
HAL Id: hal-03116698
https://hal.science/hal-03116698v1

Preprint submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complete trace models of state and control (full version)
Guilhem Jaber, Andrzej S. Murawski

To cite this version:
Guilhem Jaber, Andrzej S. Murawski. Complete trace models of state and control (full version). 2021.
�hal-03116698�

https://hal.science/hal-03116698v1
https://hal.archives-ouvertes.fr

Complete trace models of state and control

Guilhem Jaber1 and Andrzej S. Murawski2

1 Université de Nantes, LS2N CNRS, Inria, France
2 University of Oxford, UK

Abstract. We consider a hierarchy of four typed call-by-value languages
with either higher-order or ground-type references and with either call/cc
or no control operator.
Our first result is a fully abstract trace model for the most expressive
setting, featuring both higher-order references and call/cc, constructed
in the spirit of operational game semantics. Next we examine the impact
of suppressing higher-order references and callcc in contexts and provide
an operational explanation for the game-semantic conditions known as
visibility and bracketing respectively. This allows us to refine the original
model to provide fully abstract trace models of interaction with contexts
that need not use higher-order references or call/cc. Along the way, we
discuss the relationship between error- and termination-based contextual
testing in each case, and relate the two to trace and complete trace
equivalence respectively.
Overall, the paper provides a systematic development of operational
game semantics for all four cases, which represent the state-based face
of the so-called semantic cube.

Keywords: contextual equivalence, operational game semantics, higher-
order references, control operators

1 Introduction

Research into contextual equivalence has a long tradition in programming lan-
guage theory, due to its fundamental nature and applicability to numerous veri-
fication tasks, such as the correctness of compiler optimisations. Capturing con-
textual equivalence mathematically, i.e. the full abstraction problem [26], has
been an important driving force in denotational semantics, which led, among
others, to the development of game semantics [2, 12]. Game semantics models
computation through sequences of question- and answer-moves by two players,
traditionally called O and P, who play the role of the context and the program
respectively. Because of its interactive nature, it has often been referred to as a
middle ground between denotational and operational semantics.

Over the last three decades the game-semantic approach has led to numerous
fully abstract models for a whole spectrum of programming paradigms. Most pa-
pers in this strand follow a rather abstract pattern when presenting the models,
emphasing structure and compositionality, often developing a correspondence
with a categorical framework along the way to facilitate proofs. The operational

2 G. Jaber, A. S. Murawski

intuitions behind the games are somewhat obscured in this presentation, and
left to be discovered through a deeper exploration of proofs.

In contrast, operational game semantics aims to define models in which the
interaction between the term and the environment is described through a care-
fully instrumented labelled transition system (LTS), built using the syntax and
operational semantics of the relevant language. Here, the derived trace seman-
tics can be shown to be fully abstract. In this line of work, the dynamics is
described more directly and provides operational intuitions about the meaning
of moves, while not immediately giving structural insights about the structure
of the traces.

In this paper, we follow the operational approach and present a whole hier-
archy of trace models for higher-order languages with varying access to higher-
order state and control. As a vehicle for our study, we use HOSC, a call-by-value
higher-order language equipped with general references and continuations. We
also consider its sublanguages GOSC, HOS and GOS, obtained respectively by
restricting storage to ground values, by removing continuations, and by imposing
both restrictions. We study contextual testing of a class of HOSC terms using
contexts from each of the languages x ∈ {HOSC,GOSC,HOS,GOS}; we write x
to refer to each case. Our working notion of convergence will be error reachabil-
ity, where an error is represented by a free variable. Accordingly, at the technical
level, we will study a family of equivalence relations ∼=x

err , each corresponding to
contextual testing with contexts from x, where contexts have the extra power
to abort the computation.

Our main results are trace models Trx(Γ `M) for each x ∈ {HOSC,GOSC,
HOS,GOS}, which capture ∼=x

err through trace equivalence:

Γ `M1
∼=x

err M2 if and only if Trx(Γ `M1) = Trx(Γ `M2).

It turns out that, for contexts with control (i.e. x ∈ {HOSC,GOSC}), ∼=x
err coin-

cides with the standard notion of contextual equivalence based on termination,
written ∼=x

ter . However, in the other two cases, the former is strictly more dis-
criminating than the latter. We explain how to account for this difference in the
trace-based setting, using complete traces.

A common theme that has emerged in game semantics is the comparative
study of the power of contexts, as it turned out possible to identify combina-
torial conditions, namely visibility [3] and bracketing [22], that correspond to
contextual testing in the absence of general references and control constructs
respectively. In brief, visibility states that not all moves can be played, but only
those that are enabled by a “visible part” of the interaction, which could be
thought of as functions currently in scope. Bracketing in turn imposes a disci-
pline on answers, requiring that the topmost question be answered first. In the
paper, we provide an operational reconstruction of both conditions.

Overall, we propose a unifying framework for studying higher-order languages
with state and control, which we hope will make the techniques of (operational)
game semantics clearer to the wider community. The construction of the fully
abstract LTSs is by no means automatic, as there is no general methodology for

Complete trace models of state and control 3

σ, τ , Unit | Int | Bool | refτ | τ × σ | τ → σ | cont τ

U, V , () | tt | ff | n̂ | x | ` | 〈U, V 〉 | λxτ .M | rec y(xτ).M | contτ K

M,N, V | 〈M,N〉 | πiM | MN | refτ M | !M | M := N | if M1 M2 M3 | M ⊕N | M �N
| M = N | call/ccτ (x.M) | throwτ M to N

K , • | 〈V,K〉 | 〈K,M〉 | πiK | V K | KM | refτ K | !K | V := K | K := M | if K M N
| K ⊕M | V ⊕K | K �M | V �K | K = M | V = K | throwτ V to K | throwτ K to M

C , • | 〈M,C〉 | 〈C,M〉 | πiC | λxτ .C | rec y(xτ).C | MC | CM | refτ C | !C
| C := M | M := C | if C M N | if M C N | if M N C | C ⊕M | M ⊕ C
| C �M | M � C | C = M | M = C | call/ccτ (x.C) | throwτ C to M | throwτ M to C

Notational conventions: x, y ∈ Var, ` ∈ Loc, n ∈ Z, i ∈ {1, 2}, ⊕ ∈ {+,−, ∗},
� ∈ {=, <}
Syntactic sugar: letx = M inN stands for (λx.N)M (if x does not occur in N we also
write M ;N)

Fig. 1. HOSC syntax

extracting trace semantics from game models. Some attempts in that direction
have been reported in [25], but the type discipline discussed there is far too weak
to be applied to the languages we study. As the most immediate precursor to our
work, we see the trace model of contextual interactions between HOS contexts
and HOS terms from [23]. In comparison, the models developed in this paper
are more general, as they consider the interaction between HOSC terms and
contexts drawn from any of the four languages ranged over by x.

In the 1990s, Abramsky proposed a research programme, originally called
the semantic cube [1], which concerned investigating extensions of the purely
functional programming language PCF along various axes. From this angle, the
present paper is an operational study of a semantic diamond of languages with
state, with GOS at the bottom, extending towards HOSC at the top, either via
GOSC or HOS.

2 HOSC

The main objects of our study will be the language HOSC along with its frag-
ments GOSC, HOS and GOS. HOSC is a higher-order programming language
equipped with general references and continuations.

Syntax HOSC syntax is given in Figure 1. Assuming countably infinite sets
Loc (locations) and Var (variables), HOSC typing judgments take the form
Σ;Γ ` M : τ , where Σ and Γ are finite partial functions that assign types to
locations and variables respectively. We list all the typing rules in the Appendix.
In typing judgements, we often write Σ as shorthand for Σ; ∅ (closed) and Γ as
shorthand for ∅;Γ (location-free). Similarly, `M : τ means ∅; ∅ `M : τ .

4 G. Jaber, A. S. Murawski

(K[(λxσ.M)V], h) →(K[M{V/x}], h)
(K[πi〈V1, V2〉], h) →(K[Vi], h)
(K[if tt M1 M2], h) →(K[M1], h)
(K[if ff M1 M2], h) →(K[M2], h)

(K[n̂⊕ m̂], h) →(K[n̂⊕m], h)
(K[n̂� m̂], h) →(K[b], h)
with b = tt if n�m, otherwise b = ff
(K[call/cc(xτ .M)], h)→(K[M{contτ K/x}], h)

(K[!`], h) →(K[h(`)], h)
(K[ref V], h) →(K[`], h · [` 7→ V])
(K[` := V], h)→(K[()], h[` 7→ V])
(K[` = `′], h) →(K[b], h)
with b = tt if ` = `′, otherwise b = ff
(K[(rec y(xσ).M︸ ︷︷ ︸

U

)V], h)→ (K[M{V/x, U/y}], h)

(K[throwτ V to contτ K
′], h)→ (K′[V], h)

Fig. 2. Operational reduction for HOSC

Operational semantics A heap h is a finite type-respecting map from Loc to
values. We write h : (Σ;Γ), if dom(Σ) ⊆ dom(h) and Σ;Γ ` h(`) : σ for
(`, σ) ∈ Σ, The operational semantics of HOSC reduces pairs (M,h), where
Σ;Γ `M : τ and h : (Σ;Γ). The rules are given in Figure 2, where {·} denotes
(capture-avoiding) substitution. We write (M,h) ⇓ter if there exist V, h′ such
that (M,h)→∗ (V, h′) and V is a value.

We distinguish the following fragments of HOSC.

Definition 1. – GOSC types are HOSC types except that reference types are
restricted to refι, where ι is given by the grammar ι , Unit | Int | Bool | refι.
GOSC terms are HOSC terms whose typing derivations (i.e. not only the
final typing judgments) rely on GOSC types only. GOSC is a superset of
FOSC [8], which also includes references to references (the refι case above).

– HOS types are HOSC types that do not feature the cont constructor. HOS
terms are HOSC terms whose typing derivations rely on HOS types only.
Consequently, HOS terms never have subterms of the form call/ccτ (x.M),
throwτ M to N or contτ K.

– GOS is the intersection of HOS and GOSC, both for types and terms, i.e.
there are no continuations and storage is restricted to values of type ι, defined
above.

Definition 2. Given a HOSC term Γ `M : τ , we refer to types in Γ and τ as
boundary types. Let x ∈ {HOSC,GOSC,HOS, GOS}. We say that a HOSC
term Γ `M : τ has an x boundary if all of its boundary types are from x.

Remark 1. Note that typing derivations of HOSC terms with an x boundary may
contain arbitrary HOSC types as long as the final typing judgment uses types
from x only. Consequently, if x 6= HOSC, HOSC terms with an x boundary form
a strict superset of x.

Next we introduce several notions of contextual testing for HOSC-terms, us-
ing various kinds of contexts. For a start, we introduce the classic notion of
contextual approximation based on observing termination. The notions are pa-
rameterized by x, indicating which language is used to build the testing contexts.
We write Γ ` C : τ → τ ′ if Γ, x : τ ` C[x] : τ ′, and Γ ` C ÷ τ if Γ ` C : τ → τ ′

for some τ ′.

Complete trace models of state and control 5

Definition 3 (Contextual Approximation). Let x ∈ {HOSC,GOSC,HOS,
GOS}. Given HOSC terms Γ ` M1,M2 : τ with an x boundary, we define
Γ `M1 .x

ter M2 to hold, when for all contexts ` C ÷ τ built from the syntax of
x, if (C[M1], ε) ⇓ter then (C[M2], ε) ⇓ter .

We also consider another way of testing, based on observing whether a pro-
gram can reach a breakpoint (error point) inside a context. Technically, the
breakpoints are represented as occurrences of a special free error variable err :
Unit→ Unit. Reaching a breakpoint then corresponds to convergence to a stuck
configuration of the form (K[err()], h): we write (M,h) ⇓err if there exist K,h′

such that (M,h)→∗ (K[err()], h′).

Definition 4 (Contextual Approximation through Error). Let x ∈ {HOSC,
FOSC, HOS, GOS}. Given HOSC terms Γ ` M1,M2 : τ with an x boundary
and err 6∈ dom(Γ), we define Γ ` M1 .x

err M2 to hold, when for all con-
texts err : Unit → Unit ` C ÷ τ built from x-syntax, if (C[M1], ε) ⇓err then
(C[M2], ε) ⇓err .

For the languages in question, it will turn out that .x
err is at least as discriminat-

ing as .x
ter for each x ∈ {HOSC,GOSC,HOS,GOS}, and that they coincide for

x ∈ {HOSC,GOSC}. We will write ∼=x
err and ∼=x

ter for the associated equivalence
relations.

For higher-order languages with state and control, it is well known that
contextual testing can be restricted to evaluation contexts after instantiating
the free variables of terms to closed values (the so-called closed instances of
use, CIU). Let us write Σ,Γ ′ ` γ : Γ for substitutions γ such that, for any
(x, σx) ∈ Γ , the term γ(x) is a value satisfying Σ;Γ ′ ` γ(x) : σx. Then M{γ}
stands for the outcome of applying γ to M .

Definition 5 (CIU Approximation). Let x ∈ {HOSC,GOSC,HOS,GOS}
and let Γ `M1,M2 : τ be HOSC terms with an x boundary.

– Γ `M1 .
x(ciu)
ter M2 : τ , when for all Σ, h,K, γ, all built from x syntax, such

that h : Σ, Σ ` K ÷ τ , and Σ ` γ : Γ , we have (K[M1{γ}], h) ⇓ter implies
(K[M2{γ}], h) ⇓ter .

– We write Γ ` M1 .
x(ciu)
err M2 : τ , when for all Σ, h,K, γ, all built from x

syntax, such that h : Σ; ˆerr, Σ; ˆerr ` K ÷ τ , and Σ; ˆerr ` γ : Γ , we have
(K[M1{γ}], h) ⇓err implies (K[M2{γ}], h) ⇓err , where err 6∈ dom(Γ) and
ˆerr stands for err : Unit→ Unit.

Results stating that “CIU tests suffice” are referred to as CIU lemmas. A general
framework for obtaining such results for higher-order languages with effects was
developed in [10, 33]. The results stated therein are for termination-based testing,
i.e. ⇓ter , but adapting them to ⇓err is not problematic.

Lemma 1 (CIU Lemma). Let x ∈ {HOSC,GOSC,HOS,GOS} and y ∈ {ter , err}.
Then we have Γ `M1 .x

y M2 iff Γ `M1 .
x(ciu)
y M2.

6 G. Jaber, A. S. Murawski

The preorders .x
err will be the central object of study in the paper. Among oth-

ers, we shall provide their alternative characterizations using trace semantics.The
characterizations will apply to a class of terms that we call cr-free.

Definition 6. A HOSC term Γ `M : τ is cr-free if it does not contain occur-
rences of contσK and locations, and its boundary types are cont- and ref-free.

We stress that the boundary restriction applies to Γ and τ only, and subterms
of M may well contain arbitrary HOSC types and occurrences of refσ, call/ccσ,
throwσ for any σ. The majority of HOSC/GOSC/HOS/GOS examples stud-
ied in the literature, e.g. [28, 4, 8], are actually cr-free. We will revisit some of
them as Examples 6, 7, 10. The fact that cr-free terms may not contain sub-
terms contτ K or ` is not really a restriction, as contτ K and ` being more of a
run-time construct than a feature meant to be used directly by programmers.
Finally, we note that the boundary of a cr-free term is an x boundary for any
x ∈ {HOSC,GOSC,HOS,GOS}. Thus, we can consider approximation between
cr-terms for any x from the range, i.e. the notions .x

err , .x
ter are all applicable.

Consequently, cr-free terms provide a common setting in which the discrimi-
nating power of HOSC,GOSC,HOS and GOS contexts can be compared. We
discuss the scope for extending our results outside of the cr-free fragment, and
for richer type systems, in Section 7.

3 HOSC[HOSC]

Recall that .HOSC
err concerns testing HOSC terms with HOSC contexts. Accord-

ingly, we call this case HOSC[HOSC]. For cont σ(K)-free terms, we show that
.HOSC

err and .HOSC
ter coincide, which follows from the lemma below.

Lemma 2. Suppose Γ ` M1,M2 be HOSC terms not containing any occur-
rences of cont τ (K).

1. Γ `M1 .x
err M2 implies Γ `M1 .x

ter M2, for x ∈ {HOSC,GOSC,HOS,GOS}.
2. Γ `M1 .x

ter M2 implies Γ `M1 .x
err M2, for x ∈ {HOSC,GOSC}.

In what follows, after introducing several preliminary notions, we shall design a
labelled transition system (LTS) whose traces will turn out to capture contex-
tual interactions involved in testing cr-free terms according to .HOSC

err . This will
enable us to capture .HOSC

err via trace inclusion. Actions of the LTS will refer to
functions and continuations in a symbolic way, using typed names.

3.1 Names and abstract values

Definition 7. Let FNames =
⊎
σ,σ′ FNamesσ→σ′ be the set of function names,

partitioned into mutually disjoint countably infinite sets FNamesσ→σ′ . We will
use f, g to range over FNames , and write f : σ → σ′ for f ∈ FNamesσ→σ′ .

Analogously, let CNames =
⊎
σ CNamesσ be the set of continuation names.

We will use c, d to range over CNames, and write c : σ for c ∈ CNamesσ. Note

Complete trace models of state and control 7

that the constants represent continuations, so the “real” type of c is cont σ, but
we write c : σ for the sake of brevity. We assume that CNames,FNames are
disjoint and let Names = FNames]CNames. Elements of Names will be weaved
into various constructions in the paper, e.g. terms, heaps, etc. We will then write
ν(X) to refer to the set of names used in some entity X.

Because of the shape of boundary types in cr-free terms and, in particular, the
presence of product types, the values that will be exchanged between the context
and the program take the form of tuples consisting of (), integers, booleans
and functions. To describe such scenarios, we introduce the notion of abstract
values, which are patterns that match such values. Abstract values are generated
by the grammar

A,B , () | tt | ff | n̂ | f | 〈A,B〉

with the proviso that, in any abstract value, a name may occur at most once. As
function names are intrinsically typed, we can assign types to abstract values in
the obvious way, writing A : τ .

3.2 Actions and traces

Our LTS will be based on four kinds of actions, listed below. Each action will be
equipped with a polarity, which is either Player (P) or Opponent (O). P-actions
describing interaction steps made by a tested term, while O-actions involve the
context.

– Player Answer (PA) c̄(A), where c : σ and A : σ. This action corresponds
to the term sending an abstract value A through a continuation name c.

– Player Question (PQ) f̄(A, c), where f : σ → σ′, A : σ and c : σ′. Here,
an abstract value A and a continuation name c are sent by the term through
a function name f .

– Opponent Answer (OA) c(A), c : σ then A : σ. In this case, an abstract
value A is received from the environment via the continuation name c.

– Opponent Question (OQ) f(A, c), where f : σ → σ′, A : σ and c : σ′.
Finally, this action corresponds to receiving an abstract value A and a con-
tinuation name c from the environment through a function name f .

In what follows, a is used to range over actions. We will say that a name is
introduced by an action a if it is sent or received in a. If a is an O-action (resp.
P-action), we say that the name was introduced by O (resp. P). An action a is
justified by another action a′ if the name that a uses to communicate, i.e. f in
questions (f̄(A, c), f(A, c)) and c in answers (c̄(A), c(A)), has been introduced
by a′.

We will work with sequences of actions of a very special shape, specified
below. The definition assumes two given sets of names, NP and NO, which
represent names that have already been introduced by P and O respectively.

Definition 8. Let NO, NP ⊆ Names. An (NO, NP)-trace is a sequence t of
actions such that:

8 G. Jaber, A. S. Murawski

– the actions alternate between Player and Opponent actions;
– no name is introduced twice;
– names from NO, NP need no introduction;
– if an action a uses a name to communicate then
• a = f̄(A, c) (f ∈ NO) or a = c̄(A) (c ∈ NO) or a = f(A, c) (f ∈ NP) or

a = c(A) (c ∈ NP) or
• the name has been introduced by an earlier action a′ of opposite polarity.

Note that, due to the shape of actions, a continuation name can only be intro-
duced/justified by a question. Moreover, because names are never introduced
twice, if a′ justifies a then a′ is uniquely determined in a given trace. Read-
ers familiar with game semantics will recognize that traces are very similar to
alternating justified sequences except that traces need not be started by O.

Example 1. Let (NO, NP) = ({c}, ∅) where c : τ = ((Unit → Unit) → Unit) ×
(Unit→ Int). Then the following sequence is an (NO, NP)-trace:

t1 = c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2) c2(()) c̄1(()) c2(()) c̄1(()) g2((), c3) c̄3(2)

where g1 : (Unit → Unit) → Unit, g2 : Unit → Int, f1 : Unit → Unit, c1, c2 :
Unit, c3 : Int.

3.3 Extended syntax and reduction

We extend the definition of HOSC presented in Figure 2 to take into account
these names. We refine the operational reduction using continuation names to
keep track of the toplevel continuation. We list all the changes below.

– Function names are added to the syntax as constants. Since they are meant
to represent values, they are also considered to be syntactic values in the
extended language.

f ∈ FNamesσ→σ′

Σ;Γ ` f : σ → σ′

– Continuation names are not terms on their own. Instead, they are built into
the syntax via a new construct contσ (K, c), subject to the following typing
rule.

Σ;Γ ` K : σ → σ′ c ∈ CNamesσ′

Σ;Γ ` contσ (K, c) : cont σ

contσ (K, c) is a staged continuation that first evaluates terms inside K and,
if this produces a value, the value is passed to c. This operational meaning
will be implemented through a suitable reduction rule, to be discussed next.
contσ (K, c) is also regarded as a value. Note that we remove the old construct
contσK from the extended syntax.

– The operational semantics → underpinning the LTS is based on triples
(M, c, h) such that Σ;Γ `M : σ, c ∈ CNamesσ and h : Σ. The continuation
name c is used to represent the surrounding context, which is left abstract.

Complete trace models of state and control 9

The previous operational rules → are embedded into the new reduction →
using the rule below.

(M,h)→ (M ′, h′)

(M, c, h)→ (M ′, c, h′)

The two reduction rules related to continuations, previously used to define
→, are not included. Instead we use the following rules, which take advantage
of the extended syntax.

(K[call/ccτ (x.M)], c, h)→ (K[M{contτ (K, c)/x}], c, h)
(K[throwτ V to contτ (K ′, c′)], c, h)→ (K ′[V], c′, h)

3.4 Configurations

We write Vals for the extended set of syntactic values, i.e. FNames ⊆ Vals.
Let ECtxs stand for the set of extended evaluation contexts, defined as K in
Figure 1 taking the extended definition of values into account. Before defining the
transition relation of our LTS, we discuss the shape of configurations, providing
intuitions behind each component.

Passive configurations take the form 〈γ, ξ, φ, h〉 and are meant to repre-
sent stages at which the environment is to make a move.

– γ : (FNames ⇀ Vals)] (CNames ⇀ ECtxs) is a finite map. It will play the
role of an environment that relates function names communicated to the en-
vironment (i.e. those introduced by P) to syntactic values, and continuation
names introduced by P to evaluation contexts.

– ξ : (CNames ⇀ CNames) is a finite map. It complements the role of γ for
continuation names and indicates the continuation to which the outcome of
applying γ(c) should be passed.

– φ ⊆ Names. The set φ will be used to collect all the names used in the
interaction, regardless of which participant introduced them. Following our
description above, those introduced by O will correspond to φ \ dom(γ).

The components satisfy healthiness conditions, implied by their role in the sys-
tem. Let Σ = dom(h).

– If f : dom(γ)∩FNamesσ→σ′ then γ(f) is a value such that Σ ` γ(f) : σ → σ′.
– dom(ξ) = dom(γ) ∩ CNames.
– If c : dom(γ) ∩ CNamesσ and Σ ` γ(c) : σ → σ′ then ξ(c) ∈ CNamesσ′ .
– Finally, names introduced by the environment and communicated to the pro-

gram may end up in the environments and the heap: ν(img(γ)), ν(img(ξ)),
ν(img(h)) ⊆ φ \ dom(γ).

Active configurations take the form 〈M, c, γ, ξ, φ, h〉 and represent interaction
steps of the term. The γ, ξ, φ, h components have already been described above.
For M and c, given Σ = dom(h), we will have Σ; ∅ ` M : σ, c ∈ CNamesσ and
ν(M) ∪ {c} ⊆ φ \ dom(γ).

10 G. Jaber, A. S. Murawski

3.5 Transitions

Observe that any closed value V of a cont- and ref-free type σ can be decom-
posed into an abstract value A (pattern) and the corresponding substitution γ
(matching). The set of all such decompositions, written AValσ(V), is defined
below. Given a value V of a (cr-free) type σ, AValσ(V) contains all pairs (A, γ)
such that A is an abstract value and γ : ν(A)→ Vals is a substitution such that
A{γ} = V . More concretely,

AValσ(V) , {(V, ∅)} for σ ∈ {Unit,Bool, Int}
AValσ→σ′(V) , {(f, [f 7→ V]) | f ∈ FNamesσ→σ′}
AValσ×σ′(〈U, V 〉) , {(〈A1, A2〉, γ1 · γ2) | (A, γ1) ∈ AValσ(U), (A2, γ2) ∈ AValσ′(V)}

Note that, by writing ·, we mean to implicitly require that the function domains
be disjoint. Similarly, when writing], we stipulate that the argument sets be
disjoint.

Example 2. Let σ = (Int→ Bool)× (Int× (Unit→ Int)) and V ≡ 〈λxInt.x 6=
1, 〈2, λxUnit.3〉〉. Then AValσ(V) equals

{(〈f, 〈2, g〉〉, [f 7→ (λxInt.x 6= 1)]·[g 7→ (λxUnit.3)]) | f ∈ FNamesInt→Unit, g ∈ FNamesUnit→Int}.

Finally, we present the transitions of, what we call the HOSC[HOSC] LTS, in
Figure 3.

Example 3. We analyze the (PQ) rule below in more detail.

(PQ) 〈K[fV], c, γ, ξ, φ, h〉 f̄(A,c′)−−−−→ 〈γ · γ′ · [c′ 7→ K], ξ · [c′ 7→ c], φ] ν(A)] {c′}, h〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V) and c′ : σ′

The use of] in φ] ν(A)] {c′} is meant to highlight the requirement that the
names introduced in f̄(A, c′), i.e. ν(A)∪{c′}, should be fresh and disjoint from φ.
Moreover, note how γ and ξ are updated. In general, γ, ξ, h are updated during
P-actions.

Definition 9. Given two configurations C,C′, we write C
a
=⇒ C′ if C

τ−→
∗
C′′

a−→

C′, with
τ−→
∗

representing multiple (possibly none) τ -actions. This notation is

extended to sequences of actions: given t = a1 . . .an, we write C
t
=⇒ C′, if

there exist C1, . . . ,Cn−1 such that C
a1==⇒ C1 · · ·Cn−1

an==⇒ C′. We define

TrHOSC(C) = {t | there exists C′ such that C
t
=⇒ C′}.

Lemma 3. Suppose C = 〈γ, ξ, φ, h〉 or C = 〈M, c, γ, ξ, φ, h〉 are configurations.
Then elements of TrHOSC(C) are (φ \ dom(γ),dom(γ))-traces.

Complete trace models of state and control 11

(Pτ) 〈M, c, γ, ξ, φ, h〉 τ−−→ 〈N, c′, γ, ξ, φ, h′〉
when (M, c, h)→ (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ] ν(A), h〉
when c : σ, (A, γ′) ∈ AValσ(V)

(PQ) 〈K[fV], c, γ, ξ, φ, h〉 f̄(A,c′)−−−−−→ 〈γ · γ′ · [c′ 7→ K], ξ · [c′ 7→ c], φ] ν(A)] {c′}, h〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V), c′ : σ′

(OA) 〈γ, ξ, φ, h〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ] ν(A), h〉
when c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h〉 f(A,c)−−−−→ 〈V A, c, γ, ξ, φ] ν(A)] {c}, h〉
when f : σ → σ′, A : σ, c : σ′, γ(f) = V

NB c : σ stands for c ∈ CNamesσ.

Fig. 3. HOSC[HOSC] LTS

Mcwl
1 : let x = ref 0 in

let b = ref ff in
〈λf. if ¬(!b) then

b := tt; f(); x :=!x + 1;
b := ff ;
else (), λ : Unit.!x〉

Mcwl
2 : let x = ref 0 in

let b = ref ff in
〈λf. if ¬(!b) then

b := tt; let n =!x in f(); x := n + 1;
b := ff ;
else () , λ : Unit.!x〉

Fig. 4. Callback-with-lock Example [4]

Example 4. In Figure 5, we show that the trace from Example 1 is generated
by the configuration C , 〈Mcwl

1 , c, ∅, ∅, {c}, ∅〉, where Mcwl
1 is given in Figure 4.

We write inc , λf.if ¬(!`b) (`b := tt; f(); `x :=!`x + 1; `b := ff) (), get , λ .!`x
and c : ((Unit → Unit) → Unit) × (Unit → Int). It is interesting to notice that
in this interaction, Opponent uses the continuation N twice, incrementing the
counter x by two. The second time, it does it without having to call inc again,
but rather by using the continuation name c2.

Remark 2. Due to the freedom of name choice, note that TrHOSC(C) is closed
under type-preserving renamings that preserve names from C.

3.6 Correctness and full abstraction

We define two kinds of special configurations that will play an important role
in spelling out correctness results for the HOSC[HOSC] LTS. Let Γ = {x1 :
σ1, · · · , xk : σk}. A map ρ from {x1, · · · , xk} to the set of abstract values will
be called a Γ -assignment provided, for all 1 ≤ i 6= j ≤ k, we have ρ(xi) : σi
and ν(ρ(xi)) ∩ ν(ρ(xj)) = ∅.

12 G. Jaber, A. S. Murawski

C = 〈Mcwl
1 , c, ∅, ∅, {c}, ∅〉

τ∗−→ 〈〈inc, get〉, c, ∅, ∅, {c}, [`b 7→ ff , `x 7→ 0]〉
c̄(〈g1,g2〉)−−−−−−→ 〈γ1, ∅, {c, g1, g2}, [`b 7→ ff , `x 7→ 0]〉 with γ1 = [g1 7→ inc, g2 7→ get],
g1(f1,c1)−−−−−−→ 〈incf1, c1, γ1, ∅, φ2, [`b 7→ ff , `x 7→ 0]〉 with φ2 = {c, g1, g2, f1, c1}

τ∗−→ 〈f1();N, c1, γ1, ∅, φ2, [`b 7→ tt, `x 7→ 0]〉 with N = `x :=!`x + 1; `b := ff
f̄1((),c2)−−−−−→ 〈γ2, ξ, φ3, [`b 7→ tt, `x 7→ 0]〉 with γ2 = γ1 · [c2 7→ •;N],
c2(())−−−−→ 〈();N, c1, γ2, ξ, φ3, [`b 7→ tt, `x 7→ 0]〉 ξ = [c2 7→ c1] and φ3 = φ2] {c2}

τ∗−→ 〈(), c1, γ2, ξ, φ3, [`b 7→ ff , `x 7→ 1]〉
c̄1(())−−−−→ 〈γ2, ξ, φ3, [`b 7→ ff , `x 7→ 1]〉
c2(())−−−−→ 〈();N, c1, γ2, ξ, φ3, [`b 7→ ff , `x 7→ 1]〉

τ∗−→ 〈(), c1, γ2, ξ, φ3, [`b 7→ ff , `x 7→ 2]〉
c̄1(())−−−−→ 〈γ2, ξ, φ3, [`b 7→ ff , `x 7→ 2]〉

g2((),c3)−−−−−→ 〈get(), c3, γ2, ξ, φ4, [`b 7→ ff , `x 7→ 2]〉 with φ4 = φ3] {c3}
τ∗−→ 〈2, c3, γ2, ξ, φ4, [`b 7→ ff , `x 7→ 2]〉

c̄3(2)−−−→ 〈γ2, ξ, φ4, [`b 7→ ff , `x 7→ 2]〉

Fig. 5. Trace derivation in the HOSC[HOSC] LTS

Definition 10 (Program configuration). Given a Γ -assignment ρ, a cr-free
HOSC term Γ ` M : τ and c : τ , we define the active configuration Cρ,cM by
Cρ,cM = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅〉.

Note that traces from TrHOSC(Cρ,cM) will be (ν(ρ) ∪ {c}, ∅)-traces.

Definition 11. The HOSC[HOSC] trace semantics of a cr-free HOSC term
Γ `M : τ is defined to be

TrHOSC(Γ `M : τ) = {((ρ, c), t) | ρ is a Γ -assignment, c : τ, t ∈ TrHOSC(Cρ,cM)}.

Example 5. Recall the term ` Mcwl
1 : τ from Example 4, the trace t1 and the

configuration C such that t1 ∈ TrHOSC(C). Because Mcwl
1 is closed (Γ = ∅),

the only Γ -assignment is the empty map ∅. Thus, C = C∅,c
Mcwl

1
, so ((∅, c), t1) ∈

TrHOSC(`Mcwl
1 : τ).

Having defined active configurations associated to terms, we now turn to
defining passive configurations associated to contexts. Let us fix � ∈ FNamesUnit→Unit

and, for each σ, a continuation name ◦σ ∈ CNamesτ . Let ◦ =
⋃
σ{◦σ}. Intu-

itively, the names � will correspond to ⇓err and ◦σ to ⇓ter .
Recall that ˆerr stands for err : Unit → Unit. Given a heap h : Σ; ˆerr , an

evaluation context Σ; ˆerr ` K : τ → τ ′ and a substitution Σ; ˆerr ` γ : Γ (as in

the definition of .HOSC(ciu)
err), let us replace every occurrence of contσK

′ inside
h,K, γ with contσ (K ′, ◦σ′), if K ′ has type σ → σ′. Moreover, let us replace
every occurrence of the variable err with the function name �. This is done to

Complete trace models of state and control 13

adjust h,K, γ to the extended syntax of the LTS: the upgraded versions are
called h◦, γ◦,K◦.

Next we define the set AValΓ (γ) of all disjoint decompositions of values from
γ◦ into abstract values and the corresponding matchings. Recall that Γ = {x1 :

σ1, · · · , xk : σk}. Below ~Ai stands for (A1, · · · , Ak), and ~γi for (γ1, · · · , γk).

AValΓ (γ) = { (~Ai, ~γi) | (Ai, γi) ∈ AValσi(γ◦(xi)), i = 1, · · · , k;
ν(A1), · · · , ν(Ak) mutually disjoint and without � }

Definition 12 (Context configuration). Given Σ, h : Σ; ˆerr, Σ; ˆerr ` K :

τ → τ ′, Σ; ˆerr ` γ : Γ , (~Ai, ~γi) ∈ AValΓ (γ) and c : τ (c 6∈ ◦), the corresponding

configuration C~γi,ch,K,γ is defined by

C~γi,ch,K,γ = 〈
k⊎
i=1

γi] {c 7→ K◦}, {c 7→ ◦τ ′},
k⊎
i=1

ν(Ai)] {c}] ◦] {�}, h◦〉.

Intuitively, the names ν(Ai) correspond to calling function values extracted from

γ, whereas c corresponds to K. Note that traces in TrHOSC(C~γi,ch,K,γ) will be

(◦] {�},
⊎k
i=1 ν(Ai)] {c})-traces.

In preparation for the next result, we introduce the following shorthands.

– Given a (NO, NP)-trace t, we write t⊥ for the (NP , NO)-trace obtained by
changing the polarity of each name: f(A, c′) becomes f̄(A, c′) (and vice versa)
and c(A) becomes c̄(A) (and vice versa).

– Given (~Ai, ~γi) ∈ AValΓ (γ), we define a Γ -assignment ρ ~Ai
by ρ ~Ai

(xi) = Ai.

Note that ν(ρ ~Ai
) =

⊎k
i=1 dom(γi).

Lemma 4 (Correctness). Let Γ `M : τ be a cr-free HOSC term, let Σ, h,K, γ

be as above, (~Ai, ~γi) ∈ AValΓ (γ), and c : τ (c 6∈ ◦). Then

– (K[M{γ}], h) ⇓err iff there exist t, c′ such that t ∈ TrHOSC(C
ρ ~Ai

,c

M) and

t⊥ �̄((), c′) ∈ TrHOSC(C~γi,ch,K,γ).

– (K[M{γ}], h) ⇓ter iff there exist t, A, σ such that t ∈ TrHOSC(C
ρ ~Ai

,c

M) and

t⊥ ◦̄σ(A) ∈ TrHOSC(C~γi,ch,K,γ).

Moreover, t satisfies ν(t) ∩ (◦ ∪ {�}) = ∅.

Intuitively, the lemma above confirms that the potential of a term to converge
is determined by its traces. Accordingly, we have:

Theorem 1 (Soundness). For any cr-free HOSC terms Γ `M1,M2, if

TrHOSC(Γ `M1) ⊆ TrHOSC(Γ `M2) then Γ `M1 .
HOSC(ciu)
err M2.

To prove the converse, we need to know that every odd-length trace generated
by a term actually participates in a contextual interaction. This will follow from
the lemma below. Note that ⇓err relies on even-length traces from the context
(Lemma 4).

14 G. Jaber, A. S. Murawski

Lemma 5 (Definability). Suppose φ] {�} ⊆ FNames and t is an even-length
(◦]{�}, φ]{c})-trace starting with an O-action. There exists a passive configu-
ration C such that the even-length traces TrHOSC(C) are exactly the even-length
prefixes of t (along with all renamings that preserve types and φ] {c}] ◦] {�},
cf. Remark 2). Moreover, C = 〈γ◦ · [c 7→ K◦], {c 7→ ◦τ ′}, φ] {c}] ◦] {�}, h◦〉,
where h,K, γ are built from HOSC syntax.

Proof (Sketch). The basic idea is to use references in order to record all continu-
ation and function names introduced by the environment. For continuations, the
use of call/ccτ is essential. Once stored in the heap, the names can be accessed
by terms when needed in P-actions. The availability of throw and references to
all O-continuations means that arbitrary answer actions can be scheduled when
needed.

Theorem 2 (Completeness). For any cr-free HOSC terms Γ `M1,M2, Γ `
M1 .

HOSC(ciu)
err M2 implies TrHOSC(Γ `M1) ⊆ TrHOSC(Γ `M2).

Theorems 1, 2 (along with Lemmas 1, 2) imply the following full abstraction
results.

Corollary 1 (HOSC Full Abstraction). Suppose Γ ` M1,M2 are cr-free
HOSC terms. Then TrHOSC(Γ `M1) ⊆ TrHOSC(Γ `M2) iff Γ ` M1 .HOSC

err

M2 iff Γ `M1 .HOSC
ter M2.

Example 6 (Callback with lock [4]). Recall the term `Mcwl
1 : ((Unit→ Unit)→

Unit)× (Unit→ Int) from Example 4, given in Figure 4. We had t1 = c̄(〈g1, g2〉)
g1(f1, c1) f̄1((), c2) c2(()) c̄1(()) c2(()) c̄1(()) g2((), c3) c̄3(2) ∈ TrHOSC(C∅,c

Mcwl
1

).

Define t2 to be t1 except that its last action c̄3(2) is replaced with c̄3(1).

Observe that t1 ∈ TrHOSC(C∅,c
Mcwl

1
) \TrHOSC(C∅,c

Mcwl
2

) and t2 ∈ TrHOSC(C∅,c
Mcwl

2
) \

TrHOSC(C∅,c
Mcwl

1
), i.e. by the Corollary above the terms are incomparable wrt

.HOSC
err . However, they are equivalent wrt .x

err for x ∈ {GOSC,HOS,GOS} [8].

The above Corollary also provides a handle to reason about equivalence via trace
equivalence. Sometimes this can be done directly on the LTS, especially when γ
can be kept bounded.

Example 7 (Counter [28]). For i ∈ {1, 2}, consider the terms ` Mi : (Unit →
Unit) × (Unit → Int) given by Mi ≡ letx = ref 0 in 〈inci, geti〉, where inc1 ≡
(λy.x :=!x+1), inc2 ≡ (λy.x :=!x−1), get1 ≡ λz.!x, get2 ≡ λz.−!x. In this case,

TrHOSC(C∅,cMi
) contains (prefixes of) traces of the form c̄(〈g, h〉) t, where t is built

from segments of two kinds: either g((), ci) c̄i(()) or h((), c′i) c̄
′
i(n), where the

cis and c′is are pairwise different. Moreover, in the latter case, n must be equal
to the number of preceding actions of the form g((), ci). For this example, trace
equality could be established by induction on the length of trace. Consequently,
M1
∼=HOSC

err M2.

Complete trace models of state and control 15

4 GOSC[HOSC]

Recall that GOSC is the fragment of HOSC in which general storage is restricted
to values of ground type, i.e. arithmetic/boolean constants, the associated ref-
erence names, references to those names and so on. In what follows, we are
going to provide characterizations of .GOSC

err via trace inclusion. Recall that, by
Lemma 2, .GOSC

err =.GOSC
ter . Note that we work in an asymmetric setting with

terms belonging to HOSC being more powerful than contexts.
We start off by identifying several technical consequences of the restriction to

GOSC syntax. First we observe that GOSC internal reductions never contribute
extra names.

Lemma 6. Suppose (M, c, h) → (M ′, c′, h′), where M is a GOSC term and h
is a GOSC heap. Then ν(M) ∪ {c} ⊇ ν(M ′) ∪ {c′}.

Proof. By case analysis. All defining rules for →, with the exception of the
(K[!`], h)→ (K[h(`)], h) rule, are easily seen to satisfy the Lemma (no function
or continuation names are added). However, if the heap is restricted to storing
elements of type ι (as in GOSC) then h(`) will never contain a name, so the
Lemma follows.

The lemma has interesting consequences for the shape of traces generated by
the context configurations C~γi,ch,K,γ if they are built from GOSC syntax. Recall

that P-actions have the form f̄(A, c′) or c̄(A), where f, c are names introduced
by O. It turns out that when h,K, γ are restricted to GOSC, more can be said
about the origin of the names in traces generated by C~γi,ch,K,γ : they will turn out to
come from a restricted set of names introduced by O, which we identify below.
The definition below is based on following the justification structure of a trace –
recall that one action is said to justify another if the former introduces a name
that is used for communication in the latter.

Definition 13. Suppose φ] {�} ⊆ FNames and c ∈ CNames. Let t be an odd-
length (◦] {�}, φ] {c})-trace starting with an O-action. The set VisP (t) of P-
visible names of t is defined as follows.

VisP (t c′(A′)) = {�} ∪ ◦ ∪ ν(A′) c′ = c
VisP (t f̄ ′′(A′′, c′) t′ c′(A′)) = VisP (t) ∪ ν(A′) c′ 6= c

VisP (t f ′(A′, c′)) = {�} ∪ ◦ ∪ ν(A′) ∪ {c′} f ′ ∈ φ
VisP (t f̄ ′′(A′′, c′′) t′ f ′(A′, c′)) = VisP (t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

VisP (t c̄′′(A′′) t′ f ′(A′, c′)) = VisP (t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

Note that, in the inductive cases, the definition follows links between names
introduced by P and the point of their introduction, names introduced in-
between are ignored. Here readers familiar with game semantics will notice sim-
ilarity to the notion of P-view [12].

Next we specify a property of traces that will turn out to be satisfied by
configurations corresponding to GOSC contexts.

16 G. Jaber, A. S. Murawski

Definition 14. Suppose φ] {�} ⊆ FNames and c ∈ CNames. Let t be a (◦]
{�}, φ] {c})-trace starting with an O-action. t is called P-visible if

– for any even-length prefix t′ f̄(A, c) of t, we have f ∈ VisP (t′),
– for any even-length prefix t′ c̄(A) of t, we have c ∈ VisP (t′).

Lemma 7. Consider C = C~γi,ch,K,γ , where h,K, γ are from GOSC and (~Ai, ~γi) ∈
AValΓ (γ). Then all traces in TrHOSC(C) are P-visible.

The Lemma above shows that contextual interactions with GOSC contexts rely
on restricted traces. We shall now modify the HOSC[HOSC] LTS to capture the
restriction. Note that, from the perspective of the term, the above constraint
is a constraint on the use of names by O (context), so we need to talk about
O-available names instead. This dual notion is defined below.

Definition 15. Suppose φ ⊆ FNames and c ∈ CNames. Let t be a (φ] {c}, ∅)-
trace of odd length. The set VisO(t) of O-visible names of t is defined as
follows.

VisO(t c̄′(A′)) = ν(A′) c′ = c
VisO(t f ′′(A′′, c′) t′ c̄′(A′)) = VisO(t) ∪ ν(A′) c′ 6= c

VisO(t f̄ ′(A′, c′)) = ν(A′) ∪ {c′} f ′ ∈ φ
VisO(t f ′′(A′′, c′′) t′ f̄ ′(A′, c′)) = VisO(t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

VisO(t c′′(A′′) t′ f̄ ′(A′, c′)) = VisO(t) ∪ ν(A′) ∪ {c′} f ′ ∈ ν(A′′)

Analogously, a (φ] {c}, ∅)-trace t is O-visible if, for any even-length prefix
t′ f(A, c) of t, we have f ∈ VisO(t′) and, for any even-length prefix t′ c(A) of t,
we have c ∈ VisO(t′).

Example 8. Recall the trace

t1 = c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2) c2(()) c̄1(()) c2(()) c̄1(()) g2((), c3) c̄3(2)

from previous examples. Observe that

VisO(c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2)) = {g1, g2, c2}
VisO(c̄(〈g1, g2〉) g1(f1, c1) f̄1((), c2) c2(()) c̄1(())) = {g1, g2}

Consequently, the first use of c2(()) in t1 does not violate O-visibility, but the
second one does.

In Figure 6, we present a new LTS, called the GOSC[HOSC] LTS, which will
turn out to capture .GOSC

err through trace inclusion. It is obtained from the
HOSC[HOSC] LTS by restricting O-actions to those that rely on O-visible names.
Technically, this is done by enriching configurations with an additional compo-
nent F , which maintains historical information about O-available names imme-
diately before each O-action. After each P-action, F is accessed to calculate the
current set V of O-available names according to the definition of O-availability
and only O-actions compatible with O-availability are allowed to proceed (due

Complete trace models of state and control 17

(Pτ) 〈M, c, γ, ξ, φ, h,F〉 τ−−→ 〈N, c′, γ, ξ, φ, h′,F〉
when (M, c, h)→ (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h,F〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ] ν(A), h,F ,F(c)] ν(A)〉
when c : σ and (A, γ′) ∈ AValσ(V)

(PQ) 〈K[fV], c, γ, ξ, φ, h,F〉 f̄(A,c′)−−−−−→ 〈γ · γ′ · [c′ 7→ K], ξ · [c′ 7→ c], φ] φ′, h,F ,F(f)] φ′〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V), c′ : σ′ and φ′ = ν(A)] {c′}

(OA) 〈γ, ξ, φ, h,F ,V〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ] ν(A), h,F · [ν(A) 7→ V]〉
when c ∈ V, c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h,F ,V〉 f(A,c)−−−−→ 〈V A, c, γ, ξ, φ] φ′, h,F · [φ′ 7→ V]〉
when f ∈ V, f : σ → σ′, A : σ, c : σ′, γ(f) = V and φ′ = ν(A)] {c}

Given N ⊆ Names, [N 7→ V] stands for the map [n 7→ V |n ∈ N].

Fig. 6. GOSC[HOSC] LTS

to the f ∈ V, c ∈ V side conditions). We write TrGOSC(C) for the set of traces
generated from C in the GOSC[HOSC] LTS.

Recall that, given a Γ -assignment ρ, term Γ `M : τ and c ∈ CNamesτ , the
active configuration Cρ,cM was defined by Cρ,cM = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅〉. We
need to upgrade it to the LTS by initializing the new component to the empty
map: Cρ,cM,vis = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅, ∅〉.
Definition 16. The GOSC[HOSC] trace semantics of a cr-free HOSC term
Γ `M : τ is defined to be

TrGOSC(Γ `M : τ) = {((ρ, c), t) | ρ is a Γ -assignment, c : τ, t ∈ TrGOSC(Cρ,cM,vis)}.

By construction, it follows that

Lemma 8. t ∈ TrGOSC(Cρ,cM,vis) iff t ∈ TrHOSC(Cρ,cM) and t is O-visible.

Noting that the witness trace t from Lemma 4 is O-visible iff t⊥ �̄((), c′) is P-
visible, we can conclude that, for GOSC, the traces relevant to ⇓err are O-visible,
which yields:

Theorem 3 (Soundness). For any cr-free HOSC terms Γ `M1, M2, if

TrGOSC(Γ `M1) ⊆ TrGOSC(Γ `M2) then Γ `M1 .
GOSC(ciu)
err M2.

To prove the converse, we need a new definability result. This time we are
only allowed to use GOSC syntax, but the target is also more modest: we are
only aiming to capture P-visible traces.

Lemma 9 (Definability). Suppose φ] {�} ⊆ FNames and t is an even-length
P-visible (◦]{�}, φ]{c})-trace starting with an O-action. There exists a passive
configuration C such that the even-length traces in TrHOSC(C) are exactly the
even-length prefixes of t (along with all renamings that preserve types and φ]
{c}] ◦] {�}). Moreover, C = 〈γ◦ · [c 7→ K◦], {c 7→ ◦τ ′}, φ] {c}] ◦] {�}, h◦〉,
where h,K, γ are built from GOSC syntax.

18 G. Jaber, A. S. Murawski

Proof (Sketch). This time we cannot rely on references to recall on demand all
continuation and function names introduced by the environment. However, be-
cause t is P-visible, it turns the uses of the names can be captured through vari-
able bindings (λx. · · · for function and call/ccτ (x. . . .) for continuation names).
Using throw, we can then force an arbitrary answer action, as long as it uses a
P-available name. To select the right action at each step, we branch on the value
of a single global reference of type ref Int that keeps track of the number of steps
simulated so far.

Completeness now follows because, for a potential O-visible witness t from
Lemma 4, one can create a corresponding context by invoking the Definabil-
ity result for t⊥ �̄((), c′). It is crucial that the addition of �̄((), c′) does not break
P-visibility (� is P-visible).

Theorem 4 (Completeness). For any cr-free HOSC terms Γ ` M1,M2, if

Γ `M1 .
GOSC(ciu)
err M2 then TrGOSC(Γ `M1) ⊆ TrGOSC(Γ `M2).

Altogether, Theorems 3, 4 (along with Lemma 1) imply the following result.

Corollary 2 (GOSC Full Abstraction). Suppose Γ ` M1,M2 are cr-free

HOSC terms. Then TrGOSC(Γ `M1) ⊆ TrGOSC(Γ `M2) iff Γ `M1 .
GOSC(ciu)
err

M2 iff Γ `M1 .GOSC
err M2.

Example 9. In the Callback with lock example (Example 6), we exhibited traces
t1, t2 that separated Mcwl

1 ,Mcwl
2 wrt .HOSC

err . Example 8 shows that neither
trace is O-visible, i.e. they cannot be found in TrGOSC(Γ `M1) or TrGOSC(Γ `M2).
Thus, the two traces cannot be used to separate Mcwl

1 ,Mcwl
2 wrt .GOSC

err . As al-
ready mentioned, this is in fact impossible: we have `Mcwl

1
∼=GOSC

err Mcwl
2 .

Example 10 (Well-bracketed state change [4]). Consider the following two terms

Mwbsc
1 , letx = ref 0 inλf.(x := 0; f();x := 1; f(); !x)

Mwbsc
2 , λf.(f(); f(); 1).

of type τ = (Unit→ Unit)→ Int, let

t3 = c̄(g) g(f1, c1) f̄1((), c2) c2(()) f̄1((), c3) g(f2, c4) f̄2((), c5) c3(()) c̄1(0)

and let t4 be obtained from t3 by changing 0 in the last action to 1. One can
check that both traces are O-visible: in particular, the action c3(()) is not a
violation because

VisO(c̄(g) g(f1, c1) f̄1((), c2) c2(()) f̄1((), c3) g(f2, c4) f̄2((), c5)) = {g, c3, c5}.

Moreover, we have t3 ∈ TrGOSC(C∅,c
Mwbsc

1
)\TrGOSC(C∅,c

Mwbsc
2

) and t4 ∈ TrGOSC(C∅,c
Mwbsc

2
)\

TrGOSC(C∅,c
Mwbsc

1
). By the Corollary above, we can conclude that Mwbsc

1 ,Mwbsc
2

are incomparable wrt .GOSC
err . However, they turn out to be ∼=HOS

err - and ∼=GOS
err -

equivalent.

Complete trace models of state and control 19

5 HOS[HOSC]

Recall that HOS is the fragment of HOSC that does not feature continuation
types and the associated syntax. In what follows we are going to provide al-
ternative characterisations of .HOS

err and .HOS
ter in terms of trace inclusion and

complete trace inclusion respectively.
We start off by identifying several technical consequences of the restriction

to HOS syntax. First we observe that HOS internal reductions never change the
associated continuation name.

Lemma 10. If (M, c, h)→ (M ′, c′, h′), M is a HOS term and h is a HOS heap
then c = c′.

Proof. The only rule that could change c is the rule for throw, but it is not part
of HOS.

The lemma has a bearing on the shape of traces generated by the (passive)

configurations C~γi,ch,K,γ corresponding to HOS contexts. In the presence of throw
and storage for continuations, it was possible for P to play answers involving
arbitrary continuation names introduced by O. By Lemma 10, in HOS this will
be restricted to the continuation name of the current configuration, which will
restrict the shape of possible traces. Below we identify the continuation name
topP (t) that becomes the relevant name after trace t. If the last move was an
O-question then the continuation name introduced by that move will become
that name. Otherwise, we track a chain of answers and questions, similarly to
the definition of P-visibility.

Observe that, because h,K, γ are from HOS, C~γi,ch,K,γ will generate ({◦τ ′ , �}, φ]
{c})-traces, where τ ′ is the result type of K, because h◦ = h,K◦ = K, γ◦ = γ.

Definition 17. Suppose φ] {�} ⊆ FNames and c ∈ CNames. Let t be a
({◦τ ′ , �}, φ] {c})-trace of odd length starting with an O-action. The continu-
ation name topP (t) is defined as follows.

topP (t c(A)) = ◦τ ′
topP (t1 f̄(A′′, c′) t2 c

′(A′)) = topP (t1)
topP (t f(A′, c′)) = c′

We say that a ({◦τ ′ ∪ {�}, φ] {c})-trace t starting with an O-action is P-
bracketed if, for any prefix t′ c̄′(A) of t (i.e. any prefix ending with a P-answer),
we have c′ = topP (t′).

Lemma 11. Consider C = C~γi,ch,K,γ , where h,K, γ are from HOS and (~Ai, ~γi) ∈
AValΓ (γ). Then all traces in TrHOSC(C) are P-bracketed.

The Lemma above characterizes the restrictive nature of contextual inter-
actions with HOS contexts. Next we shall constrain the HOSC[HOSC] LTS ac-
cordingly to capture the restriction. Note that, from the point of view of the
term, the above-mentioned constraint concerns the use of continuation names
by O (the context), so we need to talk about O-bracketing instead. This dual
notion of “a top name for O” is specified below.

20 G. Jaber, A. S. Murawski

(Pτ) 〈M, c, γ, ξ, φ, h〉 τ−−→ 〈N, c′, γ, ξ, φ, h′〉
when (M, c, h)→ (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ] ν(A), h, c′〉
when c : σ, (A, γ′) ∈ AValσ(V), ξ(c) = c′

(PQ) 〈K[fV], c, γ, ξ, φ, h〉 f̄(A,c′)−−−−−→ 〈γ · γ′ · [c′ 7→ K], ξ · [c′ 7→ c], φ] ν(A)] {c′}, h, c′〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V), c′ : σ′

(OA) 〈γ, ξ, φ, h, c′′〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ] ν(A), h〉
when c = c′′, c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h, c′′〉 f(A,c)−−−−→ 〈V A, c, γ, ξ · [c 7→ c′′], φ] ν(A)] {c}, h〉
when f : σ → σ′, A : σ, c : σ′, γ(f) = V

Fig. 7. HOS[HOSC] LTS

Definition 18. Suppose φ ⊆ FNames and c ∈ CNames. Let t be a (φ] {c}, ∅)-
trace of odd length. The continuation name topO(t) is defined as follows. In the
first case, the value is ⊥ (representing “none”), because c is the top continuation
passed by the environment to the term (if it gets answered there is nothing left
to answer).

topO(t c̄(A)) = ⊥
topO(t1 f(A′′, c′) t2 c̄′(A

′)) = topO(t1)
topO(t f̄(A′, c′)) = c′

We say that a (φ] {c}, ∅)-trace t is O-bracketed if, for any prefix t′ c̄′(A) of
t (i.e. any prefix ending with a P-answer), we have c′ = topO(t′).

In Figure 7, we present a new LTS, called the HOS[HOSC] LTS, which will
turn out to capture .HOS

err . It is obtained from the HOSC[HOSC] LTS by re-
stricting O-actions to those that satisfy O-bracketing. Technically, this is done
by enriching passive configurations with a component for storing the current
value of topO(t). In order to maintain this information, we need to know which
continuation will become the top one if P plays an answer. This can be done with
a map that maps continuations introduced by O to other continuations. Because
its flavour is similar to ξ (which is a map from continuations introduced by P)
we integrate this information into ξ. The c = c′′ side condition then enforces
O-bracketing. We shall write TrHOS(C) for the set of traces generated from C
in the HOS[HOSC] LTS.

Recall that, given a Γ -assignment ρ, term Γ ` M : τ and c : τ , the active
configuration Cρ,cM was defined by Cρ,cM = 〈M{ρ}, c, ∅, ∅, ν(ρ)∪{c}, ∅〉. We upgrade
it to the new LTS by setting Cρ,cM,bra = 〈M{ρ}, c, ∅, [c 7→ ⊥], ν(ρ)∪{c}, ∅, ∅〉. This
initializes ξ in such a way that, after c̄(A) is played, the extra component will
be set to ⊥, where ⊥ is a special element not in CNames.

Complete trace models of state and control 21

Definition 19. The HOS[HOSC] trace semantics of a cr-free HOSC term
Γ `M : τ is defined to be

TrHOS(Γ `M : τ) = {((ρ, c), t) | ρ is a Γ -assignment, c : τ, t ∈ TrHOS(Cρ,cM,bra)}.

By construction, it follows that

Lemma 12. t ∈ TrHOS(Cρ,cM,bra) iff t ∈ TrHOSC(Cρ,cM) and t is O-bracketed.

Noting that the witness trace t from Lemma 4 is O-bracketed iff t⊥ �̄((), c′) is
P-bracketed, we can conclude that, for HOS, the traces relevant to ⇓err are
O-bracketed, which yields:

Theorem 5 (Soundness). For any cr-free HOSC terms Γ `M1,M2, if

TrHOS(Γ `M1) ⊆ TrHOS(Γ `M2) then Γ `M1 .
HOS(ciu)
err M2.

For the converse, we establish another definability result, this time for a P-
bracketed trace.

Lemma 13 (Definability). Suppose φ]{�} ⊆ FNames and t is an even-length
P-bracketed ({◦τ ′ , �}, φ] {c})-trace starting with an O-action. There exists a
passive configuration C such that the even-length traces TrHOSC(C) are exactly
the even-length prefixes of t (along with all renamings that preserve types and
φ] {c, ◦τ ′ , �}). Moreover, C = 〈γ · [c 7→ K], {c 7→ ◦τ ′}, φ] {c, ◦τ ′ , �}, h〉, where
h,K, γ are built from HOS syntax.

Proof (Sketch). Our argument for HOSC is structured in such a way that, for a
P-bracketed trace, there is no need for continuations (throwing and continuation
capture are not necessary).

Completeness now follows because, for a potential witness trace t from Lemma 4,
one can create a corresponding context by invoking the Definability result for
t⊥ �̄((), c′). It is crucial that the addition of �̄((), c′) does not break P-bracketing
(it does not, because the action is a question).

Theorem 6 (Completeness). For any cr-free HOSC terms Γ ` M1,M2, if

Γ `M1 .
HOS(ciu)
err M2 then TrHOS(Γ `M1) ⊆ TrHOS(Γ `M2).

Altogether, Theorems 5, 6 (along with Lemma 1) imply the following result.

Corollary 3 (HOS Full Abstraction). Suppose Γ `M1,M2 are cr-free HOSC

terms. Then TrHOS(Γ `M1) ⊆ TrHOS(Γ `M2) iff Γ ` M1 .
HOS(ciu)
err M2 iff

Γ `M1 .HOS
err M2.

Example 11 (Assignment/callback commutation [27]). For i ∈ {1, 2}, let f :
Unit→ Unit `Mi : Unit→ Unit be defined by:

M1 , letn = ref (0) inλyUnit.if (!n > 0) () (n := 1; f()),

M2 , letn = ref (0) inλyUnit.if (!n > 0) () (f();n := 1).

22 G. Jaber, A. S. Murawski

Operationally, one can see that f `M1 6.HOS
err M2 due to the following HOS con-

text: let r = ref (λy.y) in (let f = λy.(!r)() in (r := •; (!r)())); err . In our frame-
work, this is confirmed by the trace

t5 = c̄(g) g((), c1) f̄((), c2) g((), c2) c̄2(()),

which is in TrHOS(Cρ,cM1
) \TrHOS(Cρ,cM2

). On the other hand,

t6 = c̄(g) g((), c1) f̄((), c2) g((), c2) f̄((), c3)

is in TrHOS(Cρ,cM2
) \TrHOS(Cρ,cM1

), so the terms are incomparable. Note, however,
that both traces break O-visibility: specifically, we have

VisO(c̄(g) g((), c1) f̄((), c2)) = {c2},

so the g((), c2) action violates the condition. Consequently, the traces do not
preclude f `M1

∼=x
err M2 for x ∈ {GOSC,GOS}.

For x ∈ {HOSC,GOSC}, .x
err and .x

ter coincide. Intuitively, this is because the
presence of continuations in the context makes it possible to make an escape at
any point. In contrast, for HOS, the context must run to completion in order to
terminate.

At the technical level, one can appreciate the difference when trying to trans-

fer our results for .HOS(ciu)
err to .HOS(ciu)

ter . Recall that, according to Lemma 4,
⇓ter relies on a witness trace t such that the context configuration generates
t⊥ ◦̄τ ′(). In HOS, the latter must satisfy P-bracketing, so we need topP (t⊥) = ◦τ ′ .
Note that this is equivalent to topO(t) = ⊥. Consequently, only such traces are
relevant to observing ⇓ter .

Let us call an odd-length O-bracketed (φ]{c}, ∅)-trace t complete if topO(t) =
⊥. Let us write TrHOS(Γ `M1) ⊆c TrHOS(Γ `M2) if we have ((ρ, c), t) ∈
TrHOS(Γ `M2) whenever ((ρ, c), t) ∈ TrHOS(Γ `M1) and t is complete. Fol-
lowing our methodology, one can then show:

Theorem 7 (HOS Full Abstraction for .HOS
ter). Suppose Γ `M1,M2 are cr-

free HOSC terms. Then TrHOS(Γ `M1) ⊆c TrHOS(Γ `M2) iff Γ `M1 .
HOS(ciu)
ter

M2 iff Γ `M1 .HOS
ter M2.

Example 12. Let M1 ≡ λfUnit→Unit.f();ΩUnit and M2 ≡ λfUnit→Unit.ΩUnit.
We will see that ` M1 6.HOS

err M2 but ` M1 .HOS
ter M2. To see this, note that

TrHOS(Cρ,cM1
) contains prefixes of c̄(g) g(f, c1) f̄((), c2) c2(()), while TrHOS(Cρ,cM2

)
only those of c̄(g) g(f, c1). Observe that the only complete trace among them
is c̄(g). The trace t = c̄(g) g(f, c1) f̄((), c2) is not complete, because topO(t) =
c2. Consequently, TrHOS(Γ `M1) 6⊆ TrHOS(Γ `M2) but TrHOS(Γ `M1) ⊆c
TrHOS(Γ `M2).

The theorem above generalizes the characterisation of contextual equivalence
between HOS terms with respect to HOS contexts [23], where trace completeness
means both O- and P-bracketing and “all questions must be answered”. Our
definition of completeness is weaker (O-bracketing + “the top question must
be answered”), because it also covers HOSC terms. However, in the presence of
both O- and P-bracketing, i.e. for HOS terms, they will coincide.

Complete trace models of state and control 23

6 GOS[HOSC]

Recall that GOS features ground state only and, technically, is the intersection
of GOSC and HOS. Consequently, it follows from the previous sections that GOS
contexts yield configurations that satisfy both P-visibility and P-bracketing. For
such traces, the definability result for GOSC yields a GOS context. Thus, in
a similar fashion to the previous sections, we can conclude that O-visible and
O-bracketed traces underpin .GOS

err . To define the GOS LTS we simply combine
the restrictions imposed in the previous sections, and define TrGOS(Γ `M)
analogously. We present the LTS in Appendix F. The results on .GOS

ter from the
previous section also carry over to GOS.

Theorem 8 (GOS Full Abstraction). Suppose Γ `M1,M2 are cr-free HOSC
terms. Then:

– TrGOS(Γ `M1) ⊆ TrGOS(Γ `M2) iff Γ ` M1 .
GOS(ciu)
err M2 iff Γ `

M1 .GOS
err M2.

– TrGOS(Γ `M1) ⊆c TrGOS(Γ `M2) iff Γ ` M1 .
GOS(ciu)
ter M2 iff Γ `

M1 .GOS
ter M2.

7 Concluding remarks

Asymmetry Our framework is able to deal with asymmetric scenarios, where
programs are taken from HOSC, but are tested with contexts from weaker frag-
ments. For example, we can compare the following two HOSC programs, where
f : ((Unit→ Unit)→ Unit)→ Unit is a free identifier.

let b = ref ff in callcc(y. callcc(y.
f(λg.b := tt; g(); throw() to y); f(λg.g(); throw() to y);
if !b then () else div) div)

with div representing divergence. The terms happen to be ∼=HOS
err -equivalent, but

not ∼=HOSC
err -equivalent.

To see this at the intuitive level, we make the following observations.

– Firstly, we observe that, to distinguish the terms, f should use its argument.
Otherwise, the value of b will remain equal to ff , and the only subterm that
distinguishes the terms (‘if !b then () else div’) will play the same role as div
in the second term.

– Secondly, if f does use its argument, then b will be set to tt in the first pro-
gram, raising the possibility of distinguishing the terms. However, if we allow
HOS contexts only then, since the argument to f was used, it will have to
run to completion, before ‘if !b then () else div’ is reached. Consequently, we
will encounter ‘throw () to y’ earlier and never reach ‘if !b then () else div)’.
This is represented by the trace

f̄(h, c1) h(g, c2) ḡ((), c3) c3(()) c̄(())

24 G. Jaber, A. S. Murawski

This trace is O-bracketed, but not P -bracketed since Player uses throw to
answer directly to the initial continuation c rather than c2.

– Finally, if HOSC contexts are allowed, it is possible to reach ‘if !b then () else div)’
b set to tt. This is represented by the trace

f̄(h, c1) h(g, c2) ḡ((), c3) c1(()) c̄(())

This trace is not O-bracketed, because c1 is answered rather than c3, like
above. Consequently, the trace witnesses termination of the first term, but
the second term would diverge during interaction with the same context.

We plan to explore the opportunities presented by this setting in the future,
especially with respect to fully abstract translations, for example, from HOSC
to GOS.

Richer Types Recall that our full abstraction results are stated for cr-free terms,
terms with cont- and ref-free types at the boundary. Here we first discuss how
to extend them to more complicated types.

To deal with reference type at the boundary, i.e. location exchange, one needs
to generalize the notion of traces, so that they can carry, for each action, a heap
representing the values stored in the disclosed part of the heap, as in [23, 27]. The
extension to sum, recursive and empty types seems conceptually straightforward,
by simply extending the definition of abstract values for these types, following
the similar notion of ultimate pattern in [24]. The same idea should apply to
allow continuation types at the boundary. Operational game semantics for an
extension of HOS with polymorphism has been explored in [15].

Innocence On the other hand, all of the languages we considered were stateful.
In the presence of state, all of the actions that are represented by labels (and
their order and frequency) can be observed, because they could generate a side-
effect. A natural question to ask whether the techniques could also be used
to provide analogous theorems for purely functional computation, i.e. contexts
taken from the language PCF. Here, the situation is different. For example, the
terms f : Int → Int ` f(0) and f : Int → Int ` if f(0) f(0) f(0) should be
equivalent, even though the sets of their traces are incomparable.

It is known [12] that PCF strategies satisfy a uniformity condition called in-
nocence. Unfortunately, restricting our traces to “O-innocent ones” (like we did
with O-visibility and O-bracketing) would not deliver the required characteriza-
tion. Technically, this is due to the fact that, in our arguments, given a single
trace (with suitable properties), we can produce a context that induces the given
trace and no other traces (except those implied by the definition of a trace). For
innocence, this would not be possible due to the uniformity requirement. It will
imply that, although we can find a functional context that generates an inno-
cent trace, it might also generate other traces, which then have to be taken into
account when considering contextual testing. This branching property makes it
difficult to capture equivalence with respect to functional contexts explicitly, e.g.
through traces, which is illustrated by the use of the so-called intrinsic quotient
in game models of PCF [2, 12].

Complete trace models of state and control 25

8 Related Work

We have presented four operational game models for HOSC, which capture term
interaction with contexts built from any of the four sublanguages x ∈ {HOSC,
GOSC, HOS, GOS} respectively. The most direct precursor to this work is
Laird’s trace model for HOS[HOS] [23]. Other frameworks in this spirit include
models for objects [18], aspects [16] and system-level code [9]. In [13], Laird’s
model has been related formally to the denotational game model from [27]. How-
ever, in general, it is not yet clear how one can move systematically between the
operational and denotational game-based approaches, despite some promising
steps reported in [25]. Below we mention other operational techniques for rea-
soning about contextual equivalence.

In [31], fully abstract Eager-Normal-Form (enf) Bisimulations are presented
for an untyped λ-calculus with store and control, similar to HOSC (but with
control represented using the λµ-calculus). The bisimulations are parameterised
by worlds to model the evolution of store, and bisimulations on contexts are used
to deal with control. Like our approach, they are based on symbolic evaluation of
open terms. Typed enf-bisimulations, for a language without store and in control-
passing style, have been introduced in [24]. Fully-abstract enf-bisimulations are
presented in [7] for a language with state only, corresponding to an untyped
version of HOS. Earlier works in this strand include [17, 29].

Environmental Bisimulations [19, 30, 32] have also been introduced for lan-
guages with store. They work on closed terms, computing the arguments that
contexts can provide to terms using an environment similar to our component
γ. They have also been extended to languages with call/cc [34] and delimited
control operators [5, 6].

Kripke Logical Relations [28, 4, 8] have been introduced for languages with
state and control. In [8], a characterization of contextual equivalence for each
case x[x] (x ∈ {HOSC,GOSC,HOS,GOS}) is given, using techniques called
backtracking and public transitions, which exploit the absence of higher-order
store and that of control constructs respectively. Importing these techniques in
the setting of Kripke Open Bisimulations [14] should allow one to build a bridge
between the game-semantics characterizations and Kripke Logical Relations.

Parametric bisimulations [11] have been introduced as an operational tech-
nique, merging ideas from Kripke Logical Relations and Environmental Bisim-
ulations. They do not represent functional values coming from the environment
using names, but instead use a notion of global and local knowledge to compute
these values, reminiscent of the work on environmental bisimulations. The no-
tion of global knowledge depends itself on a notion of evolving world. To our
knowledge, no fully abstract Parametric Bisimulations have been presented.

A general theory of applicative [21] and normal-form bisimulations [20] has
been developed, with the goal of being modular with respect to the effects con-
sidered. While the goal is similar to our work, the papers consider monadic and
algebraic presentation of effects, trying particularly to design a general theory
for proving soundness and completeness of such bisimulations. These works com-
plement ours, and we would like to explore possible connections.

26 G. Jaber, A. S. Murawski

References

1. Abramsky, S.: Games in the semantics of programming languages. In: Proceedings
of the 11th Amsterdam Colloquium. pp. 1–6. ILLC, Dept. of Philosophy, University
of Amsterdam (1997)

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163, 409–470 (2000)

3. Abramsky, S., McCusker, G.: Call-by-value games. In: Proceedings of CSL. Lecture
Notes in Computer Science, vol. 1414, pp. 1–17. Springer-Verlag (1997)

4. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: Proceedings of POPL. pp. 340–353. ACM (2009)

5. Aristizabal, A., Biernacki, D., Lenglet, S., Polesiuk, P.: Environmental Bisimula-
tions for Delimited-Control Operators with Dynamic Prompt Generation. Logical
Methods in Computer Science 13(3) (2017)

6. Biernacki, D., Lenglet, S.: Environmental bisimulations for delimited-control oper-
ators. In: Proceedings of APLAS. Lecture Notes in Computer Science, vol. 8301,
pp. 333–348. Springer (2013)

7. Biernacki, D., Lenglet, S., Polesiuk, P.: A complete normal-form bisimilarity for
state. In: Proceedings of FOSSACS. Lecture Notes in Computer Science, vol. 11425,
pp. 98–114. Springer (2019)

8. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. J. Funct. Program. 22(4-5), 477–528 (2012)

9. Ghica, D.R., Tzevelekos, N.: A system-level game semantics. Electr. Notes Theor.
Comput. Sci. 286, 191–211 (2012)

10. Honsell, F., Mason, I.A., Smith, S.F., Talcott, C.L.: A variable typed logic of effects.
Inf. Comput. 119(1), 55–90 (1995)

11. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and
kripke logical relations. In: Proceedings of POPL. pp. 59–72. ACM (2012)

12. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III.
A fully abstract and universal game model. Information and Computation 163(2),
285–408 (2000)

13. Jaber, G.: Operational nominal game semantics. In: Proceedings of FOSSACS.
Lecture Notes in Computer Science, vol. 9034, pp. 264–278 (2015)

14. Jaber, G., Tabareau, N.: Kripke open bisimulation - A marriage of game semantics
and operational techniques. In: Proceedings of APLAS. Lecture Notes in Computer
Science, vol. 9458, pp. 271–291 (2015)

15. Jaber, G., Tzevelekos, N.: Trace semantics for polymorphic references. In: Proceed-
ings of LICS. pp. 585–594. ACM (2016)

16. Jagadeesan, R., Pitcher, C., Riely, J.: Open bisimulation for aspects. In: Proceed-
ings of AOSD. ACM International Conference Proceeding Series, vol. 208, pp.
107–120 (2007)

17. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: Pro-
ceedings of LICS. pp. 56–66 (1999)

18. Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent ob-
jects. Theor. Comput. Sci. 338(1-3), 17–63 (2005)

19. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: Proceedings of POPL. pp. 141–152. ACM (2006)

20. Lago, U.D., Gavazzo, F.: Effectful normal form bisimulation. In: Proceedings of
ESOP. Lecture Notes in Computer Science, vol. 11423, pp. 263–292. Springer
(2019)

Complete trace models of state and control 27

21. Lago, U.D., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads,
relators, and howe’s method. In: Proceedings of LICS. IEEE Press (2017)

22. Laird, J.: Full abstraction for functional languages with control. In: Proceedings of
12th IEEE Symposium on Logic in Computer Science. pp. 58–67 (1997)

23. Laird, J.: A fully abstract trace semantics for general references. In: Proceedings
of ICALP, Lecture Notes in Computer Science, vol. 4596, pp. 667–679. Springer
(2007)

24. Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: Proceedings of CSL,
Lecture Notes in Computer Science, vol. 4646, pp. 283–297. Springer (2007)

25. Levy, P.B., Staton, S.: Transition systems over games. In: Proceedings of CSL-
LICS. pp. 64:1–64:10 (2014)

26. Milner, R.: Fully abstract models of typed lambda-calculi. Theoretical Computer
Science 4(1), 1–22 (1977)

27. Murawski, A.S., Tzevelekos, N.: Game semantics for good general references. In:
Proceedings of LICS. pp. 75–84. IEEE Computer Society Press (2011)

28. Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In:
Gordon, A.D., Pitts, A.M. (eds.) Higher-Order Operational Techniques in Seman-
tics, pp. 227–273. Cambridge University Press (1998)

29. Sangiorgi, D.: Expressing mobility in process algebras: First-order and higher-order
paradigms. Tech. Rep. CST-99-93, University of Edinburgh (1993), PhD thesis

30. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)

31. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential
control and state. In: POPL. pp. 161–172. ACM (2007)

32. Sumii, E.: A complete characterization of observational equivalence in polymorphic
lambda-calculus with general references. In: Proceedings of CSL. Lecture Notes in
Computer Science, vol. 5771, pp. 455–469. Springer (2009)

33. Talcott, C.L.: Reasoning about functions with effects. In: Gordon, A.D., Pitts, A.M.
(eds.) Higher-Order Operational Techniques in Semantics, pp. 347–390. Cambridge
University Press (1998)

34. Yachi, T., Sumii, E.: A sound and complete bisimulation for contextual equivalence
in λ-calculus with call/cc. In: Proceedings of APLAS. pp. 171–186. Springer (2016)

A Additional material for Section 2 (HOSC)

A.1 Type System

Please see Figure 8.

A.2 Proof of Lemma 1 (CIU)

In [10, 33], the authors propose general frameworks for establishing CIU theorems
for higher-order languages with effects and control. The results are based on the
usual contextual testing observing termination. Below we repeat the pattern of

their argument in our framework for both .x(ciu)
ter and .x(ciu)

err . The names of the
lemmas come from Section 2.3 of [10]. Their technical aim is to establish that
each relation is a precongruence.

Let y ∈ {ter , err}.

28 G. Jaber, A. S. Murawski

Σ;Γ ` () : Unit Σ;Γ ` tt : Bool Σ;Γ ` ff : Bool Σ;Γ ` n̂ : Int

(x, τ) ∈ Γ
Σ;Γ ` x : τ

(`, τ) ∈ Σ
Σ;Γ ` ` : refτ

Σ;Γ `M : σ Σ;Γ ` N : τ

Σ;Γ ` 〈M,N〉 : σ × τ

Σ;Γ `M : τ1 × τ2
Σ;Γ ` πiM : τi

Σ;Γ, x : σ `M : τ

Σ;Γ ` λxσ.M : τ

Σ;Γ, f : σ → τ, x : σ `M : τ

Σ;Γ ` rec f (xσ).M : σ → τ

Σ;Γ `M : σ → τ Σ;Γ ` N : σ

Σ;Γ `MN : τ

Σ;Γ `M : τ

Σ;Γ ` refτ M : refτ

Σ;Γ `M : refτ

Σ;Γ `!M : τ

Σ;Γ `M : refτ Σ;Γ ` N : τ

Σ;Γ `M := N : Unit

Σ;Γ `M1 : Bool Σ;Γ `M2 : τ Σ;Γ `M3 : τ

Σ;Γ ` if M1 M2 M3 : τ

Σ;Γ `M1 : Int Σ;Γ `M2 : Int

Σ;Γ `M1 ⊕M2 : Int

Σ;Γ `M1 : Int Σ;Γ `M2 : Int

Σ;Γ `M1 �M2 : Bool

Σ;Γ `M1 : refτ Σ;Γ `M2 : refτ

Σ;Γ `M1 = M2 : Bool

Σ;Γ, x : τ ` K[x] : σ

Σ;Γ ` contτ K : cont τ

Σ;Γ, x : cont τ `M : τ

Σ;Γ ` call/ccτ (x.M) : τ

Σ;Γ `M : σ Σ;Γ ` N : cont σ

Σ;Γ ` throwτ M to N : τ

Fig. 8. HOSC typing rules

Complete trace models of state and control 29

Lemma 14 (Op CIU). Suppose M1 .
x(ciu)
y M2. Then, whenever the terms

are typable and the relevant operation is allowable in an x-context, we have:

– 〈M1,M〉 .x(ciu)
y 〈M2,M〉, πiM1 .

x(ciu)
y πiM2, M1M .x(ciu)

y M2M ,

ref M1 .
x(ciu)
y ref M2, !M1 .

x(ciu)
y !M2, M1 := M .x(ciu)

y M2 := M ,

if M1 M M ′ .x(ciu)
y if M2 M M ′, M1 ⊕ M .x(ciu)

y M2 ⊕ M , M1 �

M .x(ciu)
y M2 �M , M1 = M .x(ciu)

y M2 = M , throw M1 to M .x(ciu)
y

throw M2 to M ;

– 〈M,M1〉 .x(ciu)
y 〈M,M2〉, MM1 .

x(ciu)
y MM2, M := M1 .

x(ciu)
y M :=

M2, if M M1 M
′ .x(ciu)

y if M M2 M
′, if M M ′ M1 .

x(ciu)
y if M M ′ M2,

M ⊕M1 .
x(ciu)
y M ⊕M2, M �M1 .

x(ciu)
y M �M2, M = M1 .

x(ciu)
y

M = M2, throw M to M1 .
x(ciu)
y throw M to M2.

Proof. We handle the first case from each category, as the rest are analogous.

– Suppose K, γ, h are such that (K[〈M1,M〉{γ}], h) ⇓y.
Observe that K[〈M1,M〉{γ}] = K[〈M1{γ},M{γ}〉] = K ′[M1{γ}] for some
K ′.
Because M1 .

x(ciu)
y M2 and (K ′[M1{γ}], h) ⇓y, we get (K ′[M2{γ}], h) ⇓y.

Because K[〈M2,M〉{γ}] = K[〈M2{γ},M{γ}〉] = K ′[M2{γ}], this implies
(K[〈M2,M〉{γ}], h) ⇓y, as needed.

– Suppose K, γ, h are such that (K[〈M,M1〉{γ}]h) ⇓y. We need to show
(K[〈M,M2〉{γ}], h) ⇓y.
Observe that K[〈M,M1〉{γ}] = K[〈M{γ},M1{γ}〉].
We will argue by induction on the number of transitions in (K[〈M{γ},M1{γ}〉], h) ⇓y
for all M{γ}, h.
Because of (K[〈M{γ},M1{γ}〉, h) ⇓y, we have the following cases for M{γ}.
• (M{γ} = V)

In this case, K[〈M,M1〉{γ}] = K[〈V,M1{γ}〉] = K ′[M1{γ}].
By M1 .

x(ciu)
y M2, we get (K ′[M2{γ}], h) ⇓y.

BecauseK[〈M2,M〉{γ}] = K ′[M2{γ}], we obtain (K[〈M2,M〉{γ}], h) ⇓y,
as needed.

• (M{γ} = K ′[err()], only for y = err)
HereK[〈M{γ},M1{γ}〉] in 0 steps, and it follows that (K[〈M{γ},M2{γ}〉], h) ⇓y.

• (M{γ} = K ′[N] such that (K ′[N], h) −→ (K ′[N ′], h′))
(K[〈M{γ},M1{γ}〉], h) = (K[〈K ′[N]{γ},M1{γ}〉], h) −→ (K[〈K ′[N ′]{γ},M1{γ}〉], h′) ⇓y.
By IH, (K[〈K ′[N ′]{γ},M2{γ}〉], h′) ⇓y.
Hence, because (K[〈M{γ},M2{γ}〉], h) −→ (K[〈K ′[N ′]{γ},M2{γ}〉], h′),
we have
(K[〈M{γ},M2{γ}〉], h) ⇓y.
Note that this case also covers the reduction rule for call/cc.
• (M{γ} = K ′[throw V to contK ′′])

In this case, (K[〈M{γ},M1{γ}〉], h) → (K ′′[V], h) and (K ′′[V], h) ⇓y.
Note that then (K[〈M{γ},M2{γ}〉], h) → (K ′′[V], h) too, so we are
done.

30 G. Jaber, A. S. Murawski

Lemma 15 (Lambda CIU). M1 .
x(ciu)
y M2 implies λx.M1 .

x(ciu)
y λx.M2.

Proof. Take K, γ, h such that (K[(λx.M1){γ}], h) ⇓y. Let us write Mγ
i for

Mi{γ}. Note that (λx.M1){γ} = λx.Mγ
1 . We need to show (K[λx.Mγ

2], h) ⇓y.
Instead we shall show that M{λx.Mγ

1 /z} ⇓y implies M{λx.Mγ
2 /z} ⇓y for

any Σ; z `M . The Lemma then follows by taking M = K[z].
We use induction on the number of steps k in (M{λx.Mγ

1 /z}, h) ⇓y for all
M,h.

Suppose (M{λx.Mγ
1 /z}, h) ⇓y.

– If k = 0 and y = err then M = K ′[err()]. Thus, (M{λx.Mγ
2 /z}, h) ⇓err too.

– If k = 0 and y = ter then M = V {λx.Mγ
2 /z} or M = z. In both cases,

M{λx.Mγ
2 /z} is a value, and M{λx.Mγ

2 /z} ⇓ter .
– Suppose k > 0. Because (M{λx.Mγ

1 /z}, h) ⇓y, the following cases arise.

• (M = K ′[N] and (K ′[N], h)→ (K ′[N ′], h′))
Then (K ′[N ′]{λx.Mγ

1 /z}, h′) ⇓y in (k − 1) steps.
So, by IH, (K ′[N ′]{λx.Mγ

2 /z}, h′) ⇓y.
Because (M{λx.Mγ

2 /z}, h)→ (K ′[N ′]{λx.Mγ
2 /z}, h′), we are done.

• (M = K ′[throw V to contK ′′])
Then (K ′′[V]{λx.Mγ

1 /z}, h) ⇓y in (k − 1) steps.
So, by IH, (K ′′[V]{λx.Mγ

2 /z}, h) ⇓y.
Because (M{λx.Mγ

2 /z}, h)→ (K ′′[V]{λx.Mγ
2 /z}, h), we are done.

• (M = K ′[zV])
Then (K ′[Mγ

1 {V/x}]{λx.M
γ
1 /z}, h) ⇓y in (k − 1) steps.

By IH, (K ′[Mγ
1 {V/x}]{λx.M

γ
2 /z}, h) ⇓y.

Because M1 .
x(ciu)
y M2, this implies (K ′[Mγ

2 {V/x}]{λx.M
γ
2 /z}, h) ⇓y.

Since (M{λx.Mγ
2 /z}, h)→ (K ′[Mγ

2 {V/x}]{λx.M
γ
2 /z}, h), we are done.

Lemma 16 (fix CIU). M1 .
x(ciu)
y M2 implies rec f (x).M1 .

x(ciu)
y rec f (x).M2.

Proof. Take K, γ, h such that (K[(rec f (x).M1){γ}], h) ⇓y.
We need to show (K[rec f (x).M2){γ}], h) ⇓y.
Let us write Mγ

i for Mi{γ}, and Fi for rec f (x).Mγ
i .

We follow the same pattern as in the previous case and show thatM{F1/z} ⇓y
implies M{F2/z} ⇓y for any Σ; z ` M . The Lemma then follows by taking
M = K[z].

We use induction on the number of steps k in (M{F1/z}, h) ⇓y for all M,h.
Suppose (M{F1/z}, h) ⇓y.

The following cases can be argued in the same way as above.

– (M = K ′[err()], y = err)
– (M = V or M = z, y = ter)
– (M = K ′[N] and (K ′[N], h)→ (K ′[N ′], h′))
– (M = K ′[throw V to contK ′′])

It remains to deal with

Complete trace models of state and control 31

– (M = K ′[zV])
Then (K ′[Mγ

1 {V/x}{F1/f}]{F1/z}, h) ⇓y in (k − 1) steps.
Observe that (K ′[Mγ

1 {V/x}{F1/f}]{F1/z}, h) = (K ′[Mγ
1 {V/x}{z/f}]{F1/z}, h).

Hence, by IH, (K ′[Mγ
1 {V/x}{z/f}]{F2/z}, h) ⇓y.

Because M1 .
x(ciu)
y M2, this implies (K ′[Mγ

2 {V/x}{z/f}]{F2/z}, h) ⇓y.
Since (M{F2/z}, h)→ (K ′[Mγ

2 {V/x}{z/f}]{F2/z}, h), we are done.

Lemma 17 (call/cc CIU). M1 .
x(ciu)
y M2 implies call/cc(x.M1) .x(ciu)

y call/cc(x.M2).

Proof. Let K, γ, h be such that (K[call/cc(x.M1)], h) ⇓y. Note that

(K[call/cc(x.M1){γ}], h)→ (K[M1{contK/x}]{γ}], h) = (K[M1{γ·[x 7→ contK]}], h).

Because of M1 .
x(ciu)
y M2, we get (K[M2{γ ·[x 7→ contK]}], h) ⇓y Consequently,

(K[call/cc(x.M2){γ}], h) ⇓y, because (K[call/cc(x.M2){γ}], h) −→ (K[M2{γ ·
[x 7→ contK]}], h).

Lemma 18 (Precongruence). Suppose x ∈ {HOSC,GOSC,HOS,GOS}, Γ `
M1,M2 : σ are HOSC-terms with an x boundary, and C is an x-context such that

Γ ′ ` C[M1], C[M2] : σ′. Then Γ `M1 .
x(ciu)
y M2 : σ implies Γ ′ ` C[M1] .x(ciu)

y

C[M2] : σ′.

Proof. By induction on the structure of contexts using the preceding lemmas.

Corollary 4 (CIU result). Suppose x ∈ {HOSC,GOSC,HOS,GOS} and Γ `
M1,M2 : σ are HOSC-terms with an x boundary. Γ ` M1 .

x(ciu)
y M2 : σ iff

Γ `M1 .x
y M2 : σ.

Proof. The left-to-right implication follows from Lemma 18. The right-to-left
implication holds, because testing with h,K, γ is a special case of testing with
C.

The Corollary is the same as Lemma 1.

B Additional material for Section 3 (HOSC[HOSC])

B.1 Extended Operational Semantics

Definition 20. Taking M a term, c a continuation name, h a heap we write
Σ;Γ ` (M, c, h) : τ if Σ;Γ `M : τ , c : τ and h : (Σ;Γ).

Lemma 19. Taking Σ;Γ ` (M, c, h) : τ , then:

– either (M, c, h) is reducible (for →);
– or M is a a callback K[f V] with f ∈ dom(Γ);
– or M is a value V .

32 G. Jaber, A. S. Murawski

Lemma 20. Taking Σ;Γ ` (M, c, h) : τ , and Σ;Γ ` K÷τ and γ an idempotent
substitution s.t. ` γ : Γ , writing M̃ for M{γ} and h̃ for h{γ} then (K[M̃], h̃)→
(N,h′) implies that

– either (M, c, h) → (M ′, c′, h′′) and N = K ′[M ′{γ}] with K ′ = γ(c′), and
h′′{γ} = h′;

– or M is a callback K ′[f V] with γ(f) a λ-abstraction λx.P and N = K[K̃ ′[P{Ṽ /x}]],
with K̃ ′ = K ′{γ} and Ṽ = V {γ};

– or M is a value and K is an evaluation context larger than •.

Definition 21. Taking M an extended term and κ a substitution from continu-
ation names to evaluation contexts that contains the continuation names appear-
ing in the support of M , one write M{κ} for the term where all the occurrences
of contK, c are substituted by contK ′[K[•]], with κ(c) = K ′. One extend this
definition to heaps, writing h{κ} for the heap {(`, v{κ}) | (`, v) ∈ h}.

Theorem 9. Taking M a term, h a heap, κ a substitution from continuation
names to evaluation contexts that contains the continuation names appearing
in the support of M and h, and c, c′ two continuation names s.t. κ(c) = K and
κ(c′) = K ′, then for all M ′, h′, if (M, c, h)→ (M ′, c′, h′) then (K[M{κ}], h{κ})→
(K ′[M ′{κ}], h′{κ}).

Proof. We reason by case analysis:

– if M = K1[call/cc(x.M1)], then one has:
• (K1[call/cc(x.M1)], c, h)→ (K1[M1{contK1, c/x}], c, h);
• (K[K1[call/cc(x.M1)]{κ}], h{κ})→ (K[K1[M1{contK[K1]/x}]{κ}], h{κ})

and we conclude using the fact that (M1{contK1, c/x}){κ} = (M1{contK[K1]/x}){κ}
since κ(c) = K.

– if M = K1[throw V to contK2, c
′], then one has:

• (K1[throw V to contK2, c
′], c, h)→ (K2[V], c′, h);

• (K[K1[throw V to contK2, c
′]{κ}], h{κ})→ (K ′[K2[V]{κ}], h{κ}) since

κ(c′) = K ′.
– If there exists a (unique) reduction (M,h)→ (M ′, h′) then:
• (M{κ}, c, h{κ})→ (M ′{κ}, c, h′{κ})
• (K[M{κ}], h{κ})→ (K[M ′{κ}], h′{κ}).

B.2 Proof of Lemma 2

Proof. We reason by contraposition.

1. Suppose Γ ` M1 6.x
ter M2 : τ , i.e. C[M1] ⇓ter and C[M2] 6⇓ter for some

` C ÷ τ .
Then we can construct err ` C ′ ÷ τ such that C ′[M1] ⇓err and C ′[M2] 6⇓err
as follows:

C ′[•] = (C;err [•]; err),

where C;err refers to C in which each occurrence of contσ (−) is replaced with
contσ (−; err). In this way, the construction transforms all opportunities for

Complete trace models of state and control 33

⇓ter into ones for ⇓err . Note that, if M1 contained contσK, it would not
necessarily be the case that C ′[M1] ⇓err , because M1 is not affected by the
transformation.

2. Let x ∈ {HOSC,GOSC}. Suppose Γ ` M1 6.x
err M2, i.e. C[M1] ⇓err and

C[M2] 6⇓err for some C such that err ` C÷τ . Then we can construct ` C ′÷τ
such that C ′[M1] ⇓ter and C ′[M2] 6⇓ter as follows.

C ′[•] = call/cc(y. C;Ω [•]{(λz.throw () to y)/err};Ω)

where C;Ω is defined analogously to C;err . Note that we add ;Ω, because
C[M2] 6⇓err could be due to ⇓ter (rather than divergence), and we want to
make sure that C ′[M2] diverges, which will imply C ′[M2] 6⇓ter .
Note that, because of the use of continuations, C ′ is an x-context only for
x ∈ {HOSC,GOSC}.
In this case, we also rely on contσ (K)-freeness (of M2). If C[M2] 6⇓err was
due to ⇓ter caused by contσK in M2, then our ;Ω transformation might not
imply divergence for C ′[M2].

B.3 Name invariance

We say that a permutation p of Names is type-preserving if it is also a permu-
tation once restricted to each of CNamesσ and FNamesσ→σ′ . Given X ⊆ Names,
we say that p fixes X if p(x) = x for all x ∈ X. Type-preserving permutations
can be applied to traces in the obvious way. In particular, if t is (NO, NP)-
trace then p(t) is a (p(NO), p(NP))-trace. We write t1 ∼X t2 if there exists a
type-preserving permutation p that fixes X such that p(t1) = t2.

Lemma 21. Suppose C = 〈· · · , φ, h〉 is a configuration and p is a type-preserving
permutation. If t ∈ TrHOSC(C) and p fixes φ then p(t) ∈ TrHOSC(C).

Due to the arbitrariness of name choice in transitions (i.e. freedom to choose
fresh names), TrHOSC(C) is closed under renamings that preserve types and the
names already present in C.

B.4 Proof of Lemma 4

Delegated to Section C.

B.5 Proof of Theorem 1

Proof. Suppose TrHOSC(Γ `M1) ⊆ TrHOSC(Γ `M2). We handle Γ `M1 .
HOSC(ciu)
err

M2, as it is slightly more involved. The reasoning for .HOSC(ciu)
ter is symmetric.

Let Σ, h,K, γ be such that (K[M1{γ}], h) ⇓err . Suppose (~Ai, ~γi) ∈ AValΓ (γ)
and c : σ′ (c 6∈ ◦). By Lemma 4 (left-to-right), there exist t, c′ such that

t ∈ TrHOSC(C
ρ ~Ai

,c

M1
) and t⊥ �̄((), c′) ∈ TrHOSC(C~γi,ch,K,γ). By TrHOSC(Γ `M1) ⊆

TrHOSC(Γ `M2), we have t ∈ TrHOSC(C
ρ ~Ai

,c

M2
). Because t ∈ TrHOSC(C

ρ ~Ai
,c

M2
)

and t⊥ �̄((), c′) ∈ TrHOSC(C~γi,ch,K,γ), by Lemma 4 (right-to-left) we can conclude

(K[M2{γ}], h) ⇓err . Thus, Γ `M1 .
HOSC(ciu)
err M2.

34 G. Jaber, A. S. Murawski

B.6 Proof of Lemma 5

Recall that abstract values are tuples consisting of boolean and integer constants,
as well as function names. We can refer to them using projections of the form
π~i, where ~i ∈ {1, 2}+, on the understanding that πi,~ix = πi(π~ix).

– Suppose Num(A) = {(~i, n) |π~iA = n : Bool, Int}. Then assert(x ∼ A) will
act as shorthand for the following code if (

∧
(~i,n)∈Num(A) π~i x = n) () Ω.

which checks if the boolean/integer arguments match those of A.
– Another operation, written A[πx/f], will substitute for each f ∈ ν(A), the

corresponding projection π~ifx (i.e. one such that π~ifA = f).

This syntax will be used in all definability arguments.

Lemma 5 follows from the lemma given below for i = 0. Consider h′ = h0,
K ′ = γ0(c), γ′ = γ0 \ c. We have ν(img(γ0), img(h0)) ⊆ ◦] {�}. As names
◦σ can only occur inside terms of the form cont (K ′, ◦σ), we can conclude that
(h′,K ′, γ′) = (h◦,K◦, γ◦), where h,K, γ are from HOSC.

Lemma 22. Suppose φ] {�} ⊆ FNames, c ∈ CNames and t = o1p1 · · · onpn
is a (◦] {�}, φ] {c})-trace starting with an O-action. Given 0 ≤ i ≤ n, let
ti = oi+1pi+1 · · · onpn. There exist passive configurations Ci such that Treven(Ci)
consists of even-length prefixes of oi+1pi+1 · · · onpn (along with their renamings
via permutations on Names that fix φi). Moreover, Ci = 〈γi, ξi, φi, hi〉 (0 ≤ i ≤
n), where

– dom(γi) consists of φ ∪ {c} and all names introduced by P in o1p1 · · · oipi;
– ν(img(γi)) = ∅;
– dom(ξi) consists of c and all continuation names introduced by P in o1p1 · · · oipi;
– for all d ∈ dom(ξi), ξi(d) = topP (o1 · · · oj) if d was introduced in pj (we

regard c as being introduced in p0 and define topP (o1 · · · o0) = ◦τ ′);
– φi consists of ◦] {�}] φ] {c} and all names introduced in o1p1 · · · oipi;
– dom(hi) = dom(h0);
– ν(img(hi)) may only contain elements of ◦]{�} and names introduced by O

in o1p1 · · · oipi.

Proof. The main idea is to use references in order to record all continuations and
functions introduced by O, so that they can be accessed in terms at the time
when they need to be used by P. Other references will also be used to inject the
right pieces of code into the LTS.

Below we explain how the content of Ci is meant to evolve and what invari-
ants will be maintained by the construction for each kind of name in t.

FNames from P Suppose nFP is the number of function names in φ and those
introduced by P in t. We shall write f jP (0 ≤ j < nFP) to refer to the jth
such name, on the understanding names from φ are introduced first and this
is followed by names in t in order of appearance (from left to right).

Complete trace models of state and control 35

For each f jP : σj → τj , we will have a dedicated reference fpr j : ref(σj → τj)
in all heaps. The content of hi(fpr j) will be changing at each step of the
construction and it will be used to arrange for suitable behaviour following
O-actions of the form f jP (A, c). For example, if the action is not meant to
generate a response at a stage, we can use fpr j := λx.(!fpr j)x to cause
divergence by creating a cycle in the heap.

If f jP was introduced in pi (we take i = 0 for f jP ∈ φ), then f jP will be present

in all φi′ , γi′ for i′ ≥ i. We shall maintain the invariant γi′(f
j
P) = λx.(!fpr j)x

for all i′ ≥ i.
Note that this is consistent with ν(img(γi)) = ∅.

CNames from P Suppose nCP is the number of continuation names introduced
by P in t plus 1, to take c into account. Similarly to the previous case, we
write cjP (0 ≤ j < cFP) to refer to the jth such name, on the understanding
that c0P = c and other names are enumerated in the same order as they
appear in t (from left to right).

For each cjP : σj , we will have a dedicated reference cpr j : ref(σj → τj), if

cjP was introduced in pj′ and topO(o1 · · · oj′) : τj , in all heaps.

Its content will be changing at each step of the construction, in order to
provide suitable reactions to O-actions of the form cjP (A).

If cjP was introduced in pi (we take i = 0 for cjP = cP) then cjP will be

present in all φi′ , γi′ for i′ ≥ i. We shall maintain the invariant γi′(c
j
P) =

(λx.(!cpr j)x)• and ξi′(c
j
P) = topO(o1 · · · oj′), if cjP was introduced in pj′ .

Note that this is consistent with ν(img(γi)) = ∅.
FNames from O We use similar notation here and suppose nFO is the number

of function names introduced by O. As in previous cases, we use f jO (0 ≤
j < nFO) to refer to such names.

For each f jO : σj → τj , we will have a corresponding reference for j : ref(σj →
τj) in all heaps, which will be used to store the name as soon as it is played,

i.e. if f jO is introduced in oi (for � we take i = 0), then hi′(for j) = f jO for all
i′ ≥ i. Earlier we will use a divergent value, i.e. hi′(for j) = λx.(!for j)x for
i′ < i.

f jO will be part of φi′ for all i′ ≥ i.
Note that this is consistent with: ν(img(hi)) may only contain elements of
◦] {�} and names introduced by O in o1p1 · · · oipi.

CNames from O Suppose nCO is the number of continuation names introduced
by O in t. As before, we use cjO (0 ≤ j < nFO) to refer to such names.

For each cjO : σj , we will have a corresponding reference cor j : ref(cont σj),

which will be used to store the name as soon as it is played, i.e. if cjO is

introduced in oi, then hi′(cor j) = cont (•, cjO) for all i′ ≥ i. Earlier we will
use a divergent value, i.e. hi′(cor j) = cont ((λx.Ω)•, ◦τ ′) for i′ < i, where Ω
is a divergent term.

cjO will be part of φi′ for all i′ ≥ i.
Note that this is consistent with: ν(img(hi)) may only contain elements of
◦] {�} and names introduced by O in o1p1 · · · oipi.

36 G. Jaber, A. S. Murawski

Overall, for each 0 ≤ i ≤ n, we shall have

dom(hi) = {fpr j | 0 ≤ j < nFP}∪{cpr j | 0 ≤ j < nCP}∪{for j | 0 ≤ j < nFO}∪{cor j | 0 ≤ j < nCO}.

The above description specifies φi, γi, ξi,dom(hi) and hi(for j) (0 ≤ j < nFO),
hi(cor j) (0 ≤ j < nCO), for any 0 ≤ i ≤ n. Hence, in the forthcoming argument
we will focus on defining hi(fpr j) (0 ≤ j < nFP) and hi(cpr j) (0 ≤ i < nCP).
Because the values written to these references will only contain elements from
◦] {�}, it will follow that ν(img(hi)) may only contain elements of ◦] {�} and
names introduced by O in o1p1 · · · oipi.

We proceed by reverse induction, starting from i = n.

i = n To complete the definition of Cn, it suffices to specify hn(fpr j) (0 ≤
j < nFP) and hn(cpr j) (0 ≤ j < nCP). We set hn(fpr j) = (λx.(!fpr j)x) and
hn(cpr j) = (λx.(!cpr j)x), i.e. deferencing will cause divergence. Consequently,

because γn(f jP) = λx.(!fpr j)x and γn(cjP) = λx.(!cpr j)x, any O action from Cn

will trigger divergence. Thus, the only even-length trace that can be generated
is the empty one, and we have Treven(Cn) = {ε}, as required.

0 ≤ i < n Let 0 ≤ i < n. Assume validity of the Lemma for i + 1 and suppose
Ci+1 = 〈γi+1, ξi+1, φi+1, hi+1〉. By case analysis on pi+1, we first construct an

active configuration Ei = 〈M ′, c′, γ′i, ξ′i, φ′i, hi+1〉 such that Ei
pi+1−−−→ Ci+1.

Given an abstract value A, let VA = A[(λx.(!fpr j)x)/f jP], i.e. the function

names f jP are replaced with function values (λx.(!fpr j)x). Below we write φi+1 \
X, γi+1\X and ξi+1\X to stand for the removal of names in X from the domain
of the respective function, while preserving values for other elements. The table
below shows the components of Ei in each case.

pi+1 M ′ c′ γ′i ξ′i φ′i
¯
cj
′

O(A) VA cj
′

O γi+1 \A ξi+1 φi+1 \A
¯
f j
′

O (A, cj
′′

P) (λx.(!cpr j′′)x)[f j
′

O VA] topP (o1 · · · oi+1) γi+1 \A, cj
′′

P ξi+1 \ cj
′′

P φi+1 \A, cj
′′

P

Note that, in each case, Ei
pi+1−−−→ Ci+1. In particular, our definition of VA (based

on λx.(!fpr j)x) and the occurrence of λx.(!cpr j′)x in the second case guarantee
that, after the step, γ′i extends to γi+1 in accordance with our description of
γi+1 at the beginning of the proof. Similarly, setting c′ to topP (o1 · · · oi+1) in
the second case means that ξ′i will evolve into ξi+1.

As a next step we define another active configurationDi = 〈M ′′, topP (o1 · · · oi+1), γ′i, ξ
′
i, φ
′
i, hi+1〉,

where M ′′ is specified by the table below, by case analysis on pi+1.

Complete trace models of state and control 37

Note that Di
τ−→ Ei.

pi+1 M ′′

¯
cj
′

O(A) throw VA to cont (•, ◦σ) cj
′

O = ◦σ
¯
cj
′

O(A) throw VA to !cor j′ cj
′

O 6∈ ◦
¯
f j
′

O (A, cj
′′

P) (λx.(!cpr j′′)x)(�VA) f j
′

O = �
¯
f j
′

O (A, cj
′′

P) (λx.(!cpr j′′)x)((!for j′)VA) f j
′

O 6= �

Finally, we are ready to define Ci = 〈γi, ξi, φi, hi〉 by case analysis on oi+1.
Recall that φi, γi, ξi, dom(hi), hi(for j) (0 ≤ j < nFO), hi(cor j) (0 ≤ j < nCO)
are covered by the invariants discussed at the beginning of the proof. Thus, it
suffices to specify hi(fpr j) and hi(cpr j).

– Suppose oi+1 = cjP (A). Since oi+1 is the only O-move that should be re-
sponded to by P:
• we let hi(fpr j′) = λx.(!fpr j′)x for any 0 ≤ j′ < nFP , in order to create

divergence after any f j
′

P (A, cj
′′

O);
• we let hi(cpr j′) = λx.(!cpr j′)x for any 0 ≤ j′ < nCP such that j′ 6= j,

in order to create divergence after cj
′

P (A) with j′ 6= j.

To allow a suitable response after cjP (A), we set

hi(cpr j) = λx.assert(x ∼ A); savefun(A); setheap(i+ 1); M ′′

where the special code fragments are explained below.
• savefun(A) is meant to save all functions from A in the corresponding

references. Let Fun(A) = {(~i, w) |π~iA = fwO}. Then savefun(A) is the

sequence of assignments forw := π~i x, for all (~i, w) ∈ Fun(A).
• setheap(i + 1) is the sequence of assignments fpr j′ := hi+1(fpr j′) (0 ≤
j′ < nFP) and cpr j′ := hi+1(cprh) (0 ≤ j′ < nCP).

Suppose cjP was introduced in pj′ then we have topP (o1 · · · oj′) = topP (o1 · · · oi+1),
i.e. types of the codomains of !cpr j and !cpr j′′ match, and indeed we can
use M ′′ to define hi(cpr j) (note that throw is not causing typing problems).

Then we have Ci
oi+1−−−→ Ci, where Ci = 〈(λx.!cpr jx)[A], topP (o1 · · · oj′), γ′i, ξ′i, φ′i, hi)〉

and Ci
τ∗−→ Di = 〈M ′′, topP (o1 · · · oi+1), γ′i, ξ

′
i, , φ

′
i, hi+1〉. Recall that we have

already established Di
τ−→ Ei

pi−→ Ci+1, so we are done.

– Suppose oi+1 = f jP (A, cj
′

O). Then we let hi(cpr j′′) = λx.(!cpr j′′)x (0 ≤ j′′ <
nCP) to create divergence after any cj

′′

P (A), and hi(fpr j′′) = λx.(!fpr j′′)x
for any 0 ≤ j′′ < nFP such that j′′ 6= j, to create divergence after any

f j
′′

P (A, cj
′′′

O) with j′′ 6= j. Then, to arrange for the right reaction after oi+1,
we set

hi(fpr j) = λx.assert(x ∼ A); savefun(A); call/cc(y.cr j′ := y; setheap(i+1); M ′′)

where the special code fragments are specified above. Note that, similarly, we

have Ci
oi+1−−−→ Ci, where Ci = 〈(λx.!fpr jx)[A], cj

′

O , γi, ξi, φi, hi)〉, Ci
τ∗−→ Di =

38 G. Jaber, A. S. Murawski

〈M ′′, topP (o1 · · · oi+1), γ′i, ξ
′
i, φ
′
i, hi+1〉 and Di

τ−→ Ei
pi+1−−−→ Ci+1, because in

this case cj
′

O = topP (o1 · · · oi+1).

The invariance property follows from Remark 2.

B.7 Proof of Theorem 2

Proof. Suppose Γ `M1 .HOSC
ciu,err M2. Let ρ be a Γ -configuration, Ai = ρ(xi), c :

σ and t ∈ TrHOSC(C
ρ ~Ai

,c

M1
). Then t is a (ν(ρ)]{c}, ∅)-trace. Let t1 = t{�′/�, ◦′/◦},

where �′, ◦′ are fresh names of the same type as �, ◦ respectively (this is done
to ensure that �, ◦ do not occur in t1). By Lemma 21, because t1 ∼ν(ρ)]{c} t,

we also have t1 ∈ TrHOSC(C
ρ ~Ai

,c

M1
). Let c′ : Unit be fresh. Then t2 = t⊥1 �̄((), c′)

is an ({�, ◦}, ν(ρ)] {c})-trace. By Lemma 5, there exists a passive configura-
tion CO = 〈γO, {c 7→ ◦}, ν(ρ)] {c, �, ◦}, h〉 such that Treven

HOSC(CO) consists
of all (even-length prefixes of) traces t′ such that t′ ∼ν(ρ)]{c,�,◦} t2. Observe

that CO = C~γi,ch,K,γ , where K = (γO(c)){err/�}, γ(xi) = (Ai{γO}){err/�}, and

γi = γO � ν(Ai). Hence, t1 ∈ TrHOSC(C
ρ ~Ai

,c

M1
) and t⊥1 �̄((), c′) ∈ C~γi,ch,K,γ . By

Lemma 4 (right-to-left), (K[M1{γ}], h) ⇓err . Because Γ ` M1 .HOSC
ciu,err M2,

(K[M2{γ}], h) ⇓err follows. By Lemma 4 (left-to-right), there exist t′′, c′′ such

that t′′ ∈ TrHOSC(C
ρ ~Ai

,c

M2
) and (t′′)⊥ �̄((), c′′) ∈ C~γi,ch,K,γ . By the definition of CO,

we must have (t′′)⊥ �̄((), c′′) ∼ν(ρ)]{c,�,◦} t
⊥
1 �̄((), c′), so t′′ ∼ν(ρ)]{c,�,◦} t1. Be-

cause t′′ ∈ TrHOSC(C
ρ ~Ai

,c

M2
), we have t1 ∈ TrHOSC(C

ρ ~Ai
,c

M2
) by Lemma 21. Since

t1 ∼ν(ρ)]{c} t, it follows that t ∈ TrHOSC(C
ρ ~Ai

,c

M2
), as required.

C Composite Interaction (Proof of Lemma 4)

Definition 22. A composite configuration D is a tuple 〈M, c, γP , γO, ξ, φ, hP , hO〉
with M a term, c a continuation name, γP , γO two environments, φ a set of
names and hP , hO two heaps.

Definition 23. Taking a continuation function ξ, we define a relation ≺ξ be-
tween the continuation names as the graph of ξ, i.e. c ≺ξ c′ when ξ(c) = c′.

We write ◦ for the final continuation name, used by Opponent to answer the
resulting value of the whole interaction.

Definition 24. A valid composite configuration D is a tuple 〈M, c, γP , γO, ξ, φ, hP , hO〉
with:

– dom(γP) ∩ dom(γO) = ∅ and ◦ /∈ dom(γP) ∪ dom(γO);
– dom(γP) ∪ dom(γO) ∪ {◦, �} = φ;
– dom(ξ) = (dom(γO) ∪ dom(γ(P))) ∩ CNames;
– for all c ∈ dom(ξ), if c ∈ dom(γX) then ξ(c) ∈ dom(γX⊥), for X ∈ {O,P};
– the transitive closure of ≺ξ is a strict partial order which admit a unique

maximal element equal to ◦;

Complete trace models of state and control 39

(Pτ) 〈M, c, γP , γO, ξ, φ, hP , hO〉
τ−→ 〈N, c′, γP , γO, ξ, φ, h′

P , hO〉
when c ∈ dom(γO) and (M, c, hP)→ (N, c′, h′

P)

(PA) 〈V, c, γP , γO, ξ, φ, hP , hO〉
c̄(A)−−−→ 〈K[A], ξ(c), γP · γ′, γO, ξ, φ] dom(γ′), hP , hO〉

when c : σ, γO(c) = K, and (A, γ′) ∈ AValσ(V)

(PQ) 〈K[fV], c, γP , γO, ξ, φ, hP , hO〉
f̄(A,c′)−−−−−→ 〈V ′A, c′, γP · γ′ · [c′ 7→ K], γO, ξ · [c′ 7→ c],

φ] dom(γ′)] {c′}, hP , hO〉
when f : σ → σ′, c′ : σ′, γO(f) = V ′ and (A, γ′) ∈ AValσ(V)

(Oτ) 〈M, c, γP , γO, ξ, φ, hP , hO〉
τ−→ 〈N, c′, γP , γO, ξ, φ, hP , h′

O〉
when c ∈ dom(γP) and (M, c, hO)→ (N, c′, h′

O)

(OA) 〈V, c, γP , γO, ξ, φ, hP , hO〉
c(A)−−−→ 〈K[A], ξ(c), γP , γO · γ′, ξ, φ] dom(γ′), hP , hO〉

when c : σ, γP (c) = K, and (A, γ′) ∈ AValσ(V)

(OQ) 〈K[fV], c, γP , γO, ξ, φ, hP , hO〉
f(A,c′)−−−−−→ 〈V ′A, γP , γO · γ′ · [c′ 7→ K], ξ · [c′ 7→ c],

φ] dom(γ′)] {c′}, hP , hO〉
when f : σ → σ′, c′ : σ′, γP (f) = V ′ and (A, γ′) ∈ AValσ(V)

Fig. 9. Composite LTS for HOSC[HOSC]

– γP · γO is well-typed;
– c ∈ φ with c : σ `M : σ;
– dom(hP) ∩ dom(hO) = ∅.

The composite LTS, defined on such composite configurations, is given in
Figure 9. Up to choice of name, it is deterministic.

Definition 25. Two valid HOSC-configurations CP ,CO are said to be compat-
ible if one of the two is active and the other one is passive, and, without loss of
generality, supposing that CP is the active configuration 〈M, c, γP , ξP , φP , hP 〉
and CO the passive configuration 〈γP , ξO, φO, hO〉, then φO = φP]{◦, �} and the
composite configuration 〈M, c, γP , γO, ξP · ξO, φO, hP , hO〉, written CP ∧∧ CO, is
valid.

Lemma 23. Taking D a valid composite configuration and D′ a composite con-
figuration s.t. D

a
=⇒ D′, then D′ is valid.

Lemma 24. Taking CP ,CO two compatible configurations, for all composite
configuration D′, if (CP ∧∧ CO)

a
=⇒ C′ then there exists two compatible configu-

rations C′P ,C
′
O s.t.:

– D′ = C′P ∧∧ C′O;

– CP
a
=⇒ C′P and CO

a⊥
==⇒ C′O.

Proof. Without loss of generality, we suppose that CP is the active configura-
tion and CO the passive one. So we write CP as 〈M, c, γP , φ, hP 〉 and CO as
〈γO, φ, hO〉.

40 G. Jaber, A. S. Murawski

– If a is a Player Answer c̄′(A), then there exists V, h′P s.t.

(CP ∧∧ CO)
τ−→ 〈V, c′, γP , γO, ξ, φ, h′P , hO〉

so that (M, c, hP)→ (V, c′, h′P). Then there existsK, c′′ s.t. γO(c′) = K, ξ(c′) =
c′′ and there exists σ, γ′ s.t. c′ : σ and (A, γ′) ∈ AValσ(V), so that D′ =
〈K[A], c′′, γP · γ′, γO, φ] dom(γ′), h′P , hO〉.
We then define C′P as 〈γP ·γ′, φ]dom(γ′), h′P 〉 and C′O as 〈K[A], c′′, γO, φ]
dom(γ′), hO〉. One easily check that:
• C′P ,C

′
O are two compatible configurations;

• D′ = C′P ∧∧ C′O;

• CP
τ−→ 〈V, c′, γP , φ, h′P 〉

c̄′(A)−−−→ C′P ;

• CO
c′(A)−−−→ C′O.

– If a is a Player Question f̄(A, c′), then there exists K,V, c′′, h′P s.t.

(CP ∧∧ CO)
τ−→ 〈K[f V], c′′, γP , γO, ξ, φ, h

′
P , hO〉

so that (M, c, hP)→ (K[f V], c′′, h′P). Then there exists V ′ s.t γO(f) = V ′,
and there exists σ, σ′, γ′ s.t. f : σ → σ′, and (A, γ′) ∈ AValσ(V), so that
D′ = 〈V ′A, c′, γP · γ′ · [c′ 7→ K], γO, ξ · [c′ 7→ c′′], φ] dom(γ′) · {c′}, h′P , hO〉.
We then define C′P as 〈γP · γ′ · [c′ 7→ K], ξ · [c′ 7→ c′′], φ] dom(γ′)] {c′}, h′P 〉
and C′O as 〈V ′A, c′, γO, φ] dom(γ′)] {c′}, hO〉. One easily check that:
• C′P ,C

′
O are two compatible configurations;

• D′ = C′P ∧∧ C′O;

• CP
τ−→ 〈K[f V], c′′, γP , φ, h

′
P 〉

f̄(A,c′)−−−−→ C′P ;

• CO
f̄(A,c′)−−−−→ C′O.

Lemma 25. Taking CP ,CO two compatible configurations, if

– CP
a
=⇒ C′P ;

– CO
a⊥
==⇒ C′O;

then C′P ,C
′
O are two compatible configurations and (CP ∧∧ CO)

a
=⇒ (C′P ∧∧ C′O).

Proof. Without loss of generality, we suppose that CP is the active configura-
tion and CO the passive one. So we write CP as 〈M, c, γP , φ, hP 〉 and CO as
〈γO, φ, hO〉.

– If a is a Player Answer c̄′(A), then there exists V, h′P s.t. CP
τ−→ 〈V, c′, γP , φ, h′P 〉

so that (M, c, hP)→ (V, c′, h′P). Then:
• there exists σ s.t. c′ : σ, and γ′, s.t. (A, γ′) ∈ AValσ(V) so that C′P =
〈γP · γ′, φ] dom(γ′), h′P 〉;

• there exists K, c′′ s.t. γO(c′) = K, ξ(c′) = c′′ and C′O = 〈K[A], c′′, γO, φ]
dom(γ′), hO〉.

Complete trace models of state and control 41

Then one easily checks that C′P ,C
′
O are two compatible configurations, and:

(CP ∧∧ CO)
τ−→ 〈V, c′, γP , γO, ξ, φ, h′P , hO〉
c̄′(A)−−−→ 〈K[A], c′′, γP · γ′, γO, φ] dom(γ′), h′P , hO〉

so that 〈K[A], c′′, γP · γ′, γO, φ] dom(γ′), h′P , hO〉 = C′P ∧∧ C′O.

– If a is a Player Question f̄(A, c′), there existsK,V, c′′, h′P s.t. CP
τ−→ 〈K[f V], c′′, γP , φ, h

′
P 〉

so that (M, c, hP)→ (K[f V], c′′, h′P). Then:
• there exists σ, σ′ s.t. f : σ → σ′, and V ′, γ′, s.t. γO(f) = V ′ and (A, γ′) ∈

AValσ(V) so that C′P = 〈γP · γ′ · [c′ 7→ K], ξ · [c′ 7→ c′′], φ] dom(γ′)]
{c′}, h′P 〉;
• there exists V ′ s.t. γO(f) = V ′ and C′O = 〈V ′A, c′, γO, φ] dom(γ′)]
{c′}, hO〉.

Then one easily checks that C′P ,C
′
O are two compatible configurations, and:

(CP ∧∧ CO)
τ−→ 〈K[f V], c′′, γP , γO, ξ, φ, h

′
P , hO〉

f̄(A,c′)−−−−→ 〈V ′A, c′, γP · γ′ · [c′ 7→ K], γO, ξ · [c′ 7→ c′′], φ] dom(γ′)] {c′}, h′P , hO〉

so that 〈K[A], c′′, γP ·γ′·[c′ 7→ K], γO, ξ·[c′ 7→ c′′], φ]dom(γ′)]{c′}, h′P ·hO〉 =
C′P ∧∧ C′O.

Definition 26. A composite configuration D terminates following a trace t,
written D ⇓tter , when there exists a final composite configuration Df = 〈(), ◦, γP , γO, ξ, φ, hP , hO〉
s.t. D

t
=⇒ Df . We often omit the trace t and simply write D ⇓ter .

Definition 27. A composite configuration D errors following a trace t, written
D ⇓terr , when there exists a composite configuration Df = 〈K[err()], c, γP , γO, ξ, φ, hP , hO〉
s.t. D

t
=⇒ Df . We often omit the trace t and simply write D ⇓err .

Lemma 26. Taking CP ,CO two compatible configurations if (CP ∧∧ CO) ⇓tter
then:

– if CP is active and CO passive, t is even-length;
– if CP is passive and CO active, t is odd-length.

Proof. By induction on the length of t:

– If t = ε, then CP ∧∧ CO can be written as 〈(), ◦, γP , γO, ξ, φ, hP , hO〉. Writing
φP for the name environment component of CP , and φO for the one of CO,
then φ = φO = φP] {◦}. So necessarily is the CO active one.

– If t = a ·t′, then we conclude using Lemma 24 and the induction hypothesis.

Definition 28. Taking CP ,CO two compatible configurations, one write (CP |CO) ↓ty,
with y ∈ {ter , err}, when t ∈ Tr(CP) and

– if y = ter then t⊥ · ◦̄(()) ∈ Tr(CO);
– if y = err then t⊥ · �̄((), c) ∈ Tr(CO) for some c ∈ CNames;

42 G. Jaber, A. S. Murawski

Lemma 27. Taking CP ,CO two compatible configurations and t a trace, then
(CP |CO) ↓ty iff (CP ∧∧ CO) ⇓ty, with y ∈ {ter , err}.

Proof. We first prove that if (CP |CO) ↓ty then (CP ∧∧ CO) ⇓ty by induction on
the length of t:

– if t is empty and y = ter , then ◦̄(()) ∈ Tr(CO), so there exists γO, φ, hO
s.t. CO

τ−→ 〈(), ◦, γO, φ, hO〉. Since CO is an active configuration, CP must
be a passive configuration, that we write as 〈γP , φ, hP 〉. Then CP ∧∧ CO =
〈(), ◦, γP , γO, ξ, φ, hP , hO〉, so that indeed (CP ∧∧ CO) ⇓εter .

– if t is empty and y = err , then ¯err((), c) ∈ Tr(CO), so there exists γO, φ, hO
s.t. CO

τ−→ 〈K[err()], c, γO, φ, hO〉. Since CO is an active configuration, CP

must be a passive configuration, that we write as 〈γP , φ, hP 〉. Then CP ∧∧
CO = 〈K[err()], c, γP , γO, ξ, φ, hP , hO〉, so that indeed (CP ∧∧ CO) ⇓εter .

– if t = a · t′, then there exists two configurations C′P ,C
′
O s.t.:

• CP
a
=⇒ C′P ;

• CO
a⊥
==⇒ C′O;

• (C′P |C′O) ↓t′ter .
From Lemma 25, we get that C′P ,C

′
O are two compatible configurations and

(CP ∧∧ CO)
a
=⇒ (C′P ∧∧ C′O). Using the induction hypothesis we get that

(C′P ∧∧ C′O) ⇓t′y . So (CP ∧∧ CO) ⇓ty.

We now prove that if (CP ∧∧ CO) ⇓ty then (CP |CO) ↓ty, by induction on the
length of t:

– if t is empty and y = ter , then (CP ∧∧ CO)
τ−→ 〈(), ◦, γP , γO, ξ, φ, hP , hO〉. So

CO
τ−→ 〈(), ◦, γO, φ, hO〉 and CP = 〈γP , φ, hP 〉. Thus CO

◦̄(())
===⇒ 〈γO, φ, hO〉,

so (CP |CO) ↓εter .

– if t is empty and y = err , then (CP ∧∧ CO)
τ−→ 〈K[err()], c, γP , γO, ξ, φ, hP , hO〉.

So CO
τ−→ 〈K[err()], c, γO, φ, hO〉 and CP = 〈γP , φ, hP 〉. Thus CO

¯err((),c)
======⇒

〈γO, φ, hO〉, so (CP |CO) ↓εter .

– if t = a·t′, then there exists a composite configuration D′ s.t. (CP ∧∧ CO)
a
=⇒

D′ and D′ ⇓t′ter . From Lemma 24, we get the existence of two compatible
configurations C′P ,C

′
O s.t.:

• D′ = C′P ∧∧ C′O;

• CP
a
=⇒ C′P ;

• CO
a⊥
==⇒ C′O.

From (C′P ∧∧ C′O) ⇓t′y , we get from the induction hypothesis that (C′P |C′O) ↓t′y .
So (CP |CO) ↓ty.

Definition 29. Taking γ, ξ a valid environment and c, c′ two continuation names
s.t. c ≺∗ξ c′, we define the evaluation context Kc,c′ as:

Complete trace models of state and control 43

– Kc,c , •
– Kc,c′ , Kc′′,c′ [K], when γ(c) = K and ξ(c) = c′′.

We write Kc for Kc,◦.

Definition 30. To an environment γ, we associate an idempotent substitution
δ defined as the relation:

– δ0 , {(f, V) | f ∈ dom(γ) ∧ γ(f) = V } ∪ {(c,K) | c ∈ dom(γ) ∧ γ(c) = K}
– δi+1 , {(f, V {δi}) | (f, V) ∈ δi} ∪ {(c,K{δi}) | (c,K) ∈ δi} where we write
V {δi} for the action of the substitution δi to V

then there exists n ∈ N s.t. δn+1 = δn, and δ is then defined as δn.

One need this iterative construction to get the idempotency result, that cor-
responds to the fact that the support of the values and evaluation contexts in
the codomain of δ are empty (i.e. they do not have continuation or functional
names anymore). This is possible because there is no cycles between names.

Lemma 28. Taking D = 〈K[f V], c, γP , γO, ξ, φ, hP , hO〉 a valid composite con-
figuration that is going to perform a question, with f ∈ dom(γ), where γ =
γP · γO, there exists a functional name g, an abstract value A, a composite con-
figuration D′ and a trace t formed by questions s.t.:

– γ(g) is a λ-abstraction λx.M ;
– δ(f) = δ(g), writing δ for the idempotent substitution associated to γ;

– D
t−→ D′;

– D′ can be written as 〈g A, c′, γP · γ′P , γO · γ′O, φ] dom(γ′P), hP , hO〉;
– A{δ′} = V , with δ′ the idempotent substitution associated to γ′P · γ′O;
– Kγ

c′,c = •.

Lemma 29. Let D = 〈V, c, γP , γO, ξ, φ, hP , hO〉 be a valid composite config-
uration that is going to perform an answer. Suppose that there exists c′ s.t.
c ≺∗γ c′ and Kγ

c,c′ = •. Then there exists a composite configuration D′ =
〈A, c′, γP ·γ′P , γO ·γ′O, φ]dom(γ′P), hP , hO〉 and a trace t formed only by answers

s.t. D
t−→ D′ and A{δ′} = V , with δ′ the idempotent substitution associated to

γ′P · γ′O.

Definition 31. One define the configuration transformation θ from valid com-
posite configurations to pair formed by a term and a heap, defined as

θ : 〈M, c, γP , γO, ξ, φ, hP , hO〉 7→ ((Kγ
c [M]){δ}, (hP · hO){δ})

writing γ for γP · γO and δ for the idempotent substitution associated to γ.

Lemma 30. Taking D,D′ two valid composite configuration and a an action
(different of τ) s.t. D

a−→ D′ then θ(D) = θ(D′).

Proof. Let us write D as 〈M, c, γP , γO, ξ, φ, hP , hO〉. Without loss of generality,
we suppose the composite configuration D to be P -active, i.e. c ∈ dom(γO)

We reason by case analysis over α:

44 G. Jaber, A. S. Murawski

– If α = c̄(A), so that M is a value V . Then we have:
• γO(c) = K and c : τ for some context K and type τ ;
• γ′O = γO, γ′P = γP ·γA and φ′ = φ]dom(γA); with (A, γA) ∈ AValτ (V);
• h′P = hP and h′O = hO;
• M ′ = K[A].

We conclude using these and the fact that:
• Kγ

c = Kγ
c′ [K], where c′ = ξ(c);

• A{γA} = V ;

that (Kγ
c [V]){δ} = (Kγ′

c′ [K[A]]){δ′}. So θ(D) = θ(D′).
– If α = f̄(A, c′), so that M is a callback K[f V] for some context K, value V ,

and functional name f . Then we have:
• γO(f) = V ′ and f : σ → σ′ for some value V and type σ, σ′;
• γ′O = γO, γ′P = γP ·γA · [c′ 7→ K], ξ′ = ξ · [c′ 7→ c] and φ′ = φ]dom(γA) ·
{c′}, with (A, γA) ∈ AValσ(V);

• h′P = hP and h′O = hO;
• M ′ = V ′ A.

We conclude using these and the fact that:
• Kγ

c′ = Kγ
c [K];

• γO(f) = V ′;
• A{γA} = V ;

that (Kγ
c [K[f V]]){δ} = (Kγ′

c′ [V
′A]){δ′}. So θ(D) = θ(D′).

Definition 32. Taking D,D′ two composite configuration, we write D D′

when there exists a trace t of actions (without any τ -actions) s.t. D
t·τ−−→ D′.

Lemma 31. The configuration transformation θ is a functional bisimulation be-
tween the transition system over composite configurations (CompConf,) and
the operational transition system (Λ×Heap,→), that is, for all valid composite
configuration D:

– for all composite configuration D′, if D D′ then θ(D)→ θ(D′);
– for all pairs (N,h) formed by a term an a heap h′, if θ(D) → (N,h′) then

there exists a valid composite configuration D′ s.t. D D′ and (N,h′) =
θ(D′)

Proof. We write:

– D as 〈M, c, γP , γO, ξ, φ, hP , hO〉;
– γ for γP · γO;
– δ for the idempotent substitution associated to γP · γO;
– θ(D) as (Kγ

c [M]){δ}, h) with h = (hP · hO){δ}.

We first suppose that D D′, i.e. there exists a trace t of actions (without

any τ) and a composite configurations D1 s.t. D
t−→ D1

τ−→ D′. From Lemma 30,
we get that θ(D) = θ(D1).

Without loss of generality, we suppose the composite configuration D1 is P -
active. We write D′ as 〈M ′, c′, γ′P , γ′O, φ′, h′P , hO〉 and D1 as 〈M1, c1, γ

′
P , γ

′
O, φ

′, hP , hO〉,
so that we have (M1, c1, hP)→ (M ′, c′, h′P).

Complete trace models of state and control 45

From Lemma 9, writing δ′ for the idempotent substitution associated to γ′P ·
γ′O, and δ′C for its restriction to the domain of continuation names, one has that

(Kγ′

c1 [M]{δ′C}, hP {δ′C})→ (Kγ′

c′ [M
′]{δ′C}, h′P {δ′C}). Extending the heap with hO

and the substitution to δ′, we get that (Kγ′

c1 [M]{δ′}, h) → (Kγ′

c′ [M
′]{δ′}, (h′P ·

hO){δ′}), i.e. θ(D1)→ θ(D′).

Now, we suppose that there exists a term N and a heap h′ s.t. θ(D)→ (N,h′).
From Lemma 20, there is three possible cases for the reduction θ(D)→ (N,h′):

– Either (M, c, hP ·hO) is reducible. Without loss of generality, we suppose the
composite configuration D is P -active, so that (M, c, hP) is reducible. Then
there exists (M ′, c′, h′P) s.t.:
• (M, c, hP)→ (M ′, c′, h′P);

• N = (Kγ′

c′ [M
′]){δ};

• h′ = (h′P · hO){δ}.
So we take D′ = 〈M ′, c′, γP , γO, ξ, φ, h′P , hO〉 so that D

τ−→ D′.
– Or M is a callback:
• M = K[f V] for some context K, value V , and functional name f ;
• δ(f) is a λ-abstraction that we write λx.P (with x /∈ dom(δ));
• N = (Kγ

c [K[P{V/x}]]){δ};
• h′ = h;

From Lemma 28, there exists a functional name g, an abstract value A1, a
composite configuration D1 and a trace t formed by questions s.t.:
• γ(g) is a λ-abstraction λx.P̂ ;
• δ(f) = δ(g);

• D
t−→ D1;

• D1 can be written as 〈g A1, c1, γP ·γ1,P , γO ·γ1,O, φ]dom(γ1,P), hP , hO〉;
• A1{δ1} = V , with δ1 the idempotent substitution associated to γ1,P ·γ1,O;
• Kγ1

c1,c = K.
Without loss of generality, we suppose the composite configuration D1 is
P -active. Then we have:

D
t−→ D1

ḡ(A2,c2)−−−−−→

D2︷ ︸︸ ︷
〈(λx.P̂) A2, c2, γ2,P , γO · γ1,O, φ2, hP , hO〉

τ−−→ 〈P̂{A2/x}, c2, γ2,P , γO · γ1,O, φ2, hP , hO〉︸ ︷︷ ︸
D′

with γ2,P = γP ·γ1,P ·γA2 ·[c2 7→ (•, c1)] and A2{γA2} = A1. From Lemma 30,
we have that θ(D) = θ(D2).
We prove that (P̂{A2/x}){δ2} = P{V {δ}/x} from the fact that:
• A2{δ2} = V {δ} since A1{δ1} = V and A1 = A2{γA2};
• P̂{δ} = P since δ(f) = δ(g), δ(f) = λx.P and γ(g) = λx.P̂ .

Finally, from Kγ1
c1,c = K and γ2(c2) = (•, c1), we get that Kγ2

c2 = Kγ
c [K]. So

θ(D′) = (N,h).

46 G. Jaber, A. S. Murawski

– Or M is a value V and Kγ
c an evaluation context larger than •. Then there

exists a continuation name c1 s.t.:
• c ≺∗γ c1
• Kγ

c,c1 = •.
• γ(c1) = K with K an evaluation context larger than •;

From Lemma 29, there exists an abstract value A1, a composite configuration
D1 and a trace t formed by answers s.t.:

• D
t−→ D1;

• D1 can be written as 〈A1, c1, γP · γ1,P , γO · γ1,O, φ] dom(γ1,O), hP , hO〉;
• A1{δ1} = V , with δ1 the idempotent substitution associated to γ1,P ·γ1,O;

Without loss of generality, we suppose the composite configuration D1 is
P -active. Then we have:

D
t−→ D1

c̄1(A2)−−−−→
D2︷ ︸︸ ︷

〈K[A2], c2, γ2,P , γ2,O, φ2, hP , hO〉

with ξ(c1) = c2,γ2,P = γ1,P · γA2
and A2{γA2

} = A2.
From Lemma 30, we have that θ(D) = θ(D2). From Kγ

c,c1 = •, we get that
Kγ
c = Kγ1

c1 , so that Kγ2
c2 [K] = Kγ

c . Since K is larger than •, K[A2] cannot
be a value, so from Lemma 19 we have that:
• either (K[A2], c2, hP) is reducible, and we conclude using a similar rea-

soning as in the first case, on D2.
• or K[A2] is a callback, and we conclude using a similar reasoning as in

the second case, on D2.

Corollary 5. Taking D a valid composite configurations, D ⇓ter iff θ(D) ⇓ter .

Proof. We write D as 〈M, c, γP , γO, ξ, φ, hP , hO〉.
We first prove that if D ⇓ter then θ(D) ⇓ter . From D ⇓ter , we get the

existence of a sequence of reductions D ∗
Df︷ ︸︸ ︷

〈(), ◦, γf,P , γf,O, φf , hf,P , hf,O〉. We
reason by induction over the length of this reduction.

– if D = Df , then θ(D) = ((),) since M = () and c = ◦ so that KγP ·γO
c = •.

– if there exists a composite configuration D′ s.t. D D′ ∗ Df , then
by induction hypothesis θ(D′) ⇓ter , and from Theorem 31 one has that
θ(D)→ θ(D′), so that θ(D) ⇓ter .

We now prove that if θ(D) ⇓ter then D ⇓ter . From θ(D) ⇓ter we get the
existence of ((), h) s.t. θ(D)→∗ ((), h). We reason by induction over the length
of this reduction.

– if the reduction is empty, then θ(D) = ((), h). So necessarily M = () and
Kγ
c,◦ = •. Then from Lemma 29, θ(D) ⇓ter .

– if there exists (M ′, h′) s.t. θ(D) → (M ′, h′) →∗ ((), h), then from Theo-
rem 31, there exists a configuration D′ s.t. θ(D) → θ(D′) and θ(D′) =
(M ′, h′). Then by induction hypothesis, since θ(D′) →∗ ((), h), we get that
θ(D′) ⇓ter , so that θ(D) ⇓ter .

Complete trace models of state and control 47

Corollary 6. Taking D a valid composite configurations, D ⇓err iff θ(D) ⇓err .

Finally, we can prove Lemma 4

Lemma 32 (Correctness). Let Γ ` M : τ be a cr-free HOSC term, let

Σ, h,K, γ be as above, (~Ai, ~γi) ∈ AValΓ (γ), and c : τ (c 6∈ ◦). Then

– (K[M{γ}], h) ⇓err iff there exist t, c′ such that t ∈ TrHOSC(C
ρ ~Ai

,c

M) and

t⊥ �̄((), c′) ∈ TrHOSC(C~γi,ch,K,γ).

– (K[M{γ}], h) ⇓ter iff there exist t, A, τ such that t ∈ TrHOSC(C
ρ ~Ai

,c

M) and

t⊥ ◦̄τ ′(A) ∈ TrHOSC(C~γi,ch,K,γ).

Moreover, t must satisfy ν(t) ∩ (◦ ∪ {�}) = ∅.

Proof. Let y ∈ {ter , err}. Note that (K[M{γ}], h) ⇓y iff θ(C
ρ ~Ai

,c

M ∧∧ C~γih,K,γ) ⇓y.
From Corollary 5 and 6, this is equivalent to the existence of a trace t such

that (C
ρ ~Ai

,c

M ∧∧ C~γih,K,γ) ⇓ty. By Lemma 27, this is the same as (C
ρ ~Ai

,c

M |C~γih,K,γ) ↓ty,
which implies the Lemma.

D Additional material for Section 4 (GOSC[HOSC])

D.1 Proof of Lemma 7 (visibility)

We write C
t−→ C′ to say that there exists a sequence of transitions from C to C′

such that the collected labels, including τ transitions, give a trace t. The proof
is based on an auxiliary lemma (Lemma 33), which generalizes P-visibility to
configurations, enabling an inductive proof.

Lemma (Original Statement of Lemma 7). Let CO = C~γi,ch,K,γ , where h,K, γ

are from GOSC, and (~Ai, ~γi) ∈ AValΓ (γ). All traces in Treven
HOSC(CO) are P-

visible.

Proof. Suppose CO
a1···a2i+1
======⇒ C and C

τ∗−→ C′
a2i+2−−−→ C′′. By Lemma 33, C′ =

〈M ′, c′, · · · 〉 with ν(M ′, c′) ⊆ VisP (a1 · · · a2i+1). Because the O-names in a2i+2

come from ν(M ′, c′), P-visibility follows.

Lemma 33. Suppose CO
a1···ak−−−−→ C.

1. If C = 〈γ, ξ, φ, h〉 then, for any n ∈ dom(γ), if n was introduced in a2i (0 ≤
i ≤ k/2) then ν(γ(n)) ⊆ VisP (a1 · · · a2i−1) and if n ∈ CNames then ξ(n) ∈
VisP (a1 · · · a2i−1) (introduced in a0 is taken to mean �, ◦ and VisP (a1 · · · a0)
stands for {�, ◦}).

2. If C = 〈M, c, γ, ξ, φ, h〉 then ν(M, c) ⊆ VisP (a1 · · · ak) and all of the condi-
tions listed above hold.

48 G. Jaber, A. S. Murawski

Proof. By induction on the number of transitions between CO and C, including
τ -transitions.

The base case is CO = C. The Lemma then holds because ν(γ) ⊆ {�},
ξ(c) = ◦, and VisP (a1 · · · a0) = {�, ◦}.

Suppose CO
a1···ak−−−−→ C′ and CO

t−→ C
x−→ C′, where t is a trace and x is an

action or x = τ .

– If x = τ then γ, ξ do not change during the transition and the reduction
does not generate new names by Lemma 6. Hence, the Lemma follows from
IH.

– Suppose x is an O-action, i.e. x = ak. Then C′ = 〈M ′, c′, γ′, ξ′, φ′, h′〉 and
C = 〈γ′, ξ′, φ′ \ A, h′〉. By IH for C, all the conditions for γ′, ξ′ hold, so it
remains to check ν(M ′, c′).

• If x = c′′(A′′) then ν(M ′, c′) = ν(γ′(c′′)[A′′], ξ′(c′′)). By IH for C, c′′,
assuming c′′ was introduced in a2i, we get ν(M ′, c′) ⊆ VisP (a1 · · · a2i−1)∪
ν(A′′) = VisP (a1 · · · ak).

• If x = f(A′′, c′′) then ν(M ′, c′) = ν(γ′(f)[A′′], c′′). By IH for C, f , as-
suming f was introduced in a2i, we get ν(M ′, c′) ⊆ VisP (a1 · · · a2i−1) ∪
ν(A′′) ∪ {c′′} = VisP (a1 · · · ak).

– Suppose x is a P-action, i.e. x = ak. Then C′ = 〈γ′, ξ′, φ′, h′〉.
• If x = c̄′′(A′′) then C = 〈V, c′′, γ′ \ ν(A′′), ξ′, φ \ ν(A′′), h′〉. By IH, γ′ \
ν(A′′) and ξ′ satisfy the Lemma. It suffices to check γ′(n) for n ∈ ν(A′′).
Observe that then ν(γ′(n)) ⊆ ν(V, c′′) and, by IH for C, ν(V, c′′) ⊆
VisP (a1 · · · ak−1), as required.

• If x = f̄(A′′, c′′) then C = 〈K[fV], c′′′, γ′ \X, ξ′ \ {c′′}, φ \X,h′〉, where
X = ν(A′′) ∪ {c′′}. By IH, γ′ \ X and ξ′ \ {c′′} satisfy the Lemma. It
suffices to check γ′(n) for n ∈ ν(A′′), γ′(c′′) and ξ′(c′′). Observe that
then ν(γ′(n)) ∪ ν(γ′(c′′)) ∪ {ξ′(c′′)} ⊆ ν(K[fV], c′′′) and, by IH for C,
ν(K[fV], c′′′) ⊆ VisP (a1 · · · ak−1), as required.

D.2 Proof of Theorem 3

Proof. Suppose TrGOSC(Γ `M1) ⊆ TrGOSC(Γ `M2). Consider Σ, h,K, γ (as

in the definition of .GOSC(ciu)
err) such that (K[M1{γ}], h) ⇓err . In particular,

h,K, γ consist of GOSC syntax. Suppose (~Ai, ~γi) ∈ AValΓ (γ) and c : τ (c 6∈
◦). By Lemma 4 (left-to-right), there exist t, c′ such that t ∈ TrHOSC(C

ρ ~Ai
,c

M1
)

and t⊥ �̄((), c′) ∈ TrHOSC(C~γi,ch,K,γ). By Lemma 7, t⊥ �̄((), c′) is P-visible. Thus,

t is O-visible and, by Lemma 36 (right-to-left), t ∈ TrGOSC(C
ρ ~Ai

,c

M1
). From

TrGOSC(Γ `M1) ⊆ TrGOSC(Γ `M2), we get t ∈ TrGOSC(C
ρ ~Ai

,c

M2
). By Lemma 36

(left-to-right), t ∈ TrHOSC(C
ρ ~Ai

,c

M2
). Because t ∈ TrHOSC(C

ρ ~Ai
,c

M2
) and t⊥ �̄((), c′) ∈

TrHOSC(C~γi,ch,K,γ), by Lemma 4 (right-to-left), we can conclude (K[M2{γ}], h) ⇓err .

Thus, Γ `M1 .
GOSC(ciu)
err M2.

Complete trace models of state and control 49

D.3 Proof of Lemma 9

Lemma 5 follows from the lemma given below for i = 0. Consider h′ = h0,
K ′ = γ0(c), γ′ = γ0 \ c. We have ν(img(γ0), img(h0)) ⊆ ◦] {�}. As names
◦σ can only occur inside terms of the form cont (K ′, ◦σ), we can conclude that
(h′,K ′, γ′) = (h◦,K◦, γ◦), where h,K, γ are from GOSC.

Lemma 34. Suppose φ] {�} ⊆ FNames, c ∈ CNames and t = o1p1 · · · onpn
is a P-visible (◦] {�}, φ] {c})-trace starting with an O-action. Given 0 ≤ i ≤
n, let ti = oi+1pi+1 · · · onpn. There exist passive configurations Ci such that
Treven(Ci) consists of even-length prefixes of oi+1pi+1 · · · onpn (along with their
renamings via permutations on Names that fix φi). Moreover, Ci = 〈γi, ξi, φi, hi〉
(0 ≤ i ≤ n), where

– dom(γi) consists of φ ∪ {c} and all names introduced by P in o1p1 · · · oipi;
– img(γi) contains GOSC syntax;
– ν(γi(x)) ⊆ VisP (o1p1 · · · oi) if x has been introduced in pi (φ]{c} are deemed

to have been introduced in p0 and we assume VisP (o1 · · · o0) = ◦] {�});
– for all d ∈ dom(γi) ∩ CNames, if d : σd and d was introduced in pj then
` γi(d) : σd → σj, where topP (o1 · · · oj) : σj;

– dom(ξi) consists of c and all continuation names introduced by P in o1p1 · · · oipi;
– for all d ∈ dom(ξi), ξi(d) = topP (o1 · · · oj) if d was introduced in pj (we

regard c as being introduced in p0 and define topP (o1 · · · o0) = ◦τ ′);
– φi consists of ◦] {�}] φ] {c} and all names introduced in o1p1 · · · oipi;
– for all 0 ≤ i ≤ n, hi = {time 7→ i}, where time : ref Int.

Proof. Note that the heap will consist of a single reference only, which will
correspond to counting steps in the translation. At every step of the translation,
the value of the reference will be used to schedule the right actions and disable
others.

The above description already specifies φi, dom(γi), ξi and hi. To complete
the definition of Ci, it remains to specify the environments γi. Recall that, we
need to define γ0(x) for x ∈ φ ∪ {cP } and, in other cases, γj(x) (x ∈ Names)
will be defined for all j ≥ i if x was introduced by P in pi. Recall also that once
γj(x) is defined, it never changes. Hence if x was introduced by in pi, we will
only specify γi(x) on the understanding that γi′(x) = γi(x) for all i′ > i.

We define γi(x) by induction using the reverse order of name introduction in
t, i.e. when defining γi(x) we will refer to γi′(y), where y is introduced in a later
move in t. In particular, the names φ ∪ {c} are deemed to be introduced first.
Once γi(x) is defined, we will argue that ν(γi(x)) ⊆ VisP (o1p1 · · · oi).

– Suppose f : σf → τf is a function name introduced by P in action pi
(1 ≤ i ≤ n) or f ∈ φ, in which case we let i = 0. Consider all subsequent
occurrences of f in t: suppose If = {i < u ≤ n | ou = f(Au, cu)}, i.e. If
contains all the time points when it is necessary to respond to f(A′, c′). Then
we let

γi(f) = λx. (time :=!time+1); if (!time ∈ If) (assert(x ∼ A!time);M!time)Ω,

50 G. Jaber, A. S. Murawski

where (assert(x ∼ A!time);M!time) is shorthand for code that performs case
distinction on !time and directs reduction to (assert(x ∼ Au);Mu) for u =
!time ∈ If . The term assert(x ∼ Au) has been defined earlier, so we specify
Mu (u ∈ If), aiming to have x : σf `Mu : τf in each case. Mu will depend
on the shape of pu. Note that if If = ∅, i.e. f is not used in t, then the
construction degenerates to γi(f) = λx. (time :=!time + 1);Ω.
pu = c̄′u(A′u) As u > i, γu is already defined for all names in A′u. Let V =

A′u{γu}. Recall that ou = f(Au, cu). We let

Mu = call/cc(y. (throw V to cont (•, c′u)) [y/cont (•, cu)] [πx/Au]).

• [y/cont (•, cu)] is meant to mimic the reversal of the reduction rule for
call/cc: because after ou the continuation name in the active config-
uration will be cu, the then current continuation will be cont (•, cu).
Since all continuation names c′ are only ever used via the term
cont (•, c′), the substitution [y/cont (•, cu)] will remove all occur-
rences of cu from V .
• The substitution [πx/Au] has been defined before the first definabil-

ity proof.
Note that, because of throw, Mu can indeed be given type τf . Overall,
the shape of Mu guarantees the desired progression (oupu) at time u (the
configuration will reduce to (V, c′u, · · ·), to be followed by pu = c̄′u(A′u)).
Because we can assume ν(γu(x)) ⊆ VisP (o1 · · · ou) for any x introduced
in pu (IH), we have ν(V) = ν(A′u{γu}) ⊆ VisP (o1 · · · ou). As all names in-
troduced in ou will be substituted for, we have ν(Mu) ⊆ VisP (o1 · · · oi)∪
{c′u}. However, by P-visibility, we have c′u ∈ VisP (o1 · · · ou), so either
c′u = cu or c′u ∈ VisP (o1 · · · oi). Either way, we can conclude ν(Mu) ⊆
VisP (o1 · · · oi), i.e. ν(γi(f)) ⊆ VisP (o1 · · · oi).

pu = f̄ ′(A′u, c
′
u) As in the previous case, by IH, γu is already defined for all

names in A′u and c′u. Let V = A′u{γu} and K = γu(c′u)[•] : σc′u → σj ,
where topP (o1 · · · ou) : σj (IH). Note that topP (o1 · · · ou) = cu in this
case, i.e. τf = σj . We let

Mu = K[f ′V] [πx/Au].

The shape of Mu then guarantees the right progression in the uth step
oupu (after ou the LTS will reach a configuration of the form (γu(c′u)[f ′V], topP (o1 · · · ou), · · ·),
from which pu = f̄ ′(A′u, c

′
u) can follow).

Because ν(V), ν(γu(c′u)) ⊆ VisP (o1 · · · ou) and all names introduced in
ou are substituted for above, we have ν(Mu) ⊆ VisP (o1 · · · oi) ∪ {f ′}.
By P-visibility, f ′ ∈ VisP (o1 · · · oi), so we can conclude that ν(Mu) ⊆
VisP (o1 · · · oi), i.e. ν(γi(f)) ⊆ VisP (o1 · · · oi).

– Suppose now that d : σd is a continuation name introduced by P in action
pi (1 ≤ i ≤ n), or d = c, in which case we let i = 0. Let us consider all
subsequent occurrences of d in t: suppose Id = {i < u ≤ n | ou = d(Au)}.
Then we let

γi(d) = (λx. (time :=!time+1); if (!time ∈ Id) (assert(x ∼ A!time);M!time)Ω)[•]

Complete trace models of state and control 51

where the terms Mu (u ∈ Ic) are the same as in the previous case, though
this time we aim for x : τd ` Mu : τj , where d : τd and topP (o1 · · · ou) : τj
(recall that ξi(d) = topP (o1 · · · ou)). As argued above, in the second case Mu

will have the required type and in the first case it can be forced thanks to
throw.
Similarly, we can conclude that ν(γi(d)) ⊆ VisP (o1 · · · oi).

This completes the definition of configurations. They evolve as required by con-
struction, because the definition of γi is compatible with the evolution of the
GOSC[HOSC] LTS: at each stage, the value of the clock time is incremented
and the corresponding term Mu is selected.

It is is easy to check that the syntax used in the construction belongs to
GOSC only.

D.4 Proof of Theorem 4

Proof. We follow the same path as in the proof of Theorem 2 except that, in this

case, we will have t, t1 ∈ TrGOSC(C
ρ ~Ai

,c

M1
). Consequently, we can conclude that

t2 = t⊥1 �̄((), c′) is P-visible and invoke Lemma 9 (instead of Lemma 5) to obtain
CO that corresponds to h,K, γ from GOSC. Because k,K, γ are in GOSC, we

can then appeal to the assumption Γ ` M1 .
GOSC(ciu)
err M2 and complete the

proof like for Theorem 2.

E Additional material for Section 5 (HOS[HOSC])

E.1 Proof of Lemma 11

To enable a proof by induction we generalize the Lemma as follows.

Lemma 35. Consider CO = C~γi,ch,K,γ , where h,K, γ are from HOS and (~Ai, ~γi) ∈

AValΓ (γ). Let t ∈ TrHOSC(CO) and suppose CO
t′−→ C.

– If t′ is of odd length then C = 〈M, c′, · · · 〉 and c′ = topP (t′).
– If t′ is of even length and t′ = tf̄(A, c′) then C = 〈· · · , ξ, · · · 〉 and ξ(c′) =

topP (t).
– If t′ is of even length and t′ = tc̄′(A) then c′ = topP (t).

Proof. By induction on the number of transitions in CO
t−→ C. In the base case

(no transitions) the Lemma holds vacuously.
Note that the Lemma is preserved by silent transitions (t is of odd length

then) by Lemma 10.

Suppose CO
t−→ C

a−→ C′.

– The even-length cases follow immediately the odd-length case due to the
shape of LTS rules.

– Suppose t′ = ta is of odd length.

52 G. Jaber, A. S. Murawski

• If a = f(A, c′′) then topP (t′) = c′′ and c′ = c′′, so the Lemma holds.

• If a = c′′(A) then c′ = ξ(c′′).

∗ If c′′ = c then c′ = ◦ and indeed topP (t′) = ◦.
∗ Otherwise topP (t′) = topP (t′′), where c′′ is introduced by an ac-

tion (question) after t′′. Then, by IH, ξ(c′′) = topP (t′′). Because
topP (t′′) = topP (t′), we get c′ = topP (t′), as required.

E.2 Proof of Theorem 5

Proof. Suppose TrHOS(Γ `M1) ⊆ TrHOS(Γ `M2). Consider Σ, h,K, γ (as in
the definition of .HOS

ciu,err) such that (K[M1{γ}], h) ⇓err . In particular, h,K, γ

consist of HOS syntax. Suppose (~Ai, ~γi) ∈ AValΓ (γ) and c : σ (c 6= ◦). By

Lemma 4 (left-to-right), there exist t, c′ such that t ∈ TrHOSC(C
ρ ~Ai

,c

M1
) and

t⊥ �̄((), c′) ∈ TrHOSC(C~γi,ch,K,γ). By Lemma 11, t⊥ �̄((), c′) is P-bracketed. Thus,

t is O-bracketed and, by Lemma 12 (right-to-left), t ∈ TrHOS(C
ρ ~Ai

,c

M1
). From

TrHOS(Γ `M1) ⊆ TrHOS(Γ `M2), we get t ∈ TrHOS(C
ρ ~Ai

,c

M2
). By Lemma 12

(left-to-right), t ∈ TrHOSC(C
ρ ~Ai

,c

M2
). Because t ∈ TrHOSC(C

ρ ~Ai
,c

M2
) and t⊥ �̄((), c′) ∈

TrHOSC(C~γi,ch,K,γ), by Lemma 4 (right-to-left), we can conclude (K[M2{γ}], h) ⇓err .

Thus, Γ `M1 .HOS
ciu,err M2.

E.3 Proof of Lemma 13

Proof. We take advantage of the definability result for HOSC (Lemma 34) and
argue that, for P-bracketed traces, continuation-related syntax can be elimi-
nated. This will follow from the careful integration of topP () in the construction.

Indeed, the only place where “throw” is needed in the construction is to
transition from configuration Di to Ei. The second component (current contin-
uation) in Di is equal to topP (o1 · · · oi+1), whereas the second component in Ei

in this case is cj
′

O . For a P-bracketed trace, the two continuation names will be
the same (Definition 17). Consequently, the use of “throw” in this case is trivial:

it will have the form (throw VA to cont (•, c), c, · · ·), where c = cj
′

O , because

the continuation in cor j′ is cont (•, cj
′

O) by one of our invariants. This use of
“throw” can be replaced simply by (VA, c, . . .), i.e. occurrences of “throw” can
be eliminated.

Next, one observes that references to continuations (cor j) are redundant as
well, because they are only used in connection with “throw”, and we already
know that “throw” is redundant.

Finally, “callcc” is redundant, because the only purpose of invoking it was to
record continuations in a reference, and we know from the previous point that
such references will not be needed.

Overall this yields a construction that involves only HOS syntax.

Complete trace models of state and control 53

E.4 Proof of Theorem 6

Proof. We follow the same path as in the proof of Theorem 2 except that, in

this case, we have t, t1 ∈ TrHOS(C
ρ ~Ai

,c

M1
). Consequently, we can conclude that

t2 = t⊥1 �̄((), c′) is P-bracketed and invoke Lemma ?? (instead of Lemma 5) to
obtain CO that corresponds to h,K, γ from HOS. Because k,K, γ are in HOS,
we can appeal to the assumption Γ ` M1 .HOS

ciu,err M2 and complete the proof
like for Theorem 2.

F Additional material for Section 6 (GOS[HOSC])

F.1 GOS[HOSC] LTS

(Pτ) 〈M, c, γ, ξ, φ, h,F〉 τ−−→ 〈N, c′, γ, ξ, φ, h′,F〉
when (M, c, h)→ (N, c′, h′)

(PA) 〈V, c, γ, ξ, φ, h,F〉 c̄(A)−−−→ 〈γ · γ′, ξ, φ] ν(A), h,F ,F(c)] ν(A), c′〉
when c : σ, (A, γ′) ∈ AValσ(V), ξ(c) = c′

(PQ) 〈K[fV], c, γ, ξ, φ, h,F〉 f̄(A,c′)−−−−−→ 〈γ · γ′ · [c′ 7→ K], ξ · [c′ 7→ c], φ] φ′, h,F ,F(f)] φ′, c′〉
when f : σ → σ′, (A, γ′) ∈ AValσ(V), c′ : σ′ and φ′ = ν(A)] {c′}

(OA) 〈γ, ξ, φ, h,F ,V, c′′〉 c(A)−−−→ 〈K[A], c′, γ, ξ, φ] ν(A), h,F · [ν(A) 7→ V]〉
when c ∈ V, c = c′′, c : σ, A : σ, γ(c) = K, ξ(c) = c′

(OQ) 〈γ, ξ, φ, h,F ,V, c′′〉 f(A,c)−−−−→ 〈V A, c, γ, ξ · [c 7→ c′′], φ] φ′, h,F · [φ′ 7→ V]〉
when f ∈ V, f : σ → σ′, A : σ, c : σ′, γ(f) = V and φ′ = ν(A)] {c}

Given N ⊆ Names, [N 7→ V] stands for the map [n 7→ V |n ∈ N].

Fig. 10. GOS[HOSC] LTS

Recall that, given a Γ -assignment ρ, term Γ `M : τ and c ∈ CNamesτ , the
active configuration Cρ,cM was defined by Cρ,cM = 〈M{ρ}, c, ∅, ∅, ν(ρ) ∪ {c}, ∅〉. We
need to upgrade it to the LTS by initializing the new components: Cρ,cM,vis,bra =
〈M{ρ}, c, ∅, [c 7→ ⊥], ν(ρ) ∪ {c}, ∅, ∅〉.

Definition 33. The GOS[HOSC] trace semantics of a cr-free HOSC term
Γ `M : τ is defined to be TrGOS(Γ `M : τ) = {((ρ, c), t) | ρ is a Γ -assignment, c :
τ, t ∈ TrGOSC(Cρ,cM,vis,bra)}.

By construction and from the GOSC and HOS sections, it follows that

Lemma 36. t ∈ TrGOS(Cρ,cM,vis,bra) iff t ∈ TrHOSC(Cρ,cM) and t is O-visible and
O-bracketed.

54 G. Jaber, A. S. Murawski

Lemma 37 (Definability). Suppose φ] {�} ⊆ FNames and t is an even-
length P-bracketed and P-visible ({◦τ ′ , �}, φ] {c})-trace starting with an O-
action. There exists a passive configuration C such that the even-length traces
TrHOSC(C) are exactly the even-length prefixes of t (along with all renamings
that preserve types and φ] {c, ◦τ ′ , �}). Moreover, C = 〈γ · [c 7→ K], {c 7→
◦τ ′}, φ] {c, ◦τ ′ , �}, h〉, where h,K, γ are built from GOS syntax.

Proof. Follows from the argument for GOSC. We first observe that throw is
needed before answer actions to adjust the continuation from topO(o1 · · · oi).
With P-bracketing there is no need for such adjustments. Consequently, we do
not need call/cc, which was used to generate continuations to be used in future
adjustments.

