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Abstract

A posteriori error estimates are derived for a nonlinear parabolic problem arising
from the isothermal solidification of a binary alloy. Space discretization with contin-
uous, piecewise linear finite elements is considered. The L? in time H! in space error
is bounded above and below by an error estimator based on the equation residual.
Numerical results show that the effectivity index is close to one. An adaptive finite
element algorithm is proposed and a solutal dendrite is computed.

1 Introduction

A posteriori error estimates are at the base of adaptive finite elements for a
great number of problems. The goal is to provide an estimation of the true
error and to adapt the mesh according to this error estimation. The estimated
error is said to be equivalent to the true error if

true error

<,

CS : =~
estimated error

where the constants ¢ and C' depend only on the shape of the mesh triangles.
An important point to control the quality of the error estimator is to consider
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the effectivity index defined by

estimated error

eff =

true error

This subject has been initiated in [1,2] and extended to linear elliptic problems,
see for instance [3-8], and to nonlinear elliptic problems [9-12].

Several a posteriori error estimates have been derived for parabolic problems.
In [13,14] a posteriori error estimates are derived for linear and nonlinear
parabolic problems when using the discontinuous Galerkin method. The L*®
in time, L? in space error is bounded above by an explicit error estimator using
sharp a priori estimates for the dual problem. These a posteriori estimates are
optimal in the sense that they are bounded above by a priori error estimates
and numerical results are included. In [15] a general framework is developed
for nonlinear evolution equations and a posteriori error estimates are derived
in the L* in time, L? in space error. Several examples are considered such as
the Stefan problem (see also [16] for numerical results) or reaction -diffusion
equations. In [17,18], the general framework introduced in [12] is extended to a
wide class of nonlinear parabolic problems. Quasilinear parabolic equations of
second order, the time-dependent incompressible Navier-Stokes equations are
considered. A posteriori error estimates are obtained for several norms, upper
and lower bounds are proposed. In [19], a theoretical and numerical study of
the effectivity index is proposed for the linear heat equation. The L? in time,
H' in space error is bounded above and below by an explicit error estimator
based on the equation residual. Numerical results show that the effectivity
index is close to one when using an adaptive algorithm. Finally, a general
study of the effectivity index for linear parabolic equations is developped in
[20,21]. Different strategies, namely h, p and r refinement are discussed, error
estimators are proposed for p odd or even. Numerical results show that the
method is still reliable for a nonlinear reaction-diffusion problem.

The goal of this paper is to extend some of the results obtained in [19] to a
nonlinear parabolic problem arising from isothermal solidification of a binary
alloy. More precisely, we consider the phase-field model proposed in [22] and
presented hereafter. Given a domain 2 of R? (with outer unit normal n) and
a final time 7', the problem consists in finding the order parameter ¢ and the
concentration c such that

%0 20 = B(6) +ch(0) in Q2 x (0,7), M)
% — D1Ac —div (Ds(c,9)Vp) =0 in Q x (0,7), (2)
Vo-n=Vec-n=0 on 002 x (0,7), (3)
¢(0) = ¢0 C(O) = C in Q. (4)

Here ¢ and D; > 0 are given parameters, F}, F5 and D, are given functions.



Existence, uniqueness and a maximum principle for the solution of this prob-
lem is proved in [23]. Numerical experiments and an adaptive algorithm are
presented in [24], a priori error estimates are derived in [25].

In this paper, a posteriori error estimates are derived for a semi-discrete fi-
nite element approximation of (1)-(4). The error is first bounded above by the
equations residual, then by an explicit error estimator. A lower bound is also
proposed. Eventhough the tools used to prove that the error is bounded above
and below by an error estimator are classical (Clément’s interpolant [9] for the
upper bound, bubble functions [5] for the lower bound), the model problem is
parabolic and nonlinear, which makes the analysis original and not so obvious.
Moreover, the regularity requirements to prove the upper bound meet those
established in the existence proof [23]. Numerical results are proposed on uni-
form meshes, showing that the estimates are sharp, the effectivity index being
of order one, which may be surprisingly good for such a nonlinear problem.
Finally, an adaptive finite element procedure is validated and the computation
of a solutal dendrite is presented.

2 Modeling the solidification of a binary alloy

In this section we follow [22,26] and briefly present the modeling corresponding
to (1)-(4). A similar model was also presented in [27]. Consider the solidifi-
cation a binary alloy contained in a smooth domain €2 of R?, between time 0
and 7. The alloy is characterized by its temperature €, relative concentration
¢ (the proportion of solute in the solvent) and order parameter ¢, which are
scalar functions defined on © x (0,7). When ¢ = 1 the alloy is considered
to be liquid, ¢ = 0 the alloy is solid. The region where 0 < ¢ < 1 has small
width compared to the size of the calculation domain 2, and corresponds to
the solid-liquid interface (it is sometimes called the mushy region).

The model derivation starts from mass conservation of the solute :

dc

5 Tdivie=0 inQx(0,7). (5)

Here j. denotes the mass flux of solute and is determined as following. At time
t, the free energy of the system is defined by

7o) = [ (100001 c(00).060) + SIVols 0 ) r. (@

where f is the free energy density of the alloy and ¢ is a given parameter.
From the second principle of thermodynamics, F(t) has to decrease. We thus



compute F'(t) and obtain :

iy [ (0100 0fdc 0506 Lo 06
Ft) = /(aeaﬁacaﬁa(/)(% EVe m)dx

Assuming that the temperature is constant, making use of (5), and integrating
by parts we then have

P = (jc vl % (aj; €2A¢>>daz
+ [ (2 (*w n‘gf jc-ng—J;) ds

Clearly, if we choose

— of 09 of 2
Je=—MNGL G = M <a¢ A¢>

jc'n:07 V(Z)-n—(),

with M. (0, c, ¢) and M, strictly positive, then F'(t) is negative and F(t) is
decreasing. Using (5), we then have

99 2 of
9~ M0N0 = My,
oc of\

E — div <M V 8 ) = 0,

and the model is complete provided &, My, M.(0, ¢, $) and f(0, ¢, ¢) are known.
From thermodynamical considerations [22,26,24], the free energy density of the
alloy is given by

£(0.0,6) = (1 )f*(0,0) +ef*(6,6)+ o (1~ Jin (1~ ) + e lnc).

m

Here R and v, are given parameters and f4, f? are the solute and solvent
free energy densities defined by

P00 =03 -0 (M - o)

+C’X91n%+WX£ (¢) X=AB
0 agg ’ - ) .

Here 6X, e, LX C*, WX X = A, B, are given parameters and p, g given
polynomials. Typical plots for f* (6, ¢) are shown in figure 1. Finally we obtain
equations (1)-(4) setting D; > 0, e = My&? and defining the functions M.,



f%(6,9)

0 0.2 0.4 0.6 0.8 1

Fig. 1. Free energy density f* with respect to ¢, at temperature € below, equal or
above melting temperature 6;X .

Fl; F27 D2 by
Um
MC(aa c, ¢) = Dl@c(l - C),
AH—H;‘% / A 4 !
Fi(¢) =M, | L Tp(fﬁ)—w H—Ag(fﬁ) :

1= ((LBQ ;;5; -1 ;;;fﬁ‘) Pe) = (W—B - W—A) og'(¢)) 0
20

Do(c,¢) = =Dy (1 — ) T

RO

Although the original model of [22] makes use of a function D;(¢), we have
assumed, for the sake of simplicity, D; to be constant. However, the theoretical
results obtained in [23,25] hold with a Lipschitz, positive, bounded function
D+ (¢). Also, note that formal convergence of this phase-field model towards a
Stefan problem with curvature is addressed in [28].

3 Variational formulation and space discretization

We now introduce the weak formulation corresponding to (1)-(4). The nota-
tions used are the following. For a given integer 2 < p < oo, we introduce the

classical LP(2), H?(€2) spaces and the corresponding norms |- || .o (q), || - [| #2 ()
respectively. In order to simplify the notations we set || - || instead of || - || z2(q)
and || - || p instead of || - ||z2(py, where D is a subset of §2.

Given ¢y and ¢; in L?(Q), the variational formulation corresponding to (1)-(4)



consist in seeking
¢,c € L*(0,T; H'(Q)) N H'(0,T; (H'(Q))"),

such that ¢(0) = ¢o, ¢(0) = ¢o and

<g—f,v>+62/QV¢-VU:/Q(F1(¢)+CF2(¢))% (8)
<%,w>+D1/ch-vu1+/QD2(c,¢)V¢-Vw=07 )

for all v,w € H'(2), a.e. in (0,7T) (here < -,- > stands for the duality pairing
between H'(Q2) and its dual). In the sequel, we will assume that

Fy, F5 and Dy are smooth Lipschitz bounded functions (10)
such that F;(0) = F;(1) =0, 7= 1,2 and D5(0,-) = Ds(1,-) = 0.
Then, according to [23] (theorem 1), there is a solution to the above problem.
Moreover, we assume that

B0 € H?*(Q) with O¢g/On = 0 on 09 and ¢y € H*(Q), (11)
so that, according to [23] (theorem 2), the solution is unique,

¢ € L*([0,T]; H*(Q)) N H'([0, T]; H'(2)),
c € L*([0, T): H*(Q)) n H'([0, T); L*(Q)),

thus ¢ belongs to C°([0, T]; H*(2)) and ¢ belongs to C°([0, T]; H'(Q2)). Finally,
we assume that

F) and F, are zero outside the interval (0,1) (12)
and that ¢q, ¢y are between 0 and 1,

so that, according to [23] (theorem 3), a maximum principle holds and ¢, ¢
are also between 0 and 1. Thus, the solution to problem (1)-(4) has a physical
meaning and all the nonlinear terms in (7) can be truncated to zero outside
the interval [0, 1]. This allows assumptions (10) and (12) to be fulfilled, and the
existence result to hold. Finally, this being useless in our proofs, we mention
that the space regularity of c¢ is one order lower than the space regularity of
¢, due to the div (Dsy(c, ¢) V@) term in eq. (2).

Let us now turn to the semi-discrete finite element approximation of (8) (9).
From now on, it is assumed that the calculation domain €2 is polygonal and
that the existence and regularity results presented above still hold. For any
0 < h <1, 7T, be a mesh of Q into triangles K with diameter less than A,
regular in the sense of [29]. Let V;, = {v € C°(Q); vk € P1; VK € Ty}



be the usual finite element space of continuous, piecewise linear functions on
the triangles of 7, and let rj, : C°(Q) — V, be the corresponding Lagrange
interpolant. The semi-discrete finite element problem corresponding to (8) (9)
is the following. Assuming ¢y and ¢y to be continuous, we set ¢,(0) = 7,600
¢n(0) = rpco. For each ¢ € [0, T] find ¢4 (t) and cp(t) in Vj, such that

0 %U}L + g2 /Q Voy - Vo, = /Q(Fl (¢h) —+ ChF2(¢h)>Uh, (13)

0
h Wp, + Dl/ Ve, - Vuwy, + / DQ(Ch, ¢h)v¢h - Vwy, =0, (14)
o Ot Q Q

for all vy, wy, € Vj,. In the sequel, we will assume that the above semi-discretized
problem is well posed (this could be proved proceeding as in [23]) and that a
priori error estimates are available for the error

/OT<||V(¢ —on)|)? + ||V (c— Ch)||2).

In order to derive sharp a posteriori error estimates, we also need to assume
that the error in the L?(0,T; L?(€)) norm converges faster than the error in
the L?(0,T; H'(Q)) norm, that is there are two constant C' > 0 and s €]0, 1]
independent of h such that

[ (16= 602 +le=el?) < e [ (I96= I +19( = al?). (15

Remark 1 Let us discuss assumption (15). Assume for instance that optimal
a priori error estimates are available, i.e. the error in the L*(0,T; L?(Q)) norm
is properly O(h?*) and the error in the L*(0,T; H*(Q2)) norm is properly O(h).
Then (15) holds with s = 1.

Proving a priori error estimates for our model problem is not an obvious task.
In [25], it is proved that the error in the L*®(0,T; L*(2)) norm is bounded by
a constant time (h?>+7) for the corresponding problem discretized in space and
time, T being the time step. A similar a priori estimate could be proved for
problem (13) (14), but this is out of the scope of this paper. Moreover, to prove
assumption (15), one should also prove that the error in the L*(0,T; H'(2))
norm is greater than a constant times h (or eventually h® with s € (0,1]),
which is generally an assumption, even for the Laplace problem, see [6] the-
orem 3.2 (in fact, for the Laplace problem, assumption (15) is valid except
for trivial cases, see [30]). Finally, note that an assumption similar to (15)
was previously used in [31] in the frame of a stationary nonlinear convection-
diffusion problem.



4 An upper bound

The first step in deriving a posteriori error estimates consists in bounding the
error by the equations residual Ry(¢p, cp) and Re(¢p, cp) defined by

R¢(¢h, Ch)yRc(¢h,Ch) € (HI(Q))I a.e. in (O,T)

and

< Ry(on,cn),v >= / ( v+ 2V - Vv — Fi(¢n)v — ey Fodp)v ) , (16)

Re(én, cn),v >= /(—U+D1Vch Vo + Dy(ch, dn) Vb - w) (17)

for all v € H'(Q), a.e. in (0, T). More precisely, we have the following result.

Proposition 2 Assume that (10), (11), (12) and (15) hold. Let ¢, c be the
solution of (8) (9), let ¢n, cn be the solution of (13) (14) and let Ry(¢pn,ch),
Re(¢n, cn) be defined by (16) (17). Finally, let My be defined by My = || Dal| Lo (r2)-
Then, there exists hg > 0 (depending only on the constant C of (15), on e, D,
and Ms) such that, for all h < hg, we have

N6 =@+ [ 196 - o0l
2D1 ) 2D2 )
+ Slle=a) @I+ 52 [ 19 —e
2D, (18)
< 516 = O + Sl - ch><o>||2

+‘/0T<R¢(¢h;0h),¢—¢h> / < Re(dn,cn),c—chn >|.

AM2

PROOF. Using (8) we have

<%<¢—¢h>,¢—¢h> + [ 96— on)P
-/ <F1(¢)+CF2(¢) 8“”’)@ o)
—/982v¢h'v(¢_¢h)-



Integrating between ¢ = 0 and ¢t = 7" and using the definition (16) we obtain

1 T 2 2 T v 2
Sl =@+ [ V(6= o0
T
< 36— O + | [ < Rlon.cn).0- 00 >

‘/ /(Fl — Fi(¢n) +CF2(¢)—ChF2(¢h)>(¢—¢h) .

On the other hand, using (9) we have

<§t(c_Ch) (C_ch)>+/QD1|V(c—ch)|2

_ /Q <—D2(c, PIVP-V(c—cn) = %(C_ch)>

- Dl/QVch -V(e—cp).

Thus, a time integration between ¢ = 0 and t = 7" and the use of definition
(17) leads to

Sl e @I+ D: [ 19— el

< Jle= O+ [ < Rlona.c > (20)

. Q(Dz(ch,¢h)V¢h—D2(c, ¢)v¢> Vo).

Let a be a real positive number that will be chosen in the sequel. Adding (19)
and « times (20) yields

6=+ [119( - gl
e = a) @I +aby [ 196~ el
< %nw— SO+ Sl(e = ) )P

ch) b — dn > /OT < Re(¢n,cn),c—cp > (21)

+ «

(Fl — Fi(¢n) + cFy(9) — ChF2(¢h)) (¢ — ¢n)

+ o

/0 /Q(DQ(Ch, én)Vér — Ds(c, ¢)V¢) V(e —cn)l.




We now focus on the last two terms of (21). Since Fj is Lipschitz there is a
constant C' independent of A such that

" [ (Fi@) - o) - on| < ¢ [ lo— ol

Since Fj is Lipschitz bounded and c is bounded above by 1, we have

0T [ <CF2(¢) — ChF2(¢h)) (¢ — on)

T [ <C(F2(¢) — F2(</5h)) + F5(én)(c — Ch)) (¢ — dn)
<0 [ 16— 6ul(16 = ol + e — ).

Using the two above estimates together with (15), there is a constant C' inde-
pendent of h such that

‘ / / F1 — Fy(6p) + cFa(6) — chF2(¢h)> (6 — én)

(22)
< cn /0 (196 = o0l + IV (c = an)|?).
Let us now turn to the last term of (21). We have
(D2(0h, ¢n)Vor — Do(c, ¢)V¢) - V(e —cp)
= —(Dale,6) = Dalen, 60) ) V- V(e — )
— Da(ch, n)V (6 — 1) - V(c — an).
Since D, is bounded by Ms, using Young’s inequality, we obtain
T/ Ds(ch, on)V (¢ — @) - V(c — cn)

T
< [ (G196 =l + FIV (e - el?),

where 1 > 0 will be chosen in the sequel. On the other hand, using Hélder
inequality, we obtain

‘/OT/Q<D2(C, ®) _D2(Cha¢h))v¢-V(c—ch)

(24)
T
< /0 IVolle@l| Da(e, 9) — Da(en, dn)llzs @IV (e = en)ll-

Since the imbedding between H'()) and L°(Q) is continuous and since ¢ €
C°([0,T]; H*(2)), then [|[V¢||1s() is bounded for each ¢ € [0,7]. Moreover,

10



since D, is Lipschitz we have
1D2(c,6) = Dalens on)ls(e < € (116 = dnllisio) +lle = ealisio )
The above estimate in (24) yields

/OT/Q(DQ(C, ¢) — DQ(Ch, ¢h)>v¢ ) V(C _ Ch)
< C’/OT(||¢ — &nllL3@) + |lc — ch||L3(Q)> IV (c— en)]l.

We now use a Gagliardo-Nirenberg inequality [32] to obtain

/OT /Q (DZ(C, (b) — Dz(ch, ¢h))v¢ ) V(C _ Ch)
<0 [ (16— oullfioyllo — 6ull

1/2
+lle = anllfigylle = el ) IV (e = el

Finally, using Cauchy-Schwarz inequality together with (15) we obtain

/OT/Q<D2(C, @) — Dy(ch, ¢h))v¢ V(e —cp)

, (25)
<’ [T(19(6 - anl + V(e - a)l?).
Estimates (22)-(25) in (21) yield
1 2 2 T 2
Sl =) @I +e [ 1966 = 6n)l
e = eI +aD: [ 19— a)l?
< 316~ OI? + 2lle — ) O]
(26)

T T
+‘/0 < Ry(dn,cn), o — dn > +Oé/0 < R.(dn,cn),c—cn >

+ady [ (5196 = ol + JIV (e - el
von [1 (196 = ol + 19 (e~ e

where o > 0 and 7 > 0. Now let o and 7 be such that

5 oMo aMsn

>0,

11



for instance we can choose o and 7 such that

52 O[MQ O!Dl OJMQTI
— = and = ,
4 2n 4 2
that is
D1 d 82D1
= and a=
= oM, AM3

With this choice (26) becomes

1 2 2
L6 = 0@+ 2 [T 196 - ol

2D 3 2D2

Sl a) DI+ 5 [T 19— el

<216 O + S Dh e~ ) O (27)
~ 2 " 8 M3 "

T 2 T
1
+‘/0 < Ry(on,cn), ¢ — ép > +—4M22 /0 < R.(bn,cn),c—cp >

ron [M(I96 = ol + 19 (- en)?)

Let hg be such that

352D1
16M2°

2
Chs/2<3% and Chs/2

For instance we can choose hg such that

2 212
s/2 . 5_ g D1
Cho n(4 ’ 16M22> !

and we obtain (18) for h < hy. O

Our goal is now to provide an upper bound for the equations residual Ry(¢p, cs)
and R.(¢p, cp) defined in (16) (17). For this purpose, an explicit error estimator
is introduced.

The notations are those of [6]. For any triangle K of the triangulation 7y, let
Ex be the set of its three edges. For each interior edge ¢ of 7, let us choose
an arbitrary normal direction n, let [V¢, - n], denote the jump of V¢, - n
across the edge ¢. For each edge ¢ of 7, lying on the boundary 0f2, we set
[Vop - n], = 2V¢;, -n. The local error estimator corresponding to equation (1)

12



is then defined by

2

My = h% O _ e2 Ay, — Fy(dn) — cnFo(on)
ot K (28)
+ > 1|2 (9 on -l
KGEK

for all K € 7. Similarly, the local error estimator corresponding to equation
(2) is defined by

2

= M %Cth DiAcy, — div (Dz(ch, o)V )
N (29)
2
Pl |[(D19en + Daten 60)V6n) -n]
ZGE 14

Using the same techniques as in [9,19], we can prove the following result.

Proposition 3 Let ¢y, cp, be the solution of (13) (14), let Ry(dn, cn), Re(én, ch)
be defined by (16) (17) and let n%, u3 be defined by (28) (29). Then, there is
a constant C' depending only on the shape of the triangles of the mesh Ty such
that, for allv € L*(0,T; H(QY)) we have

1/2
<C ( Z 771()

0 keT;,

1/2
ol +1901F))

(e
<0(/ Zux)
L€

‘/ <R¢gbh,ch v >

(30)
‘/ <R ¢h,0h v >

KeTy,

1/2
(1ol + 190lP))

PROOF. We will only sketch the proof for the first estimate. The second esti-
mate can be obtained in the same manner. Let v be an element of L2(0,T; H!(2)).
Using (13) and (16) we have

< R¢(¢h,ch),v >=< R¢,(¢h,ch),v — Up > Yo, €V,  a.e.in (O,T)

13



From the definition of Ry(¢s,cs) we have

< Ry(n,cn)yv —vp >= {/K (% — Fi(én) — ChF2(¢h)) (v — vp)

KeTy

+/Ke?v¢h V(v —vh)}.

Integrating by parts the last term we obtain
< R¢(¢h, Ch),U — Uy >

=y {/K (% — &’ A¢y, — Fi(¢n) — ChF2(¢h)> (v — vp)

KeTy

+% > 52/4[Vq5h-n] (v—vh)}.

leEK

Thus, Cauchy-Schwarz inequality yields

‘ < R¢(¢h,ch),v — Uy > |

Sz{am

‘E — &2 A¢p — Fi(pn) — caFa(on)
KeTp,

v — vnllx
K (31)

=5 52||[v¢h-n]||e||v—vh||e}-

leEg

We then choose, a.e. in (0,7), vy, = Rpv Clément’s interpolant [33,9], thus
there is a constant C depending only on the shape of the mesh elements such
that

o = Ruolfe < O (IIolax +11V0l3k ),

(32)
lo = Ruoll? < C1EI(Iollan + Vol ),

where AK denotes the set of triangles having a common edge or vertex with
K. Using (32) in (31) yields

| < Ry(¢n,cn)v —vp > |

1/2 1/2
§C<Zn§<> (Z(||v||zK+||w||zK)) -

KeTy, KeTy,

Since the mesh is regular, there is a constant C' depending only on the shape
of the mesh elements such that

> (lolizk + IVvlk) < C (ol +1901?)

KET,

14



Integrating (33) between 0 and T thus yields

T 2 v 2 2 1/2
<c[ (X)) (lr+iver)

T
‘/ < R¢(¢h,ch),v — Uy >
0 KeTs,

and finally, Cauchy-Schwarz inequality yields the result. O

Putting together the results of propositions 2 and 3 we can bound the error
by the estimator. For this purpose we need one more assumption in order to
control the initial error. We will assume that the initial error converges faster
than the error in the L?(0,7; H'(Q2)) norm. Thus, there are two constant
C > 0 and r €]0, 1] independent, of A such that

G- O+ =) O < Cr" [ (9@ +19 () ). (34)

Remark 4 As in remark 1, let us discuss assumption (34). Assume for in-
stance that optimal error estimates are available. For instance if ¢y and cy are
in H*(Q)) and since we choosed ¢p(0) = rpdo, cn(0) = rheo, then the initial
error in the L?(Q) norm is O(h?) whereas the error in the L?(0,T; H(Q))
norm is properly O(h). Then (34) holds with r = 1.

Theorem 5 Assume that (10), (11), (12), (15) and (34) hold. Let ¢, ¢ be the
solution of (8) (9), let ¢n, cn be the solution of (13) (14) and let n2%, u% be
defined by (28) (29). Finally, let My be defined by Ma = || Dy||peo(w2). Then,
there is a constant C depending only on the shape of the mesh elements such
that, for h sufficiently small, we have

e?2D?

T T
& [ IV@ =l + Gy [ 19— enl? -
1 (T 2 T
SC(?/O 277%4‘28—]\/[22/0 ZM%{)

KETy, KETy,
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PROOF. Putting (30) in (18) yields

g2 (T , &D? (T )
T V@ =60l + G [ 19— el

< 316 = 8O + b~ O

+0{ (/ > nK> v (/ (||¢_¢h||2+||V(¢_¢h)”2>>1/2 (36)

KeTy

+ (/ P ) (/OT(||C—Ch||2+||V(c_ch)||2)>1/2},

where C' depends only on the shape of the mesh triangles. Using (15) and (34)
yields, for h small enough :

T 2p?2 T
2 ||v<¢—¢h>||2+jM2; | Ive=el?

< C{ ( ; KXEJT nK) (/OT V(6 — ¢h)||2> " (37)
2 1/2 T 1/2
+ ﬁ (/0 > uK> (/0 ||v<c—ch>||2) / }

KeTy,

We conclude by using Young’s inequality.

5 A Lower bound

In order to prove that the error estimator is bounded above by the true error,
we proceed as in [6,5,19] and introduce the error estimators 7jx and jix defined
by

~2 2 a¢h 2 ?
e = | K| | Tl Bt — " Ay — Fi(dn) — cnFo(on)

+3 ZZ HENZE)
cEx
2 . (39)
ﬂ%{ = |]{|2 (HK (a—th DlACh —_ le (DQ(Ch,¢h)V¢h)>>
2 3 162 (e + 1(Do(en 61T 0n) -m]
ZeE

Here Ik (resp. I1;) is the L?(K)-projection (resp. L?(f)-projection) onto the
constants. In the following lemma, we prove that the error estimators nx and

16



g are bounded by 7x and [ig, respectively.

Lemma 6 There is a constant C' depending only on the shape of the mesh
triangles, such that, for all K € T, we have

ny < C<77§( + b ||V (% — &’ A¢y — Fi(¢n) — ChF2(¢h)>

K

% — &? Ay — Fi(én) — caFa(on) )

K

pk < C<ﬂ§< + hi |V <% — Dife = div (Da(er, ¢h>v¢h)>
K (39)
den _ D, Acy, — div (Da(cp, on)Von)
ot K
+ Y 162V (De(cn, ) Vn - n)],

teEK

I[D2(ch, dn) Ve, - n]||£>.

PROOF. Let us start with the first estimate of (39). Since the mesh is reg-
ular, there is a constant C' depending only on the shape of the mesh elements
such that h% < C|K| and therefore

e < C (T + K10k (6n,n)) (40)

where we have set

ot
N / (HK (8% e*Agn — Fi(¢n) - chFQ(gbh)))Z :

From standard interpolation results on Ilg, there is a constant C' depending
only on the shape of the mesh elements such that, for any f € H'(K) we have

O (Pn,cn) = /K <% — ?A¢y — Fi(¢n) — ChF2(</5h)>

[ £ = W = [ (F =T )f < Chil| Vil

so that

5K(¢h, Ch) < Chg

v (% — & A¢p, — Fi(¢dn) — ChF2(</5h)>
B

K

—e*A¢p, — Fi(on) — cnFa(on)

K

17



The above estimate in (40) proves the first estimate of (39).

We proceed in the same manner to prove the second estimate of (39). We have

pi < C( + [K |6k (¢n, cn) + > el ¢h,0h)) (41)

EEEK

where 0g (dp, cp) is now defined by

2
Or (Pn,cn) = / <% — D1 Acy — div (Dy(ch, ¢h)V¢h)>

ot
2
_/ (HK <% — Dy Acy, — div (Dy(cp, ¢h)V¢h)>> ,
and 6,(¢n, cn) by
2
8e(Pn,cn) = /[ 2 (Chy n) Vo - n]
2
— [ [1Ds(er, 60) 61 m)]

From the interpolation properties of I, there is a constant C' depending only
on the shape of the mesh elements such that

Ok (¢n, cn) < Chg

0 .
\Y (% — Dy Acy, — div (Do(ch, ¢h)v¢h)>
‘ ach

ot D, Acy, — div (Dy(ch, 1) V)
From the interpolation properties of II,, there is a constant C' depending only
on the shape of the mesh elements such that

K

(42)

Se(@n, cn) < CIL [V (Da(cn, @) Ver - )]l I1D2(ch, o1)Vn - mlll,

The above estimates in (41) yields the second estimate of (39). O

We now prove a result similar to lemma 2.3 in [19], see also theorem 3.2 in [6].

Lemma 7 There is a constant C' depending only on the shape of the mesh
triangles such that, there are two functions v, w in L*(0,T; H'(Q)) satisfying,

18



forall K € Ty

2 a¢h 2 ’
o K| (HK < 5% A¢y — Fi(ép) — ChF2(¢h)>>

—/ Ik <8¢h e2A¢y — Fi(én) - ChF2(¢h)> v
o 3 162 (2 [Vén - m])” Z/ (Vs -],

LeEK leEK

2
[ ‘K‘Q (HK (% — DlACh —_ dZU (DQ(Ch, ¢h)v¢h)>>

(43)
— / My <% — Dy Acy, — div (Dy(cp, ¢h)V¢h)>

o 167 [(DiVer + Wu(Do(en, 60)V61)) -n]

leEgk

= % [|(P:Ven+ TeDatcn, 0wV ) -n] w,

leEK
o [vllk < CIK" 7k, |wl|x < C|K|"?fix,

PROOF. We proceed as in [6,5,19] and choose, for all (z,t) € K x (0,7) :

v(z,t) = Co(t

(O)¢x(z) ; ()2, ()
w(z,t) = Do(t)¢x (v) ; ()¢, ()

where g is the usual bubble function attached to K and %)y, is the bubble
function attached to edge ¢;, © = 1,2, 3. Inserting the above expressions for v
and w in the second and fourth equation of (43), we obtain

422 [V - n)
o, Y
42 |(D1Ven + Le(Dalen 1) V6) ) -]
Je, Ve, ’

C; =

D; =

19



for i = 1,2, 3. Then, the first and third equation of (43) yields

KPP (S8 = <26, ~ Fi(on) = enFaln)) ~ T, Culi o
Co = Tt )

K[2TT (% — DyAcy — div (Ds(cn, ¢h)v¢h)> — 55Dy [t ()
Po= [

Using the properties of bubble functions, there is a constant C' depending only
on the mesh regularity such that

C2+C?<Ci% and D]+ D?<C,

and we obtain the last two estimates of (43). O

We now prove that 7 and jigx are bounded by the error.

Lemma 8 There are two constants Cy and Cy independent of h such that, for
all K € Ty, we have

> ik < Cietl| V(6 — on)ll?

KeTy,
a 2
o (Ha(aﬁ— o) + 16 = énlP + e - ch||2)
o (96n ’
+Cy Y hx |V o ¢ Agp — Fi(pn) — cnFa(on) ;
KeTy, K
> jik < CiDY|IV (e = e) | + Cull Dall} e ez IV (6 — 60|12
i (44)
+Cs (lign = ol* + llew — c?)
8 2
+ Cyh? a(c —¢n)
4 ach . 2
+ Cy Z hK Vv E — D1 Acy, — div (DQ(Ch, th)Vqﬁh)
KeTy K
+C Y [PV (Dalen, 6n)Vn - n)]Il; -
KeTy LeEK

Moreover, C; depends only on the shape of the mesh triangles.

PROOF. We only prove the first estimate of (44), the second being obtained
in the same manner. Using the results in Lemma 7, there is a function v €

20



L*(0,T; H'()) such that

— / <8¢h e2A¢p, — Fi(dn) — ChF2(¢h)> v
+ S / >[Vén - n]v + Sk (dn, cn),

ZeE

where 0g (dp, cp) is defined by

Ok (dn,cn) = —/ (I —Tig) (% — &’ Adp — Fi(¢n) — ChF2(¢h)> v

_ _/ (I — k) <8¢h 2A¢y — Fi(on) — chFQ(qSh)) (I —Tg)v.

Integrating by parts and summing over the triangles, we have

=y / (—v 2V - Vo — Fi(ép)v — chF2(¢h)u>

Ke?;L KeTy,
+ Z 5K(¢hach)'
KEeT,
Using the weak form of (1), we then have
G — )+ €V (pn — ¢
L= 2 (G svia-o
- (R60) = R0~ (Foon) — cFa(0)0) + T Gl an).
KeT,

Using Cauchy-Schwarz inequality, the fact that F; and F3 are smooth bounded
functions, and that 0 < ¢(x,t) < 1, there is a constant C' independent of A
such that

> ik <€t Y IV(en =)k Vol + X (H— bh —

KeTy KeTy KeTy,

+Cllé— ballxc + Clle — chnx)nvnK s Z S (m 0n).

KeTy,

From standard interpolation properties of Il x, there is a constant C' depending
only the on the shape of the mesh triangles such that

Ox (s cn) < Chig IVll&

K

\V <% — 2A¢, — Fy(¢n) — ChF2(¢h)>

Using the last two estimates of (43) in the two above estimates together with
Young’s inequality yields the first estimate of (44). O
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Before stating the main results of this section, we need a convergence assump-
tion similar to (15) and strong stability assumptions. We assume that there
are two constant C' > 0 and s €]0, 1] independent of i such that

£ o]zl

<ow [ (196 = gl + 19 (e = en)lP),
o) Xk

H— C—Ch

<% — 2 A¢p, — Fi(dn) — ChF2(¢h))

0 KkeT; ot K
9n _ 2png, — F F. < Ch**s
5 ¢ Gn — F1(dn) — cala(dn)| < ;
K
4 a¢h 2 ’ 245
o [ 5 m |V (B - ab - Fiton) - akon) || < cn
KeTy, K
0
/ Z h3 (% — DlACh — le (DQ(Ch, ¢h)v¢h>
KeT, K
% — DlAch — le (DQ(Ch, ¢h)V¢h S Ch2+s,
K
/ 4 6ch 2 2ts
Z h - DlACh —div (DQ(Ch, ¢h)V¢h < Ch s
KeT, K
T
o [ 5 3 WPV Dalen 6)Von - )l NDa(en, )Yy - n]ll, < ChE*,
KeTy LeEKk

./oT S > P IIV(Da(ch, ¢n)Vén - m)][l; < Ch**.

KeTy LeEK

(45)

With the above assumptions we can now prove the following theorem.

Theorem 9 Assume that (15) and (45) hold. Let ¢, c be the solution of (8)
(9), let ¢n, cn be the solution of (13) (14) and let n%, u3 be defined by (28)
(29). Finally, let My be defined by My = || Dy||poo(r2). Then, there are two
constants Cy and Cy independent of h such that, for h sufficiently small, we
have

1

€2 Jo

/ZMK

KET KeTy,

(46)
SGG%HWWWMQ

2D2
/ IV(c - ch)||2> + Coh2*.

Moreover, Cy depends only on the shape of the mesh triangles.

22



PROOF. For each K € 7, we consider the term

1, &

6_2771( + @H’Ka

use Lemma 6 and 8, sum over K € 7, integrate between ¢t = 0 and t = T,
use the assumptions (15) and (45), and obtain the result for A small enough.

Remark 10 Let us discuss assumptions (45). Assumption one is, to some
extend, similar to (15). This assumption is valid for instance when the error
in the H(0,T; L?(Q)) is bounded by a constant times h? (this result is available
in Theorem 6.3 of [34] for the heat equation, for sufficiently large times and
provided the solution is smooth) and when the error in the L*(0,T; H'(2))
norm is greater than a constant times h (see Remark 1). Assumptions two to
five hold whenever stability estimates can be proved on V% and Va—gf (note
that the use of an inverse estimate is not sufficient). The last two assumptions
require even stronger stability estimates. Proving all these stability estimates
is mot an obvious task and is beyond the scope of the present paper.

6 Numerical study of the effectivity index

In the sequel, we check that our error estimates are sharp for a realistic test
case and propose a numerical study of the effectivity index. Before testing the
quality of our error estimator, we propose a time discretization for solving (13)
(14). Let J be the number of vertices of the triangulation 7y, let 1, @9, ..., ¢
be the usual hat functions corresponding to the vertices P;, P, ..., Py, we have :

J

(7, 1) = _E_:lﬂﬁj(t)%(iv), cn(w:t) = 3 ¢i(t)p;(@),

=1

for all z € Q, ¢t € (0,T). The differential system corresponding to (13) (14)
then writes

M f(;(t) + &7 A(t) = F((1), (1)),

Mé(t) + Dy A&(t) = D(@(1), &(1))6(0)-

Here ¢(t) and &(t) are the vector of components #;(), cj(t), respectively; M, A
are the usual mass and stiffness matrices, respectively; F' is the vector contain-

ing the nonlinears terms of (13) and D(¢(t), é(t)) is the matrix corresponding
to the nonlinear term of (14), namely :

—

Dy(d(t), ) = | Dalenlt), 6n(t) Vi - Vi,
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for 2,7 = 1,2,..., J. In order to solve this nonlinear differential system, the
following semi-implicit time discretization is considered. Let N be the number
of time steps, 7 = T'/N the time step, t, = nT, n = 0,1, ..., N. Let ¢™, & be

approximations of ¢(t,) and &(t,), n = 0,1, ..., N. At each time step, we then
solve successively the two following linear systems :

Tn+1 _ n . o4
M¢ - ¢ +82A¢n+1 — F(¢n,én),

-n+1_én

MCT + D AF! = D(gMY, &) gt
Thus, at each time step, two linear systems are to be solved in order to ob-
tain ¢" and & According to [25], this scheme is convergent, the error in the
L>®(0,T; L*(Q2)) discrete norm is O(h? 4 7), the error in the L*(0,T; H'())
discrete norm is O(h + 7). We could proceed in the same manner to prove
similar results for the semi-discrete problem (13) (14).

In order to test the quality of our error estimator, we consider a test case for
which the exact solution to the problem (1)-(4) is known explicitly. For this
purpose we choose 2 to be a square with side £ = 3.6 1075, we set the final
time T = 10~° and we add right hand sides to equations (1) (2) and compute
them so that ¢ and c are given by

é(z,t) =0.0 if r(x) — vt — Ry < —0,
r(:r)—vt—R0>2
)
=ex if —d<r(z)—vt—Ry<O,
P <T(x)—vt—R0>2 (=) ’
-1
J
=1.0 else,

and c(x,t) = 0.25 4 0.5¢(z,t). Here r(z) is the distance to the center of the
square ©, v = 0.1, Ry = 6 1077 and § = 5 10~ ". Thus the isovalues of the
solution are expanding circles centered on {2, with a boundary layer of width 6.
The physical data corresponding to the parameters introduced in section 2 are
reported in table 1. The polynomials g and p are defined by g(¢) = ¢*(1 — ¢?)

and p(¢) = ¢*(6¢* — 15¢* + 10).
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g2 My Dq 0 Um, R
1072 | 4.948 1073 | 107% | 1573 | 7.4 107% | 8.314
A LB oA | 6B w4 wB
2.3510° | 1.725 10° | 1728 | 1358 | 1.11 107 | 6.357 10°

Table 1
Values of the physical parameters introduced in section 2.

In order to avoid the error due to time discretization we select a very small
time step 7 = 5 107? (thus the number of time steps is N = 2000). We
consider uniform meshes of € into triangles such that h/¢ (the ratio between
the triangles sides and the size of the calculation domain €2) goes to zero. In
fig. 2, we have reported the error ¢ — ¢, and ¢ — ¢, in the L?(0,T; L*())
and L?(0,T; H'(Q2)) norms. Clearly the errors in the L?(0,T; L*(2)) norm is
O(h?) and the error in the L*(0,7; H'(Q)) norm is O(h) which is consistent
with assumption (15) and with the theoretical predictions obtained in [25].

100: T T T T TTT1T T T T T TTTT T T T 1rr1rrrg
€0 <>

10;_ er +
b h = 100h —
F h§30h2-

0.1F )
0.01 | gg_gég' 8
0.001 | 8
0.0001 L— et o
0.001 0.01 0.1 1

Fig. 2. Error ¢ — ¢, and ¢ — ¢, in the L2(0,7;L?(Q)) norm (eg, lozanges) and
L?(0,T; H'(Q)) norm (ey, crosses) with respect to h.

From the theoretical results of section 4 and 5, we know that the error in the
L*(0,T; H'(2)) norm is bounded above and below by some error estimator,
this being a classical result for elliptic problems [6,5,12] and linear parabolic
problems [17,19]. In order to test the quality of our error estimator we define
the two concentration effectivity indices effy and eff, by

lems) ez’

KeTy, KeTy,

effy = eff, = " 72
([ 19 =ar)

([ 1w6-ere)
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where the local error estimators 7 and pug are defined in (28) (29). In fig. 3 we
have plotted the two effectivity indices with respect to the number of vertices
J (h goes to zero when J goes to infinity), Clearly, when h goes to zero, then
the effectivity indices goes to a constant value close to 4, which shows that
our error estimators are good numerical representations of the true errors.
This value close to 4 has already been obtained experimentally by one of the
authors in ref. [21] for a Laplace problem and a nonlinear diffusion-convection
problem. From the theoretical point of view, in ref. [4,21] it is proved that the
effectivity index for a Laplace problem and a nonlinear diffusion-convection
problem does only depend on interpolation constants (thus on the shape of
the triangles), for h sufficiently small. A sharp estimate of the effectivity index
is also proposed in ref. [4] for uniform meshes and the value of 4 is within this
estimate.

10 [ T T T T TTTT T T T T TTTT | T T T T T TT I_
i effc -@— ]
eﬁ¢ + -
eff |
1 ol ol L
100 1000 10000 100000

J

Fig. 3. Effectivity index with respect to the number of vertices when using uniform
meshes.

Finally, we have reported in fig. 4 the local error ¢ — ¢y, at final time in the H*
norm and the estimator pug as a function of the distance r(x) to the center
of the calculation domain 2. Clearly, our error estimator is locally a good
representation of the true error.

1 T T T T T T 1

Fig. 4. True error (||[V(c — ¢p)||%, left fig.) and estimated error (u%, right fig.) at
final time with respect to the normalized distance to the center of 2 (r(z)/£), when
using uniform meshes.
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7 An adaptive algorithm

In this section we present an adaptive algorithm based on the error estimator
studied in section 4 and 5. This adaptive algorithm is first validated using
the same test case as in section 6. Then, this adaptive algorithm is used to
simulate the formation of solutal dendrites, as in [22].

The goal of our adaptive algorithm is, given a time step 7 = T//N, to build a
sequence of triangulations 7, 77, ..., 7" such that the estimated relative error
is close to a preset tolerance TOL, namely :

T 1/2
[ ﬂ%)

> (
D
0.5 TOL < —~ X/ <15 TOL. (47)
T
([ 1war)

Here i is the modified estimator corresponding to the interelement jumps in
IK, that is

2

=5 3 161 [(PsVen+ Dater, 60V n) -] e

leFEk

The reader should note that we have considered only the error estimator for
the solute concentration c, the reason being the following. When computing
solutal dendrites, both ¢ and c vary strongly in a small region corresponding
to the solid-liquid interface. However, the function ¢ may also vary in other
regions, whereas ¢ does not, see Fig. 5.

]

|
i

Fig. 5. Typical profiles of the phase field (left) and concentration field (right). The
phase field has values zero or one, except in the phase change region. The concentra-
tion field changes rapidly across the phase change region, but may also vary outside
the phase change region.

— .

From the numerical experiments of the previous section, we have checked that
both error estimators nx and px are good approximation of the true error (up
to a factor close to 4). Thus, if we achieve (47), we hope to control the true
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relative error

- 1/2
([ 1we-ale)
0
T 1z -
([ 1war)

A simple way to achieve (47) is , for all m = 1,2,..., N, to find a triangulation
» such that the following inequalities hold :

tn 1 rta . t
0.52 TOLQ/t Vel < D—%/ S i <15 TOLQ/t

n tn—1 KG'];L n

n
IVenll*.
-1

We then proceed as in [35,19] to build the new triangulation. More precisely,
if the above inequalities are satisfied, we go to the next time step. If the
above inequalities are not satisfied, we refine or coarsen the mesh in order to
equidistribute the local error estimator. Vertices are added or removed and a
Delaunay triangulation is generated. The process is repeated until the above
inequalities are satisfied.

As in fig. 3, we have plotted in fig. 6 the effectivity index with respect to the
average number of vertices, when using our adaptive algorithm with several
values of TOL. Clearly, the effectivity index goes to a constant value which is
again close to 4.

10_ T T T T 1717171 T T T T T T T TTTT

eff L i

1 ol ol L
100 1000 10000 100000
J

Fig. 6. Effectivity index with respect to the average number of vertices when using
adapted meshes (TOL = 1, 0.5, 0.25, and 0.125).

In order to check the efficiency of our algorithm, we have plotted in fig. 7 the
true error with respect to the average number of vertices J, when using both
uniform and adapted triangulations. The average number of vertices required
to reach a given level of accuracy is much lower when using adapted meshes.

As in fig. 4, we have reported in fig. 8 the local true and estimated errors
with respect to the distance to the center of €. Clearly, the estimated error is
equidistributed over the calculation domain.
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]_0: T T T T TTTT T T T T T T T T T TT1TQ

quasi-uniform {—
adapted —+ -

1 E

o _

01—l
100 1000 10000 100000

Fig. 7. Error ¢ —cy, in the L?(0,T; H'(92)) norm with respect to the average number
of vertices, when using uniform meshes and adapted meshes.

L L L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 8. True error (||V(c — cp)||%, left fig.) and estimated error (n%, right fig.) at
final time with respect to the normalized distance to the center of 2 (r(z)/£), when
using adapted meshes.

Finally, we have used our adaptive algorithm in order to simulate the growth
of an isothermal solutal dendrite. In order to take into account anisotropic
phenomena, we proceed as in [22] and modify the term £2|V¢(z,t)|? in (6) by
£2a?()|V(z,t)|?, where

a(y) =1+ a cos(4v),

and where v denotes the angle between V¢ and the horizontal axis. Here a is
the anisotropy coefficient, typical values being 0.02-0.05.

Introducing the anisotropy would obviously change the error indicators. How-
ever, from the theoretical point of view, the anisotropic model is not an obvious
extension of the isotropic one, due to the fact that the diffusion operator be-
comes strongly nonlinear, see [36]. More precisely, existence and uniqueness
can be proved for sufficiently small values of @, namely a < %

Therefore, we have also used [ix as an error indicator for the anisotropic case.
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We take the same physical parameters than those of section 6 and choose
a = 0.02. At initial time, we place a small solid region of radius 2.107 at
the center of the calculation domain Q (the side is now £ = 3.6 107°) with
concentration 0.3994, whereas the liquid region has concentration 0.40831. For
symmetry reasons, the computations are performed on quarter of the domain.
The time step is 7 = 2. 1075, the preset tolerance is TOL= 0.5. In fig. 9, we
have represented the adapted meshes, the concentration ¢ and order parameter
¢ at several times. The computation took about 5 hours on a SGI R10000
250Mhz workstation.

From the physical point of view, dendrite formation is an unstable phenomena.
From the numerical one, the results are very sensitive to the parameters used
in the simulation. As an example, we have reported in fig. 10 the final shape
of the dendrite obtained when setting the tolerance TOL to 0.5, 0.75 and
1. Clearly, when TOL is large, the solution is not precise since symmetry
(which is a consequence of uniqueness) is not obtained. When TOL decreases,
symmetry seems to be recovered (for memory reasons, we could not proceed
with smaller values of TOL). Numerical results not reported here show that
this numerical sensitivity increases when increasing M, (thus €), this being
coherent with classical results of physical stability.

Finally, it should be mentionned that an adaptive finite element method has
been used (without theoretical justification) in [37] to simulate thermal den-
drites.
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Fig. 9. Formation of a solutal dendrite. Adapted meshes (left col.), ¢ isovalues (center
col.), ¢ isovalues (right col.) at several times. First row : time 0, 3379 vertices; second
row : time 2 - 107%, 4495 vertices; third row : time 4 - 10™%, 7282 vertices; fourth
row : time 6-10~*, 10668 vertices; fifth row : time 8-107*, 14419 vertices; last row :
time 1- 1072, 18374 vertices.



Fig. 10. Final shape of the dendrite with TOL=0.5, 0.75 and 1.
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