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HUNT’S FORMULA FOR SU,(N) AND U,(N)
UWE FRANZ, ANNA KULA, J. MARTIN LINDSAY, AND MICHAEL SKEIDE

ABSTRACT. For any Lévy process on the quantum group SU,(N), where 0 < ¢ <1 and N € N,
a Lévy—Khintchine-type decomposition of its generating functional is given, together with an
analogue of Hunt’s formula. The non-gaussian component is shown to further decompose into
generating functionals that live on the quantum subgroups SU,(n), for n < N. Corresponding
results are also given for the quantum groups U, (N).

1. INTRODUCTION

Up to stochastic equivalence, a Lévy process with values in a locally compact Lie group G
is determined by its generating functional. This is a (densely defined) linear functional v on
Co(G), the C*-algebra of continuous complex-valued functions on GG which vanish at infinity,
whose domain may be thought of as consisting of those functions that have a second order Taylor
expansion around the identity element of the group. Hunt’s formula ([I1]) is a generalization
and extension of the Lévy-Khintchine formula ([, [18]). It is equivalent to the assertion that

Y =7p +7¢+ v where v, =LoP and L(f) = / f(s)(ds) (1.1)

G\{e}

for the identity element e of G, in which P is a hermitian projection that kills the linear terms,
the drift vp and P-invariant gaussian part v are linear combinations of first and second order
derivatives evaluated at e respectively, and II is the so-called Lévy measure. The Lévy functional
L is defined on the space of functions that, together with their first derivatives, vanish at e. The
integral may be viewed as a mixture of point evaluations, moreover functionals of the form
f— f(s) — f(e), for fixed s # e, generate jump processes. The functional 7, is also referred
to as the jump part; in the case where G = R and II is finite, it generates a compound Poisson
process. The decomposition depends on the non-canonical projection P chosen; its role is to
deal with any singularity of the measure II at e.

If G is compact, Tannaka-Krein duality ([I0, Section VIL.30]) asserts that the representative
algebra R(G), generated by matrix coefficients of finite-dimensional representations of G, is
a norm-dense *-subalgebra of the unital C*-algebra C(G). In fact, R(G) is a commutative
Hopf *-algebra from which the topological group G may be fully recovered ([16]). A compact
quantum group in the sense of Woronowicz ([29]) is a unital C*-algebra-with-coproduct which
enjoys density relations corresponding to the group cancellation law and contains a dense Hopf *-
algebra, the CQG algebra of the quantum group, whose role corresponds to that played by R(G)
for a compact group G ([4]). Schiirmann’s theory of quantum Lévy processes on *-bialgebras
([20]) thereby applies. As with their classical counterparts, but now up to quantum stochastic
equivalence, Lévy processes on *-bialgebras are classified by their generating functional, now
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a hermitian linear functional on the CQG algebra which is conditionally positive and vanishes
at the identity element. The problem of finding a decomposition of generating functionals
corresponding to (L)) is expressible in cohomological terms. Of course meaning has to be given
to drift, gaussian and jump parts in the quantum generalisation. Our Hunt formula includes an
explicit description of the drifts and gaussian generating functionals and the specification of an
approximation property that justifies calling the remainder a jump part (Proposition 2.8)).

For some compact quantum groups every generating functional has such a decomposition
but for others that is not so ([§], [2]). A Hunt formula for Woronowicz’s SU,(2) ([26], [27])
was obtained in [23], [2I]. This led to a short proof of the classical Hunt formula for compact
Lie groups (|24]). Here we tackle the case of SU,(N), obtaining a unique decomposition 7 =
Yo + va + Yvg where ynyg = 20 P+ --- 4+ vy o P, in which P is a hermitian projection
analogous to that of (ILT), vp is a drift, v is a P-invariant gaussian generating functional and,
for 2 <n < N, 7, is an extension to SU,(NN) of a completely non-gaussian generating functional
on SU,(n) which enjoys an irreducibility property. We also display the essentially classical
structure of vp and ¢, and show yy¢ to be the limit of functionals of the form weq) o 7o P for
a representation 7 and net of vector functionals (we()) (Theorem ETH). The case of general N
turns out to be more involved than the case N = 2, and some results concerning SU,(2) fail for
N > 3. For instance, for N > 3 the cohomological problem is not always solvable in the gaussian
case (Corollary 2.13]). Also, for N = 2 the completely non-gaussian generating functionals may
be parametrized by the vectors in its associated representation Hilbert space, whereas for N > 3
the situation is more subtle (Section [).

The paper is organized as follows. Terminology and notations concerning the CQG algebra
of a compact quantum group are set out below. Section ] contains the basic definitions and
preliminary results. The CQG algebras of the compact quantum groups SU,(N) and U,(N)
are here respectively denoted SU,(N) and U,(N); the former is algebraically generated by a
matrix of elements [u;]%,_, (see Relations (Z6), et seq.). In Section B we deal with our choice
of projection P, with respect to which we show that the gaussian generating functionals on
SU,(N) are classified by a real (N — 1)-vector and positive-definite real (N — 1) x (N — 1)
matrix representing the drift and P-invariant diffusion-type second order term (Theorem [3.6]).
Unlike in lower dimensions, for N > 3 there are cocycles of gaussian representations which have
no associated generating functionals (Theorem B.3]). Every gaussian generating functional is
induced from a gaussian generating functional that lives on the classical undeformed subgroup
TN~ of SU,(N), in the sense of Definition 221 (see Remark B7). In Section dl we show that
every representation m of SU,(N) has a unique full (representation) decomposition m; ®- - - By,
where 7 is its so-called gaussian part and, for 2 < n < N, 7, lives on SU,(n) and 7, (1 — uy,) is
injective. Completely non-gaussian cocycles ) are approximated by coboundaries and determined
by their values n(u,,) (2 < n < N). From this we deduce a full (generating functional)
decomposition v = v;+- - -4y for generating functionals, uniquely determined by the projection
P, and conclude with our Hunt formula (Theorem [.T5]). In Section [l we show that, unlike in
the case N = 2, if N > 2 then the values of n(uyx) for cocycles n of representations 7 for
which 7(1 — uyy) is injective, may not exhaust the representation space. We then indicate a
completion process which yields a quasi-innerness property, and thereby full parameterisation,
for completely non-gaussian cocycles. In Section [l we briefly treat the quantum groups U, (V).

Our work suggests the investigation of Hunt formulae for other ¢-deformed compact Lie groups

([161)-



HUNT’S FORMULA FOR SU,(N) AND U,(N) 3

Compact quantum groups and CQG algebras. A CQG algebra ([4]), or algebraic compact
quantum group, is a Hopf *-algebra G that is linearly spanned by the coefficients of its finite-
dimensional unitary corepresentations or, equivalently, has a faithful Haar state. Thus a CQG
algebra is a unital *-algebra G, with unital *-algebra morphisms A : ¢ - G® G and ¢ : G — C,
linear map x : G — G and unital linear functional h : G — C, called respectively the coproduct,
counit, coinverse or antipode, and Haar state, enjoying the coassociativity, counital, coinverse,
invariance and positivity relations

(A®id) o A= (1d®A)oA; (¢®id)o A =id = (id®e) o A;
po(iderk)oA=roe=po(k®id)ol; (id®h)oA=10h=(h®id)oA;

and h(a*a) > 0 for a # 0. Here u : G ® G — G denotes the linearisation of the algebra
product, and ¢ the unital linear map C — G. The coinverse x is uniquely determined by the
bialgebra structure and any *-bialgebra morphism between CQG algebras respects coinverses and
so is a CQG algebra morphism ([3, Remarks 4.2.3 and 4.2.5]); the Haar state h is also unique
([4, Proposition 3.2]). Compact quantum groups may also be viewed from the equivalent C*-
algebraic perspective, as was originally done by Woronowicz (|29]). The canonical (universal and
reduced) Woronowicz algebras of a compact quantum group G are commonly denoted C,(G)
and G(G), and its CQG algebra is here denoted by R(G) in a further nod to their classical
counterparts. The quantum space G itself is only manifested through one of its realisations. For
more on this, we recommend [16], [I2, Section 11.3], and [25], Section 5.4]. For the purposes of
this work, it suffices to operate exclusively within CQG algebras. In fact, in our analysis we
need explicit recourse to none of the coproduct, coinverse or Haar state.

Convention. In Schiirmann’s theory representations are by possibly-unbounded adjointable
operators on pre-Hilbert spaces because he works in the more general setting of *-bialgebras-
with-character. By contrast, representations of a CQG algebra G are all by bounded operators,
and so may be extended to the Hilbert space completions. Accordingly, by a representation of
G we always mean a unital *-algebra morphism 7 : G — B(h), for some Hilbert space h = h™.

Note. MS wishes to emphasise that revisions for this final version of the paper were done by
the other authors, and that the original version is available on the arXiv ([9]).

2. PRELIMINARIES

Generating functionals of quantum Lévy processes and Schiirmann triples. Let ¢
be a CQG algebra. A Lévy process on G is a family of *-algebra morphisms from G to a
noncommutative probability space enjoying certain properties which encode the stationarity
and independence of increments (see [20], [5] and [I5, Chapter VII|, or the survey [6]).

DEFINITION 2.1. A generating functional for a quantum Lévy process on G is a linear functional
v on G which is hermitian: v = ~' : a — ~(a*), normalised: (1) = 0, and conditionally positive:
v(c*c) = 0 for all ¢ € kere.

Quantum Lévy processes are determined up to quantum stochastic equivalence by their gen-
erating functionals, and may be reconstructed from their generating functional using quantum
stochastic calculus on a symmetric Fock space ([20, Theorem 2.3.5], [I4, Theorem 7.1]), or using
Trotter products and Arveson (product) systems ([22]).
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DEFINITION 2.2 ([20]). A Schiirmann triple on G is an ordered triple (m,7,7) consisting of a
representation 7 of G, a m-e-cocycle, or m-e-derivation, that is, a linear mapping n : G — h”
satisfying

n(ab) = m(a)n(b) +n(a)e(b)  (a,b€g), (2.1)
and a linear functional v on G satisfying
=7, 7(1) =0 and y(cc) = [n(c)|®  (c € kere), (2.2)

equivalently, v =~ and (n(a), n(b)) = v(a*b) — v(a)e(b) — e(a)y(b) for a,b € G.

A linear functional v on G completes a w-e-cocycle n if (7,7, 7) is a Schiirmann triple; we then
say that n, or (m,n), is completable.

A Schiirmann triple (7, n,~) or cocycle 7, is called cyclic if n(G) = h™.

The third component of a Schiirmann triple is a generating functional. Conversely, for any
generating functional v, there is a cyclic Schiirmann triple with v as its third component. If
(m,m,7) is a cyclic Schiirmann triple then, for any linear isometry V' from h™ into a Hilbert
space, (Vm(-)V*, Vn(-),v) is a Schiirmann triple (cyclic if and only if V' is unitary), and every
Schiirmann triple having ~ as its third component is of this form. Thus all cyclic Schiirmann
triples having ~ as their third component are unitarily equivalent — we refer to any one of these
as 7’s (associated) Schiirmann triple (|20, Section 2.3]).

For K := kere, set

K, :=span{ci---c,: ¢, ,c, € K} forn>1, and K := K,.

n>1

Thus (K,,) is a sequence of *-ideals of G decreasing to K. Also set
Py(G) :={P € L(G) : P is a hermitian projection, ran P = K, and 1 € ker P},
where hermitian means P = PT: a — (Pa*)* for a € G.

DEFINITION 2.3. Let 7 be a generating functional on G. Then ~ is a drift if 7|k, = 0, equiva-
lently, in terms of its associated Schiirmann triple (7,7, ~), if h™ = {0}.
For P € P,(G), we denote the drift v — v o P by 75, and call v P-invariant if yo P = +.

REMARKS 2.4. The drifts form a real subspace of the linear dual of G. Any P € P5(G) determines
a unique resolution for generating functionals v into a drift component plus a P-invariant one:
v = ~E5 4+~ 0 P—in this sense P-invariance may usefully be thought of as a P-driftless property
(i.e. having zero drift component with respect to P). If a cocycle 7 is completable then, for any
particular generating functional v which completes 7, the set of all generating functionals which
do so equals {7+~ : 7/ is a drift} and the unique P-invariant one is yo P =y —~5.

The P-invariant generating functionals on G are the maps of the form 1 o P for a linear
functional ¢ on K5 which is nonnegative: ¢(c*c) > 0 for all ¢ € K (and thus also hermitian).

There is no canonical choice of projection from P,(G). By contrast, since C1 and K are
complementary subspaces of G, there is a unique projection in L(G) with range K and 1 in its
kernel-—mnamely (id—toe: a+— a —e(a)l), moreover it is hermitian and compatible with the
projections in Py (G).

DEFINITION 2.5. Let U be a subspace of a complex vector space V. A linearly independent
subset E of V\U is a basis extension from U to V' if its linear span is a complementary subspace
of U. In case V is involutive, a basis extension is hermitian if it consists of selfadjoint elements.
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For any hermitian basis extension E from K, to K, the functionals (¢}))4er on G given by
e (AL + ko + ZeeE Aee) =Ny, for X€C, ks € Ky and {\.: e€ E} CC, (2.3)
form a basis for the real space of drifts on G, and
PP = id_Log-ZdeEde;(-) € P(G) (2.4)

equals the projection onto Ky along span({1} U F) = C1 @ spanE. The resulting map E + P¥
is surjective and Pt = PE2 if and only if spanF; = spanFj.

PROCEDURE 2.6. For obtaining all generating functionals on G, one needs to identify:

(1) the representations  of G;
(2) for each representation m, the m-e-cocycles n;
(3) for each such cocycle 7, the generating functionals v which complete it.

In the cases of the quantum groups SU,(N) and U,(N) the representation theory is known
([13]). Step (2) is a cohomological problem, as m-e-cocycles form the first Hochschild cohomology
group H'(G, ;h.) for h = h™, and this may usually be computed in a straightforward way. The
main problem lies in Step (3). The basic constraint on a given cocycle ), for it to be completable,
is that ||7(c)|| must equal ||n(d)|| whenever ¢,d € K satisty ¢*c = d*d; the task then amounts to
solving ¥ (c*c) = ||n(c)||* (c € K) for a linear functional ¥ on K since then, for any P € P»(G),
the prescription a — 1 (Pa) defines a (P-invariant) generating functional which completes 7.

Approximately inner cocycles. As just described, the problem of classifying generating
functionals on G lies in the fact that there might be none which completes a given cocycle. In
this section we identify a situation where such a completion does exist.

DEFINITION 2.7. A m-e-cocycle is a coboundary, or inner derivation, if it is of the form

Mee: = (1 — toe)()¢: ars m(a)é — Ee(a)
for some vector ¢ in h”, and is approzimately inner if it is a pointwise limit of coboundaries
(M=) for some net (£(A)) in h™.

For a vector ¢ of a Hilbert space h, we denotes the vector functional T — (£, 7€) on B(h).
The following result is heavily used in Section [l

PROPOSITION 2.8. Approxzimately inner cocycles are completable. Specifically, let P € Py(G),
let ™ be a representation of G, and let (£(X\)) be a net in h™ such that (nx = N ¢)) converges
pointwise to a map 1. Then n is a w-c-cocycle and the net (yx := wen) © ™ o P) converges
pointwise to a P-invariant generating functional v which completes 1.

Proof. For each A, the P-invariant linear functional v, is hermitian and (7, 7y, v,) is easily seen
to satisfy (2I]) and (22)). Therefore, since 7 is evidently a m-e-cocycle and K is both the range
of P and the linear span of the set {c*c : ¢ € K}, the proposition follows from the fact that
nlee) = T ENII* = lIneex(@N* = lIn(e)|* for each c € K. [

In the classical setting of (ILT]) we see that the generating functional -, is expressible as the
limit of the functionals w,, o m o P, as the neighbourhoods U of e shrink to {e}, 7 being the

multiplication representation of R(G) on L?(G, 1) and 1 here denoting indicator function.
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Gaussian generating functionals, cocycles and representations.

DEFINITION 2.9. A generating functional v, cocycle 7, or representation 7 is called gaussian if
it vanishes respectively on K3, Ky, or K.

For components of a Schiirmann triple, these are equivalent ([20, Proposition 5.1.1]). A

representation 7 is gaussian if and only if m = = o €, where 1y~ denotes the unital linear map
from C to B(h™).

PROPOSITION 2.10. Let E be a hermitian basis extension from Ko to K. Then, for any Hilbert
space h, the h-valued gaussian cocycles on G are precisely the maps of the form Y, Eacy(-) for
a family of vectors (§a)acr in h, where the functionals €/ are as in ([23)).

Proof. Since gaussian cocycles vanish on 1 and on Kj, this follows from the fact that elements
a of G are uniquely expressible as e(a)l + ka(a) + o p €y(a)d for some ky(a) € K. O

It would be desirable to have a similarly concise description of gaussian generating function-
als. For now we note that in general not all gaussian cocycles n admit a gaussian generating
functional.

DEFINITION 2.11. A cocycle n on G is hermitian if it satisfies ||n(c)|| = ||n(c¢*)| for all ¢ € K.

A gaussian cocycle of the form n = ), p &€} is hermitian if and only if the Gram matrix
[(fd, §d/>] is real (and therefore symmetric). Proposition .10 has the following consequence.

COROLLARY 2.12. G has non-hermitian gaussian cocycles if and only if dim K /Ky > 2.

For a gaussian cocycle 1 to be completable it is sufficient that it be hermitian (|20, Proposition
5.1.11]) but not necessary. It becomes necessary too under the additional assumption given in
the next corollary, which applies to both SU,(N) (by Lemma B.2 and part (d) of Lemma B.1]),
and U,(N).

COROLLARY 2.13. Suppose that c*c — cc* € K3 for all ¢ € K. Then a gaussian cocycle is
completable if and only if it is hermitian.

Proof. Tt is necessity that is to be proved, so assume that 7 is a generating functional completing
a gaussian cocycle . Then [|n(c)||* — [|n(c*)||* = v(c*c — cc*) = 0 for all ¢ € K, as required. []

Complete non-gaussianness and Lévy-Khintchine decomposition. We next collect basic
facts about when a generating functional can have a Lévy-Khintchine decomposition.

LEMMA 2.14. Let 7 @ m be a decomposition of a representation m of G, let V; denote the
inclusion map h™ — h™ for 1 =1,2, and let n be a w-c-cocycle. Then the following hold
(a) n; := Vi*n() is a m-e-cocycle for i =1,2.

(b) If two of the three cocylces n, m1 and 1y are completable then so is the third.
It is quite possible that n is completable, but n; and 7, are not.
DEFINITION 2.15. For a representation 7 of G, set
TG . TR . (h7G)L
h™e .= ﬂceK ker m(c) and h™@ := (h™¢)—.

Then 7 is completely non-gaussian if h™¢ = {0}, equivalently, if h™® = h™.
We also call a m-e-cocycle n completely non-gaussian if 7 is, and a generating functional ~
completely non-gaussian if the representation component of its Schiirmann triple is.
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The above definition and its notations are amply justified by the following straightforward
proposition.

PROPOSITION 2.16 ([20]). Let m be a representation of G. Then h™ and h™ are invariant
subspaces and, denoting the resulting decomposition of ™ as mg @D TR, Tg 1S gaussian and Tg s
completely non-gaussian. Moreover, h™R)é = {0} = h("c)r,

If n = ng ® ng is the corresponding decomposition of a w-e-cocycle n then ng is gaussian, and
if m1s cyclic then ng and ng are cyclic too.

Generating functionals of the form we o m o P, and their limits as in Proposition 28| are
completely non-gaussian.

DEFINITION 2.17. A Lévy-Khintchine decomposition for a generating functional v with Schiir-
mann triple (m,7,v) is a decomposition v = 1 + v, for which (7g,ng,71) and (7g, Nr, 72) are
Schiirmann triples (equivalently, by Lemma 2.14] one of them is).

REMARK 2.18. With respect to a fixed projection P € P5(G), if v has such a Lévy-Khintchine
decomposition then it has a unique one in which v, = v5 + 74, 72 = g, and the generating
functionals v4 and yg are P-invariant.

DEFINITION 2.19. A CQG algebra, or its associated quantum group, is said to have property

- (AC) if each cocycle 7 is completable.

- (GC) if each gaussian cocycle 7 is completable.

- (NC) if each completely non-gaussian cocycle n is completable.

- (NAI) if each completely non-gaussian cocycle 7 is approximately inner.

- (LK) if every generating functional admits a Lévy-Khintchine decomposition.

Evidently (AC) implies both (GC) and (NC), and either of these implies (LK); none of the
reverse implications hold ([§]). The following is an immediate consequence of Proposition

PROPOSITION 2.20. (NAI) implies (NC), and thus (LK).

Schiirmann triples on quantum subgroups. In the course of proving our results for SU,(N),
we will decompose representations into components that live on its quantum subgroups SU,(n)
in the sense given below. One way of extending our results to U, (V) is by exploiting the quantum
subgroup relations TV < U,(N) < SU,(N + 1); this is done in Section

DEFINITION 2.21. A compact quantum group H is a quantum subgroup of a compact quantum
group G, written H < G, if there is a CQG algebra epimorphism (equivalently, a *-bialgebra
epimorphism) s: G — H; we also say that (#,s) is a quantum subgroup of G.

Given such a subgroup relation, we say that a linear map 7" from G to a vector space V' lives on
(H,s) if ker T D ker s, equivalently, if T factors (evidently uniquely) through the epimorphism
s:

T=Tos forsomemapf:?—l—ﬂ/.

For the remainder of this subsection we fix a quantum subgroup (H, s) of G and use tildes
for induced maps having domain H. Since s respects counits, the functional € on H satisfying
£0s = ¢ is its counit, and s(K,) = K, for all n. Also, a representation of G lives on the trivial
CQG algebra C if and only if it is gaussian. The properties listed next are easily verified.

LEMMA 2.22. Suppose that T =m7os, n=mno0s andy=7yos, for mapsw,---,7, then
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(1) 7 is a representation of G if and only if T is a representation of H.

(2) If (1) holds then n is a w-e-cocycle if and only if 1 is a T-€-cocycle.

(3) v is a generating functional on G if and only if ¥ is a generating functional on H.

(4) (m,n,7) is a Schirmann triple on G if and only if (7,7,7) is a Schirmann triple on H.

Moreover, for any representation m of G living on (H,s) and vector £ in h™,
h™ = h™ | n.¢ lives on H and Tre = e (2.5)
This has the following useful corollary.
PROPOSITION 2.23. The property (NAI) is hereditary.

We now show that an approximately inner cocycle lives on a subgroup if its approximating
inner cocycles do.

PROPOSITION 2.24. Let 7 be a representation of G living on (H,s), let (£(\)) be a net in h™
such that (nze\)) converges pointwise to n, and let P' € Py(H). Then the following hold.

(a) (7]%,59)), (wey 0o P) and (weny o T o P') have pointwise limits 1), v and ~', such that

n=mnos, and v and ' are generating functionals completing n and 7 respectively.
(b) v =+ 0s0P.

Proof. (a) It follows from Identity () that 7z ¢ 0 s = N for each A, and so (a) follows
from the surjectivity of s and Proposition 2.8

(b) This follows since s(K3) = Ko = ran P’ so P'oso P = so P and thus, for each )\,
(weyomo P)o(soP)=wegnyomosoP =weyomo P. O

The projections P € P5(G) and P' € P»(#) may be chosen to be compatible. This follows
from the following straightforward lemma.

LEMMA 2.25. Let P = P¥ and P' = P¥" for hermitian basis extensions E from Ky to K and E'
from Ky to K, according to 24)). Then P'os=so P if and only if s(E) C span E', in which
case span $(E) = span E' and so the generating functional vy from Proposition [2.2]] lives on H.

The quantum groups SU,(N) and U,(N). Let 0 < ¢ < 1. We next collect the facts about
SU,(N) and U,(N) for N > 2 that are required. For convenience, we extend our definitions to
the case N = 1: SU,(1) = SU(1) := {e}, the trivial group, and U,(1) := U(1) = T, the torus.
For an element o of the permutation group .#y, let i(¢) denote the number of inversions of o:
#{G,8): < ko) > o(k)}

As a unital algebra, the CQG algebra U, (N) of the compact quantum group U, (IV), is gener-
ated by indeterminates uj; (j,k = 1,---,N) and D!, subject to the following relations ([I3,
Section 2|):

WijUg; = QUkjUij if i <k, (2.6a)
UiUip = QUi if 7 <1, (2.6b)
iU, = Ui ifi<k,j>I, (2.6¢)
iUt = Ukl — (¢! — q) Uit Uj ifi <k, j<lI, (2.6d)

and
D'D,=1=D,D,
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n

for the g-determinant of the matrix U = [ujk}j 1

Dy =Dy(U) =)

The jk-th g-minor is defined as the g-determinant of the (N — 1) x (N — 1)-matrix obtained
from U by removing the j-th row and the k-th column,

DJf = DIMU) = )

where Y]{f_l denotes the set of bijections ¢ from {1,---,j — 1,574+ 1--- N} to {1,---  k —
1,k +1,---,N}. The involution, counit and coproduct of U,(N) are then determined by the
requirements

W = (—@)"DID7', (DY) = Dy, e(uj) = 0j, and Auy, = Zl Ui @ .

e (=) ur o1y - U o()-

oesi 1(_‘1)“0)1‘1,0(1) T Lo (=)Wt Le(41) T UNe(N),

The matrix of elements U satisfies the unitarity relations (Z71) below.
As unital *-algebra, SU,(N) is generated by indeterminates w;; (j,k =1,---,N), subject to
the unitarity relations ([28]):
N

* N * .
Zs:l ujuf, = 0l = Zs:l whuge (k€ {1,2,--- N}, (2.7)
and the twisted determinant conditions
Z ) <_Q)i(0)ua(l),T(l)ua(Z),T(Z)"'UU(N)J(N) = (—q)i(T) 1 (1 € n).
gESN
The counit and coproduct are given by the same formulae as for U, (V).

REMARK 2.26. We also use an alternative characterisation of SU,(V), namely as the quotient
of U,(N) by the extra relation D, = 1; the involution then simplifies to

uy = (—Q)k_ngk,

showing that, as an algebra, SU,(N) is generated by the u;;’s. This means that, when checking
well-definedness of representations and cocycles, one only has to manage the relations of the
generators u;; (namely (26]) and D,([u;;]) = 1) and not those involving their adjoints.

The following commutation relations among the generators u;; of U,(N) and their adjoints,
and therefore also those of SU,(N), are easily verified: for 7,5, k, 1 € {1,--- N},

wijuy, = upu;  ifi#kand j#I, (2.8a)
Ui, = QUi Ui — (1—¢?) Zm<j Uim Wy, 17 # K, (2.8b)
wguy = q ujug+ (g = q) Zn>i Upgting i F 1, (2.8¢)
uiju:j = u:juij + (1 - 5.12) Zwi quunj —(1- qz) qu Ui Uy - (2.8d)

We use the further consequences: for 1 < j,k < N,
unjuy, = 4 uygung i #k (2.9a)
uNtiy = ¢ upyuy i 5 # K, (2.9b)

uynuny = Cunnuyy +(1-¢%) 1, (2.9¢)
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Identity (Z9a)) follows from (Z8d). Identity (2.8D) with the unitarity condition (27)) together
imply that, for j # k,

untiy = Quivty = (L= 0*) Y i, = quiyuin + (1= ¢ )ujnugy,
from which (2.90)) follows, and Identity (Z9d) follows from (2.8d):

unnuy = Ununy — (1= %) Y tmtiy, = tintny — (1= ¢*)(1 — unyuyy).

m<N

We next describe the relevant quantum subgroup relations. By definition, SU,(NN) is a quan-
tum subgroup of U,(N) via the CQG epimorphism determined by its action on generators as
follows

TN Ui — Wi and D! — 1.
Also Uy(N) is a quantum subgroup of SU,(N + 1) via the epimorphism determined by

U1y T UIN UL,N+1 Uiy v WN 0
tN : . . . .
UN1 T UNN UN N+1 Uni *° UNN 0
-1
UN4+11 " UN4I,N UN41,N+1 0 tet 0 D

where, as in the definition of ry, the u;;, on the left-hand side are the generators of SU,(N + 1)
while those on the right-hand side are the generators of U,(N)); like 7y, tx respects coproduct,
counit and involution, and thus also coinverse. Composition gives the chain

SUL(1) < Uy(1) < SU(2) < Uy(2) < -+ < SU(N) < U(N) < -

Of particular interest for us is the epimorphism sy := ry_1 o ty_1 : SUL(N) = SU,(N — 1),
which is determined by

Uy ce Uy, N—1 UiN Uy ce Uy, N—1 0

SN : - : : — : h : e (2.10)
uUunN-11 *°° UN-1N-1 UN-1,N Un-11 *°° UN-1,N—-1 0
UN1 tet UN,N—-1 UNN 0 tet 0 1

and its iterates
SpN = Spp10---08y  SULN) — SU,(n) (n < N). (2.11)
PROPOSITION 2.27. Let 1 <n < N. The kernel of s, n equals the ideal T generated by the set
SpN = {ukj — 010 1< 4,k < N,max{j,k} > n}

Proof. For m € {n, N} let us abbreviate SU,(m) to A,, and denote its algebra generators by
ulfy (1 <j,k<m). We also write K for the ideal ker s, y of Ax.

Foroe€ vy andn<p<N, uéva(p) — Opopy] € Sy C I s0
_ N —_ag)ile), NN
1= D(I([ujk]) € ZaeyN s, o(p)=p for n<p<N( Q)" Ut gy Uy ) + L

- ZTEYR(_q)i(T)ugT(l) U unNrr(n) + 1= Dq([u;\]fﬁ]l<]‘,k<n) + 7.

It follows that the relation Dq([u?k]) = 1 in A, is preserved by the mapping from the set of
generators of A, into the quotient algebra Ay/Z given by uf — u% +Z (1 <j,k<n). Since
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this clearly also preserves the (remaining defining) relations (2.6]), the mapping uniquely extends
to an algebra morphism ¢ : A, — Ay/Z.
Now the prescription a+Z — a+ K defines an algebra epimorphism ¢ : Ay /Z — Ay /K (since

Z C K) and, letting 5, y denote the canonically induced algebra isomorphism Ay /K — A,
N . .
~ ~ y+ T f1<5,k<n
(¢ O SpN© ,lvz))(ujk + ) (gb ©s 7N)(u]k) (5]].;;1 + T if max{j, k} > n.

Thus, since uly, — ;11 € S,y C T if max{j,k} > n, (¢ 05, n 0 ) (uly, +I) = ujy + T for all j
and k so ¢ o5, y o) =idy, 7. It follows that the algebra epimorphism 1 is injective and thus
an isomorphism. Since Z C K, this implies that Z = K. O

We next establish relations between the values taken on generators, for a given cocycle on

SU,(N).
LEMMA 2.28. Let m be a representation of SU,(N) and let n be a m-e-cocycle. Fori <1 < N

and 7,k < N,
N(ua) = =(I — qm(un)))” =(
n(wi) = — (I — qm(un)) ™ m(wi)n(un), (2.12b)

m(unn — Dn(uge) = (mluge — 0 1) = (7 = @)m(1 = ¢Punn) " m(uawy)) n(uny).  (2.12¢)

In particular, by Remark[Z20, 1 is determined by its value n(uyn) when w(1—uny) is injective.

Proof. If a = uy or a = uy; where i < [ < N, then a € ker ¢ and, by Identities (ZGal) and (2.61)),
auy = quy a. Hence, by the cocycle property, w(a)n(uy) + n(a) = gm(uy)n(a). Since m(uy) is a
contraction, this is equivalent to the identity n(a) = —(I — qm(uy)) 7w (a)n(uy).

By the cocycle property applied to Identity (2.6d), if j, & < N then

171' uil)n(u”), (212&)

m(win)n(unn) + n(uje) = nlupuny) = nlunnvue) — (¢ — @)n(ujnun)

= m(unn)n(use) + nlunn)e(uz) — (¢

— @) (ujn)n(une),
m(uny — Dn(ue) = 7 (e — 0 Dnunn) + (7 = @)m(uin)n(une)
= (W(Uﬂc — 0 1) — (q_1 - Q)W(UjN)(f - qW(UNN))_lﬂ(UNk)) n(unn)
= (m(ujn — 0 1) = (¢ = @) (I — ¢*m(unn)) " 7 (uynvuns)) n(uyn). O

We end this section by characterising those representations and cocycles on SU,(N) that live
on SU,(n), for n < N.

PROPOSITION 2.29. Let 7 be a representation of SU,(N), let n be a w-e-cocycle and let n < N.

(a) The following are equivalent.
(i) 7 lives on SU,(n).
(ii) m(ugj) = 01 if max{j, k} > n.
(iii) m(u;;) =1 forn <j < N.
(b) Suppose that 7 lives on SU,(n). Then the following are equivalent.
(i) n lives on SU,(n).
(ii) n(ug;) =0 if max{j, k} > n.
(ili) n(u;j) =0 forn <j < N.
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Proof. For both parts, the equivalence of (i) and (ii) follows from Proposition because (ii)
says 7, respectively 7, vanishes on the set S, v (in the latter case, since cocycles kill the identity
element), moreover (ii) obviously implies (iii).

(a) For all j =1,---, N, the unitarity relations (Z71) imply the identities

m(ug;) m(uz;) + Z,ﬁé (k) 7 (uks) = I = m(ugy)m(ug;)" + Z/@g (wji)m(wjn)"

so if 7(u;;) = I then m(uy;) = 0 for k # j. Thus (iii) implies (ii).
(b) By Identities (212a) and (212D, if n(uy) = 0 then n(u;) = 0 = n(uy) for i < [ and so
(iii) implies (ii). O

3. CLASSIFICATION OF GAUSSIAN GENERATING FUNCTIONALS

In this Section we investigate the gaussian generating functionals on SU,(NN) and their Schiir-
mann triples. We follow Procedure for gaussian representations, that is representations of
the form ¢, o : a + e(a)l,. Since gaussian cocycles vanish on Ky, we seek a hermitian basis
extension F from Kj to K (see Section [2]).

LEMMA 3.1. Setv; = (uj; —1) € K and d; = (2i)"(u;; —u};) = (21) "' (v; —v}) € K. Then
the following hold.

(a) ujp € Ky for j #k.
(b) ’Uj +U;k - KQ.

(C) di+---+dy € Ks.
(d) djdk — dkdj € Ks.

Proof. (a) Let j # k. Combining Relations (Z.6a) and (2.6D)), one has w;,uy = quyu;y, for j # k
and [ := max(j, k). Therefore, since uy — 1, u;;, € K,

71q(ull — 1)u]k — ujk(ull — 1) € Ko.

ujr = (1—q)
(b) By the unitarity relation (1) we see that 1 —ujul; = > . ujmu, € K, so
vj ;= (u; — 1) 4 (uj; — 1)" = = (L — wjjuj;) — (ug; — 1)(uy; — 1) € K.
(c) Observe that
up-cuny = (01 4+ 1) (oy+1) =14+ (v1 + -+ + vn) + terms in K.
Therefore, v1 + -+ -+ vn + (1 — w1y - - -uyn) € K. Since D, = 1, we have
oy =300 e e (3.)

Now, for o # id there is at least one j such that j # o(j), so, from part (a), the right-hand side
of (B:[I) is in Ky. Thus vy + - -+ vy € Kj, hence,

di+ - +dy = (2i)‘1((v1+---+vN) — (01 + -+ on)") € Ko
(d) This follows from part (a), in view of the relations ([2.6d) and (2.3al). O

Now consider the family of characters determined by

6927...791\,('&“) = eigk(;kJ (k‘,l € {1, s ,N}),
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for #,--- .0y € R and #; given implicitly by Eff:l 0, = 0. The pointwise defined linear
functionals 9
L= — ) =2,---, N 3.2
EJ aej 92:~~~:6N:O€02’ 0N (] ) ) ) ( )
are drifts because they kill 1 (since each €y, ... g, is a character), vanish on K5 (by Leibniz’ rule,
since €g,.. o = €) and are hermitian (since dj, = dj, and &}(dx) = d;1).
LEMMA 3.2. Set E :={dy,--- ,dx}. Then the following hold.

(a) E is a hermitian basis extension from Ky to K.

(b) {e}:j=2,---, N} is a basis for the real space of drifts on SU,(N).
Proof. The set E is hermitian and it follows from parts (a), (b) and (c¢) of Lemma Bl that
EU K, spans K. For j,k=2,--- N, €)(dy) = 01 so E is linearly independent, and ¢ kills K>
so E and K are disjoint. Thus (a) holds, and so does (b) since drifts vanish on {1} U K,. [

In view of part (d) of Lemma B and Corollaries and [2.12] we deduce the following.
THEOREM 3.3. SU,(N) does not have property (GC) unless N < 2.

This is also proved in [2]. SU,(N) has Property (AC) if N =2 ([23], [21]).

From now on, we fix the hermitian basis extension Ey := {ds, -+ ,dy} from K, to K, and
thereby also the projection in Py (SU,(N)) as in (2.4]), which we denote Py. The resulting family
of projections is compatible with the subgroup relations SU,(N) > SU,(n).

PROPOSITION 3.4. P, 05,y = s, n©° Py forn <N.

Proof. The epimorphism sy (see (ZI0)) sends dy to 0 and, for 2 < n < N — 1, sends the d,
of SU,(N) to the d,, of SU,N — 1), so sy(Ex) = Ey_1 U {0}. Therefore, by Lemma 225
Pyn_105sy = sy o Py. By Identity (2.I1]) this iterates to yield the proposition. OJ

Note that the ) obtained in ([3.2]) coincide with the functionals ¢}, (d = d;) defined in (2.3)
from the basis extension Fy. Thus Proposition 2. 10 yields the following characterization.

PROPOSITION 3.5. The gaussian cocycles on SU,(N) are precisely the maps of the form

N
o /
=Y 640 (33)
for a family of vectors (fj)jy:Z in a Hilbert space h.

We next describe the gaussian generating functionals on SU,(NN). Consider the pointwise
defined functionals

g/.l = 782
k00, 00y,

THEOREM 3.6. Letting M, (R), denote the set of real nonnegative-definite n x n matrices, the

prescription,
( R) — N / + 1 N 1
r Z T+ = Z TjkE;
’ j=2 51T 9 Lajpg TR

defines a bijection from RN=1 x My _1(R), to the set of gaussian generating functionals vy on
SU,(N) in which the second sum is the Py-invariant component y o Py.

k=2 ... N).
02:___:0N:0592, On (7, -+, N)




14 UWE FRANZ, ANNA KULA, MARTIN LINDSAY, AND MICHAEL SKEIDE

Proof. In view of LemmaB.2] it suffices to verify that the prescription [rj;] — 3 kaﬁ 7K€y de-
fines a bijection from My _;(R), to the set of Py-driftless (i.e. Py-invariant) gaussian generating
functionals ~.

First note that by Leibniz’ rule,

eh(ab) = €j(a)e(b) + €)(a)e, (b) + £ (a)e(b) + e(a)e, (b) (a,b € SULN)).

It follows that €7, vanishes on Kj and, by direct computation, €% (d;) = 0 and €%, (did,,) =
0j10km + OjmOp for j,k,l,m = 2,--- N. In particular, €} o Py = €7} and, for all c € K and
A e CNL Y Nel(cre)h, = 2|3 )\k&t;ﬁ(c)‘2 > 0 so, since nonnegative-definiteness is preserved
under the Schur product, for any matrix R = [r;] € My_1(R) the functional § Y rje’, is
conditionally positive and therefore a Py-invariant gaussian generating functional.

Conversely, if 7 is a gaussian generating functional, its associated cocycle 7 is of the form (B.3])
and so, by Corollary T3 and part (d) of Lemma B, 1 is hermitian and hence the Gram matrix
[(¢),&)] is real and thus in My_;(R),. O

REMARKS 3.7. The CQG algebra Ty_; of the torus TV~ is generated, as unital *-algebra, by
a family of commuting unitaries {u; : j =1,---, N} subject to the relation u; - --uy = 1. The
prescription uj; — 0;,u; determines a CQG epimorphism 7y : SU,(N) — Ty_1 with respect
to which the characters g, ... g, of SUL(N) live on TV~ Therefore the gaussian generating
functionals of SU,(N) live on Ty_;. It also follows that, for any compact quantum group G
satisfying SU,(N) > G > TV, the projection P € P,(G) may be chosen to be compatible with
those for SU,(N) and Ty_1, and the gaussian generating functionals of G correspond to those of
Tn—1. Application of results on classical compact Lie groups in [24] to TV ~! gives an alternative
proof of Theorem The original preprint version of our paper has motivated generalisation
of the theorem to all ¢g-deformations of simply connected semisimple compact Lie groups (|7
Theorem 6.1]).

4. DECOMPOSITION

This is the central section of the paper. We decompose an arbitrary representation 7 of
SU,(N) uniquely into a direct sum m @- - -Gy, in which 7 = 74, as defined in Proposition 2.16
and, for 2 < n < N, 7, lives on SU,(n) and m,(1 — uy,y,) is injective. We then show that in
the corresponding decomposition n; @ - -- @ ny of a m-e-cocycle n, for 2 < n < N each cocycle
1, is approximately inner and determined by the vector 7(u,,,). This implies that SU,(N) has
Property (NAI) and so also (LK). We deduce a Hunt formula for SU,(N) incorporating full
decomposition for generating functionals.

The following elementary lemma plays a key role in the approximation of cocycles (part (a) is
well-known, for example in ergodic theory). For bounded operators 7', we write Tan 1" for ran 7.

LEMMA 4.1 (Contraction operator lemma). For any contraction operator C on a Hilbert space,

(a) ker(I — C*) =ker(I — C), so also tan(I — C) = ker(I — C)* =tan(I — C*), and
(b) P(t) == (1 —t)(I —tC)* 225 P and PL(t) = I —tC) (I — C) 225 PLast — 1-,

where P = Biex(1—c)- In particular, the following four conditions are equivalent.
(i) I — C s injective; (i)’ I — C has dense range;
) I—tC) (I -0C) 22 Tast =177 (i) (1-)(I—t0)' 2L 0ast—1-.
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Proof. (a) Let € € ker(I — C) = ran(l — C*)* = ran(C* — I)*. By symmetry it suffices to prove
that & € ker(I — C*). This follows by Pythagoras: ||£[|? + [[(C* — I)&||> = ||C*¢||* < ||€]*

(b) For0 <t <1,(1) I—P(t) = tPl(t), (2) [|P(t)]| <1,and (3) P(t)({—-C) = (1 —t)Pl(t);
thus (4) [|[P(t)(I — O)|| < 2(1 —t)/t. By (1), P(t) — I on ker P1(t) = ker(I — C) and, by (4)
and (2), P(t) — 0 on tan(/ — C'). Hence P(t) 9L P by (a), and so P*(t) 591 pL by (1). O
Decomposition of representations and cocycles. We start by separating out the maximal
subspace on which the operator m(1 — uxy) acts injectively, for a given representation .

LEMMA 4.2. Let 7 be a representation of SU,(N). Then m has a unique decomposition ™™ @ 7y
for which 7 lives on SUL(N —1), equivalently 7 (1 —uyn) = 0, and T (1 —uyy) is injective.
Moreover, K™ = ker m(1 — uyn).

Proof. The equivalence is contained in Proposition 2.291 We first show that k := ker 7(1 — uny)
is an invariant subspace for 7. Since the u;), generate SU,(N) as an algebra (Remark [2.20]),
to see this it suffices to fix £ € k and j,k € {1,---, N}, and to verify that m;;{ € k (in the
convenient abbreviation 7 := m(u;;)). For j = k = N this is obvious. For k < N, applying =
to Identity (2.7) then the vector functional we, we see that 7y, = 0 = mn€ for s < N so, by

Identity (2.8d),
ﬂ-j/k\fkﬂ-ng = ﬂ-Nkﬂ-ijg + (1 - q2) Zm<k ﬂ-Nmﬂ-ijg - Oa

thus myi€ = 0. Lastly, for j,k < N, mjpmnné = manmné — (¢ — @) minmyeé by Identity ([2.6d),
so mETNNE = TNNT S, in other words 7§ € k, as required.

In the resulting decomposition 7 = 7 @ 7y, 7V (1 —uny) = 0 and 7 (1 — uyy) is injective.
It remains to prove uniqueness. Thus let p & o be another such decomposition of 7; we must
show that h? = k. This follows from Lemma (4.1}

h? =ker p(1 — uyy) C k =ran7(1 —uyy)* C rano(l — uyy)*" = (h?)* = h”. O

DEFINITION 4.3. A decomposition m; @ --- @ my of a representation of SU,(N) is full if

(1) for 1 < n < N, there is a representation 7, of SU,(n) such that m, =7, o s, y and,
(2) for n > 2, m,(1 — uy,) is injective.

For n =1, (1) says that 7, is gaussian, and for n > 2, m,(1 — up,) = 7,(1 — u?,) where ul,
denotes uy, in SU,(n); (2) is equivalent to m(1 — wuy,,) having dense range for n > 2.

This superscript convention, indicating which quantum subgroup is being referred to, contin-
ues below.

THEOREM 4.4. Every representation of SU,(N) has a unique full decomposition.

Proof. We prove this by induction on N. For N = 1 there is nothing to prove. Suppose therefore
that the proposition holds for N = K — 1 for some K > 2, and let m be a representation of
SU,(K).

Existence. By Lemma 2, 7 = 7% @ 7, where i (1 — ug ) is injective and 7K =T o s for
a representation 7 of SU,(K — 1). By the induction hypothesis, T = p; @ - - - @ px_1 where p;

is gaussian and, for k = 2,--- | K — 1, pp(1 — ukKk’l) is injective and py = pi, © sk k1, for some
representation py of SU (k). Set m == pposg fork=1,--- K —1. Then 7 =m & --- & 7k,
where 7 is gaussian, 7 (1 — ugg) is injective and, for k = 2,--+ | K — 1, mp(1 — ugx) equals

pe(1— ukkal) and so is injective, and 7, = P 0 Sp.k—1 0 Sk = Pk © Sk.k, SO Ty lives on SU, (k).
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Uniqueness. Suppose that m = p; & --- & px is another such decomposition. Then, by the
uniqueness part of Lemma B2, px = 7 and p1 @ - D pg_1 = m D -+ D wxg_1. Now, for
k=1,---,K—1,m =705k and p, = pj, 0 sk for representations 7y, - -, px—1 of SUL(K —1)
and, by the surjectivity of s, 1 @ - - DT 1=p1 D+ D px_1. Since m; and p; are gaussian
and, for k = 2,--- | K — 1, 7}, and py live on SU, (k) and 7x(1 — upy ') and pr(1 — upy, ') are
injective, it follows from the induction hypothesis that 7w, = p;, for k =1,--- | K — 1. Therefore
Ty = p for k=1,--- | K, as required. O

THEOREM 4.5. Let m @ - --@myn be the full decomposition of a representation = of SU,(N) and
let ;i @ - @ nn be the induced decomposition of a w-e-cocycle . Then 1y is gaussian and, for
n =2, n, lives on SU,(n).

Proof. For n = 1, the cocycle 1, is gaussian since the representation 7, is. For m > n > 2, by
part (a) of Proposition 229 applied to Identity (2.6d)),

- @) T (U ) (Uinn)

T (Wnn )T (W) + 7 (W) = T (W )10 (W) + N () — (g
= N (tnn) + Mo (Wimm),
SO My (Umm) € ker m, (1 —wy,,,) = {0} thus, by part (b) of Proposition 229, 7, lives on SU,(n). O
Approximation of cocycles and (NAI) for SU,(N). We now show that each of the cocycles
N (n = 2) in Theorem is approximately inner.

PROPOSITION 4.6. Let n be a cocycle of a representation m of SUL(N) such that m(1 — uny) is
ingective. Then

n=pw-lim, ;- ec@y where ((t) = —m(1 — tunn) 'n(unn).

Proof. In view of the cocycle relations and Remark .26 it suffices to prove that, for each of the
algebra generators a = i, 1(a) is the pointwise limit as ¢t — 17 of the following expression

—7(a—e(a))m(l — tunn) 'n(uyy). (4.1)

We prove this using Lemma [Z.]] (the contraction operator lemma) and Lemma 228
Case a = uyy. Lemma T implies that 7(1 — tuny) " '7(1 — uyn)n(uny) — n(uny).
Case a = ugy or a = uyy (k < N). Then a € kere so m(a) = w(a — £(a)l). Thus, using

Relations (2.12al)-(2.12h), Lemma ETl implies that n(a) equals

—7(1 — quyn) ' m(a)n(uyn) = —tl_i}}{ m(1 — quyy) 'w(a)m(1 — tuny) ' w (1 — unn)n(uny)
=— tlirln_ m(a — e(a))m(1 — tunn) 'n(uny).

Case a = ujy, (j, k < N). We must show that —m(u;, — d;51)7(1 — tunn) " 'nluny) = n(uj).
By the contraction operator lemma —7(1 — tuyn) *m(uny — 1)n(ur) — n(uj). It therefore
suffices to show that

—7(1— tuNN)_lﬂ(uNN — Un(ujn) + m(ujp — 6j51)m(1 — tuNN)_ln(uNN) — 0.

By Identity (ZI2d) the first term equals

-1

—m(1 = tunn) " (w(ugr — 051) — (¢ = Om(1 = Punn) ' w(winune)n(uny)
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and so, since the operators 7(1 — ¢*uyy) ™t and 7(1 — tuyy)~' commute, after cancellation of
the d;; terms and multiplication through by the invertible operator 7(1 — ¢*uyy) we see that
the task is equivalent to showing that the following converges to 0 on the vector n(uyy):

7(1 = ¢*unn) [m(uj), 7(1 = tuyn) 7] + (¢ — @)m(1 — tuyn) 7 (ujnune) (4.2)

— we show that it converges to 0 strongly. Let us abbreviate 7(u;) to m; for each ¢ and I. It
follows from Identity (Z6d) that

a—1

[Tk Ten] = —(g7' — Q)(ZV
thus, taking the Neumann series for (I —t¢myy) !, which is valid since t7yy is a strict contraction,
00 a—1
[ U= tmo) ] = =@ =) 3D, @R T
Substituting this into ([Z2) then gives the following operator composed with (¢~! — ¢)mnTyg:
_ _ 2 o a-l1 v, _a—1 B -1
([ q 7TNN) Za:1 Zy:(] q t TNN + ([ tuNN)
= > @ iy — 1 (b)) 4 (1~ tu)
o > 2 v+1 > B (2 v > B . —1
— Zyzo ((C] tTNN) Zﬁzo(tm\w) t(g“trny) ZBZO(MNN) ) + (I — tuyn)
= (I — q2tUNN)71 (q2t7TUNN —tl + I — q2tUNN)I — tUNN)il

= (I — qztuNN)_l(l — t)([ — tUNN)_l

so the required convergence follows from Lemma [4.1] O

)N TNt (0 € Zy),

THEOREM 4.7. Let m @ --- @ my be the full decomposition of a representation m of SU,(N)
and let my @ --- & ny be the induced decomposition of a mw-e-cocycle . Then, for n > 2,
Nn = pw-limy, 1~ Nn, e(npy where E(n,t) = =1, (1 — tnn) ™ 00 (Unn).-
Thus, in terms of the decomposition h™ = h™¢ @ h™&,
n = pw-lim, ;- NG ® Nrpeq) where
E(t) = —ma(1 — tuga) "'ma(uze) @ -+ ® N (1 — tunn) v (unw).

Proof. Let n > 2. By Theorem[.5] 7,, = 1,,0s,, x for a cocycle 7,, on SU,(n) and, by Lemma[2.22]
it suffices to prove that nz, ¢+ converges pointwise to 17,. Now 7, (1 — un,) is injective (by
Theorem [I4), 7, (1 —tul,,) = (1 —tuy,) for all t € [0, 1] and 7, (u,,) = 7y (Unn) s0 T, (1 —ul’,)

nn

(4.3)

is injective and &(n,t) = —7,(1 — tu”, )0, (ul,). The theorem therefore follows by applying
Proposition with N = n. OJ

Noting that if 7 is completely non-gaussian, so h™@ = {0}, then ([4.3]) simplifies to the pointwise
convergence ¢ — 1 as t — 17, we draw the following immediate corollary.

THEOREM 4.8. SU,(N) has property (NAI), and thus also (LK).
Decomposition of generating functionals and Hunt formula for SU,(N).

LEMMA 4.9. Let (7',1') and (7", n") be cyclic representation-cocycle pairs on SU,(N) such that
(r',n') lives on SUL(N — 1) and 7" (1 — unn) is injective. Then the following hold.

(a) The cocycle ' vanishes on (1 —uyy) K.
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(b) The set 0" ((1 — uny)K) = 7"(1 — unn)n"(K) is dense in h™ .
(¢) The cocycle ' ®n" is cyclic.

Proof. (a) This follows since ’'(1—uyx) = 0 because 7’ lives on SU,(N—1) and 1—uyy € ker sy.
(b) By Lemma 1] 7 (1 —uy ~) has dense range so this follows from the cyclicity of n”.
(¢) The cyclicity of 0" @ n” follows from that of 1’ and 7" since, for ¢;,co € K, by part

(b) there is a sequence (d,) in K such that n”((1 — unny)d,) — n”(c2 — c1), and by part (a)
7' ((1 —unn)dy,) = 0 for all p so
m'(c1) ' (c1)
Y s 1 — uyy)d,) = . O
e+ 0= = (e (L) = (i) =0

DEFINITION 4.10. Let N > 2. We say that a completely non-gaussian generating functional
on SU,(N) is gf-irreducible if the following holds: for any generating functional decomposition
v=7"+7" i 7/ lives on SU,(N — 1) then it is a drift.

PROPOSITION 4.11. Let v be a generating functional on SU,(N) for N = 2, and let (m,n,7) be
its Schiirmann triple. Then «y is gf-irreducible if and only if (1 — uyn) is injective.

Proof. Suppose first that ~ is gf-irreducible. By Theorems [4.4] and and Propositions
and 28, 7 and 1 decompose as 7 @ 7y and n™¥ @ ny, where my(1 — uyy) is injective, n™v
lives on SU,(N — 1) and 7y is approximately inner and so completable by a Py-invariant
generating functional 7. The normalised hermitian functional v := v — vy satisfies vV (c*c) =
In()|I? = lInn(c)||* = [N (c)||? for all ¢ € K and so is a generating functional which completes
n™ and thus also lives on SU,(N — 1), and satisfies vV + vy = 7. Thus 7V is a drift and so
N — 0. But n is cyclic (since 7 is) and so h™ = {0} thus 7 = 7y and so 7(1 — uyy) is
injective.

Suppose conversely that m(1 — uyy) is injective, and let 7' + ~” be a generating functional
decomposition of vy such that v lives on SU,(N — 1). Let (n',n ,7) and (7", n",4") be the
Schiirmann triples of 7/ and ~". Then (7T 77 Y ) lives on SU, (N —1), so i’ vanishes on (1—uyy)K
by part (a) of Lemma [0, also (7' & 7", 7 &n",v) is a Schurmann triple so there is an isometry
V e B(h™h™ @ h™) such that ( ,,(C) Vn(c) for all ¢ € K. In view of part (b) of Lemma [4.9]

these together imply that " = 0, so 4 is a drift. Therefore v is gf-irreducible. 0

DEFINITION 4.12. A generating functional decomposition v =y, +- - -+ 5 on SU,(N) is full if

(1) for 1 <n < N, 7, =7, 0 s,y for a generating functional ¥, on SU,(n), and
(2) for n > 2, 7, is gf-irreducible and P,-invariant.

Forn =1, (1) says that =, is gaussian. Given (1), letting (T Ty Yn) be 3 ’s Schiirmann triple,
so that (7, 1= 7,08, N, T = TnOSn.Ns Yn = TnOSn.N) IS ¥,’s Schiirmann triple, the condition (2)
is equivalent to (2)": m,(1 — uyy) is injective and ~,, is Py-invariant, by Proposition d.IT] (since
Tn(1 = Upp) = T (1 — ), and the compatibility of the family of projections (Proposition B.4]).

LEMMA 4.13. If a generating functional v on SU,(N) has a full decomposition v + -+ + vy
then, in terms of each v, ’s Schiirmann triple (7, M, Yn),

(a) m @ -+ D wy is a full (representation) decomposition, and
(b) the cocycle my @ - -+ ® ny is cyclic.
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Proof. Let v = 71 + -+ + vy be such a decomposition. For each n denote by (7,,7,,7,) the
induced Schiirmann triple on SU,(n), noting that for n =2,--- | N, 7, is gf-irreducible and, by
(2), the operator m,(1 — wu,,) is injective and =, is Py-invariant, in particular (a) holds.

(b) For N = 1 there is nothing to prove. Suppose therefore that the proposition holds for
N = K —1 where K > 2, and that a generating functional v on SU,(K) has a full decomposition
v =y + -+ 7. In the above tilde notations, note that for £k = 1,--- | K — 1, (7 =
Tk O Ski—1, 1k ‘= Nk © Sk.K—1, Tk ‘= Tk © Sk.k—1) is a cyclic Schiirmann triple (since (7, 7k, Vk)
is) and set % := 74, + -+ + Jx_1, noting that this generating functional decomposition is full
because 7y = 7k © sk k-1 for each k and, for k = 2,--- | K — 1, 7, is gf-irreducible and P-
invariant. Therefore, by the induction hypothesis, 71 + - -+ + fx_1 is cyclic which means that
m @ Dng_q is cyclic and so, by part (c) of Lemmal9 n @ - - ®nxg = (m D+ - Dng_1) DNk
is too. Hence (b) follows by induction. O

THEOREM 4.14. Every generating functional v on SU,(N) has a unique full decomposition.

Proof. Ezistence. Let v be a generating functional on SU,(N) and let (7,7, ) be its Schiirmann
triple. By Theorem [£4] 7 has a full decomposition m @ --- @ 7y; let 71 & --- & ny be the
corresponding decomposition of 1. By Theorems and 7], 7, lives on SU,(n) for each n and,
forn=2,---, N, n, is approximately inner and thus completable by a Py-invariant generating
functional 7, so 7, also lives on SU,(n). Moreover, letting (7,7, 7) be the induced Schiirmann
triple on SU,(n), T,(1 —u,) equals 7,(1 — w,,) and so is injective, thus 7, is gf-irreducible by
Proposition 11l Now the functional 7y := v — (72 + - -+ + yn) is hermitian and normalised,
and satisfies v1(c*c) = ||n(c)||* = ([[m2(e)|* + - - - + |[nn (©)[|?) = |[m(c)||* for all ¢ € K and so is a
generating functional which completes 7;; moreover it is gaussian because 7 is. It follows that
Y1+ -+ -+ vy is a full decomposition of ~.

Uniqueness. Let v+ - -4y and 7]+ - -+7} be full decompositions of a generating functional
von SUN). Set m:=m & --- S 7y and =1 & --- S ny where, for each n, (m,, 7y, V,) is
~n's Schiirmann triple — and do likewise for ~],- -+ ,v}. Since v3 = v — (92 + -+ - + 7n) and for

n =2, v, 0 Py =, and v,(c*c) = ||n.(c)||* for ¢ € K, and likewise for 71, - , 7}, uniqueness
follows once it is verified that ||n,(-)|| = ||, (-)|| for n > 2. By Lemma I3 7 :=m & --- ® 7y
and 7’ = 7 @& --- @ 7wy are full (representation) decompositions and (m,n,7v) and (7',7/,7)

are cyclic Schiirmann triples. Therefore there is a unitary operator U € B(h™;h™) such that
n' = Un(-) and 7" = Un(-)U*. The full decomposition 7 = m; @ - - - @ my evidently induces a full
decomposition, say 7V @ - - @ 7Y, of ©'; the resulting decomposition ' = n¥ @ - - - @ 7Y satisfies
1Y (]| = [|m.(-)|| for each n. Thus, by the uniqueness part of Theorem B4, for each n, 7¥ = 7/
50 17, = ny,, thus [|n, (-)[| = [|na(-)[| as required. 0

Combining the theorems of this section with Theorem and Remarks 218 and [24] we
deduce our main result.

THEOREM 4.15 (Hunt formula for SU,(N)). Let v be a generating functional on SU,(N). Then
there is a unique decomposition v = vp + Yo + Yna, n which vyp is a drift, and v and Yng
are Py-invariant generating functionals which are respectively gaussian and completely non-
gaussian. Moreover, the following hold.

(1) vg and ~vp are uniquely parameterised by a matriz in My _1(R), and vector in RN 1.
(2) v has a unique full decomposition y1 + -+ + v, and if (Tp, NnyYn) 1S Vo ’s Schiirmann
triple for each n then (m :=m @ - BN, :=m D - Dnn,7y) is v’s Schirmann triple.
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(3) ywe = pw-lim,_ ;- wey © Tr © Py where mg is the non-gaussian remainder of ™ and
E(t) := —ma(1 — tuga) "'n2(uge) @ -+ ® wn(1 — tuyn) v (unn).

The realisation of vy in (3) is analogous to that of v in the classical Hunt formula (L)
given in the remark following Proposition

For the liming case ¢ = 1 corresponding to the compact Lie group SU(N) the proofs of
Lemma 31l and Theorem 7], on which our Hunt formula depends, are no longer vadid. How-
ever, the theorem as stated still holds. Indeed the gaussian/nongaussian decomposition and
parameterisations (1) are statements of Hunt’s results in the language of generating functionals,
moreover (2) is seen by decomposing the Lévy measure into its restrictions to the corresponding

subgroups of SU(N).

5. FROM PARAMETRIZATION BY h™ TO QUASI-INNERNESS

Given a gf-irreducible generating functional on SU,(N), with Schiirmann triple (7, n,7), by
Proposition d.11] and Lemma we know that m(1 — uyy) is injective and so 7 is determined
by its value n(uyy). One may therefore ask which vectors of the representation space h™ arise in
this way. In case N = 2 every vector does, so the cocyles are parameterised by h™ ([23, Theorem
2.8]; |21, Theorem 3.3]). We now show this to be false for N = 3; the argument extends to higher
values of N. The section ends with an indication of a positive counterpart to this, namely a
quasi-innerness property of completely non-gaussian cocycles/m-e-derivations.

PROPOSITION 5.1. There is a representation m of SU4(3) and vector € in h™ such that w(1 —uss)
is injective but n(ug3) # & for every m-e-cocycle 1.

Proof. Following Woronowicz, we write the generators u;;, of SU,(2) as

Uin w2 _ | —q"

U2l  Usg2 oot |
Let p be the irreducible representation of SU,(2) on (*(Z. ) defined, in terms of the standard
orthonormal basis (e,),>0 by

pla): e, = /1 —¢*e,1 and p(7y): e, — ¢"e,

(where e_y :=0). For k = 1,2, set py, := pory for the CQG epimorphisms 7, : SU,(3) — SU,(2)
given by

a —qy* 0 10 0
rc fuj] = |y o 0 and ro: [ujp)— |0 a —gy*
0 0 1 0 ~v o

(so r; = s3). Then p; and p, are representations of SU,(3) and so, setting m := p; * pa,

; pla) @1 —qp(7)" @ pla)  ¢*p(7)" @ p(y)*
[m(n)], = [ Do el @ palua)| = o) @1 pla) @pla)  —ap(a) @ p(y)"
’ - o 0 I®p(7) [ p(e)
Now 7(1 — uz3) = I ® p(1 — ) is injective because p(1 — o*) is. Suppose for a contradiction
that there is a m-e-cocycle n satisfying n(us3) = ey ® ep. Since 7(uz;) = 0 and p(a)eg = 0,
Relation (212d) for j = 1 = k implies that

(I @ p(1 —a))n(ui) = (I — m(uss))n(uir) = (I — m(u1r))n(uss) = p(1 — a)eo ® eg = ey @ eo.
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For n > 0, set a, := (eo ® €n,n(u11)). Then, since p(a*)e, = /1 — @+ De, 1,
€y = Zn>0 an(I — p(a®))e, = Zn>0 ap (en - V31— QQ("H)@nH)
= agep + Zn>1 (an — Ap_1 m)en.

Thus ag = 1 and, for n > 1, |a,|? = [T;_,(1 — ¢**). Therefore, since _ |a,|* < |[n(ui1)||* < oo,
[T, (1 —¢*)— 0asn — ooso Y. ¢®* diverges and we have our contradiction. O

This leaves us with the question, which vectors in h™ may occur as values n(uyy) for a cocycle
n. Every element in the dense subspace ran (1 — uyy) occurs; and the collection of cocycles
determined by them is precisely the set of coboundaries. Indeed, for ¢ = —7(1 — uny)E, by the
contraction operator lemma we have (see Theorem [L.7]) the following pointwise convergence:

—mo(id—roe)()m(l—tuyy) ¢ = mo(id—ro0e)()E =nee as t — 17,
and the identity 7, ¢(uny) = T(uny — 1) =¢'.

PROPOSITION 5.2. Let ({()\)) be a net in h™. Then the net of coboundaries (1 ¢.\)) converges
pointwise on SU,(N) provided that it converges on u;; for 1 < j < N.

Proof. This follows from Remark since, for j # k, setting [ := max(j, k). Relations (ZGal)
or (2.6D)) imply that
Neey(n) = m(u)é(A) = m(1— qui) "' (1 = qui)m(uz)E(N)
= —m(1 = quu) "' m(ujp)m(un — DEN) = —m(1 — qua) ™' (wjp) ey (un). O

We conclude this section with a quasi-innerness property enjoyed by all completely non-
gaussian cocycles.

THEOREM 5.3. Let 7 be a completely non-gaussian representation of SU,(N), and let (h™,J)
denote the completion of h™ with respect to the norm ||-||| : & — (Zﬁvzl | (1 —ujj)§||2)1/2. Then

a net (§(N)) in h™ is |||-|||-Cauchy if and only if the corresponding net of w-e-coboundaries (1 ¢(x))
converges pointwise. Moreover, the following hold.

(1) There is a unique operator © : K — B(h™ h™) which ‘extends’ the representation m in
the sense that it satisfies

7(ac) = m(a)7(c) and 7(c)J = 7(c) (a € SUN),c € K).

(2) The prescription X +— 1z = (a — T(a —e(a)l)x) defines a linear isomorphism from h™
to the space of w-e-cocycles.

There is also a unique operator 7 : Ky — B(h™) such that
7(c*c) = T(c)T(c) and J*T(e)J = m(e) (ce K,e € K).

This has the property: for all y € h7, the generating functional w, o7 o Py completes (7, 7z ).
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6. THE CASE OF U,(N)

A Hunt formula for U,(/N) may be obtained by employing very simlar arguments to those used
above for SU,(N). The upshot is the same as Theorem except that it is with respect to
the tower of subgroups U,(0) < --- < U,(N) with U,(0) denoting the trivial compact quantum
group, rather than the tower SU (1) < --- < SU,(N) (also starting at the trivial group), thus
N replaces N — 1 in (1), the decomposition in (2) starts at n = 0 rather than n = 1, and the
components of (t) in (3) start at n = 1 rather than n = 2. We therefore instead discuss only
the (NAI) and (GC) questions for U,(NN), as these may easily be deduced from our results and
reasoning for the SU,(N) quantum groups.

Since SU,(N +1) > U,(N) > T¥ it follows from Remarks B.7]that ,(N) has the same gauss-
ian generating functionals as SU,(/N + 1) and a hermitian projection P’ for U,(N) compatible
with that of SU, (/N + 1) is the one corresponding to the following choice of basis extension:

E’ — {tN(dn) c 2 < n < N} U {tN(dN+1) — (2i)—1(D—1 N D_l*)}_
THEOREM 6.1. U,(N) does not have property (GC), unless N = 1.

Proof. The reasoning used in the proof of the SU,(IN) counterpart (Theorem B.3) applies. By
part (d) of Lemma 1] the basis extension E’ again consists of elements whose commutators lie
in K3, and dim K/Ky; = N > 2 unless N = 1 so Corollaries 213 and [Z12] again apply. 0

Since the (NAI) property is hereditary (Proposition2.23]) and SU,(N+1) has it (Theorem L),
U,(N) does too.

THEOREM 6.2. U,(N) has property (NAI), and thus also (LK).
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