

=

Figure 4. The user creates grace notes by dragging notes horizontally.

The power of the hierarchical representation is more obvious in the
following example. The user modifies the notes of a chord so that they all
become grace notes. Furthermore, in this particular case, the grace notes
should form an upward arpeggio. In the time-offset mode this is done by
dragging the chord to the right. This creates grace notes with positive offset
times and moves them after the first beat. ENP adds also a rest to match
the correct number of beats in the measure (Figure 5).

¥ .

v
[

[

‘P!w'
n—H

>

L4

T
p= -
P32

AL

Figure 5. The user points at the stem of a chord (above). This implies that
the subsequent action will affect the whole chord. The time offsets of the
notes are changed by dragging the chord horizontally (below) resulting in a
group of grace notes.

The velocity-mode allows to edit MIDI-velocity values of note-objects.
This operation can either be absolute or relative. A special velocity editor
is used to draw velocity curves. The editor view contains the selected
music in the background and a breakpoint function representing the
current velocity function in the foreground. The editor can be used to
modify the shape of the velocity gesture. A selection of predefined shapes
is also at disposal in the form of a breakpoint function library (Figure 6).



=
E

LT s N
[
L
pl 41
1.
%
‘[E
L

o] =0 0 IE s X0 XE 20 2FT |00 0 40 380 D

1]

Figure 6. A velocity gesture of a group of selected notes is edited in the
velocity editor. An ascending line is selected from the breakpoint function
library. One extra point is added and moved upwards to create the desired
curve (crescendo and a slight decrescendo). Values shown on the left are
MIDI-velocity values. Values in the bottom represent the start times of the
notes.

3. ENP Expressions

ENP provides also objects representing standard or non-standard musical
expressions. Expressions can be applied either to a single note or to a group
of notes. ENP allows the user to create new expressions through
inheritance. A simple protocol is provided for the user to define new
expressions. Properties of the objects, such as typeface and default position,
can either be inherited or customised according to personal preferences.

Standard expressions include articulations, tempo indications, lyrics and
so on. These have typically a more or less established graphical
representation. Standard expressions that are applied to single notes
include articulation marks such as accent and tenuto or modes of playing
such as tremoli and harmonics (Figure 7).

s s o |
= :

Figure 7. The user selects a measure by pointing at the time signature and
adds an accent - with one operation only - to each note in the measure.

Standard expressions that are applied to a group of notes include among
others slurs, glissandi and ottava signs (Figure 8).

ua

>
0. 4w a > =
e —
v _ ]

7
Figure 8. An ottava-sign is assigned to a whole beat.

Non-standard expressions include special objects like groups. Groups are
entities containing one or more musical objects. They can be used to give a
set of objects a common identity. Groups can overlap freely. Thus, groups
are useful in representing structures that differ from the ones provided by



the hierarchical beat structure. Groups can be freely positioned in the
musical texture (Figure 9).

- l’x! -
; E o £ = 2 epabe they,
EZE: : F e
. = .
motive A— motive Al— motive A3 motive A4—

motive C motive I—

Figure 9. Ouverlapping groups showing a result of a motivic analysis.

A more advanced type of group expression - called group-BPF - can contain
breakpoint functions. Group-BPFs have many useful applications. For
example, a group-BPF allows to create tempo functions to fine tune the
timing of a score. It can also be used to create various envelopes for sound
synthesis control (Figure 10).

g
EZS :
NI i
Figure 10. An amplitude envelope is defined with the help of a group-BPF.

A double-click on the icon above the note opens a specialised breakpoint
function editor similar to the one found in Figure 6.

Besides breakpoint functions the expressions can also include executable
code. In the musical example 'Guitarismo!' - the score can be found in the
Appendix - the trills, for example, refer to specific compositional
algorithms (Laurson 1998 and Laurson et al 1999b). These create auxiliary
notes which in turn determine how the score is to be converted into low
level control data for synthesis control. This scheme allows precise control
of expressive control information. As ENP is method driven the executed
code can be instrument specific. Thus a trill for a clarinet part can refer to a
different algorithm than, say, a trill for a guitar part (Figure 11).

Figure 11. A trill-expression containing executable code.

4. Automatic Layout

ENP takes care of the correct placement of the musical symbols. For
example, when a note is transposed all the expressions attached to it are
automatically moved to their corresponding positions. Multi-measured
expressions such as ottava signs are correctly distributed across the systems
and pages. They move with the related objects according to a predefined set
of rules (Figure 12).



H
Figure 12. The slur below the notes (above) is correctly updated when the
user transposes the beat by an octave up (below).

5. ENP Example

To conclude this paper we will present a complete score created with ENP
(See Appendix). It is a virtuoso piece for guitar called ‘Guitarismo!’. It is
not, however, meant to be played by a human performer. Instead, it was
composed for demonstrating the timbral and expressional capabilities of a
model-based guitar. We will examine some of the points of interest in this
particular example.

It should be noted that this example is relatively complex from a
notational point of view. The layout was automatically generated with
ENP and required almost no 'tidying up' afterwards.

The example utilises some contemporary notational techniques, such as
written accelerandi. In many notation programs these are considered to be
only of graphical interest. For example, in Finale, making a written
accelerando requires that the user edits the graphical representation of the
beat, not the actual timing of the notes, as one would expect. In ENP, by
contrast, making an accelerando beat requires only to input the
proportional durations according to which the beat is divided. ENP takes
care of the correct graphical representation.

Some of the seemingly simple notational details can contain powerful
expressive qualities. For example, most of the written instructions (such as
molto rubato or precipitando ) are in fact group-BPFs. Thus, they contain
internally a breakpoint function (the drawing of the excess graphics has
been suppressed in the example). These breakpoint functions affect the
precise timing of the corresponding gestures.

The playback velocities are calculated by using a simple rule-based system.
When the system encounters, for example, an accent it makes the
corresponding note or chord somewhat louder according to the
surrounding dynamics. This kind of approach makes it easy to produce
output with very discrete nuances. It also allows the user to experiment
with different approaches in order to find the best possible outcome.



Finally, the last crescendo mark (beginning from the second staff from
below and continuing over the line break to the last staff) is an example on
how ENP divides automatically multi-measured expressions correctly
across parts and pages.

6. Conclusions

Although ENP is still in a development phase it has already proven to be a
useful tool for computer assisted composition and analysis. Future plans
include among others clarification and optimisation of some of the
complex user interface issues discussed above. This phase requires that
ENP should be used and tested in the future by a group of professional
musicians.

7. Acknowledgement

This work has been supported by the Academy of Finland in project
"Sounding Score - Modelling of Musical Instruments, Virtual Musical
Instruments and their Control".

References:

G. Read. "Music Notation A Manual of Modern Practice. "
London: Victor Gollanz Ltd, 1982.

M. Laurson, J. Duthen. "PatchWork, a graphical language in PreForm." In
Proc. ICMC’89, San Francisco, pp. 172-175, 1989.

M. Laurson. "PATCHWORK: A Visual Programming Language and Some
Musical Applications." Doctoral dissertation, Sibelius Academy, Helsinki,
Finland, 1996.

M. Laurson. "Viuhka". An unpublished user manual, Sibelius Academy,
Helsinki, 1998.

M. Laurson. "Recent Developments in PatchWork: PWConstraints - a
Rule Based Approach to Complex Musical Problems." To be published in
Symposium on Systems Research in the Arts 1999 - Volume 1: Systems
Research in the Arts - Musicology, IIAS, Baden-Baden, 1999a.

M. Laurson, J. Hiipakka, C. Erkut, M. Karjalainen, V. Vilimé&ki, and M.
Kuuskankare. "From Expressive Notation to Model-Based Sound
Synthesis: a Case Study of the Acoustic Guitar." In Proc. ICMC’'99, pp. 1-4,
Beijing, China, Oct. 1999b.



