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Abstract
We introduce a piecewise linear finite element scheme with semi-implicit
time discretization for an evolutionary phase-field system modelling the
isothermal solidification process of a binary alloy. This system can be
written in a vectorial form as a non-linear parabolic system. The conver-
gence of the scheme with error estimate is then proved by introducing a
generalized vectorial elliptic projector.

1. Introduction

The phase-field model we consider describes the isothermal solidification process
of a binary alloy. It involves the relative concentration ¢ of one component with
respect to the mixture and an order parameter ¢ called the phase-field, which
accounts for the solidification state of the alloy by taking values between 0 (in
a pure solid phase) and 1 (in a pure liquid phase). The model we study is
very similar to the Warren and Boettinger model, see Warren and Boettinger
(1995). It has been already introduced in former publications (see e.g. Kessler
(2001); Kessler, Kriiger, Rappaz and Scheid (2000); Kessler, Kriiger and Scheid
(1998); Rappaz and Scheid (2000)) and has successfully been used to simulate
dendritic growth, see Kriiger, Picasso and Scheid (2001). A recapitulation of the
modelling is out of the scope of this paper, and we will immediatly introduce the
mathematical problem. Let €2 be an open subset of R? with smooth boundary
0N and a unit normal vector v. For T > 0, the time evolution of ¢ = ¢(x,t) and
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c=c(z,t) for z € Q and t € [0, T], is governed by the following equations :

(% MAG+ R0 +eR(e) QX (0.T),
P! % = div (D1(¢)vc+ Ds(c, ¢>)V¢) in 2 x (0,T),
%:2_520 on 99 x (0,7,
[ ¢(0) = do, c(0) =co in &,

where M is a positive constant. The nonlinear functions F;, D;, 1 = 1,2 in
Problem (P) satisfy the following assumptions :

(H) - Fi, F5 and Dy, Dy are Lipschitz and bounded functions.
- D1 is a positive function bounded below by a positive constant D;,.

The aim of this paper is to analyse a numerical scheme for (P) based on a
finite element space discretization and a semi-implicit time scheme. For technical
reasons, we restrict ourselves to the bidimensional space case. We obtain optimal
error estimates for the scheme we consider and we prove that the scheme is
unconditionaly convergent. Error estimates for finite element methods have been
performed in the past for thermal pure element phase-field models (see Chen and
Hoffmann (1994)), but the nonlinearities in such models are different from those
of the solutal model we consider in this paper. We also mention Barrett and
Blowey (1998) where an isothermal phase separation model is described by a
coupled system of Cahn-Hilliard equations.

In order to study the convergence of the numerical scheme we first rewrite
Problem (P) in a convenient vectorial form. Problem (P) can be read as a
uniformly parabolic system for the auxiliary vectorial variable @ = (¢, ac) where
the positive parameter o has to be chosen small enough. The idea to get optimal
error estimates is mainly based on the introduction of a generalized vectorial
projector related to the vectorial form of Problem (P).

In section 2, we introduce the vectorial form of (P) and we specify the math-
ematical framework. The numerical scheme we study is stated in section 3. The
main result of this paper is established in section 4 where an optimal error
estimate is derived. To this end, we first define in subsection 4.1 a general-
ized vectorial elliptic projector for which some error bounds are obtained. This
projector will be useful in the next subsection 4.2 to prove the convergence
result. Finally, we present in section 5 some numerical results that confirm the
theoritical prediction.

2. Mathematical problem in vectorial form

We transform Problem (P) to a vectorial form by defining the vectorial variable
@ = (¢, ac)” where « is an arbitrary positive parameter that will be fixed later.
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Then Problem (P) reads as a vectorial problem of the form : Find (z,t) € R?
such that

M —av(p@vi + F@ i Qx(0.7) (1)
(Py) %’ — 0 on AN x (0,T), (2)
’l_j(()) — 'L—L‘O in Q, (3)

where the 2 x 2 triangular matrix D is given by :

D)= (aDiw(c,aﬁ) Dlo(qb)) and  F(il) = <F1(¢)_BCFZ(¢)>

and where div (D(#) Vi) := ) 9 (D(a') 0 *).

i—192 833, 83:1 Y
Assumption (H) related to Problem (P) leads to the following assumptions for
the vectorial problem (Py) :

(A1) F'isa 2-vector of Lipschitz bounded components. We call £ the maximum
of the components’ Lipschitz constants.

(A2) D is a 2x2 lower triangular matrix whose coefficients are given by di; =
M > 0, dip = 0, dyy = O!DQ(’L?) and dyy = Dl(’L—l:) > D, > 0. The
functions D; (@) and D, (%) are Lipschitz bounded functions. We call D,
the maximum of the components’ absolute bounds and £p the maximum
of the components’ Lipschitz constants.

Since M > 0 and D, (%) > D, > 0 for all & € R?, we can choose the parameter
a small enough for D(#) to be uniformly positive definite. Indeed, if we choose
a < 2(MDy)Y?/| Dy |, where |Dy |, = supgege |D2(%)|, then it can be shown
that 7 D(@)7 > min(M, D,)oT ¢ for all 4, ¥ € R?. So in addition to (A1) and
(A2), it is plainly justified to make an extra assumption on the positiveness of
the matrix.

(A3) The matrix D(@) is uniformly positive definite, i.e. there exists a constant

D,, > 0 independent of @ such that o7 D(#)v > D, for all @, ¥ € R?.
Remark : As we pointed out previously, assumption (A3) is fulfilled if « is chosen
small enough.

Now, we recall some basic properties about vectorial calculus that will be
useful later on. First, throughout this article we shall denote by (:) the double
scalar product in R? ® R?, such that

AvE:va =3 3 4, 0k GgeR @)

ox; O0x;
i=1,2 j,k=1,2 ¢ ¢
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It is then clear that for all matrix A € May(R) with bounded components,
we have

/ AVT : Vi = / ATV VE,  for all 7w € H(Q,R?). (5)
Q Q

Furthermore, for any matrix A € Myyo(R) with bounded and Lipschitz compo-
nents, the following Green’s formula

/AVﬁ:Vzﬂz—/div(AVﬁ)-u?—i—/ 4% (6)
Q Q 14)

Q 81/

holds for all 7 € H?*(Q,R?) and @ € H'(Q, R?).

From the analytical point of view, the well-posedness of the original problem
(P) has been investigated in Rappaz and Scheid (2000), under assumption (H).
These results applied to the vectorial form lead in particular to an existence
and uniqueness result for (Py). Under assumptions (A1)-(A3) and if the initial

0
data @y = (uo1,u002)T € H?(Q) x H'(Q) satisfy % = 0 on 09, then for

any T > 0, there exists a unique solution @ = (u;,us)? of Problem (Py) such
that u; € CO([0,T]; H*(Q)) N H' (2 x (0,T)) and upy € CO([0,T]; HY(Q)) N
H' (0,T; L()).

Finally, let us indicate that the solution # satisfies the following variational
formulation :

gu -6+/D(6)Vﬁ:VU=/ﬁ(E)-6, vie H(Q,R), aete(0,7)  (7)
@(0) = . (8)

This variational formulation will be useful for the expression of the numerical
scheme in the next section and consequently for the error analysis.

3. Numerical scheme

From now, we shall assume that the domain €2 is a convex polygonal subset of
R?. The case when € is a smooth convex domain can be treated as in (Ciarlet,
1978, 4.4) or Strang and Fix (1988), but we do not consider it for the sake of
simplicity.

We approximate Problem (P),) by a IP;-finite element in space, semi-implicit
in time discretization. To begin with, let us introduce some notations. We denote
by 7T a regular triangulation of the domain €2 (see Ciarlet (1978)), where h is
the diameter of the biggest triangle in 7, and we define the space V;, = {v, €
C°(Q);  wnlk € Pi(K),VK € T} and V)2 = V}, x V;,. For a given integer N > 1,
we denote by 7 = T/N the time step and by ¢" = nr, the current time for
n = 0,...,N. We consider the approximation #} of the exact solution (t").
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For the rest of the article, we choose an initial data %, belonging to H?(2; R?)
so that it is a continuous function. We denote by 7, the Lagrange interpolation
operator on V}, x V}, and note that 7 is well defined. Based on the variational
formulation (P)), we now introduce an approximate problem for 4} :

Forn=1,...,N, find 4} € V2 such that for all @, € V}?,

ar — gt -
Py [P [ DV va = [ Faa, O
Q T Q Q
17:(,1 = Th’ljo, (10)

where 0 € [0, 1] and the vector wW¢" is defined from @} = (uf,, u%,)” and @}~ by

n—1 n
U—J'On _ ( (1 - 9)u1h 1 + aulh ) ] (11)

R = n—
Uap,

It is easy to see that for all § € [0, 1], the discrete problem (P ;) has a unique
solution. This is due to the fact that the matrix D(%) is lower triangular and
that the component (D(@));; = M is a constant. So, at first, from @} ~' =
(uly b us )T we determine ufy, by solving the equation (9) with @, = (vp, 0)7;
then since the second component of w?" does not depend on @} at all, we
determine u3, by solving the equation (9) with 7, = (0,v;)T. Also, for any
6 € [0,1] we do not have to solve nonlinear algebraic equations at each time
step, while still granting inconditional convergence, as we will see in the next
section. Lastly, note that in the approximate problem (P, ) we consider, no
numerical integration is taken into account.

4. Convergence result

The following theorem states the main result of this paper, concerning the
convergence of the solution @}, of the discrete problem (P, ;) to the exact solution
@ of the continuous problem (Py). We need some extra assumptions on the
triangulation of (2. We assume that

(A4) The triangulation 7, verifies an inverse assumption i.e. there exists a
constant 3 such that VK € T,, h/hgx < [, where hg stands for the
diameter of the triangle K.

THEOREM 4.1: Let assumptions (A1),(A2) and (A3) be fulfilled. Suppose that
the triangulation Ty, satisfies the inverse assumption (A4). If the solution i of
Problem (Py) belongs to H'(0,T; H*(Q,R*) N WH*(Q,R?)) , then there eist
two positive constants C' and 7 independent of h and 7 such that for 0 < 7 < 7%,

— 2
omax [d(t") — @, |2 qpe) < C(R7+17). (12)
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The proof of Theorem 4.1 will be given on subsection 4.2. It is based on the
introduction of a generalized vectorial elliptic projector, which is defined and
studied on the next subsection 4.1.

Notice that we don’t know if the solution of Problem (Py) is in general
sufficiently regular to satisfy the hypothesis of the above Theorem. A general
study of regularity has not been done and is out of the scope of this paper.

4.1. A generalized vectorial elliptic projector

We will introduce a vectorial elliptic projector which is a generalization of
the scalar elliptic projector used for instance by Thomée (1991). Through this
section, we deal with a 2 X 2 matrix which is not assumed to be triangular
nor symmetric. In particular results of section 4.1.2 about the properties of the
vectorial projector is valid for a general 2 x 2 matrix.

Definition 4.1: Let D(x) be a 2x 2 matrix of bounded functions, positive definite
uniformly with z € . We define the generalized vectorial elliptic projector
(GVP)

™ HY QLR — V2

U l—)ﬂ'hﬂ:

by the relation / DV (i@ — mpi) = Vi, —}-/(ﬁ— i) - U, =0, Vi, € Vj. (13)
" 0

The Lax-Milgram lemma ensures that 7, is well-defined. Note that the second
term in the left-hand side of equation (13) is necessary to account for Neumann
boundary conditions for # in our problem.

4.1.1. Time-dependent GVP

We now consider a time dependent matrix that will depend on both space x €
Q and time ¢t € [0,7], and we define a time dependent generalized vectorial
projector. We will assume that :

(H1) D e C° ([0, T], L (Q, M2><2(R)))

(H2) D is uniformly positive definite i.e. there exists a positive constant [
independent of z and ¢ such that ?D(x,t)g > BELE for all € € R and
z €, tel0,T].

We introduce a time dependent bilinear form in H'(Q, R?) defined for all ¢ €
[0, T by
7,7 € H'(Q,R®) — a,(i, 9) :/D(t)Vﬁ:VﬁJr/ﬁ-ﬁ, (14)
0 Q

Under assumptions (H1)-(H2), it is straightforward that the bilinear form
as(.,.) is coercive and continuous on H'(Q, R?) uniformly with ¢, i.e. one can
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exhibit coercivity and continuity constants which are independent of t. Lax-
Milgram’s lemma then allows us to generalize Definition 4.1 as the next defini-
tion.

Definition 4.2: Under assumptions (H1)-(H2), we define the time-dependent
generalized vectorial elliptic projector (GVP)

o o CU([0,T]; H'(Q,R?)) —L>(0,T;V)
U i—)ﬂ'h’lj
by the relation — a; (@(t) — mpi(t), vh) =0, Vi, € V2, Vte[0,T). (15)

4.1.2. Properties of the time-dependent GVP

We will now give some properties for the time-dependent GVP. We derive error
bounds that will be key ingredients for the a priori estimates on section 4.2 for
the proof of Theorem 4.1.

PROPOSITION 4.1: Under assumptions (H1)-(H2), if in addition D €
L™ (0, T; WhH™ (2, Mayo(R))) and @ € C°([0,T]; H*(,R2)) then mpi €
C®([0,T]; V) and there exists a positive constant C independent of h, such that

|@ — il ||L°°(O,T;L2(Q,]R2)) + h @ — mpi ||L°°(O,T;H1(Q,]R2)) < Ch?. (16)

PROPOSITION 4.2: Under assumptions (H1)-(H2), if in addition D €
L™ (O, T, Wl,oo (Q, M2x2(R))) ﬂHl (0, T, LOO(Q, MQ)(Q(R))) and U €
H'(0,T; H*(Q,R?)) then myi € H'(0,T;V??) and there ezists a positive
constant C' independent of h, such that

<Ok (17)
L*(0,T;H' (2,R?)

a L
-l-hHa (@ — mptd)

H u — 7Thu
L2(0,T5L2(92,R?))

PROPOSITION 4.3: Let assumptions (H1)-(H2) be fulfilled. Suppose that the tri-
angulation Ty, satisfies the inverse assumption (A4). Ifd € H (0,T; H*(Q,R?))N
L™ (0, T; Wh=(Q,R?)) then there exists a positive constant C independent of h,
such that

|Vt HLOO(O,T;LOO(Q,]R?)) <C. (18)

Remark : Propositions 4.1 and 4.2 are still valid in space dimension 3. However,
Proposition 4.3 is not available in space dimension greater than 2. Indeed, the
constant C in (18) depends on h'~%?2 where d is the space dimension.

Now we deal with the proofs of the three propositions.
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4.1.8. Proof of the properties of the time-dependent GVP

We will need a lemma for proving the properties of the GVP. This result extends
a regularity result from Grisvard (1985) from scalar elliptic problems to elliptic
systems.

LEMMA 4.1: Let A € W (Q, Myy2(R)) be a uniformly positive definite matriz
and letf € L*(Q,R?). Then the solution @ € H (2, R?) to the equation

/Avw:vm/w-a:/f*-a Vi € HY(Q,R?), (19)
Q Q Q

—

0
is actually in H?(Q,R?) and satisfies 8—w = 0 a.e. on 0N2. Furthermore, there
v

exists a constant C' independent of f such that

I | 2oy < C| £ (20)

L2(Q,R?)

Proof of Lemma 4.1

Let f = (f1, f2) € L%(Q) x L2(Q). According to Lax-Milgram’s lemma, there
exists a unique solution @ = (wy,ws) € H'(Q)x H'(Q) to the equation (19). We
note A = (ai;)1<ij<e With a;; € WH(Q). Since A is uniformly positive definite,
there are three positive constants (3;, ¢ = 1,2, 3, such that 0 < 31 < a1 < B2
and ai1a99 — a12a91 > (B3 > 0. Under the lemma’s assumptions, Grisvard’s result
(Grisvard, 1985, Thm. 3.2.1.3) tells us that there exists a unique wy € H%(Q)
satisfying homogeneous Neumann boundary conditions such that a.e. in €2

—div ((agg - @a/21> V?I]Q) + QI)Q
i/ . (21)
= fo— a_w(fl —w) +V (E) (@11 Vwy + an V).
11

aii
For the same reasons, once w, € H?({2) is given, there exists a unique w; €
H?(Q) satisfying homogeneous Neumann boundary conditions such that a.e. in
Q
—div (CL11V’U~)1) + ’12)1 = f1 + div (azlvmg) . (22)

Let v € H'(Q). If we subtract a weak form of (21) with v as a test function,
from equation (19) with ¥ = (a12/a11 v, —v), we find that

/ <a22 - %021> V(U)Q - 1])2) -Vou + (UJQ — ’lIJQ)U = 0, Yv € HI(Q) (23)
Q

an

If we subtract a weak form of (22) with v as a test function, from equation (19)
with 7 = (v,0), we find that

/ a11V(w1—1I)1)'VU+6121V(11}2—TI]2)'V?)'f‘(wl—ﬁ]l)?) = 0, Yo € HI(Q) (24)
Q
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By first chosing v = wy — W5 in (23) and then v = w; — W, in (24), we conclude
that wy = w; and wy = Wy. Therefore @ = (wy, wy) € H%(Q,R?) and W satisfies

—

—div(AVW) +d = f  ae. in(, (25)
ow
o = 0 a.e. on 0f2. (26)

Using the assumptions on the matrix A, it follows that there exists a constant
C > 0 such that

) (27)

On the other hand, we obtain from (19) with & = 1 that there exists a constant
C > 0 such that

|AG | g2y < C (Hu? | i1 or2) + Hf

o <C |7 28

|| (2,R2) f L2(R?) (28)

Combining (27), (28) and theorems 3.1.3.3 and 3.2.1.3 from Grisvard (1985),
we find the estimate (20) stated in the lemma. [

Remark : Note that this proof could be generalized to an elliptic system with
more than two unknowns.

Now, we are able to proove the three propositions.

Proof of Proposition 4.1

e We note rj, : C°(Q2, R?) — V2 the P;-Lagrange interpolation operator on V},. It
is well known (see e.g. Ciarlet (1978)) that the interpolation error on H' norm
can be estimated by

”’U_j — Th’ll_} HLQ(Q,RZ) +h ”ﬂ_f — T’h’U_j ”Hl(Q,lRZ) < Ch2 ‘U_j‘HQ(Q,Rz); VY € HQ(Q, RZ),

(29)

where |.| m2(or?) denotes the H 2 semi-norm and C is a positive constant inde-
pendent of W and h.

With the previously introduced notations, we can write that for all ¢ € [0, 7],
using first the coercivity of a;, then Definition 4.2 and finally the continuity of
g,

Bli(t) — maii(t) [ < ay (@(t) — mati(t), () — mpdi(t)) (30)
< ap () — myid(t), @) — raid(t)) (31)
< nlat) = mpit) | g [E@) — rad(t) | (32)



D. Kessler and J.-F. Scheid: Finite elements for an isothermal phase-field model 10

where 3 and 7 are positive constants. Using the interpolation error estimate (29),
we find that
[4(t) = mat(t) | oo o, (0 r2)) < Cih, (33)

where Cy depends on @ |« (o 7, p2(0.r2)) 2nd is independent of A.

e For the L2-error estimate, we use Aubin-Nitsche’s technique, by introducing
the dual problem to the definition of 7, (t). We define, for a fixed ¢ € [0, T, the
auxiliary function @ € H'(§, R?) as the solution to the adjoint equation :

aAiﬂD::L(ﬂﬂ—wmﬁﬁn-ﬁ, for all 7 € H'(Q, B?). (34)

Once again, Lax-Milgram’s lemma ensures that « is well-defined. Using as-
sumption (H2), the regularity of D and %, and Lemma 4.1 with A = DT, we
obtain that @ € H?(Q,R?) and that there exists a constant Co independent of
i and h, such that

W22y < Co [0 — Tl | 12 oy - (35)

From equation (34), Definition 4.2 and the continuity of a;, we find that

|@(t) — ma@(t) |2 = ar (@(t) — mati(t), T) (36
= a; (U(t) — mpu(t), W — rpw) (37)
< nfat) — mat(t) | g |0 = ot | 1 (38)

Using result (33), interpolation estimate (29) and the dual H2-bound (35), we
find that there exists a positive constant C3 such that

[@(t) = ma(t) | 20,0y < Cal?, (39)
and since this last inequality is valid for any fixed ¢ € [0, 7], we obtain
|@ — i ||L°°(O,T;L2(Q,R2)) < C3h?, (40)

where C3 depends on @ | ;e (g 1,52( z2)) 2nd is independent of h.

e Finally, using the coercivity of a(.,.), Definition 4.2 for 7, Hélder’s inequality
and the above estimates (33), it can be easily proved under the proposition’s
assumptions that

lim |y @(t) — mrii(s) | g1 ey = 0, VE € [0,7T7, (41)

Le. that m,@ € C° ([0, T]; V}?). [ |

Proof of Proposition 4.2
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o We take advantage of the fact that V}, is a finite dimensional space. Let’s call

m;i(t) for i = 1,...,2ny, the coordinates of m,@(t) in a basis of V;? defined by a
set of linearly independent elements {11, .., %9, }, where n, is the dimension
of Vh; i.e.
2np,
mil(t) = Y mi(t)3 (42
i=1
Definition 4.2 can then be translated as :
AWF() =b(t),  Vte[0,T], (43)
where  7(t) = (m; (t))1<j<2nh ,

Bt = (bk(t)z [ pwviw: vi+ [ - w) and

Alt) = (akj(t) = /QD(t)Vl[;j PV + /QJJ 1[;,6) 1<k i<,
<kj<2ny,

By the existence and uniqueness of 7(¢) (Lax-Milgram’s lemma), we know that
A(t) is invertible for all ¢ € [0,7] and we get

7(t) = A N)b(t), Vi elo,T]. (44)

Since H*(0,T) C C°([0, T]), and A(t) is invertible for all ¢ € [0, T], it is clear that
b € HY(0,T;R™) and A™' € H'(0,T; Moy, xom,(R)), and therefore
7€ HY(0,T; RQ"h). Thus we have that m,@ € H'(0,T;V}?).

e We now differentiate equation (15) with respect to ¢ and obtain

D)V (if(t) — mail(t)) : Vi + / Dt () — mi(t)) : Vi
@ P (45)
+ / 5% (u(t) — mpii(t)) - v = 0, for all 7, € V2, a.e. in (0,7),
Q

where D'(t) stands for the matrix of the time derivatives of the components of
D(t).

With similar steps as (29)-(33), it is then easy to prove that

< Cyh, (46)

L2(0,T;H' (Q,R?))

H u—whu

and

where  Cy depends on @] (g7 m2(0r2) H e
L2(0,T;H?(2,R?))
| D" (| 2(0,7;1.5 (9, M3,y DU is independent of A.
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e In order to get L2-error estimate, again we use Aubin-Nitsche’s technique. This
time we define w(¢t) € H' (2, R?) as the solution to the adjoint equation :

—;—»

(T, W(t 315 — mii(t))-v, V&€ H'Y(Q,R?), ae.te(0,T). (47)

Thus @(t) is well-defined a.e. in (0,7") and applying Lemma 4.1, we find that
w(t) € H*(Q2, R?) and 9ut) _ 0 a.e. on 05, for a.e. t € (0,T) and that there

exists a constant C5 > 0 such that,

0

[9(t) |rr2ame) < Cs | 5y (@) — maii(?)) , aete(0,T).  (48)

12(Q,R2?)

Using (47) and (45), we find that, a.e. in (0,7,

9 o 0 Loy
|G 0 —mien | = (G 0 i), 7))
+ [ D) — mi(t) : V(@0 - )
- [ D0 - maw): Vi

(49)
Applying Green’s formula (6) with property (5) to the last term of the right-hand
side, and using the continuity of a;, we find that, a.e. in (0,7),

2

| 55 (@0 - mito)

L2(,R?) H(Q,R?)

<10 = 00 Lz (1] 57 (@0 = (1)
1D Lieqorty 1(0) — ) s s
+ /Q (VD'(t)"'Vii + D' ()T Aw) . (d(t) — mpii(t)) -

(50)
Integrating in ¢ and using the Cauchy-Schwarz inequality, we find that

2

H U — 7ThU,
L2(0,T5L%(2,R?))
0

< H’IE — ’f'h’ll_)’ ||L2(0,T;H1(Q,R2)) (77 H a (12' — 7Th’lj)

L2(0,T;H' (Q,R?))
+ ”DI ||L2(0,T;L°°(Q,M2X2)) H?I — Thi HLOO((),T;HI(Q,R?))

+ 2D oo rw oo M) ¥ 20,0502 002 18 = ThiE | Lo o712 2 -

(51)
Using then (46) and Proposition 4.1, we obtain that there exists a positive
constant Cs which depends on |D |1 7w 1.00 (0, Ms5)) PUt independent of A such
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that
2

< Cs (18 = 10 | oo sy, + B2 18 Loy )
(52)
From interpolation estimate (29) and the H2-norm estimate (48) together with

(52), we conclude that there exists a positive constant C7 independent of h such
that

H (4 — mpl)
L2(0,T;L2(,R2))

< Cr A2 (53)

H (U — mpt)
L2(0,T;L2(Q,R2))

Proof of Proposition 4.3:

Using assumption (A4), we can write the following inverse inequality in V}, (see
Ciarlet (1978), p.140) : there exists a positive constant C' independent of A such
that

[Von HLoo(Q,R?) < Ch |V, ||L2 (Q,R?) 5 Vop € V. (54)

Therefore, since m,i(t) — rpi(t) € V;2, we have for a.e t € (0,7) :
IV (muii(t) = rnti(t)) | oo o2y < Ch™ [V (mnti(t) = rati(£)) | 2 o ) (55)
<SCh([|V (mati(t) = (1)) [ 2 (0.p2)
+[V (@(t) = rai(®)) |2 opey ) (56)
Then using interpolation estimate (29) and (33), we infer that for a.e. t € (0,7)
IV (mati(t) = rati(t)) [ oo 2y < Cs, (57)
where Cj is independent of h, and depends on [ | ;o g 1. 520 r2))-

On the other hand, we can estimate a W1*-interpolation error for . For the
Lagrange interpolation operator, we have that (see Ciarlet (1978), p.121) there
exists a constant C' independent of h and @ such that, for a.e. ¢t € (0,7,

[@(®) = rni(®) i) < ClEE) lwre ) (58)

and therefore

| Vrai(t) ||Loo(Q,R2) |V (ruti(t) — d(?)) HLoo(Q,R?) + [ Vi(t) HLOO(Q,R2)

<

< (+O) [a) lwroe @z - (59)
Finally, using (57) and (59), we find that there exists a constant Cy indepen-

dent of h such that for a.e. t € (0,7)

| Vmai(t) ||L°°(Q,]R2) < |V (mp(t) — rad(t)) ||L°°(Q,]R2) + | Vrai(t) ||L°°(Q,]R2)
< Gy (60)
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Proposition 4.3 is then proved. |

Remark : For the more general case of space dimension d < 3, estimate (54)
goes actually as %2, and then rather than inequality (60), we get an estimate
depending on h'~%2. So for d = 3, the constant is not bounded with .

4.2. Proof of the convergence result

e First of all, let us remark that the GVP assumptions (H1),(H2) as well as
the regularity assumptions in Propositions 4.1, 4.2 and 4.3, are implied by the
assumptions (A1),(A2),(A3) and the regularity assumption on the exact solution
@ of (Py) in Theorem 4.1 with D = D(@). So we can define 7,4 € H* (0, T;V}?)
and use the three GVP properties for 7,4 given by Propositions 4.1, 4.2 and 4.3.

Also, from now on, |.[, will denote the norm of L?(Q,R?), @, the space-time
I

domain (", #") x Q and g"* = — / g(t)dt the average of an integrable function
T

tn—1

g on [t"~! ¢"]. Finally, let us define for n =0,... N,

ST = myd(t™) — . (61)

From the numerical scheme (9), for all ), € V2 and forn = 1,...,N, we
have :

/ (5T — 5T ) - 4+ 7 / D™ VoT - Vi, = / (maid(t") — mait ("))
Q Q Q

—

-’l)h

+ T/D(w'z")thﬁ(t") : Vi,

— Tfﬁ(ﬂyzl)ﬁh
Q

Furthermore, since both % and 7,4 are in H'(0,T; L*(Q2, R?)), we have

(62)

/Q (mpi(t™) — mp@ (" ")) - Oy = /Q(Whﬂ'(t”) — () - T — / (mpid(t"1) — G(t"1)) - 7

Q

- / (@(t™) —a(™ ) - v,

%
= T/Q(Wﬁ—ﬁ)n Up + T od )
I A TR b qot

Now, using equation (7) of the exact problem (P)), we deduce that

90" g = / F(@) -5 — / D@V : Vi, . (64)

—

h

(63)
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Then from equations (63) and (64) together with equation (62), we obtain

/(w—aa’gl) -5h+r/D(wgn)vaaz:W
Q Q

h

0 R o L S

= 7-/ — (mpi — 1) -0, —7 [ D(@)Va : Vi
o O Q

+r / (ﬁ(ﬁ) —ﬁ(ﬁz—l)) T / D@V @(t™) : Vi, .
Q Q
(65)
Moreover, by the definition (15) of the GVP, we get for all @), € V}? :

n

/ D(@)VE : Vi, = / D(@)Vmni : Vi, + / (maii(t) — 4(t)) - Ty -
Q Q Q

(66)
Then using (66) in equation (65), we obtain that :

/ (6 — day ) - Oy +7’/ D(WM)V sty Vi,
Q Q

a — — — N —
= 7| —(mi—1u) O,+71 [ (@—mpdl) -0
o Ot Q

+7 / (D(wzn)vwha(t”) - D(ﬁ)thﬁn> - Vi,
Q

+T/ (ﬁ(ﬂ') - F—"(ﬁgfl)) - U, for all 7, € V;2.
Q

(67)
We may now choose 7, = i} in equation (67). Using assumption (A3) and

applying Cauchy-Schwarz and Young’s inequalities five times to equation (67),
we get the following inequality, valid for all &1,...,e4 >0and forn=1,..., N :

1 —n |2 1 —n—1 |2 —n (12
(5 Erreaten) ORI = 5 16 s+ (D —20) 1953

7_2

481

L7
482

2

0 . 'k 2+T
0 4des

5 (Tt — )
2

+- HD(wz")wha(tn) _ D@V
4ey 0

——n 2

T—mha F(@) — F(@™)

0

(68)

e We must now estimate the four terms of the right-hand side of inequality (68)
before using the discrete Gronwall’s lemma to obtain the final estimate of |} |.

i) The first term in the right-hand side of (68) can be immediatly estimated
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using the Cauchy-Schwarz inequality. We get :

9 i 1" D ’
= (mptl — U = u)dt| d
g (i — 1) 0 /t lat( — ) de
< —@)| dtd (69)
/ /t BEn (mpd u) x
(u - 7rhu) ,
o L2(@n)
where |.| stands for the vectorial norm.
i1) In a similar way, the second term can be estimated as
- _ N 1 — =12
Hu —mil | <~ 1A= miagg,)- (70)

iii) The third term of (68) can be read as

2
0 Q

Then we use the Cauchy-Schwarz inequality and the Lipschitz assumption (A1)
i —n—1 2
F(u(t)) — F(a,™)

on F in order to get,
I
/Q ; /tn—l
L2 ¢
a 1(t) — @t dtde

4
T QJgn—1 U(
22 i o
< L < / |a@(t) —ﬁ(t”‘1)|2+// @) —a’;;—1|2).
T QJn-1 QJn-1

(72)

F(a) — F@ay™) : / . (Faw) - Fa™) dtr de. (71

T n—1

n —

Fi) — Fa,

—

dtdz

<

t
o
Now, since we have the following relation @(t) — @(t" ') = 8u (s) ds, for all
tn—1

t € [t"71 "], it is easy to see that

tn
// |a(t) — (") dt < 72
Q Jin-1

Then we deduce from (72) and (73) that

2

ou
ot

. 73
L2(Qn) )

9 2

n

L oi
F(a) = F(a,™)

2 2
TE ot

wockaty — @t P (74)
L?(Qn)
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Finally, introducing the projector m,%(¢"!) in the above estimate, we obtain

2

n 2

S dii
F(d) — F(i;™)

ot

< 27’5%

0
(75)

iv) The final term of (68) requires a little bit more work to estimate. Using

Cauchy-Schwarz and Young’s inequalities, we can separate it in two terms as

‘2
0

< 2|(p@) - D@") vma(e)

+2 HD(&) V(") — D(@)Vrni

| DG V() ~ D@V \2

0
2

(76)
- We will start by estimating the first right-hand term of (76) :

n

| (Pt~ D@") Vmi(rr)

‘ < 2|Vmyu HL°° 0,T;L.°° (Q,R?)) Z HDZ] _’en) — D;;(4)

i,j=1
(77)
where D;; stands for the components of matrix D.
We now introduce an auxiliary function
o [ (A —=0)ui(t —7)+ Ouy(t) S
w’(t) = ( us(t — 7) , fort>r. (78)

For all combinations of 7,5 = 1,2 and for n > 1, we have

n 2

HD” (wp") — Dy;(@)

(HDW (@) = Dy (@ () [y + | D@ () = Dy (@

(79)
Let us estimate the first term in the right-hand side of (79). By the use of
Lipschitz assumption (A2) on the matrix D, we have

0

n |12
0

2

0

| Dij (@) — Dy (@ (™)) | < £3 |[ag — (1) | - (80)
Moreover, Definition (78) for @’ leads to
dpt— (1)) = (1= Ol — w () + 0wl — wi (1)) + (ugy ! — wa(t"))”
2 (|@t = ae )| +6° @ - aw)) (81)
from what we deduce that
@i — @) o < 4o s + @) - mae ) |;

+6% |8 g + 6% |a(t") — m(t") [g) - (82)

HALL @) — md(tnh) ||+ 4L oart |
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Thus from (80) and (82), and since 0 < # < 1 we obtain

1 (|omy [+ 0% Jop 15 + @) — ma( ) |

<
(83)

”Dij(wlazn) - Dz]( 7’ tn Ho X
+ (™) — mai(t™) [5) -

Now, we estimate the second term of the right-hand side of (79). First we have

/Q (1 /tt" (Di (@ (1)) — Di;((1))) dt)2 de.

e (84)

n 112

—

| Dy (7)) - Dy (i

0

~—

Then using the Cauchy-Schwarz inequality and the Lipschitz assumption (A2)

on the matrix D, we get

|yt - Dy || < Z2 () - ]2, (85)
Furthermore we have for all ¢ € [t"!, "]
2

(1= B)us (") + Our (8") — ur () + (ua(t"Y) — ua(t))
(86)

() — a(t)]* =

Thus remarking that (1—6)uy (1) (£7) — s (£) = (1—0) /
¢

tn tn—l

uy (s)ds and up(t™ ') — ug(t) = / 8(;;2( )ds, we deduce by the

¢

0
. Ot
Cauchy-Schwarz inequality that, since 0 < 6 < 1,

tnfl
Ouy
5 (s)ds+

tn = 12
(") — @(t)|” < 7'/ ((‘93_1: dt, forallte [t" 1 t"]. (87)
tn—1
Then from (85) and (87), we obtain
—0/.n — N 2 9 ol 2
|Ds@ @) -Dy@" | <rch| 5| (33)
L2(Qn)
- The second right-hand term of (76) is estimated as follows. We have
2
D(@)Vhd / D(u(t)) (Vmpa(t") — Vmpa(t)) dt| dx.
(89)

HD(a‘)anhﬁ(t”)
By the Cauchy-Schwarz inequality and the boundedness assumption of D in

(A2), we obtain that
—n ||? D%/I S/n 12
— D(@)Vma || < — [Vpi(t") — Va7, (90)

HW"thﬁ(t”)
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on h’lf
s)ds, we
5 (5)

Since for all ¢t € [t" 1, ¢"] we have Vm,d(t") — Vmui(t) = / \%
t

deduce, using the Cauchy-Schwarz inequality and estimate (90), that
2

2 87rhﬁ
<7tD?, |V
TEM Y T

(91)

— D@)Vhi
L2(Qn)

vaﬂﬁ(tn)

- Grouping steps (76)-(91), we find that
BT 2
(ﬁ)Vﬂ'h’L-I:

HD "Vra(t") —
< 128L3 Vw3 oo 10y (Hg ) — m(e )|

o+ () — mat(e) 5 + |9t [ + 02 o3 1F)
+327LY, |Vryi HLoo 0,T;L%(2,R?)) H ?3?

. 12(Qu)
+orD2, ‘v agh“ .
b N2 u
(92)

Let us note
K, = 128L% Vit ”ioo(o,T;Loo(Q,W)) and Ky = max (T 2D? ) (93)

Then we have
2

HD NVmi(t") — D(@)Vhi
< Ky (20— mal ooy + |57 2+ 0 1677 12)
ol omyil |
+ Kot H—u +HV n .
at L2(Q») at L2(Qn)
(94)

e We can now go back to inequality (68). We choose ¢; = g9 = €3 = 7/3 and
D,,,. Then from estimates (69), (70), (75) together with inequality (68), we

getforn=1,....N
1 —n (12 1 —n—1 [|2
(5 =D oo = 5 oz |,
s Ko o ||
< 1= mtlgnmanen + (585 155) 7| 5 | o,
Ky o Omil || 2, 2
\V. 3L% U — T | Lo 7
"1, |V 0 |, P T 2D, TIE = = oraame

K 1 ||2 K —
+ (3[’% + 4D,, T ”5uh : ”0 + 024Dm7— [oa, [ -
(95)
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Thus we have

1 1
(5 = ) 168515 = (G + ) 6357 |

3 aﬁ 2 87th1’ 2
_ )
< g8 = il s e gy + K7 (H 0t 120 )+ HV ot
+Ky7 |4 — mpid ||i°°(O,T;L2(Q,]R2)) ,
(96)
where we have put
92K1 Kl
=1 =3L% 97
%31 + 4Dm’ M2 7 + 4Dm ( )
and , . y
K :—£2_, 2 K :3£2_‘ 1 . 98
375 F+4Dma 4 F+2Dm (98)
Now, let us define
1
"= —>0. 99
4/1,1 ( )

Remark that 7* depends on |V | o (g .00 (o g2)) Dut thanks to Proposition
4.3 the constant 7* is independent of h. In that way, for all 0 < 7 < 7%, we have

1 > 1 (100)
- — T = .
o MTZY
In addition, it is straightforward to prove that for all 0 < 7 < 7%, we have
1 1
(5 + m2m) < (5 — ) (1 + pr) (101)
where
= 4(p1 + p2). (102)

Remark also that p does not depend on A and 7.

Then using (100) and (101), we deduce from (96) that for all n = 1,..., N
and 0 < 7 < 7%,

=N —Nn— 2
[0 I5 = (1+ pr) [0 g < A (103)
where
L ou | ompi ||”
A = 3 ”u — ThU ||§{1(tn—l,tn;L2(Q,R2)) + 4}(37'2 (H E + HV 32 )
L*(Qn) L*(@n)
+ 4Ky7 [T — mpd ”iOG(O,T;L2(Q,R2)) - (104)

Now, we sum inequality (103) over n, in order to get

n n
o 12 < |6 2+ 3 e+ ur Y @i (105)
k=1 k=1
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foralll1 < n < Nand 0 < 7 < 7. We can then use the discrete Gronwall’s
lemma (see for instance Quarteroni and Valli (1991), §1.4) on inequality (105)
and find that, forn =1,..., N,

167 |2 < (Hdﬁ% o+ ZAk) exp(uT). (106)

k=1
Furthermore, using the definition (104) of A\, we have that forall 1 < n < N
— — 12
Z Ap < 3|U—mpu ”Hl(o,T;L2(Q,R2))
k=1

2 2

at LQ(O,T;LZ(Q,RZ)) at LQ(O,T;LZ(Q,RZ))
Oyl oi |’
+ HV A v s
at at L2(0,T;L2(Q,R2))
+ AK4T i@ — mpil Hiw(O,T;LQ(Q,Rz)) : (107)

Then it is plain, using Propositions 4.1 and 4.2 for the properties of the time
dependent GVP, that there exists a positive constant C; independent of A and
7,such that forall 1 <n <N

D A < Ci(ht+ 7). (108)
k=1
Finally, using (10), (16) and (29), we find that there exists a constant Cj

independent of h and 7 such that
6@ ||, < C2h?. (109)

Therefore, using inequalities (108) and (109) together in inequality (106), we
find that there exists a constant ('3 independent of h and 7 such that, for any
O0< 7715,

|6iy |, < C3(h* +71), forn=1,...,N. (110)
e We complete the proof of the convergence result by writing
Ja(t™) =iy o < [a(e*) — mati(t") o + |01 | (111)

for all 1 < n < N. Then we use Proposition 4.1 and estimate (110) to conclude
that there exists a constant C' independent of A and 7 such that

(") = iy |y < C(h* + 1), (112)

forall0 <7 <7*and n=1,..., N. The theorem is then proved. |
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5. Numerical tests

Numerical tests have been performed on an adimensional problem using data
from Kessler, Kriiger and Scheid (1998) and Warren and Boettinger (1995). We
refer to them for a complete physical description. We define the nonlinear terms
Fy, F; and Dy, D, in Problem (P), for ¢ and c in the interval [0, 1]. Outside
this interval, all the terms are truncated to constant values. As we shall see, this
gives Lipschitz and bounded nonlinear terms and so we are in the framework of
the previous analysis. We choose (for ¢ and ¢ in [0, 1]) :

Fi(¢) = aug'(¢) + 6’ (¢) and  Fy(¢) = asg'(¢) + Bop' (),

where «;, §; are model parameters linked to physical characteristics of the binary
alloy we will consider and g be the polynomial double-well type function defined
by g(¢) = ¢*(1 — ¢?) and the related polynomial p = fo(pg(s)ds/ fol g(s)ds =
3 (642 — 15¢* + 10). On the other hand, we choose

Di(¢) =D +p(¢)(1—D) and  Dy(c,¢) =ve(l — c)Di(d) F2(9),

where D stands for the ratio of the diffusive coeflicients in the pure solid and
liquid phases. The parameter 7 is linked to properties of the materials.

Notice that with those definitions, the terms F; vanish for ¢ = 0 and ¢ = 1.
Moreover these terms are taken to be zero when ¢ is outside of interval [0, 1].
In that way, we obtain Lipschitz and bounded functions. The same process is
applied for D; which is then always positive, and for D,. In fact, a maximum
principle holds (see Rappaz and Scheid (2000)) which guarantees that if initial
data belong to [0, 1] then the same holds for the solution at any time and then
the truncation procedure is justified.

The physical example we consider is a Ni-Cu alloy. The numerical values
of physical parameters are given in Kessler, Kriiger and Scheid (1998) and
Warren and Boettinger (1995) and we report them in Table 1, for a problem
adimensionalized in space relative to a domain characteristic length [ = 2 -
10~*¢m and in time relative to the liquid diffusion characteristic time [/ D;, where
D; = 1075¢m?/s is the physical diffusivity coefficient in the liquid phase. These
parameters have been derived from physical characteristics of the Ni-Cu alloy,
assuming that the interface thickness is of order § = 10~°em, which is higher than
what would be physically expected, but allows for reasonable calculation meshes
and time steps (the o; parameters go as 1/6? and would become extremely high
with a smaller value for §). We choose # = 1 in the scheme (9) of (P ;).

First we present numerical tests. The adimensional problem is defined in the
unit square, and we fix a final adimensional time ¢; = 10~° (higher times can
create stability problems due to the stiffness of the source terms, i.e. the high
values of their Lipshitz constants). We then construct an exact and explicit
solution. We add right hand sides to equations in Problem (P) so that given
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Table 1: Values of the physical parameters

M a s b1 B2 0 D
63.5 -3.23-1011 1.20-10° —-1.64-10° 3.17-10° -8.85-10~1 10°°

functions ¢.(z, y,t) and c.(z, y,t) (defined for (z,y) in [0,1]x [0, 1] and ¢ € [0, tf])
are then solutions.
For a first test we choose the infinitely differentiable functions

st =ctan) =4 (12 (35 (o £) o (ar (v 1))

We choose to relate the time step 7 to the mesh size h of a regular mesh by

the relationship 7 = 40h2. Let us denote by e, = max, [4(t") — @y | 2o re) the
\n\ ’

error between the exact solution @ = (¢, c.) and the computed solution .
We are interested in the local slope of the error with respect to h in logarithmic
scale, which we define by

. = In(es;) — In(ep,_,)
I ln(hJ) - ln(hj_l) ’

where h;_, and h; are choices of mesh sizes for two consecutive calculations, and
ep; and ep;_, the corresponding computed errors.
The results of these tests are given in table 2. Note that the slopes s; take

Table 2: Errors and convergence order for very regular test functions

hj ehj Sj

5.000E -2 3.700E -1

2.500E -2 9.332E—2 1.988
1.667TE —2 4.158E—2 1.994
1.250E—2 2343E—2 1.994
1.000E—-2 1.500E —2 1.996
8333E -3 1.043E-2 1.997
7143E -3 T7.662E -3 1.998
6.250E -3 5.868E—3 1.998
5.506FE —3 4.637TE—-3 1.998

© 00 O Uik W S,

values very close to 2. This simple test therefore confirms our theoretical result
of convergence order h? + 7, with a very regular test function.

Nevertheless, on physical simulations, the solutions are not as regular as the
product of two sines, and their main feature is that their values change very
fast on regions of length scale ¢ (let us remind that § was one of the model
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parameters, discussed earlier in this section). For this reason, we now present
a second numerical test, with test functions reproducing the features of the
physical solutions, yet regular enough to be in the scope of our convergence
theorem.

t
We define p(t) = 0.15+ 0.5— and we choose

tr
0 ) if r(Z) < p(2),
be(Z,t) =< 0.5 (1 — cos <wﬂ)> if p(t) < r(Z) < p(t) + 26,
1 if p(t) + 26 < r(2),
and
(0 ) if 7(Z) < p(2),
) 0.3+ 0.2 (1 — cos (L}’O(t)w)) if p(t) < r(Z) < p(t) + 6,
R T (1=cos (ME=EO=00)) o) < r(@)+ 6 < ) + 26
| 1 if p(t) + 26 < r(2),

where 7(Z) is the distance between # and the center of (2. The isovalues of the

solution are expanding concentric circles with a boundary layer of width 26.
We follow the same procedure as for the previous tests. The results are given in

table 3. Again this test confirms the theoretical result of convergence order h?+7.

Table 3: Errors and convergence order for test functions similar to physical solutions

hj ehj Sj

5.000E -2 2561E-1

2.500E -2 5.0711E—-2 2337
1.667TE —2 2.282FE—2 1.969
1.250E —2 1.295E —2 1.969
1.000E -2 8.355E—3 1.965
8.333E—-3 5810E—-3 1.992
7T143E -3 4.281E—-3 1.981
6.250FE —3 3.284E -3 1.987
5.556FE —3 2.596E—3 1.995

© 00 3O Ut bW S,

Finally, we illustrate the behaviour of physical solutions of (P ) by showing
graphs of functions ¢ and ¢ computed on the original problem (without extra
artificial source terms) for initial conditions defined as follows:

0 if (%) < po,
do(@) = { 0.5 (1 — cos (()T_”ﬁ)) if po < (%) < po + 6, (113)
1 if po + 0 < (),
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Figure 1: ¢(x) and ¢(z) at final time for a Ni-Cu alloy
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Figure 2: profiles of ¢(x) and ¢(z) at final time for a Ni-Cu alloy

and
Cs0 if 7(Z) < po,
co(Z) =19 co+ (co— Clo)r(m){po if po < 7(Z) < po +9, (114)
Co if po + 26 < r(Z),

with radius py = 0.1 adimensional units. The computation is performed on a
square domain of side 2 adimensional units (i.e. 4-107%m) with a roughly 600 x
600 unstructured mesh, and a final time 0.1 adimensional units (i.e. 4 - 10™*s),
achieved after 5000 time steps. Graphs of resulting functions are presented in
figure 1. Notice that they are isotropic, as anisotropy has not been taken into
account in the model presented in this paper. We also present radial profiles of
the solutions in figure 2. Notice that the behaviour of the profile of ¢ through
the solid-liquid interface corresponds to what is expected from a sharp-interface
limit asymptotic analysis of the model (see Kessler (2001)).
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6. Conclusion

In this paper we have obtained error estimates of a finite element method
applied to a coupled system of non-linear evolution equations. These equations
are related to a phase-field model for the solidification of a binary alloy. The
main idea is to reduce the equations to a non-linear parabolic system and then
introduce a generalized vectorial projector based on the elliptic part of the system
operator. We derive projection errors in several norms. Error estimates of the
piecewise linear finite element method we used are obtained by comparing the
approximate solution with the generalized projection of the exact solution at
every time step in the L? norm. It is shown that error estimates are of order 2 in
the space mesh size h and of order 1 in the time step 7. In addition, there is no
condition connecting h and 7. Numerical tests supply results which are in good
agreement, with the theoretical predictions.

Phase-field models are characterized by a small thickness region where an order
parameter goes from 0 to 1 (the transition layer liquid/solid). Unfortunately, in
the error estimates the constants depend on the inverse of this thickness so that
constants become large when the thickness decreases. So in practice we need to
have a small mesh size and time step in the transition region. Let us mention
that a posteriori error estimates have also been performed on this model (see
Kriiger, Picasso and Scheid (2001)) and provided a criteria for the refinement
of the mesh, thus allowing numerical calculations to be precise enough in the
transition layer without refining the mesh in the whole domain, which would
require too large calculation times.

Finally, let us remark that our analysis should be applicable to more general
non-linear parabolic systems in R" provided that the n X n-matrix of the system
is triangular and can be reduced (as we did it with our 2 x 2 matrix) to a definite
positive matrix.
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