Complete trace models of state and control (full version)
Guilhem Jaber, Andrzej S. Murawska

To cite this version:
Guilhem Jaber, Andrzej S. Murawska. Complete trace models of state and control (full version). 2021. hal-03116698

HAL Id: hal-03116698
https://hal.science/hal-03116698
Preprint submitted on 20 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Complete trace models of state and control

Guilhem Jaber1 and Andrzej S. Murawski2

1 Universit\textecircumflex{e} de Nantes, LS2N CNRS, Inria, France
2 University of Oxford, UK

Abstract. We consider a hierarchy of four typed call-by-value languages with either higher-order or ground-type references and with either call/cc or no control operator. Our first result is a fully abstract trace model for the most expressive setting, featuring both higher-order references and call/cc, constructed in the spirit of operational game semantics. Next we examine the impact of suppressing higher-order references and callcc in contexts and provide an operational explanation for the game-semantic conditions known as visibility and bracketing respectively. This allows us to refine the original model to provide fully abstract trace models of interaction with contexts that need not use higher-order references or call/cc. Along the way, we discuss the relationship between error- and termination-based contextual testing in each case, and relate the two to trace and complete trace equivalence respectively. Overall, the paper provides a systematic development of operational game semantics for all four cases, which represent the state-based face of the so-called semantic cube.

Keywords: contextual equivalence, operational game semantics, higher-order references, control operators

1 Introduction

Research into contextual equivalence has a long tradition in programming language theory, due to its fundamental nature and applicability to numerous verification tasks, such as the correctness of compiler optimisations. Capturing contextual equivalence mathematically, i.e. the full abstraction problem \cite{Rob}, has been an important driving force in denotational semantics, which led, among others, to the development of game semantics \cite{CoeDen, Jap}. Game semantics models computation through sequences of question- and answer-moves by two players, traditionally called O and P, who play the role of the context and the program respectively. Because of its interactive nature, it has often been referred to as a middle ground between denotational and operational semantics.

Over the last three decades the game-semantic approach has led to numerous fully abstract models for a whole spectrum of programming paradigms. Most papers in this strand follow a rather abstract pattern when presenting the models, emphasising structure and compositionality, often developing a correspondence with a categorical framework along the way to facilitate proofs. The operational
intuitions behind the games are somewhat obscured in this presentation, and left to be discovered through a deeper exploration of proofs.

In contrast, operational game semantics aims to define models in which the interaction between the term and the environment is described through a carefully instrumented labelled transition system (LTS), built using the syntax and operational semantics of the relevant language. Here, the derived trace semantics can be shown to be fully abstract. In this line of work, the dynamics is described more directly and provides operational intuitions about the meaning of moves, while not immediately giving structural insights about the structure of the traces.

In this paper, we follow the operational approach and present a whole hierarchy of trace models for higher-order languages with varying access to higher-order state and control. As a vehicle for our study, we use HOSC, a call-by-value higher-order language equipped with general references and continuations. We also consider its sublanguages GOSC, HOS and GOS, obtained respectively by restricting storage to ground values, by removing continuations, and by imposing both restrictions. We study contextual testing of a class of HOSC terms using contexts from each of the languages \(x \in \{ \text{HOSC}, \text{GOSC}, \text{HOS}, \text{GOS} \} \); we write \(x \) to refer to each case. Our working notion of convergence will be error reachability, where an error is represented by a free variable. Accordingly, at the technical level, we will study a family of equivalence relations \(\equiv_{\text{err}}^x \), each corresponding to contextual testing with contexts from \(x \), where contexts have the extra power to abort the computation.

Our main results are trace models \(\text{Tr}_x(\Gamma \vdash M) \) for each \(x \in \{ \text{HOSC}, \text{GOSC}, \text{HOS}, \text{GOS} \} \), which capture \(\equiv_{\text{err}}^x \) through trace equivalence:

\[
\Gamma \vdash M_1 \equiv_{\text{err}}^x M_2 \text{ if and only if } \text{Tr}_x(\Gamma \vdash M_1) = \text{Tr}_x(\Gamma \vdash M_2).
\]

It turns out that, for contexts with control (i.e. \(x \in \{ \text{HOSC}, \text{GOSC} \} \)), \(\equiv_{\text{err}}^x \) coincides with the standard notion of contextual equivalence based on termination, written \(\equiv_{\text{ter}}^x \). However, in the other two cases, the former is strictly more discriminating than the latter. We explain how to account for this difference in the trace-based setting, using complete traces.

A common theme that has emerged in game semantics is the comparative study of the power of contexts, as it turned out possible to identify combinatorial conditions, namely visibility [3] and bracketing [22], that correspond to contextual testing in the absence of general references and control constructs respectively. In brief, visibility states that not all moves can be played, but only those that are enabled by a “visible part” of the interaction, which could be thought of as functions currently in scope. Bracketing in turn imposes a discipline on answers, requiring that the topmost question be answered first. In the paper, we provide an operational reconstruction of both conditions.

Overall, we propose a unifying framework for studying higher-order languages with state and control, which we hope will make the techniques of (operational) game semantics clearer to the wider community. The construction of the fully abstract LTSs is by no means automatic, as there is no general methodology for
extracting trace semantics from game models. Some attempts in that direction have been reported in [25], but the type discipline discussed there is far too weak to be applied to the languages we study. As the most immediate precursor to our work, we see the trace model of contextual interactions between HOS contexts and HOS terms from [23]. In comparison, the models developed in this paper are more general, as they consider the interaction between HOSC terms and contexts drawn from any of the four languages ranged over by \(\Sigma \).

In the 1990s, Abramsky proposed a research programme, originally called the \textit{semantic cube} [1], which concerned investigating extensions of the purely functional programming language PCF along various axes. From this angle, the present paper is an experimental study of a \textit{semantic diamond} of languages with state, with GOS at the bottom, extending towards HOSC at the top, either via GOSC or HOS.

\section{HOSC}

The main objects of our study will be the language HOSC along with its fragments GOSC, HOS and GOS. HOSC is a higher-order programming language equipped with general references and continuations.

\textbf{Syntax} HOSC syntax is given in Figure 1. Assuming countably infinite sets \textbf{Loc} (locations) and \textbf{Var} (variables), HOSC typing judgments take the form \(\Sigma; \Gamma \vdash M : \tau \), where \(\Sigma \) and \(\Gamma \) are finite partial functions that assign types to locations and variables respectively. We list all the typing rules in the Appendix. In typing judgements, we often write \(\Sigma \) as shorthand for \(\Sigma; \emptyset \) (closed) and \(\Gamma \) as shorthand for \(\emptyset; \Gamma \) (location-free). Similarly, \(\vdash M : \tau \) means \(\emptyset; \vdash M : \tau \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{HOSC syntax}
\end{figure}
(K[(\lambda x^\eta.M)V], h) \rightarrow (K[M{V/x}], h) \\
(K[\tau_i(V_1, V_2)], h) \rightarrow (K[V_1], h)

GOSC Definition 1. – that (\mathcal{M}, h) (capture-avoiding) substitution. We write \((\mathcal{M}, h) \) operational semantics

From Definition 2.

We distinguish the following fragments of HOSC.

Consequently, there are no continuations and storage is restricted to values of type \(\text{value} \) above.

Next we introduce several notions of contextual testing for HOSC-terms, using various kinds of contexts. For a start, we introduce the classic notion of contextual approximation based on observing termination. The notions are parameterized by \(x \), indicating which language is used to build the testing contexts.

We write \(\Gamma \vdash C : \tau \rightarrow \tau' \) if \(\Gamma, x : \tau \vdash C[x] : \tau' \), and \(\Gamma \vdash C : \tau \rightarrow \tau' \) for some \(\tau' \).

By Definition 1, GOSC types are HOSC types except that reference types are restricted to ref\(_t \), where i is given by the grammar i \(\equiv \) Unit | Int | Bool | ref\(_i \).

HOSC types are HOSC terms whose typing derivations rely on GOSC only. HOSC is a superset of FOSC [8], which also includes references to references (the ref\(_t \) case above).

HOS types are HOSC types that do not feature the cont constructor. HOS terms are HOSC terms whose typing derivations rely on HOS types only.

Consequently, HOS terms never have subterms of the form call/cc, (x, M), throw\(_t \) M to N or cont\(_t \) K.

Fig. 2. Operational reduction for HOSC

Operational semantics A heap \(h \) is a finite type-respecting map from Loc to values. We write \(h : (\Sigma; \Gamma) \), if dom(\(\Sigma \)) \subseteq dom(\(h \)) and \(\Sigma; \Gamma \vdash h(\ell) : \sigma \) for \((\ell, \sigma) \in \Sigma \). The operational semantics of HOSC reduces pairs \((M, h)\), where \(\Sigma; \Gamma \vdash M : \tau \) and \(h : (\Sigma; \Gamma) \). The rules are given in Figure 2, where \{\ldots\} denotes (capture-avoiding) substitution. We write \((M, h) \downarrow_{\text{ter}}\) if there exist \(V, h' \) such that \((M, h) \rightarrow^* (V, h')\) and \(V \) is a value.

We distinguish the following fragments of HOSC.

Definition 1. – GOSC types are HOSC types except that reference types are restricted to ref\(_t \), where i is given by the grammar i \(\equiv \) Unit | Int | Bool | ref\(_t \).

GOSC terms are HOSC terms whose typing derivations (i.e. not only the final typing judgments) rely on GOSC types only. GOSC is a superset of FOSC [8], which also includes references to references (the ref\(_t \) case above).

HOS types are HOSC types that do not feature the cont constructor. HOS terms are HOSC terms whose typing derivations rely on HOS types only.

Consequently, HOS terms never have subterms of the form call/cc, (x, M), throw\(_t \) M to N or cont\(_t \) K.

GOS is the intersection of HOS and GOSC, both for types and terms, i.e. there are no continuations and storage is restricted to values of type i, defined above.

Definition 2. Given a HOSC term \(\Gamma \vdash M : \tau \), we refer to types in \(\Gamma \) and \(\tau \) as boundary types. Let \(x \in \{\text{HOSC, GOSC, HOS, GOS}\} \). We say that a HOSC term \(\Gamma \vdash M : \tau \) has an \(x \) boundary if all of its boundary types are from \(x \).

Remark 1. Note that typing derivations of HOSC terms with an \(x \) boundary may contain arbitrary HOSC types as long as the final typing judgment uses types from \(x \) only. Consequently, if \(x \not\in \text{HOSC} \), HOSC terms with an \(x \) boundary form a strict superset of \(x \).
Definition 3 (Contextual Approximation). Let $x \in \{\text{HOSC, GOSC, HOS, GOS}\}$. Given HOSC terms $\Gamma \vdash M_1, M_2 : \tau$ with an x boundary, we define $\Gamma \vdash M_1 \preceq_x \tau, M_2$ to hold, when for all contexts $\Gamma \vdash C \div \tau$ built from the syntax of x, if $(C[M_1], \epsilon) \Downarrow_{\text{ter}}$ then $(C[M_2], \epsilon) \Downarrow_{\text{ter}}$.

We also consider another way of testing, based on observing whether a program can reach a breakpoint (error point) inside a context. Technically, the breakpoints are represented as occurrences of a special free error variable $err : \text{Unit}$. Reaching a breakpoint then corresponds to convergence to a stuck configuration of the form $(K[err()], h)$: we write $(M, h) \Downarrow_{\text{err}}$ if there exist K, h' such that $(M, h) \rightarrow^* (K[err()], h')$.

Definition 4 (Contextual Approximation through Error). Let $x \in \{\text{HOSC, FOSC, HOS, GOS}\}$. Given HOSC terms $\Gamma \vdash M_1, M_2 : \tau$ with an x boundary and $err \notin \text{dom}(\Gamma)$, we define $\Gamma \vdash M_1 \preceq_{\text{err}} M_2$ to hold, when for all contexts $err : \text{Unit} \rightarrow \text{Unit}$, we have \Downarrow_{ter} implies $(C[M_2], \epsilon) \Downarrow_{\text{err}}$.

For the languages in question, it will turn out that \preceq_{err} is at least as discriminating as \preceq_{ter} for each $x \in \{\text{HOSC, GOSC, HOS, GOS}\}$, and that they coincide for $x \in \{\text{HOSC, GOSC}\}$. We will write \equiv_{err}^x and \equiv_{ter}^x for the associated equivalence relations.

For higher-order languages with state and control, it is well known that contextual testing can be restricted to evaluation contexts after instantiating the free variables of terms to closed values (the so-called closed instances of use, CIU). Let us write $\Sigma, \Gamma' \vdash \gamma : \Gamma$ for substitutions γ such that, for any $(x, \sigma_x) \in \Gamma$, the term $\gamma(x)$ is a value satisfying $\Sigma; \Gamma' \vdash \gamma(x) : \sigma_x$. Then $M \{\gamma\}$ stands for the outcome of applying γ to M.

Definition 5 (CIU Approximation). Let $x \in \{\text{HOSC, GOSC, HOS, GOS}\}$ and let $\Gamma \vdash M_1, M_2 : \tau$ be HOSC terms with an x boundary.

- $\Gamma \vdash M_1 \preceq_{\text{ter}}^x \langle \text{ciu} \rangle M_2 : \tau$, when for all Σ, h, K, γ, all built from x syntax, such that $h : \Sigma, \Sigma \vdash K \div \tau$, and $\Sigma \vdash \gamma : \Gamma$, we have $(K[M_1(\gamma)], h) \Downarrow_{\text{ter}}$ implies $(K[M_2(\gamma)], h) \Downarrow_{\text{ter}}$.

- We write $\Gamma \vdash M_1 \preceq_{\text{err}}^x \langle \text{ciu} \rangle M_2 : \tau$, when for all Σ, h, K, γ, all built from x syntax, such that $h : \Sigma, \Sigma \vdash K \div \tau$, and $\Sigma \vdash \gamma : \Gamma$, we have $(K[M_1(\gamma)], h) \Downarrow_{\text{err}}$ implies $(K[M_2(\gamma)], h) \Downarrow_{\text{err}}$, where $err \notin \text{dom}(\Gamma)$ and err stands for $err : \text{Unit} \rightarrow \text{Unit}$.

Results stating that “CIU tests suffice” are referred to as CIU lemmas. A general framework for obtaining such results for higher-order languages with effects was developed in [10, 33]. The results stated therein are for termination-based testing, i.e. \Downarrow_{ter}, but adapting them to \Downarrow_{err} is not problematic.

Lemma 1 (CIU Lemma). Let $x \in \{\text{HOSC, GOSC, HOS, GOS}\}$ and $y \in \{\text{ter, err}\}$. Then we have $\Gamma \vdash M_1 \preceq_{\text{y}} \langle \text{ciu} \rangle M_2$ iff $\Gamma \vdash M_1 \preceq_{\text{y}}^x \langle \text{ciu} \rangle M_2$.
The preorders \(\preceq_{\text{err}} \), will be the central object of study in the paper. Among others, we shall provide their alternative characterizations using trace semantics. The characterizations will apply to a class of terms that we call \(\text{cr-free} \).

Definition 6. A HOSC term \(\Gamma \vdash M : \tau \) is \(\text{cr-free} \) if it does not contain occurrences of \(\text{cont}_\sigma K \) and locations, and its boundary types are \(\text{cont-} \) and \(\text{ref-free} \).

We stress that the boundary restriction applies to \(\Gamma \) and \(\tau \) only, and subterms of \(M \) may well contain arbitrary HOSC types and occurrences of \(\text{ref}_\sigma \), \(\text{call/cc}_\sigma \), \(\text{throw}_\sigma \) for any \(\sigma \). The majority of HOSC/GOSC/HOS/GOS examples studied in the literature, e.g. [28, 4, 8], are actually cr-free. We will revisit some of them as Examples 6, 7, 10. The fact that cr-free terms may not contain subterms \(\text{cont}_\tau K \) or \(\ell \) is not really a restriction, as \(\text{cont}_\tau K \) and \(\ell \) being more of a run-time construct than a feature meant to be used directly by programmers.

Finally, we note that the boundary of a cr-free term is an \(x \) boundary for any \(x \in \{\text{HOSC}, \text{GOSC}, \text{HOS}, \text{GOS}\} \). Thus, we can consider approximation between cr-terms for any \(x \) from the range, i.e. the notions \(\preceq_{\text{err}}^x \), \(\preceq_{\text{ter}}^x \) are all applicable. Consequently, cr-free terms provide a common setting in which the discriminating power of HOSC, GOSC, HOS and GOS contexts can be compared. We discuss the scope for extending our results outside of the cr-free fragment, and for richer type systems, in Section 7.

3 HOSC[HOSC]

Recall that \(\preceq_{\text{HOSC}}^{\text{err}} \) concerns testing HOSC terms with HOSC contexts. Accordingly, we call this case HOSC[HOSC]. For \(\text{cont}_\sigma (K) \)-free terms, we show that \(\preceq_{\text{err}}^{\text{HOSC}} \) and \(\preceq_{\text{ter}}^{\text{HOSC}} \) coincide, which follows from the lemma below.

Lemma 2. Suppose \(\Gamma \vdash M_1, M_2 \) be HOSC terms not containing any occurrences of \(\text{cont}_\tau (K) \).

1. \(\Gamma \vdash M_1 \preceq_{\text{err}}^{\text{HOSC}} M_2 \) implies \(\Gamma \vdash M_1 \preceq_{\text{ter}}^{\text{HOSC}} M_2 \), for \(x \in \{\text{HOSC}, \text{GOSC}, \text{HOS}, \text{GOS}\} \).
2. \(\Gamma \vdash M_1 \preceq_{\text{ter}}^{\text{HOSC}} M_2 \) implies \(\Gamma \vdash M_1 \preceq_{\text{err}}^{\text{HOSC}} M_2 \), for \(x \in \{\text{HOSC}, \text{GOSC}\} \).

In what follows, after introducing several preliminary notions, we shall design a labelled transition system (LTS) whose traces will turn out to capture contextual interactions involved in testing cr-free terms according to \(\preceq_{\text{HOSC}}^{\text{err}} \). This will enable us to capture \(\preceq_{\text{HOSC}}^{\text{cr}} \) via trace inclusion. Actions of the LTS will refer to functions and continuations in a symbolic way, using typed names.

3.1 Names and abstract values

Definition 7. Let \(\text{FNames} = \bigcup_{\sigma, \sigma'} \text{FNames}_{\sigma \rightarrow \sigma'} \) be the set of function names, partitioned into mutually disjoint countably infinite sets \(\text{FNames}_{\sigma \rightarrow \sigma'} \). We will use \(f, g \) to range over \(\text{FNames} \), and write \(f : \sigma \rightarrow \sigma' \) for \(f \in \text{FNames}_{\sigma \rightarrow \sigma'} \).

Analogously, let \(\text{CNames} = \bigcup_{\sigma} \text{CNames}_{\sigma} \) be the set of continuation names. We will use \(c, d \) to range over \(\text{CNames} \), and write \(c : \sigma \) for \(c \in \text{CNames}_{\sigma} \). Note
that the constants represent continuations, so the “real” type of c is $\text{cont} \sigma$, but we write $c : \sigma$ for the sake of brevity. We assume that $\text{CNames}, \text{FNames}$ are disjoint and let $\text{Names} = \text{FNames} \cup \text{CNames}$. Elements of Names will be weaved into various constructions in the paper, e.g. terms, heaps, etc. We will then write $\nu(X)$ to refer to the set of names used in some entity X.

Because of the shape of boundary types in cr-free terms and, in particular, the presence of product types, the values that will be exchanged between the context and the program take the form of tuples consisting of $()$, integers, booleans and functions. To describe such scenarios, we introduce the notion of abstract values, which are patterns that match such values. Abstract values are generated by the grammar

$$A, B \equiv () \mid \text{tt} \mid \text{ff} \mid \hat{n} \mid f \mid \langle A, B \rangle$$

with the proviso that, in any abstract value, a name may occur at most once. As function names are intrinsically typed, we can assign types to abstract values in the obvious way, writing $A : \tau$.

3.2 Actions and traces

Our LTS will be based on four kinds of actions, listed below. Each action will be equipped with a polarity, which is either Player (P) or Opponent (O). P-actions describing interaction steps made by a tested term, while O-actions involve the context.

- **Player Answer** (PA) $\bar{c}(A)$, where $c : \sigma$ and $A : \sigma$. This action corresponds to the term sending an abstract value A through a continuation name c.

- **Player Question** (PQ) $\bar{f}(A,c)$, where $f : \sigma \rightarrow \sigma'$, $A : \sigma$ and $c : \sigma'$. Here, an abstract value A and a continuation name c are sent by the term through a function name f.

- **Opponent Answer** (OA) $c(A)$, $c : \sigma$ then $A : \sigma$. In this case, an abstract value A is received from the environment via the continuation name c.

- **Opponent Question** (OQ) $f(A,c)$, where $f : \sigma \rightarrow \sigma'$, $A : \sigma$ and $c : \sigma'$. Finally, this action corresponds to receiving an abstract value A and a continuation name c from the environment through a function name f.

In what follows, a is used to range over actions. We will say that a name is introduced by an action a if it is sent or received in a. If a is an O-action (resp. P-action), we say that the name was introduced by O (resp. P). An action a is justified by another action a' if the name that a uses to communicate, i.e. f in questions ($\bar{f}(A,c)$, $f(A,c)$) and c in answers ($\bar{c}(A)$, $c(A)$), has been introduced by a'.

We will work with sequences of actions of a very special shape, specified below. The definition assumes two given sets of names, N_P and N_O, which represent names that have already been introduced by P and O respectively.

Definition 8. Let $\text{N}_O, \text{N}_P \subseteq \text{Names}$. An (N_O, N_P)-trace is a sequence t of actions such that:
– the actions alternate between Player and Opponent actions;
– no name is introduced twice;
– names from N_O, N_P need no introduction;
– if an action a uses a name to communicate then
 • $a = \bar{f}(A,c)$ ($f \in N_O$) or $a = \bar{c}(A)$ ($c \in N_O$) or $a = f(A,c)$ ($f \in N_P$) or $a = c(A)$ ($c \in N_P$) or
 • the name has been introduced by an earlier action a' of opposite polarity.

Note that, due to the shape of actions, a continuation name can only be introduced/justified by a question. Moreover, because names are never introduced twice, if a' justifies a then a' is uniquely determined in a given trace. Readers familiar with game semantics will recognize that traces are very similar to alternating justified sequences except that traces need not be started by O.

Example 1. Let $(N_O, N_P) = (\{c\}, \emptyset)$ where $c : \tau = ((\text{Unit} \to \text{Unit}) \to \text{Unit}) \times (\text{Unit} \to \text{Int})$. Then the following sequence is an (N_O, N_P)-trace:

$t_1 = \bar{c}(g_1, g_2) \ g_1(f_1, c_1) \ f_1((), c_2) \ c_2(()) \ \bar{c}_1(()) \ c_2(()) \ \bar{c}_1(()) \ g_2((), c_3) \ c_3(2)$

where $g_1 : (\text{Unit} \to \text{Unit}) \to \text{Unit}$, $g_2 : \text{Unit} \to \text{Int}$, $f_1 : \text{Unit} \to \text{Unit}$, $c_1, c_2 : \text{Unit}$, $c_3 : \text{Int}$.

3.3 Extended syntax and reduction

We extend the definition of HOSC presented in Figure 2 to take into account these names. We refine the operational reduction using continuation names to keep track of the toplevel continuation. We list all the changes below.

– Function names are added to the syntax as constants. Since they are meant to represent values, they are also considered to be syntactic values in the extended language.

\[
\frac{\Sigma; \Gamma \vdash f : \sigma \to \sigma'}{f \in \text{FNames}_{\sigma \to \sigma'}}
\]

– Continuation names are not terms on their own. Instead, they are built into the syntax via a new construct $\text{cont}_\sigma(K, c)$, subject to the following typing rule.

\[
\frac{\Sigma; \Gamma \vdash K : \sigma \to \sigma'}{\Sigma; \Gamma \vdash \text{cont}_\sigma(K, c) : \text{cont} \sigma}
\]

$\text{cont}_\sigma(K, c)$ is a staged continuation that first evaluates terms inside K and, if this produces a value, the value is passed to c. This operational meaning will be implemented through a suitable reduction rule, to be discussed next. $\text{cont}_\sigma(K, c)$ is also regarded as a value. Note that we remove the old construct $\text{cont}_\sigma K$ from the extended syntax.

– The operational semantics \rightarrow underpinning the LTS is based on triples (M, c, h) such that $\Sigma; \Gamma \vdash M : \sigma$, $c \in \text{CNames}_\sigma$, and $h : \Sigma$. The continuation name c is used to represent the surrounding context, which is left abstract.
The previous operational rules → are embedded into the new reduction → using the rule below.

\[
(M, h) \rightarrow (M', h') \\
(M, c, h) \rightarrow (M', c, h')
\]

The two reduction rules related to continuations, previously used to define →, are not included. Instead we use the following rules, which take advantage of the extended syntax.

\[
(K[\text{call/cc}_\tau(x,M)], c, h) \rightarrow (K[M\{\text{cont}_\tau(K,c)/x\}], c, h) \\
(K[\text{throw}_\tau V \text{ to cont}_\tau(K',c')], c, h) \rightarrow (K'[V], c', h)
\]

3.4 Configurations

We write Vals for the extended set of syntactic values, i.e. FNames ⊆ Vals. Let ECtxs stand for the set of extended evaluation contexts, defined as K in Figure 1 taking the extended definition of values into account. Before defining the transition relation of our LTS, we discuss the shape of configurations, providing intuitions behind each component.

Passive configurations take the form \((\gamma, \xi, \phi, h) \) and are meant to represent stages at which the environment is to make a move.

- \(\gamma : (\text{FNames} \rightarrow \text{Vals}) \uplus (\text{CNames} \rightarrow \text{ECtxs}) \) is a finite map. It will play the role of an environment that relates function names communicated to the environment (i.e. those introduced by P) to syntactic values, and continuation names introduced by P to evaluation contexts.
- \(\xi : (\text{CNames} \rightarrow \text{CNames}) \) is a finite map. It complements the role of \(\gamma \) for continuation names and indicates the continuation to which the outcome of applying \(\gamma(c) \) should be passed.
- \(\phi \subseteq \text{Names} \). The set \(\phi \) will be used to collect all the names used in the interaction, regardless of which participant introduced them. Following our description above, those introduced by O will correspond to \(\phi \setminus \text{dom}(\gamma) \).

The components satisfy healthiness conditions, implied by their role in the system. Let \(\Sigma = \text{dom}(h) \).

- If \(f : \text{dom}(\gamma) \cap \text{FNames}_{\sigma \rightarrow \sigma'} \) then \(\gamma(f) \) is a value such that \(\Sigma \vdash \gamma(f) : \sigma \rightarrow \sigma' \).
- \(\text{dom}(\xi) = \text{dom}(\gamma) \cap \text{CNames} \).
- If \(c : \text{dom}(\gamma) \cap \text{CNames}_{\sigma} \) and \(\Sigma \vdash \gamma(c) : \sigma \rightarrow \sigma' \) then \(\xi(c) \in \text{CNames}_{\sigma'} \).
- Finally, names introduced by the environment and communicated to the program may end up in the environments and the heap: \(\nu(\text{img}(\gamma)), \nu(\text{img}(\xi)), \nu(\text{img}(h)) \subseteq \phi \setminus \text{dom}(\gamma) \).

Active configurations take the form \((M, c, \gamma, \xi, \phi, h) \) and represent interaction steps of the term. The \(\gamma, \xi, \phi, h \) components have already been described above. For \(M \) and \(c \), given \(\Sigma = \text{dom}(h) \), we will have \(\Sigma ; \emptyset \vdash M : \sigma, c \in \text{CNames}_{\sigma} \) and \(\nu(M) \cup \{c\} \subseteq \phi \setminus \text{dom}(\gamma) \).
3.5 Transitions

Observe that any closed value V of a cont- and ref-free type σ can be decomposed into an abstract value A (pattern) and the corresponding substitution γ (matching). The set of all such decompositions, written $AVal_\sigma(V)$, is defined below. Given a value V of a (cr-free) type σ, $AVal_\sigma(V)$ contains all pairs (A, γ) such that A is an abstract value and $\gamma : \nu(A) \rightarrow \mathrm{Vals}$ is a substitution such that $A\{\gamma\} = V$. More concretely,

$$AVal_\sigma(V) \triangleq \{(V, \emptyset) \mid \sigma \in \{\text{Unit, Bool, Int}\}\}$$

Let $f : \sigma \rightarrow \sigma'$, then $AVal_\sigma(V) \triangleq \{(f, [V \mapsto V]) \mid f \in \text{FNames}_{\sigma \rightarrow \sigma'}\}$

$$AVal_\sigma((U, V)) \triangleq \{(A_1, A_2, \gamma_1 \cdot \gamma_2) \mid (A_1, \gamma_1) \in AVal_\sigma(U), (A_2, \gamma_2) \in AVal_\sigma(V)\}$$

Note that, by writing \cdot, we mean to implicitly require that the function domains be disjoint. Similarly, when writing \lor, we stipulate that the argument sets be disjoint.

Example 2. Let $\sigma = (\text{Int} \rightarrow \text{Bool}) \times (\text{Int} \times (\text{Unit} \rightarrow \text{Int}))$ and $V \equiv (\lambda x:\text{Int}. x \neq 1, (2, \lambda x:\text{Unit}. 3))$. Then $AVal_\sigma(V)$ equals

$$\{(f, (2, g)), [f \mapsto (\lambda x:\text{Int}. x \neq 1); [g \mapsto (\lambda x:\text{Unit}. 3)])] \mid f \in \text{FNames}_{\text{Int} \rightarrow \text{Unit}}, g \in \text{FNames}_{\text{Unit} \rightarrow \text{Int}}\}$$

Finally, we present the transitions of, what we call the HOSC[HOSTC] LTS, in Figure 3.

Example 3. We analyze the (PQ) rule below in more detail.

$$(PQ) \langle K[fV], c, \gamma, \xi, \phi, h \rangle \xrightarrow{f(A,c')} \langle \gamma \cdot \gamma' \cdot [c' \mapsto K], \xi \cdot [c' \mapsto c], \phi \cup \nu(A) \cup \{c'\}, h \rangle$$

when $f : \sigma \rightarrow \sigma'$, $(A, \gamma') \in AVal_\sigma(V)$ and $c' : \sigma'$

The use of \cup in $\phi \cup \nu(A) \cup \{c'\}$ is meant to highlight the requirement that the names introduced in $f(A, c')$, i.e. $\nu(A) \cup \{c'\}$, should be fresh and disjoint from ϕ. Moreover, note how γ and ξ are updated. In general, γ, ξ, h are updated during P-actions.

Definition 9. Given two configurations C, C', we write $C \xrightarrow{a} C'$ if $C \xrightarrow{\tau} C'' \xrightarrow{\tau^*} C'$, with τ^* representing multiple (possibly none) τ-actions. This notation is extended to sequences of actions: given $t = a_1 \ldots a_n$, we write $C \xrightarrow{t} C'$, if there exist C_1, \ldots, C_{n-1} such that $C \xrightarrow{a_1} C_1 \cdots C_{n-1} \xrightarrow{a_n} C'$. We define $\text{Tr}_{\text{HOSC}}(C) = \{t \mid \text{there exists } C' \text{ such that } C \xrightarrow{t} C'\}$.

Lemma 3. Suppose $C = \langle \gamma, \xi, \phi, h \rangle$ or $C = \langle M, c, \gamma, \xi, \phi, h \rangle$ are configurations. Then elements of $\text{Tr}_{\text{HOSC}}(C)$ are $(\phi \setminus \text{dom}(\gamma), \text{dom}(\gamma))$-traces.
We write \(\text{inc} \equiv c \) and \(C \) by the configuration \(\text{inc} \).

Example 4. In Figure 5, we show that the trace from Example 1 is generated by the configuration \(C \equiv \langle M_1^{\text{cwl}}, c, \emptyset, \emptyset, \{c\}, \emptyset \rangle \), where \(M_1^{\text{cwl}} \) is given in Figure 4. We write \(\text{inc} \equiv \lambda f. \text{if} \ (\neg (\ell b)) \ (\ell b := \text{tt}; f(); \ell x := \ell x + 1; \ell b := \text{ff}) \ () \), get \(\equiv \lambda x. ! (\ell x) \) and \(c : ((\text{Unit} \to \text{Unit}) \to \text{Unit}) \times (\text{Unit} \to \text{Int}) \). It is interesting to notice that in this interaction, Opponent uses the continuation \(N \) twice, incrementing the counter \(x \) by two. The second time, it does it without having to call \text{inc} again, but rather by using the continuation name \(c_2 \).

Remark 2. Due to the freedom of name choice, note that \(\text{Tr}_{\text{HOSC}}(C) \) is closed under type-preserving renamings that preserve names from \(C \).

3.6 Correctness and full abstraction

We define two kinds of special configurations that will play an important role in spelling out correctness results for the \(\text{HOSC}[\text{HOSC}] \) LTS. Let \(\Gamma = \{ x_1 : \sigma_1, \ldots, x_k : \sigma_k \} \). A map \(\rho \) from \(\{x_1, \ldots, x_k\} \) to the set of abstract values will be called a \(\Gamma \text{-assignment} \) provided, for all \(1 \leq i \neq j \leq k \), we have \(\rho(x_i) : \sigma_i \) and \(\nu(\rho(x_i)) \cap \nu(\rho(x_j)) = \emptyset \).
Definition 10 (Program configuration). Given a \(\Gamma \)-assignment \(\rho \), a cr-free HOSC term \(\Gamma \vdash M : \tau \) and \(c : \tau \), we define the active configuration \(\mathbb{C}^\rho_c \) by \(\mathbb{C}^\rho_c = (\mathcal{M}[\rho], c, \emptyset, \emptyset, \emptyset) \).

Note that traces from \(\text{Tr}_{\text{HOSC}}(\mathbb{C}^\rho_c) \) will be \((\nu(\rho) \cup \{c\}, \emptyset) \)-traces.

Definition 11. The HOSC[HOSC] trace semantics of a cr-free HOSC term \(\Gamma \vdash M : \tau \) is defined to be

\[
\text{Tr}_{\text{HOSC}}(\Gamma \vdash M : \tau) = \{(\rho, c, t) \mid \rho \text{ is a } \Gamma\text{-assignment, } c : \tau, t \in \text{Tr}_{\text{HOSC}}(\mathbb{C}^\rho_c)\}.
\]

Example 5. Recall the term \(\Gamma \vdash M^{\text{cr}} : \tau \) from Example 4, the trace \(\mathbf{t}_1 \) and the configuration \(\mathbb{C} \) such that \(\mathbf{t}_1 \in \text{Tr}_{\text{HOSC}}(\mathbb{C}) \). Because \(M^{\text{cr}} \) is closed (\(\Gamma = \emptyset \)), the only \(\Gamma \)-assignment is the empty map \(\emptyset \). Thus, \(\mathbb{C} = \mathbb{C}^\emptyset_c \), so \(((\emptyset, c), \mathbf{t}_1) \in \text{Tr}_{\text{HOSC}}(\Gamma \vdash M^{\text{cr}} : \tau) \).

Having defined active configurations associated to terms, we now turn to defining passive configurations associated to contexts. Let us fix \(\circ \in \text{FNames}_{\text{Unit}} \rightarrow \text{Unit} \) and, for each \(\sigma \), a continuation name \(\circ_\sigma \in \text{CNames}_\sigma \). Let \(\circ = \bigcup_\sigma \circ_\sigma \). Intuitively, the names \(\circ \) will correspond to \(\psi_{\text{err}} \) and \(\circ_\sigma \) to \(\psi_{\text{ter}} \).

Recall that \(e_{\text{err}} \) stands for \(e_{\text{err}} : \text{Unit} \rightarrow \text{Unit} \). Given a heap \(h : \Sigma; e_{\text{err}} \), an evaluation context \(\Sigma; e_{\text{err}} + K : \tau \rightarrow \tau' \) and a substitution \(\Sigma; e_{\text{err}} + \gamma : \Gamma \) (as in the definition of \(\text{Sub}_{\text{err}}(\mathbb{C}^\rho_c) \)), let us replace every occurrence of \(\text{cont}_\sigma(K') \) inside \(h, K, \gamma \) with \(\text{cont}_\sigma(K', \circ_\sigma) \), if \(K' \) has type \(\sigma \rightarrow \sigma' \). Moreover, let us replace every occurrence of the variable \(\text{err} \) with the function name \(\circ \). This is done to
adjust \(h, K, \gamma \) to the extended syntax of the LTS: the upgraded versions are called \(h, \gamma_0, K \).

Next we define the set \(\text{AVal}_\Gamma(\gamma) \) of all disjoint decompositions of values from \(\gamma_0 \) into abstract values and the corresponding matchings. Recall that \(\Gamma = \{ x_1 : \sigma_1, \ldots, x_k : \sigma_k \} \). Below \(\vec{A}_i \) stands for \((A_1, \ldots, A_k) \), and \(\vec{\gamma}_i \) for \((\gamma_1, \ldots, \gamma_k) \).

\[
\text{AVal}_\Gamma(\gamma) = \{ (\vec{A}_i, \vec{\gamma}_i) \mid (A_i, \gamma_i) \in \text{AVal}_\Sigma(\gamma_0(x_i)), i = 1, \ldots, k; \\
\text{and } \nu(A_1), \ldots, \nu(A_k) \text{ mutually disjoint and without } \circ \}
\]

Definition 12 (Context configuration). Given \(\Sigma, h : \Sigma; \circ \text{err}, \Sigma; \circ \text{err} \vdash K : \tau \rightarrow \tau', \Sigma; \circ \text{err} \vdash \gamma : \Gamma \), \((\vec{A}_i, \vec{\gamma}_i) \in \text{AVal}_\Gamma(\gamma) \) and \(c : \tau \ (c \notin \circ) \), the corresponding configuration \(\vec{C}_{h,K,\gamma}^{\vec{\gamma},c} \) is defined by

\[
\vec{C}_{h,K,\gamma}^{\vec{\gamma},c} = \left\{ \biguplus_{i=1}^{k} \gamma_i \cup \{ c \rightarrow K \circ \}, \biguplus_{i=1}^{k} \nu(A_i) \cup \{ c \} \cup \circ \cup \{ \circ \}, h_\circ \right\}.
\]

Intuitively, the names \(\nu(A_i) \) correspond to calling function values extracted from \(\gamma_i \), whereas \(c \) corresponds to \(K \). Note that traces in \(\text{Tr}_{\text{HOSC}}(\vec{C}_{h,K,\gamma}^{\vec{\gamma},c}) \) will be \((\circ \cup \{ \circ \}, \bigcup_{i=1}^{k} \nu(A_i) \cup \{ c \}) \)-traces.

In preparation for the next result, we introduce the following shorthands.

- Given a \((N_O, N_P) \)-trace \(t \), we write \(t^\perp \) for the \((N_P, N_O) \)-trace obtained by changing the polarity of each name: \(f(A,c') \) becomes \(f(A,c') \) (and vice versa) and \(c(A) \) becomes \(c(A) \) (and vice versa).
- Given \((\vec{A}_i, \vec{\gamma}_i) \in \text{AVal}_\Gamma(\gamma) \), we define a \(\Gamma \)-assignment \(\rho_{\vec{A}_i} \) by \(\rho_{\vec{A}_i}(x_i) = A_i \).

Note that \(\nu(\rho_{\vec{A}_i}) = \bigcup_{i=1}^{k} \text{dom}(\gamma_i) \).

Lemma 4 (Correctness). Let \(\Gamma \vdash M : \tau \) be a cr-free HOSC term, let \(\Sigma, h, K, \gamma \) be as above, \((\vec{A}_i, \vec{\gamma}_i) \in \text{AVal}_\Gamma(\gamma) \), and \(c : \tau \ (c \notin \circ) \). Then

- \((K[M[\{ \gamma \}]], h) \downarrow_{\text{err}} \) iff there exist \(t, c' \) such that \(t \in \text{Tr}_{\text{HOSC}}(\vec{C}_{M,\gamma}^{\rho_{\vec{A}_i},c}) \) and \(t^\perp \circ((), c') \in \text{Tr}_{\text{HOSC}}(\vec{C}_{h,K,\gamma}^{\vec{\gamma},c}) \).
- \((K[M[\{ \gamma \}]], h) \downarrow_{\text{err}} \) iff there exist \(t, A, \sigma \) such that \(t \in \text{Tr}_{\text{HOSC}}(\vec{C}_{M,\gamma}^{\rho_{\vec{A}_i},c}) \) and \(t^\perp \circ_{\sigma}(A) \in \text{Tr}_{\text{HOSC}}(\vec{C}_{h,K,\gamma}^{\vec{\gamma},c}) \).

Moreover, \(t \) satisfies \(\nu(t) \cap (\circ \cup \{ \circ \}) = \emptyset \).

Intuitively, the lemma above confirms that the potential of a term to converge is determined by its traces. Accordingly, we have:

Theorem 1 (Soundness). For any cr-free HOSC terms \(\Gamma \vdash M_1, M_2 \), if \(\text{Tr}_{\text{HOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{HOSC}}(\Gamma \vdash M_2) \) then \(\Gamma \vdash M_1 \leq_{\text{HOSC}(\text{cru})} M_2 \).

To prove the converse, we need to know that every odd-length trace generated by a term actually participates in a contextual interaction. This will follow from the lemma below. Note that \(\downarrow_{\text{err}} \) relies on even-length traces from the context (Lemma 4).
Lemma 5 (Definability). Suppose \(\phi \uplus \{ \circ \} \subseteq \text{FNames} \) and \(t \) is an even-length \((\circ \uplus \{ \circ \} \uplus \{ c \})\)-trace starting with an \(O \)-action. There exists a passive configuration \(C \) such that the even-length traces \(\text{Tr}_{\text{HOSC}}(C) \) are exactly the even-length prefixes of \(t \) (along with all renamings that preserve types and \(\phi \uplus \{ c \} \uplus \circ \uplus \{ \circ \} \), cf. Remark 2). Moreover, \(C = (\gamma_0 \cdot [c \mapsto K_c], \{ c \mapsto \circ \}) \times \phi \uplus \{ c \} \uplus \circ \uplus \{ \circ \}, h_0) \), where \(h, K, \gamma \) are built from HOSC syntax.

Proof (Sketch). The basic idea is to use references in order to record all continuation and function names introduced by the environment. For continuations, the use of call/cc\(_c\) is essential. Once stored in the heap, the names can be accessed by terms when needed in P-actions. The availability of throw and references to all O-continuations means that arbitrary answer actions can be scheduled when needed.

Theorem 2 (Completeness). For any cr-free HOSC terms \(\Gamma \vdash M_1, M_2, \Gamma \vdash M_1 \overset{\text{HOSC}(\text{err})}{\leq} M_2 \) implies \(\text{Tr}_{\text{HOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{HOSC}}(\Gamma \vdash M_2) \).

Theorems 1, 2 (along with Lemmas 1, 2) imply the following full abstraction results.

Corollary 1 (HOSC Full Abstraction). Suppose \(\Gamma \vdash M_1, M_2 \) are cr-free HOSC terms. Then \(\text{Tr}_{\text{HOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{HOSC}}(\Gamma \vdash M_2) \) iff \(\Gamma \vdash M_1 \overset{\text{HOSC}}{\leq} M_2 \).

Example 6 (Callback with lock \([4]\)). Recall the term \(\vdash M_{t^\text{w}l} : ((\text{Unit} \to \text{Unit}) \to \text{Unit}) \times (\text{Unit} \to \text{Int}) \) from Example 4, given in Figure 4. We had \(t_1 = \tilde{c}(g_1, g_2) \). Define \(t_2 \) to be \(t_1 \) except that its last action \(\tilde{c}_3(2) \) is replaced with \(\tilde{c}_3(1) \).

Observe that \(t_1 \in \text{Tr}_{\text{HOSC}}(C_{M_{t^\text{w}l}}^{\theta \cdot c}) \setminus \text{Tr}_{\text{HOSC}}(C_{M_{t^\text{w}l}}^{\theta \cdot e}) \) and \(t_2 \in \text{Tr}_{\text{HOSC}}(C_{M_{t^\text{w}l}}^{\theta \cdot e}) \setminus \text{Tr}_{\text{HOSC}}(C_{M_{t^\text{w}l}}^{\theta \cdot c}) \), i.e. by the Corollary above the terms are incomparable wrt \(\overset{\text{err}}{\leq} \). However, they are equivalent wrt \(\overset{\text{err}}{\leq x} \) for \(x \in \{ \text{GOSC}, \text{HOS}, \text{GOS} \} \) \([8]\).

The above Corollary also provides a handle to reason about equivalence via trace equivalence. Sometimes this can be done directly on the LTS, especially when \(\gamma \) can be kept bounded.

Example 7 (Counter \([28]\)). For \(i \in \{1,2\} \), consider the terms \(\vdash M_i : (\text{Unit} \to \text{Unit}) \times (\text{Unit} \to \text{Int}) \) given by \(M_i \equiv \lambda x. \text{ref } 0 \text{ in } (\text{inc}_i, \text{get}_i) \), where \(\text{inc}_1 \equiv (\lambda y.x ::= !x + 1), \text{inc}_2 \equiv (\lambda y.x ::= !x - 1), \text{get}_1 \equiv \lambda z. !x, \text{get}_2 \equiv \lambda z. !x \). In this case, \(\text{Tr}_{\text{HOSC}}(C_{M_i}^{\theta \cdot e}) \) contains (prefixes of) traces of the form \(\tilde{c}(g, h) t \), where \(t \) is built from segments of two kinds: either \(g() , c_i() \) or \(h() , c'_i() \). \(n \) must be equal to the number of preceding actions of the form \(g() , c_i() \). For this example, trace equality could be established by induction on the length of trace. Consequently, \(M_1 \overset{\text{err}}{\leq} M_2 \).
4 GOSC[HOSC]

Recall that GOSC is the fragment of HOSC in which general storage is restricted to values of \textit{ground} type, i.e. arithmetic/boolean constants, the associated reference names, references to those names and so on. In what follows, we are going to provide characterizations of \lesssim_{GOSC} via trace inclusion. Recall that, by Lemma 2, $\lesssim_{\text{GOSC}} = \lesssim_{\text{GOSC,ter}}$. Note that we work in an asymmetric setting with terms belonging to HOSC being more powerful than contexts.

We start off by identifying several technical consequences of the restriction to GOSC syntax. First we observe that GOSC internal reductions never contribute extra names.

Lemma 6. Suppose $(M, c, h) \rightarrow (M', c', h')$, where M is a GOSC term and h is a GOSC heap. Then $\nu(M) \cup \{c\} \supseteq \nu(M') \cup \{c'\}$.

Proof. By case analysis. All defining rules for \rightarrow, with the exception of the $(\text{K}[\ell], h) \rightarrow (\text{K}[h(\ell)], h)$ rule, are easily seen to satisfy the Lemma (no function or continuation names are added). However, if the heap is restricted to storing elements of type ι (as in GOSC) then $h(\ell)$ will never contain a name, so the Lemma follows.

The lemma has interesting consequences for the shape of traces generated by the context configurations $C_{\vec{\gamma}_i,c}^{K,h}$ if they are built from GOSC syntax. Recall that P-actions have the form $\bar{f}(A,c')$ or $\bar{c}(A)$, where f,c are names introduced by O. It turns out that when h,K,γ are restricted to GOSC, more can be said about the origin of the names in traces generated by $C_{\vec{\gamma}_i,c}^{K,h}$: they will turn out to come from a restricted set of names introduced by O, which we identify below.

Definition 13. Suppose $\phi \cup \{\cdot\} \subseteq \text{FNames}$ and $c \in \text{CNames}$. Let t be an odd-length $(\cdot \cup \{\cdot\}, \phi \cup \{c\})$-trace starting with an O-action. The set $\text{Vis}_P(t)$ of P-visible names of t is defined as follows.

\begin{align*}
\text{Vis}_P(t \ c'(A')) &= \{\cdot\} \cup \circ \cup \nu(A') & c' = c \\
\text{Vis}_P(t \ f''(A'',c')) &= \text{Vis}_P(t) \cup \nu(A') & c' \neq c \\
\text{Vis}_P(t \ f'(A',c')) &= \{\cdot\} \cup \circ \cup \nu(A') \cup \{c'\} & f' \in \phi \\
\text{Vis}_P(t \ f''(A'',c'')) &= \text{Vis}_P(t) \cup \nu(A') \cup \{c'\} & f' \in \nu(A'') \\
\text{Vis}_P(t \ c''(A'')) &= \text{Vis}_P(t) \cup \nu(A') \cup \{c'\} & f' \in \nu(A'')
\end{align*}

Note that, in the inductive cases, the definition follows links between names introduced by P and the point of their introduction, names introduced in-between are ignored. Here readers familiar with game semantics will notice similarity to the notion of P-view [12].

Next we specify a property of traces that will turn out to be satisfied by configurations corresponding to GOSC contexts.
Definition 14. Suppose $\phi \cup \{c\} \subseteq \text{FNames}$ and $c \in \text{CNames}$. Let t be a $(\phi \cup \{c\}, \phi \cup \{c\})$-trace starting with an O-action. t is called P-visible if

- for any even-length prefix $t' \bar{f}(A,c)$ of t, we have $f \in \text{Vis}_P(t')$,
- for any even-length prefix $t' c(A)$ of t, we have $c \in \text{Vis}_P(t')$.

Lemma 7. Consider $C = C_{h,K,\gamma}^\phi$, where h, K, γ are from GOSC and $(\bar{A}_i, \gamma_i) \in \text{AVal}_F(\gamma)$. Then all traces in $\text{Tr}_{\text{HOSC}}(C)$ are P-visible.

The Lemma above shows that contextual interactions with GOSC contexts rely on restricted traces. We shall now modify the HOSC\{HOSC\} LTS to capture the restriction. Note that, from the perspective of the term, the above constraint is a constraint on the use of names by O (context), so we need to talk about O-available names instead. This dual notion is defined below.

Definition 15. Suppose $\phi \subseteq \text{FNames}$ and $c \in \text{CNames}$. Let t be a $(\phi \cup \{c\}, \emptyset)$-trace of odd length. The set $\text{Vis}_O(t)$ of O-visible names of t is defined as follows.

- $\text{Vis}_O(t \bar{c}(A')) = \nu(A')$
- $\text{Vis}_O(t f''(A'', c')) t' \bar{c}(A')) = \text{Vis}_O(t) \cup \nu(A')$ if $c' \neq c$
- $\text{Vis}_O(t f''(A'', c')) t' \bar{c}(A')) = \text{Vis}_O(t) \cup \nu(A') \cup \{c'\}$ if $f' \in \nu(A'')$
- $\text{Vis}_O(t c''(A'')) t' \bar{c}(A')) = \text{Vis}_O(t) \cup \nu(A') \cup \{c'\}$ if $f' \in \nu(A'')$

Analogously, a $(\phi \cup \{c\}, \emptyset)$-trace t is O-visible if, for any even-length prefix $t' f(A,c)$ of t, we have $f \in \text{Vis}_O(t')$ and, for any even-length prefix $t' c(A)$ of t, we have $c \in \text{Vis}_O(t')$.

Example 8. Recall the trace

$t_1 = \bar{c}(g_1, g_2) \ g_1(f_1, c_1) \bar{f}_1() \ c_2() \bar{c}_1() \ c_2() \bar{c}_1() \ g_2() \ c_3() \bar{c}_3(2)$

from previous examples. Observe that

$\text{Vis}_O(\bar{c}(g_1, g_2)) \ g_1(f_1, c_1) \bar{f}_1() \ c_2() \bar{c}_1() = \{g_1, g_2, c_2\}$
$\text{Vis}_O(\bar{c}(g_1, g_2)) \ g_1(f_1, c_1) \bar{f}_1() \ c_2() \bar{c}_1() = \{g_1, g_2\}$

Consequently, the first use of $c_2()$ in t_1 does not violate O-visibility, but the second one does.

In Figure 6, we present a new LTS, called the GOSC\{HOSC\} LTS, which will turn out to capture \leq_G through trace inclusion. It is obtained from the HOSC\{HOSC\} LTS by restricting O-actions to those that rely on O-visible names. Technically, this is done by enriching configurations with an additional component F, which maintains historical information about O-available names immediately before each O-action. After each P-action, F is accessed to calculate the current set V of O-available names according to the definition of O-availability and only O-actions compatible with O-availability are allowed to proceed (due
\[(P\tau)\quad (N, c', \gamma, \xi, \phi, \rho) \quad \vdash \quad (N, c', \gamma, \xi, \phi, \rho, \tau) \quad \text{when} \quad (N, c, \gamma, \xi, \phi, \tau) \to (N, c', \rho)\]

\[(PA)\quad (V, c, \gamma, \xi, \phi, \rho) \quad \vdash \quad (V, c, \gamma, \xi, \phi, \rho, \tau) \quad \text{when} \quad c : \sigma \text{ and } \Gamma \vdash (A, \gamma) \in \text{Avval}(V)\]

\[(PQ)\quad (K[v], c, \gamma, \xi, \phi, \rho) \quad \vdash \quad (K[v], c', \gamma, \xi, \phi, \rho) \quad \text{when} \quad f : \sigma \to \sigma', (A, \gamma) \in \text{Avval}(V), c' : \sigma' \text{ and } \rho' = \nu(A) \oplus \{c\}\]

\[(OA)\quad (\gamma, \xi, \phi, \rho, \tau) \quad \vdash \quad (\gamma, \xi, \phi, \rho, \tau, \rho') \quad \text{when} \quad f \in \mathcal{V}, \sigma : \sigma, A : \sigma, c : \sigma, \gamma(c) = K, \xi(c) = c'\]

\[(OQ)\quad (\gamma, \xi, \phi, \rho, \tau) \quad \vdash \quad (\gamma, \xi, \phi, \rho, \tau, \rho') \quad \text{when} \quad f \in \mathcal{V}, f : \sigma \to \sigma', A : \sigma, c : \sigma, \gamma(f) = V \text{ and } \rho' = \nu(A) \oplus \{c\}\]

Given \(N \subseteq \text{Names}\), \([N \mapsto \mathcal{V}] \) stands for the map \([n \mapsto \mathcal{V}] n \in N\).

Fig. 6. GOSC[HOSC] LTS

to the \(f \in \mathcal{V}, c \in \mathcal{V} \text{ side conditions}\). We write \(\text{Tr}_{\text{GOSC}}(C)\) for the set of traces generated from \(C\) in the GOSC[HOSC] LTS.

Recall that, given a \(\Gamma\)-assignment \(\rho\), term \(\Gamma \vdash M : \tau\) and \(c \in \text{CNames}_\tau\), the active configuration \(C_{\rho, c}^{\rho, c}\) was defined by \(C_{\rho, c}^{\rho, c} = \langle M(\rho), c, \emptyset, 0, \nu(\rho) \cup \{c\}, \emptyset\rangle\). We need to upgrade it to the LTS by initializing the new component to the empty map: \(C_{\rho, c}^{\rho, c} = \langle M(\rho), c, \emptyset, 0, \nu(\rho) \cup \{c\}, \emptyset, \emptyset\rangle\).

Definition 16. The GOSC[HOSC] trace semantics of a cr-free HOSC term \(\Gamma \vdash M : \tau\) is defined to be

\[\text{Tr}_{\text{GOSC}}(\Gamma \vdash M : \tau) = \{((\rho, c, t)) \mid \rho \text{ is a } \Gamma\text{-assignment}, c : \tau, t \in \text{Tr}_{\text{GOSC}}(C_{\rho, c}^{\rho, c})\}\]

By construction, it follows that

Lemma 8. \(t \in \text{Tr}_{\text{GOSC}}(C_{\rho, c}^{\rho, c})\) iff \(t \in \text{Tr}_{\text{HOSC}}(C_{\rho, c}^{\rho, c})\) and \(t\) is O-visible.

Noting that the witness trace \(t\) from Lemma 4 is O-visible iff \(t^+ \textcircled{O}(\cdot), c'\) is P-visible, we can conclude that, for GOSC, the traces relevant to \(\downarrow_{\text{err}}\) are O-visible, which yields:

Theorem 3 (Soundness). For any cr-free HOSC terms \(\Gamma \vdash M_1, M_2\), if \(\text{Tr}_{\text{GOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{GOSC}}(\Gamma \vdash M_2)\) then \(\Gamma \vdash M_1 \preceq_{\text{GOSC(cris)}} M_2\).

To prove the converse, we need a new definability result. This time we are only allowed to use GOSC syntax, but the target is also more modest: we are only aiming to capture P-visible traces.

Lemma 9 (Definability). Suppose \(\phi \cup \{c\} \subseteq \text{FNames} \) and \(t\) is an even-length P-visible \((\phi \cup \{c\})\)-trace starting with an O-action. There exists a passive configuration \(C\) such that the even-length traces in \(\text{Tr}_{\text{HOSC}}(C)\) are exactly the even-length prefixes of \(t\) (along with all renamings that preserve types and \(\phi \cup \{c\} \cup \circ \cup \{\circ\})\). Moreover, \(C = \langle \gamma_0 \cdot [c \mapsto K], [c \mapsto \circ, \cdot], \phi \cup \{c\} \cup \circ \cup \{\circ\}, h_0\rangle\), where \(h, K, \gamma\) are built from GOSC syntax.
Moreover, we have checked that both traces are O-visible: in particular, the action equivalent. Let us consider the following two terms:

\[M_1^{\text{wbsc}} \triangleq \text{let } x = \text{ref 0 in } \lambda f. (x := 0; f()); x := 1; f(); !x) \]
\[M_2^{\text{wbsc}} \triangleq \lambda f. (f(); f(); 1). \]

of type \(\tau = (\text{Unit} \to \text{Unit}) \to \text{Int} \), let

\[t_3 = \bar{c}(g) \ g(f_1, c_1) \ f_1((), c_2) \ c_2(()) \ f_1((), c_3) \ g(f_2, c_4) \ f_2((), c_5) \ c_3(()) \ c_1(0) \]

and let \(t_4 \) be obtained from \(t_3 \) by changing 0 in the last action to 1. One can check that both traces are O-visible: in particular, the action \(c_3(()) \) is not a violation because

\[\forall s_o (\bar{c}(g) \ g(f_1, c_1) \ f_1((), c_2) \ c_2(()) \ f_1((), c_3) \ g(f_2, c_4) \ f_2((), c_5) \ c_3(()) = \{g, c_3, c_5\}). \]

Moreover, we have \(t_3 \in \text{Tr}_{\text{GOSC}}(C^{\phi,c}_{M_{\text{wbsc}}^1}) \setminus \text{Tr}_{\text{GOSC}}(C^{\phi,c}_{M_{\text{wbsc}}^2}) \) and \(t_4 \in \text{Tr}_{\text{GOSC}}(C^{\phi,c}_{M_{\text{wbsc}}^2}) \setminus \text{Tr}_{\text{GOSC}}(C^{\phi,c}_{M_{\text{wbsc}}^1}) \). By the Corollary above, we can conclude that \(M_1^{\text{wbsc}}, M_2^{\text{wbsc}} \) are incomparable wrt \(\preceq_{\text{err}} \). However, they turn out to be \(\simeq_{\text{HOS}} \) and \(\simeq_{\text{GOS}} \) equivalent.
Recall that HOS is the fragment of HOSC that does not feature continuation types and the associated syntax. In what follows we are going to provide alternative characterisations of $\preceq_{\text{err}}^{\text{HOS}}$ and $\preceq_{\text{ter}}^{\text{HOS}}$ in terms of trace inclusion and complete trace inclusion respectively.

We start off by identifying several technical consequences of the restriction to HOS syntax. First we observe that HOS internal reductions never change the associated continuation name.

Lemma 10. If $(M, c, h) \rightarrow (M', c', h')$, M is a HOS term and h is a HOS heap then $c = c'$.

Proof. The only rule that could change c is the rule for throw, but it is not part of HOS.

The lemma has a bearing on the shape of traces generated by the (passive) configurations $C_{\vec{\gamma}, \vec{c}, h, K, \gamma}^{\vec{\alpha}, \vec{c}}$ corresponding to HOS contexts. In the presence of throw and storage for continuations, it was possible for P to play answers involving arbitrary continuation names introduced by O. By Lemma 10, in HOS this will be restricted to the continuation name of the current configuration, which will restrict the shape of possible traces. Below we identify the continuation name $\text{top}_{P}(t)$ that becomes the relevant name after trace t. If the last move was an O-question then the continuation name introduced by that move will become that name. Otherwise, we track a chain of answers and questions, similarly to the definition of P-visibility.

Observe that, because h, K, γ are from HOS, $C_{h, K, \gamma}^{\vec{\alpha}, \vec{c}}$ will generate $\{(\circ_{\tau'}, \circ), \phi \cup \{c\}\}$-traces, where τ' is the result type of K, because $h_0 = h, K_0 = K, \gamma_0 = \gamma$.

Definition 17. Suppose $\phi \cup \{\circ\} \subseteq \text{FNames}$ and $c \in \text{CNames}$. Let t be a $\{(\circ_{\tau'}, \circ), \phi \cup \{c\}\}$-trace of odd length starting with an O-action. The continuation name $\text{top}_{P}(t)$ is defined as follows.

\[
\text{top}_{P}(t \ c(A)) = \circ_{\tau'}, \\
\text{top}_{P}(t_1 \ f(A'', c') \ t_2 \ c'(A')) = \text{top}_{P}(t_1) \\
\text{top}_{P}(t \ f(A', c')) = c'
\]

We say that a $\{(\circ_{\tau'} \cup \{\circ\}, \phi \cup \{c\}\})$-trace t starting with an O-action is P-bracketed if, for any prefix t' $\circ'(A)$ of t (i.e. any prefix ending with a P-answer), we have $c' = \text{top}_{P}(t')$.

Lemma 11. Consider $C = C_{h, K, \gamma}^{\vec{\alpha}, \vec{c}}$, where h, K, γ are from HOS and $(\vec{A}, \vec{\gamma}) \in \text{AVal}_{\Gamma}^{\Gamma}(\gamma)$. Then all traces in $\text{T}_{\text{HOSC}}(C)$ are P-bracketed.

The Lemma above characterizes the restrictive nature of contextual interactions with HOS contexts. Next we shall constrain the HOSC[HOSC] LTS accordingly to capture the restriction. Note that, from the point of view of the term, the above-mentioned constraint concerns the use of continuation names by O (the context), so we need to talk about O-bracketing instead. This dual notion of “a top name for O” is specified below.

5 HOS[HOSC]

Recall that HOS is the fragment of HOSC that does not feature continuation types and the associated syntax. In what follows we are going to provide alternative characterisations of $\preceq_{\text{err}}^{\text{HOS}}$ and $\preceq_{\text{ter}}^{\text{HOS}}$ in terms of trace inclusion and complete trace inclusion respectively.
\[(P\tau) \langle M, c, \gamma, \xi, \phi, h \rangle \xrightarrow{\tau} (N, c', \gamma, \xi, \phi, h') \]

when \((M, c, h) \rightarrow (N, c', h')\)

\[(PA) \langle V, c, \gamma, \xi, \phi, h \rangle \xrightarrow{c(A)} \langle \gamma, \gamma', \xi, \phi \circ \nu(A), h, c' \rangle \]

when \(c : \sigma, (A, \gamma') \in AVal_+(V), \xi(c) = c'\)

\[(PQ) \langle K[fV], c, \gamma, \xi, \phi, h \rangle \xrightarrow{f(A', c') \circ (A, \gamma)} \langle \gamma, \gamma', \xi, \phi \circ \nu(A), h, c' \rangle \]

when \(f : \sigma \rightarrow \sigma', (A, \gamma') \in AVal_+(V), c : \sigma'\)

\[(OA) \langle \gamma, \xi, \phi, h, c'' \rangle \xrightarrow{c(A)} \langle K[A], c', \gamma, \xi, \phi \circ \nu(A), h \rangle \]

when \(c = c'', c : \sigma, A : \sigma, \gamma(c) = K, \xi(c) = c'\)

\[(OQ) \langle \gamma, \xi, \phi, h, c'' \rangle \xrightarrow{f(A, c)} \langle VA, c, \gamma, \xi, [c \mapsto c''], \phi \circ \nu(A) \cup \{c\}, h \rangle \]

when \(f : \sigma \rightarrow \sigma', A : \sigma, c : \sigma', \gamma(f) = V\)

\[\text{Fig. 7. HOS[HOSC] LTS}\]

Definition 18. Suppose \(\phi \subseteq FNames\) and \(c \in CNames\). Let \(t\) be a \((\phi \cup \{e\}, \emptyset)\)-trace of odd length. The continuation name \(top_O(t)\) is defined as follows. In the first case, the value is \(\bot\) (representing "none"), because \(c\) is the top continuation passed by the environment to the term (if it gets answered there is nothing left to answer).

\[
\begin{align*}
\text{top}_O(t \; \overline{c}(A)) &= \bot \\
\text{top}_O(t_1 \; f(A'', c') \; t_2 \; \overline{c}(A')) &= \text{top}_O(t_1) \\
\text{top}_O(t \; f(A', c')) &= c'
\end{align*}
\]

We say that a \((\phi \cup \{e\}, \emptyset)\)-trace \(t\) is \(O\text{-bracketed}\) if, for any prefix \(t' \; \overline{c}(A)\) of \(t\) (i.e. any prefix ending with a P-answer), we have \(c' = \text{top}_O(t')\).

In Figure 7, we present a new LTS, called the HOS[HOSC] LTS, which will turn out to capture \(\subseteq_{O\sigma\tau}^{HOSC}\). It is obtained from the HOSC[HOSC] LTS by restricting O-actions to those that satisfy O-bracketing. Technically, this is done by enriching passive configurations with a component for storing the current value of \(\text{top}_O(t)\). In order to maintain this information, we need to know which continuation will become the top one if P plays an answer. This can be done with a map that maps continuations introduced by O to other continuations. Because its flavour is similar to \(\xi\) (which is a map from continuations introduced by P) we integrate this information into \(\xi\). The \(c = c''\) side condition then enforces O-bracketing. We shall write \(Tr_{HOSC}(C)\) for the set of traces generated from \(C\) in the HOS[HOSC] LTS.

Recall that, given a \(\Gamma\)-assignment \(\rho\), term \(\Gamma \vdash M : \tau\) and \(c : \tau\), the active configuration \(C_{M, \rho, c}^\rho\) was defined by \(C_{M, \rho, c}^\rho = \langle M[\rho], c, \emptyset, \emptyset, \nu(\rho) \cup \{c\}, \emptyset \rangle\). We upgrade it to the new LTS by setting \(C_{M, \rho, c}^{\rho, c} = \langle M[\rho], c, \emptyset, [c \mapsto \bot], \nu(\rho) \cup \{c\}, \emptyset, \emptyset \rangle\). This initializes \(\xi\) in such a way that, after \(\overline{c}(A)\) is played, the extra component will be set to \(\bot\), where \(\bot\) is a special element not in CNames.
Complete trace models of state and control

Definition 19. The HOS[HOSC] trace semantics of a cr-free HOSC term \(\Gamma \vdash M : \tau \) is defined to be

\[
\text{Tr}_{HOS}(\Gamma \vdash M : \tau) = \{((\rho, c), t) \mid \rho \text{ is a } \Gamma \text{-assignment, } c : \tau, t \in \text{Tr}_{HOSC}(C_{M, bra}^\rho^c)\}.
\]

By construction, it follows that

Lemma 12. \(t \in \text{Tr}_{HOS}(C_{M, bra}^\rho^c) \) iff \(t \in \text{Tr}_{HOSC}(C_{M}^\rho^c) \) and \(t \) is O-bracketed.

Noting that the witness trace \(t \) from Lemma 4 is O-bracketed iff \(t \perp \bar{\diamond} ((), c') \) is P-bracketed, we can conclude that, for HOS, the traces relevant to \(\Downarrow_{err} \) are O-bracketed, which yields:

Theorem 5 (Soundness). For any cr-free HOSC terms \(\Gamma \vdash M_1, M_2 \), if \(\text{Tr}_{HOS}(\Gamma \vdash M_1) \subseteq \text{Tr}_{HOS}(\Gamma \vdash M_2) \) then \(\Gamma \vdash M_1 \preceq_{HOS(ciu)}^\text{err} M_2 \).

For the converse, we establish another definability result, this time for a P-bracketed trace.

Lemma 13 (Definability). Suppose \(\phi \sqcup \{\diamond\} \subseteq FNames \) and \(t \) is an even-length P-bracketed \(\{(c, \diamond), \phi \sqcup \{c\}\} \)-trace starting with an O-action. There exists a passive configuration \(C \) such that the even-length prefixes of \(t \) (along with all renamings that preserve types and \(\phi \sqcup \{c, o_r, o\} \)). Moreover, \(C = \langle \gamma : [c \mapsto K], \{c \mapsto o_r\}, \phi \sqcup \{c, o_r, o\}, h \rangle \), where \(h, K, \gamma \) are built from HOS syntax.

Proof (Sketch). Our argument for HOSC is structured in such a way that, for a P-bracketed trace, there is no need for continuations (throwing and continuation capture are not necessary).

Completeness now follows because, for a potential witness trace \(t \) from Lemma 4, one can create a corresponding context by invoking the Definability result for \(t \perp \bar{\diamond} ((), c') \). It is crucial that the addition of \(\bar{\diamond} ((), c') \) does not break P-bracketing (it does not, because the action is a question).

Theorem 6 (Completeness). For any cr-free HOSC terms \(\Gamma \vdash M_1, M_2 \), if \(\Gamma \vdash M_1 \preceq_{HOS(ciu)}^\text{err} M_2 \) then \(\text{Tr}_{HOS}(\Gamma \vdash M_1) \subseteq \text{Tr}_{HOS}(\Gamma \vdash M_2) \).

Altogether, Theorems 5, 6 (along with Lemma 1) imply the following result.

Corollary 3 (HOS Full Abstraction). Suppose \(\Gamma \vdash M_1, M_2 \) are cr-free HOSC terms. Then \(\text{Tr}_{HOS}(\Gamma \vdash M_1) \subseteq \text{Tr}_{HOS}(\Gamma \vdash M_2) \) iff \(\Gamma \vdash M_1 \preceq_{HOS(ciu)}^\text{err} M_2 \).

Example 11 (Assignment/callback commutation [27]). For \(i \in \{1, 2\} \), let \(f : \text{Unit} \rightarrow \text{Unit} \vdash M_i : \text{Unit} \rightarrow \text{Unit} \) be defined by:

\[
M_1 \triangleq \text{let } n = \text{ref } 0 \text{ in } \lambda y \text{Unit}. \text{if } (\text{ln } 0) () (\text{n : } 1; f());
M_2 \triangleq \text{let } n = \text{ref } 0 \text{ in } \lambda y \text{Unit}. \text{if } (\text{ln } 0) () (f(); \text{n : } 1).
\]
Operationally, one can see that \(f \vdash M_1 \not\sim_{c}^{\text{HOS}} M_2 \) due to the following HOS context: let \(r = \text{ref}(\lambda y.y,(l r)) \) in \((\ell := \bullet;(l r)) \); \(\text{err} \). In our framework, this is confirmed by the trace

\[
\tau_5 = \bar{c}(g) \ g(()), c_1 \ f(()), c_2 \ g(()), c_2 \ c_2(()),
\]

which is in \(\text{Tr}_{\text{HOS}}(C_{M_1}^{\rho,c}) \setminus \text{Tr}_{\text{HOS}}(C_{M_2}^{\rho,c}) \). On the other hand,

\[
\tau_6 = \bar{c}(g) \ g(()), c_1 \ f(()), c_2 \ g(()), c_2 \ f(()), c_3
\]

is in \(\text{Tr}_{\text{HOS}}(C_{M_1}^{\rho,c}) \setminus \text{Tr}_{\text{HOS}}(C_{M_2}^{\rho,c}) \), so the terms are incomparable. Note, however, that both traces break O-visibility: specifically, we have

\[
\text{Vis}_O(\bar{c}(g) \ g(()), c_1 \ f(()), c_2) = \{c_2\},
\]

so the \(g(()), c_2 \) action violates the condition. Consequently, the traces do not preclude \(f \vdash M_1 \equiv_{\text{err}}^x M_2 \) for \(x \in \{\text{GOSC}, \text{GOS}\} \).

For \(x \in \{\text{HOS}, \text{GOSC}\} \), \(\preceq_{x}^c \) and \(\preceq_{\text{ter}}^x \) coincide. Intuitively, this is because the presence of continuations in the context makes it possible to make an escape at any point. In contrast, for HOS, the context must run to completion in order to terminate.

At the technical level, one can appreciate the difference when trying to transfer our results for \(\sim_{\text{ter}}^{\text{HOS(ciu)}} \) to \(\sim_{\text{ter}}^{\text{HOS(ciu)}} \). Recall that, according to Lemma 4, \(\downarrow_{\text{ter}} \) relies on a witness trace \(t \) such that the context configuration generates \(t^+ \ o_{\tau'}() \). In HOS, the latter must satisfy P-bracketing, so we need \(\text{top}_P(t^+) = o_{\tau'} \).

Note that this is equivalent to \(\text{top}_O(t) = \bot \). Consequently, only such traces are relevant to observing \(\downarrow_{\text{ter}} \).

Let us call an odd-length O-bracketed \((\phi;\{c\},\emptyset)\)-trace \(t \) complete if \(\text{top}_O(t) = \bot \). Let us write \(\text{Tr}_{\text{HOS}}(\Gamma \vdash M_1) \subseteq_c \text{Tr}_{\text{HOS}}(\Gamma \vdash M_2) \) if we have \(((\rho,c), t) \in \text{Tr}_{\text{HOS}}(\Gamma \vdash M_2) \) whenever \(((\rho,c), t) \in \text{Tr}_{\text{HOS}}(\Gamma \vdash M_1) \) and \(t \) is complete. Following our methodology, one can then show:

Theorem 7 (HOS Full Abstraction for \(\sim_{\text{ter}}^{\text{HOS}} \)). Suppose \(\Gamma \vdash M_1, M_2 \) are cr-free HOSC terms. Then \(\text{Tr}_{\text{HOS}}(\Gamma \vdash M_1) \subseteq_c \text{Tr}_{\text{HOS}}(\Gamma \vdash M_2) \) iff \(\Gamma \vdash M_1 \sim_{\text{ter}}^{\text{HOS(ciu)}} M_2 \) iff \(\Gamma \vdash M_1 \sim_{\text{ter}}^{\text{HOS}} M_2 \).

Example 12. Let \(M_1 \equiv \lambda f. \text{Unit}! : \text{Unit} ; \Omega_{\text{Unit}} \) and \(M_2 \equiv \lambda f. \text{Unit}! : \text{Unit} ; \Omega_{\text{Unit}} \).

We will see that \(\vdash M_1 \not\sim_{\text{ter}}^{\text{HOS}} M_2 \) but \(\vdash M_1 \not\sim_{\text{ter}}^{\text{HOS}} M_2 \). To see this, note that \(\text{Tr}_{\text{HOS}}(C_{M_1}^{\rho,c}) \) contains prefixes of \(\bar{c}(g) \ g(()), c_1 \ f(()), c_2 \ c_2(()), \) while \(\text{Tr}_{\text{HOS}}(C_{M_2}^{\rho,c}) \) only those of \(\bar{c}(g) \ g(()), c_1 \ f(()), c_2 \). Observe that the only complete trace among them is \(\bar{c}(g) \ g(()), c_1 \ f(()), c_2 \) is not complete, because \(\text{top}_O(t) = c_2 \). Consequently, \(\text{Tr}_{\text{HOS}}(\Gamma \vdash M_1) \not\subseteq_c \text{Tr}_{\text{HOS}}(\Gamma \vdash M_2) \) but \(\text{Tr}_{\text{HOS}}(\Gamma \vdash M_1) \not\subseteq_c \text{Tr}_{\text{HOS}}(\Gamma \vdash M_2) \).

The theorem above generalizes the characterisation of contextual equivalence between HOS terms with respect to HOS contexts [23], where trace completeness means both O- and P-bracketing and “all questions must be answered”. Our definition of completeness is weaker (O-bracketing + “the top question must be answered”), because it also covers HOSC terms. However, in the presence of both O- and P-bracketing, i.e. for HOS terms, they will coincide.
6 GOS[HOSC]

Recall that GOS features ground state only and, technically, is the intersection of GOSC and HOS. Consequently, it follows from the previous sections that GOS contexts yield configurations that satisfy both P-visibility and P-bracketing. For such traces, the definability result for GOSC yields a GOS context. Thus, in a similar fashion to the previous sections, we can conclude that O-visible and O-bracketed traces underpin \(\equiv_{GOS} \). To define the GOS LTS we simply combine the restrictions imposed in the previous sections, and define \(\text{Tr}_{GOS}(\Gamma \vdash M) \) analogously. We present the LTS in Appendix F. The results on \(\equiv_{GOS} \) from the previous section also carry over to GOS.

Theorem 8 (GOS Full Abstraction). Suppose \(\Gamma \vdash M_1, M_2 \) are cr-free HOSC terms. Then:

- \(\text{Tr}_{GOS}(\Gamma \vdash M_1) \subseteq \text{Tr}_{GOS}(\Gamma \vdash M_2) \) iff \(\Gamma \vdash M_1 \equiv_{GOS} M_2 \) iff \(\Gamma \vdash M_1 \equiv_{GOS} M_2 \).
- \(\text{Tr}_{GOS}(\Gamma \vdash M_1) \subseteq_{c} \text{Tr}_{GOS}(\Gamma \vdash M_2) \) iff \(\Gamma \vdash M_1 \equiv_{GOS} M_2 \) iff \(\Gamma \vdash M_1 \equiv_{GOS} M_2 \).

7 Concluding remarks

Asymmetry Our framework is able to deal with asymmetric scenarios, where programs are taken from HOSC, but are tested with contexts from weaker fragments. For example, we can compare the following two HOSC programs, where \(f : ((\text{Unit} \rightarrow \text{Unit}) \rightarrow \text{Unit}) \rightarrow \text{Unit} \) is a free identifier.

```plaintext
let b = ref \texttt{ff} in callcc(y. 
f(\lambda g. b := \texttt{tt}; g(); throw() to y); 
if !b then () else div)
callecc(y. 
f(\lambda g. g(); throw() to y); 
if !b then () else div)
```

with div representing divergence. The terms happen to be \(\equiv_{HOS} \)-equivalent, but not \(\equiv_{HOSC} \)-equivalent.

To see this at the intuitive level, we make the following observations.

- Firstly, we observe that, to distinguish the terms, \(f \) should use its argument. Otherwise, the value of \(b \) will remain equal to \(\texttt{ff} \), and the only subterm that distinguishes the terms (‘if !b then () else div’) will play the same role as div in the second term.
- Secondly, if \(f \) does use its argument, then \(b \) will be set to \(\texttt{tt} \) in the first program, raising the possibility of distinguishing the terms. However, if we allow HOS contexts only then, since the argument to \(f \) was used, it will have to run to completion, before ‘if !b then () else div’ is reached. Consequently, we will encounter ‘throw () to \(y \)’ earlier and never reach ‘if !b then () else div’.

This is represented by the trace

\[\tilde{f}(h, c_1) \quad h(g, c_2) \quad \tilde{g}((,) c_3) \quad c_3(()) \quad \tilde{c}(()) \]
This trace is O-bracketed, but not P-bracketed since Player uses throw to answer directly to the initial continuation c rather than c₂.

– Finally, if HOSC contexts are allowed, it is possible to reach ‘if !b then () else div’ b set to tt. This is represented by the trace

\[
\bar{f}(h,c_1) \quad h(g,c_2) \quad \bar{g}(() ,c_3) \quad c_1(()) \quad \bar{c}(())
\]

This trace is not O-bracketed, because c₁ is answered rather than c₃, like above. Consequently, the trace witnesses termination of the first term, but the second term would diverge during interaction with the same context.

We plan to explore the opportunities presented by this setting in the future, especially with respect to fully abstract translations, for example, from HOSC to GOS.

Richer Types Recall that our full abstraction results are stated for cr-free terms, terms with cont- and ref-free types at the boundary. Here we first discuss how to extend them to more complicated types.

To deal with reference type at the boundary, i.e. location exchange, one needs to generalize the notion of traces, so that they can carry, for each action, a heap representing the values stored in the disclosed part of the heap, as in [23, 27]. The extension to sum, recursive and empty types seems conceptually straightforward, by simply extending the definition of abstract values for these types, following the similar notion of ultimate pattern in [24]. The same idea should apply to allow continuation types at the boundary. Operational game semantics for an extension of HOS with polymorphism has been explored in [15].

Innocence On the other hand, all of the languages we considered were stateful. In the presence of state, all of the actions that are represented by labels (and their order and frequency) can be observed, because they could generate a side-effect. A natural question to ask whether the techniques could also be used to provide analogous theorems for purely functional computation, i.e. contexts taken from the language PCF. Here, the situation is different. For example, the terms \(f : \text{Int} \rightarrow \text{Int} \vdash f(0) \) and \(f : \text{Int} \rightarrow \text{Int} \vdash \text{if } f(0) \text{ then } f(0) \text{ else } f(0) \) should be equivalent, even though the sets of their traces are incomparable.

It is known [12] that PCF strategies satisfy a uniformity condition called innocence. Unfortunately, restricting our traces to “O-innocent ones” (like we did with O-visibility and O-bracketing) would not deliver the required characterization. Technically, this is due to the fact that, in our arguments, given a single trace (with suitable properties), we can produce a context that induces the given trace and no other traces (except those implied by the definition of a trace). For innocence, this would not be possible due to the uniformity requirement. It will imply that, although we can find a functional context that generates an innocent trace, it might also generate other traces, which then have to be taken into account when considering contextual testing. This branching property makes it difficult to capture equivalence with respect to functional contexts explicitly, e.g. through traces, which is illustrated by the use of the so-called intrinsic quotient in game models of PCF [2, 12].
8 Related Work

We have presented four operational game models for HOSC, which capture term interaction with contexts built from any of the four sublanguages \(x \in \{ \text{HOSC, GOSC, HOS, GOS} \} \) respectively. The most direct precursor to this work is Laird’s trace model for \(\text{HOS}[\text{HOS}] \) [23]. Other frameworks in this spirit include models for objects [18], aspects [16] and system-level code [9]. In [13], Laird’s model has been related formally to the denotational game model from [27]. However, in general, it is not yet clear how one can move systematically between the operational and denotational game-based approaches, despite some promising steps reported in [25]. Below we mention other operational techniques for reasoning about contextual equivalence.

In [31], fully abstract Eager-Normal-Form (enf) Bisimulations are presented for an untyped \(\lambda \)-calculus with store and control, similar to HOSC (but with control represented using the \(\lambda \mu \)-calculus). The bisimulations are parameterised by worlds to model the evolution of store, and bisimulations on contexts are used to deal with control. Like our approach, they are based on symbolic evaluation of open terms. Typed enf-bisimulations, for a language without store and in control-passing style, have been introduced in [24]. Fully-abstract enf-bisimulations are presented in [7] for a language with state only, corresponding to an untyped version of HOS. Earlier works in this strand include [17, 29].

Environmental Bisimulations [19, 30, 32] have also been introduced for languages with store. They work on closed terms, computing the arguments that contexts can provide to terms using an environment similar to our component \(\gamma \). They have also been extended to languages with call/cc [34] and delimited control operators [5, 6].

Kripke Logical Relations [28, 4, 8] have been introduced for languages with state and control. In [8], a characterization of contextual equivalence for each case \(x[X] \) (\(x \in \{ \text{HOSC, GOSC, HOS, GOS} \} \)) is given, using techniques called backtracking and public transitions, which exploit the absence of higher-order store and that of control constructs respectively. Importing these techniques in the setting of Kripke Open Bisimulations [14] should allow one to build a bridge between the game-semantics characterizations and Kripke Logical Relations.

Parametric bisimulations [11] have been introduced as an operational technique, merging ideas from Kripke Logical Relations and Environmental Bisimulations. They do not represent functional values coming from the environment using names, but instead use a notion of global and local knowledge to compute these values, reminiscent of the work on environmental bisimulations. The notion of global knowledge depends itself on a notion of evolving world. To our knowledge, no fully abstract Parametric Bisimulations have been presented.

A general theory of applicative [21] and normal-form bisimulations [20] has been developed, with the goal of being modular with respect to the effects considered. While the goal is similar to our work, the papers consider monadic and algebraic presentation of effects, trying particularly to design a general theory for proving soundness and completeness of such bisimulations. These works complement ours, and we would like to explore possible connections.
References

A Additional material for Section 2 (HOSC)

A.1 Type System

Please see Figure 8.

A.2 Proof of Lemma 1 (CIU)

In [10, 33], the authors propose general frameworks for establishing CIU theorems for higher-order languages with effects and control. The results are based on the usual contextual testing observing termination. Below we repeat the pattern of their argument in our framework for both \(\preceq_{\text{ter}} \) and \(\preceq_{\text{err}} \). The names of the lemmas come from Section 2.3 of [10]. Their technical aim is to establish that each relation is a precongruence.

Let \(y \in \{ \text{ter}, \text{err} \} \).
\[
\begin{align*}
\Sigma; \Gamma \vdash () & : \text{Unit} & \Sigma; \Gamma \vdash \mathbf{tt} & : \text{Bool} & \Sigma; \Gamma \vdash \mathbf{ff} & : \text{Bool} & \Sigma; \Gamma \vdash \mathbf{\bar{n}} & : \text{Int} \\
\frac{(x, \tau) \in \Gamma}{\Sigma; \Gamma \vdash x : \tau} & & \frac{(\ell, \tau) \in \Sigma}{\Sigma; \Gamma \vdash \ell : \text{ref}} & & \frac{\Sigma; \Gamma \vdash M : \sigma}{\Sigma; \Gamma \vdash \langle M, N \rangle : \sigma \times \tau} & & \frac{\Sigma; \Gamma \vdash \tau}{\Sigma; \Gamma \vdash N : \sigma} \\
\frac{\Sigma; \Gamma \vdash M : \tau_1 \times \tau_2}{\Sigma; \Gamma \vdash \pi_i M : \tau_i} & & \frac{\Sigma; \Gamma \vdash M : \sigma \rightarrow \tau}{\Sigma; \Gamma \vdash N : \sigma} & & \frac{\Sigma; \Gamma \vdash M : \tau}{\Sigma; \Gamma \vdash \langle \pi_1 M, \pi_2 M \rangle : \sigma \times \tau} & & \frac{\Sigma; \Gamma \vdash \tau}{\Sigma; \Gamma \vdash \sigma \rightarrow \tau} \\
\frac{\Sigma; \Gamma \vdash \ell : \text{ref}}{\Sigma; \Gamma \vdash \mathbf{!} M : \tau} & & \frac{\Sigma; \Gamma \vdash \mathbf{=} M : \tau}{\Sigma; \Gamma \vdash \mathbf{=} M : \mathbf{=} N : \text{Unit}} & & \frac{\Sigma; \Gamma \vdash M_1 : \text{Bool}}{\Sigma; \Gamma \vdash \mathbf{if} M_1 M_2 M_3 : \tau} & & \frac{\Sigma; \Gamma \vdash M_1 : \text{Int}}{\Sigma; \Gamma \vdash M_1 \oplus M_2 : \text{Int}} & & \frac{\Sigma; \Gamma \vdash M_1 : \text{Int}}{\Sigma; \Gamma \vdash M_1 \sqcup M_2 : \text{Bool}} \\
\frac{\Sigma; \Gamma \vdash M_1 : \text{Int}}{\Sigma; \Gamma \vdash M_1 \ominus M_2 : \text{Int}} & & \frac{\Sigma; \Gamma \vdash M_1 \ominus M_2 : \text{Int}}{\Sigma; \Gamma \vdash M_1 = M_2 : \text{Bool}} & & \frac{\Sigma; \Gamma \vdash M_1 : \sigma}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M_1 \ominus M_2 : \text{Int}} & & \frac{\Sigma; \Gamma \vdash M_1 : \mathbf{\bar{\mathbf{\bar{\cdots}}}}}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M_1 \ominus M_2 : \text{Int}} \\
\frac{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} K : \text{cont}}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} K : \text{cont} \tau} & & \frac{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M : \sigma}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M : \sigma} & & \frac{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M : \sigma}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M : \sigma} \\
\frac{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} x : \tau}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} x : \tau} & & \frac{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M : \sigma}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} M : \sigma} & & \frac{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} N : \text{cont} \sigma}{\Sigma; \Gamma \vdash \mathbf{\bar{\mathbf{\bar{\cdots}}}} N : \text{cont} \sigma} \\
\end{align*}
\]

Fig. 8. HOSC typing rules
Lemma 14 (Op CIU). Suppose $M_1 \leq_{x}^{\circ} M_2$. Then, whenever the terms are typable and the relevant operation is allowable in an x-context, we have:

- $\langle M_1, M \rangle \leq_{x}^{\circ} \langle M_2, M \rangle$, $\pi_1 M_1 \leq_{x}^{\circ} \pi_1 M_2$, $M_1 M \leq_{x}^{\circ} M_2 M$.
- $\text{ref } M_1 \leq_{x}^{\circ} \text{ref } M_2$, $\text{! } M_1 \leq_{x}^{\circ} \text{! } M_2$, $M_1 := M \leq_{x}^{\circ} M_2 := M$.
- $\text{if } M_1 M' \leq_{x}^{\circ} M_2 M'$, $M_1 \oplus M \leq_{x}^{\circ} M_2 \oplus M$, $M_1 \sqcup M \leq_{x}^{\circ} M_2 \sqcup M$, $M_1 \sqcap M \leq_{x}^{\circ} M_2 \sqcap M$.
- $M \leq_{x}^{\circ} M=M_1 \leq_{x}^{\circ} M_2$.

Because $M \leq_{x}^{\circ} M$ and $M' \leq_{x}^{\circ} M'$ imply $M \oplus M' \leq_{x}^{\circ} M \oplus M'$, $M \sqcup M \leq_{x}^{\circ} M \sqcup M$, and $M \sqcap M \leq_{x}^{\circ} M \sqcap M$, we have $M \leq_{x}^{\circ} M \leq_{x}^{\circ} M \leq_{x}^{\circ} M \leq_{x}^{\circ} M$.

Suppose K, γ, h are such that $(K[[M_1, M_\{\gamma\}], h]) \Downarrow_y$.

- Observe that $K[[M_1, M_\{\gamma\}] = K[[M_1 \{\gamma\}]] = K[M_1 \{\gamma\}]$ for some K'.

Because $M_1 \leq_{x}^{\circ} M_2$ and $(K'[M_1 \{\gamma\}], h) \Downarrow_y$, we get $(K'[M_2 \{\gamma\}], h) \Downarrow_y$.

Because $K[[M_2, M_\{\gamma\}] = K[[M_2 \{\gamma\}, M_\{\gamma\}] = K[[M_2 \{\gamma\}], this implies $(K[[M_2, M_\{\gamma\}], h) \Downarrow_y$, as needed.

Suppose K, γ, h are such that $(K[[M, M_1 \{\gamma\}], h]) \Downarrow_y$. We need to show $(K[[M, M_1 \{\gamma\}], h]) \Downarrow_y$.

Observe that $K[[M, M_1 \{\gamma\}] = K[M \{\gamma\}, M_1 \{\gamma\}]$. We will argue by induction on the number of transitions in $(K[[M \{\gamma\}, M_1 \{\gamma\}], h]) \Downarrow_y$ for all $M \{\gamma\}, h$.

Because of $(K[[M \{\gamma\}, M_1 \{\gamma\}], h]) \Downarrow_y$, we have the following cases for $M \{\gamma\}$.

- $(M \{\gamma\} = V)$

 In this case, $K[[M, M_1 \{\gamma\}] = K[[V, M_1 \{\gamma\}] = K'[M_1 \{\gamma\}]$.

 By $M_1 \leq_{x}^{\circ} M_2$, we get $(K'[M_2 \{\gamma\}], h) \Downarrow_y$.

- $(M \{\gamma\} = K'[err])$, only for $y = err$

 Here $K[[M \{\gamma\}, M_1 \{\gamma\}]$ in 0 steps, and it follows that $(K[[M \{\gamma\}, M_2 \{\gamma\}], h]) \Downarrow_y$.

- $(M \{\gamma\} = K'[N]$ such that $(K'[N], h) \to (K'[N'], h'))$

 $(K[[M \{\gamma\}, M_1 \{\gamma\}], h) \to (K[[K'[N], M_1 \{\gamma\}], h)) \to (K[[K'[N'], M_1 \{\gamma\}], h]), h') \Downarrow_y$.

 By IH, $(K[[K'[N'], M_2 \{\gamma\}], h') \Downarrow_y$.

 Hence, because $(K[[M \{\gamma\}, M_2 \{\gamma\}], h) \to (K[[K'[N'], M_2 \{\gamma\}], h]), h') \Downarrow_y$.

 we have $(K[[M \{\gamma\}, M_2 \{\gamma\}], h) \Downarrow_y$.

Note that this case also covers the reduction rule for call/cc.

- $(M \{\gamma\} = K'[\text{throw } V \text{ to cont } K''])$

 In this case, $(K[[M \{\gamma\}, M_1 \{\gamma\}], h) \to (K''[V], h)$ and $(K''[V], h) \Downarrow_y$.

 Note that then $(K[[M \{\gamma\}, M_2 \{\gamma\}], h) \to (K''[V], h)$ too, so we are done.
Lemma 15 (Lambda CIU). \(M_1 \preceq_{\Sigma}^{\text{ciu}} M_2 \) implies \(\lambda x. M_1 \preceq_{\Sigma}^{\text{ciu}} \lambda x. M_2 \).

Proof. Take \(K, \gamma, h \) such that \((K[\lambda x. M_1] \{ \gamma \}, h) \Downarrow_{\Sigma} \). Let us write \(M_1^\gamma \) for \(M_1 \{ \gamma \} \). Note that \((\lambda x. M_1) \{ \gamma \} = \lambda x. M_1^\gamma \). We need to show \((K[\lambda x. M_2], h) \Downarrow_{\Sigma} \).

Instead we shall show that \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\Sigma} \) implies \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\Sigma} \) for any \(\Sigma; z \vdash M \). The Lemma then follows by taking \(M = K[z] \).

We use induction on the number of steps \(k \) in \((M\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{\Sigma} \) for all \(M, h \).

Suppose \((M\{\lambda x. M_1^\gamma/z\}, h) \Downarrow_{\Sigma} \).
- If \(k = 0 \) and \(y = \text{err} \) then \(M = K'[\text{err}] \). Thus, \((M\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{err} \) also.
- If \(k = 0 \) and \(y = \text{ter} \) then \(M = V\{\lambda x. M_2^\gamma/z\} \) or \(M = z \). In both cases, \(M\{\lambda x. M_2^\gamma/z\} \) is a value, and \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\text{ter}} \).
- Suppose \(k > 0 \). Because \((M\{\lambda x. M_1^\gamma/z\}, h) \Downarrow_{\Sigma} \), the following cases arise.
 - \((M = K'[\text{N}] \) and \((K'[\text{N}], h) \rightarrow (K'[^\text{N'}], h')) \)
 Then \((K'[^\text{N'}]\{\lambda x. M_1^\gamma/z\}, h') \Downarrow_{\Sigma} \) in \((k - 1) \) steps.
 So, by IH, \((K'[^\text{N'}]\{\lambda x. M_2^\gamma/z\}, h') \Downarrow_{\Sigma} \).
 Because \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\Sigma} \), \((K'[^\text{N'}]\{\lambda x. M_2^\gamma/z\}, h') \Downarrow_{\Sigma} \), we are done.
 - \((M = K'[\text{throw V to cont K''}] \)
 Then \((K''[\text{V}]\{\lambda x. M_1^\gamma/z\}, h) \Downarrow_{\Sigma} \) in \((k - 1) \) steps.
 So, by IH, \((K''[\text{V}]\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{\Sigma} \).
 Because \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\Sigma} \), \((K''[\text{V}]\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{\Sigma} \), we are done.
 - \((M = K'[^\text{zV}] \)
 Then \((K'[^\text{M_1^\gamma/V}]\{\lambda x. M_1^\gamma/z\}, h) \Downarrow_{\Sigma} \) in \((k - 1) \) steps.
 By IH, \((K'[^\text{M_1^\gamma/V}]\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{\Sigma} \).
 Because \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\Sigma} \), this implies \((K'[^\text{M_2^\gamma/V}]\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{\Sigma} \).
 Since \(M\{\lambda x. M_2^\gamma/z\} \Downarrow_{\Sigma} \), \((K'[^\text{M_2^\gamma/V}]\{\lambda x. M_2^\gamma/z\}, h) \Downarrow_{\Sigma} \), we are done.

Lemma 16 (fix CIU). \(M_1 \preceq_{\Sigma}^{\text{ciu}} M_2 \) implies \(\text{rec } f(x). M_1 \preceq_{\Sigma}^{\text{ciu}} \text{rec } f(x). M_2 \).

Proof. Take \(K, \gamma, h \) such that \((K[\text{rec } f(x). M_1] \{ \gamma \}, h) \Downarrow_{\Sigma} \).

We need to show \((K[\text{rec } f(x). M_2] \{ \gamma \}, h) \Downarrow_{\Sigma} \).

Let us write \(M_1^\gamma \) for \(M_1 \{ \gamma \} \), and \(F_i \) for \(\text{rec } f(x). M_i^\gamma \).

We follow the same pattern as in the previous case and show that \(M\{F_1/z\} \Downarrow_{\Sigma} \) implies \(M\{F_2/z\} \Downarrow_{\Sigma} \) for any \(\Sigma; z \vdash M \). The Lemma then follows by taking \(M = K[z] \).

We use induction on the number of steps \(k \) in \((M\{F_1/z\}, h) \Downarrow_{\Sigma} \) for all \(M, h \).
Suppose \((M\{F_1/z\}, h) \Downarrow_{\Sigma} \).

The following cases can be argued in the same way as above.
- \((M = K'[\text{err}]\), y = \text{err} \)
- \((M = V \) or \(M = z \), y = \text{ter} \)
- \((M = K'[\text{N}] \) and \((K'[\text{N}], h) \rightarrow (K'[\text{N'}], h') \))
- \((M = K'[\text{throw V to cont K''}] \)

It remains to deal with
Lemma 18 (Precongruence). Suppose \(M = K'[zV] \)

Then \((K'[M'_1[V/x]\{F_1/f\}\{F_1/z\}, h]) \downarrow_y \) in \((k - 1)\) steps.

Observe that \((K'[M'_1[V/x]\{F_1/f\}\{F_1/z\}, h] = (K'[M'_1[V/x]\{z/f\}\{F_1/z\}, h]. \)

Hence, by IH, \((K'[M'_1[V/x]\{z/f\}\{F_2/z\}, h] \downarrow_y \).

Because \(M_1 \subseteq^{x\text{(ciu)}} M_2 \), this implies \((K'[M'_2[V/x]\{z/f\}\{F_2/z\}, h] \downarrow_y \).

Since \((M[F_2/z], h) \rightarrow (K'[M'_2[V/x]\{z/f\}\{F_2/z\}, h] \), we are done.

Lemma 17 (call/cc CIU). \(M_1 \subseteq^{x\text{(ciu)}} M_2 \) implies \(\text{call/cc}(x.M_1) \subseteq^{x\text{(ciu)}} \text{call/cc}(x.M_2) \).

Proof. Let \(K, \gamma, h \) be such that \((K[\text{call/cc}(x.M_1), h]) \downarrow_y \). Note that

\((K[\text{call/cc}(x.M_1)\{\gamma\}, h) \rightarrow (K[M_1\{\text{cont } K/x\}\{\gamma\}], h) = (K[M_1\{\gamma[x → \text{cont } K]\}], h) \).

Because of \(M_1 \subseteq^{x\text{(ciu)}} M_2 \), we get \((K[M_2\{\gamma[x → \text{cont } K]\}], h) \downarrow_y \).

Consequently, \((K[\text{call/cc}(x.M_1)\{\gamma\}], h) \downarrow_y \), because \((K[\text{call/cc}(x.M_2)\{\gamma\}], h) \rightarrow (K[M_2\{\gamma \cdot \} x → \text{cont } K\}], h) \).

Lemma 18 (Precongruence). Suppose \(x \in \{\text{HOSC, GOSC, HOS, GOS}\} \), \(\Gamma \vdash M_1, M_2 : \sigma \) are HOSC-terms with an \(x \)-boundary, and \(C \) is an \(x \)-context such that \(\Gamma' \vdash C[M_1], C[M_2] : \sigma' \). Then \(\Gamma \vdash M_1 \subseteq^{x\text{(ciu)}} M_2 : \sigma \) implies \(\Gamma' \vdash C[M_1] \subseteq^{x\text{(ciu)}} C[M_2] : \sigma' \).

Proof. By induction on the structure of contexts using the preceding lemmas.

Corollary 4 (CIU result). Suppose \(x \in \{\text{HOSC, GOSC, HOS, GOS}\} \) and \(\Gamma \vdash M_1, M_2 : \sigma \) are HOSC-terms with an \(x \) boundary. \(\Gamma \vdash M_1 \subseteq^{x\text{(ciu)}} M_2 : \sigma \) iff \(\Gamma \vdash M_1 \subseteq^{x\text{()} M_2 : \sigma \).

Proof. The left-to-right implication follows from Lemma 18. The right-to-left implication holds, because testing with \(h, K, \gamma \) is a special case of testing with \(C \).

The Corollary is the same as Lemma 1.

B Additional material for Section 3 (HOSC[HOSC])

B.1 Extended Operational Semantics

Definition 20. Taking \(M \) a term, \(c \) a continuation name, \(h \) a heap we write \(\Sigma; \Gamma \vdash (M, c, h) : \tau \) if \(\Sigma; \Gamma \vdash M : \tau \), \(c : \tau \) and \(h : (\Sigma; \Gamma) \).

Lemma 19. Taking \(\Sigma; \Gamma \vdash (M, c, h) : \tau \), then:

- either \((M, c, h) \) is reducible (for \(\rightarrow \));
- or \(M \) is a a callback \(K[f V] \) with \(f \in \text{dom}(\Gamma) \);
- or \(M \) is a value \(V \).
Lemma 20. Taking $\Sigma; \Gamma \vdash (M, c, h) : \tau$, and $\Sigma; \Gamma \vdash K \vdash \tau$ and γ an idempotent substitution s.t. $\gamma : \Gamma$, writing M for $M\{\gamma\}$ and \bar{h} for $h\{\gamma\}$ then $(K[M], h) \rightarrow (N, h')$ implies that

- either $(M, c, h) \rightarrow (M', c', h'')$ and $N = K'[M'[\gamma]]$ with $K' = \gamma(c')$, and $h''\{\gamma\} = h'$;
- or M is a callback $K'[f[V]]$ with $\gamma(f)$ a λ-abstraction $\lambda x.P$ and $N = K[K'[P[\bar{V}/x]]]$, with $K' = K'\{\gamma\}$ and $\bar{V} = V\{\gamma\}$;
- or M is a value and K is an evaluation context larger than \bullet.

Definition 21. Taking M an extended term and κ a substitution from continuation names to evaluation contexts that contains the continuation names appearing in the support of M, one write $M\{\kappa\}$ for the term where all the occurrences of $\text{cont}K, c$ are substituted by $\text{cont}K'[\bullet]$, with $\kappa(c) = K$. One extend this definition to heaps, writing $h(\kappa)$ for the heap $\{(\ell, v(\kappa)) \mid (\ell, v) \in h\}$.

Theorem 9. Taking M a term, h a heap, κ a substitution from continuation names to evaluation contexts that contains the continuation names appearing in the support of M and h, and c, c' two continuation names s.t. $\kappa(c) = K$ and $\kappa(c') = K'$, then for all M', h', if $(M, c, h) \rightarrow (M', c', h')$ then $(K[M\{\kappa\}], h(\kappa)) \rightarrow (K'[M'[\kappa]], h'(\kappa))$.

Proof. We reason by case analysis:

- if $M = K_1[\text{call/cc}(x.M_1)]$, then one has:
 - $(K_1[\text{call/cc}(x.M_1)], c, h) \rightarrow (K_1[M_1\{\text{cont}K_1, c/x\}], c, h)$;
 - $(K[K_1[\text{call/cc}(x.M_1)]\{\kappa\}], h(\kappa)) \rightarrow (K[K_1[M_1\{\text{cont}K_1, c/x\}]\{\kappa\}], h(\kappa))$.

and we conclude using the fact that $(M, c, h) \rightarrow (M', c', h')$ then:

- if $M = K_1[\text{throw} V$ to $\text{cont}K_2, c']$, then one has:
 - $(K_1[\text{throw} V$ to $\text{cont}K_2, c'], c, h) \rightarrow (K_2[V], c', h)$;
 - $(K[K_1[\text{throw} V$ to $\text{cont}K_2, c']\{\kappa\}], h(\kappa)) \rightarrow (K'[K_2[V]\{\kappa\}], h(\kappa))$ since $\kappa(c') = K'$.

- If there exists a (unique) reduction $(M, h) \rightarrow (M', h')$ then:
 - $(M\{\kappa\}, c, h(\kappa)) \rightarrow (M'\{\kappa\}, c, h'(\kappa))$;
 - $(K[M\{\kappa\}], h(\kappa)) \rightarrow (K[M'\{\kappa\}], h'(\kappa))$.

B.2 Proof of Lemma 2

Proof. We reason by contraposition.

1. Suppose $\Gamma \vdash M_1 \not\sim_{\text{ter}} M_2 : \tau$, i.e. $C[M_1] \not\downarrow_{\text{ter}}$ and $C[M_2] \not\downarrow_{\text{ter}}$ for some $\vdash C \vdash \tau$.

Then we can construct $\text{err} \vdash C' \vdash \tau$ such that $C'[M_1] \not\downarrow_{\text{err}}$ and $C'[M_2] \not\downarrow_{\text{err}}$ as follows:

$$C'[\bullet] = (C_{\text{err}}[\bullet]; \text{err}),$$

where C_{err} refers to C in which each occurrence of cont, $-$ is replaced with cont_{err} $(\text{}}\text{err})$. In this way, the construction transforms all opportunities for
\(\psi_{\text{ter}}\) into ones for \(\psi_{\text{err}}\). Note that, if \(M_1\) contained \(\text{cont}_{\sigma} K\), it would not necessarily be the case that \(C'[M_1] \not\Downarrow_{\text{err}}\), because \(M_1\) is not affected by the transformation.

2. Let \(x \in \{\text{HOSC}, \text{GOSC}\}\). Suppose \(\Gamma \vdash M_1 \not\Downarrow_{\text{ter}}^x M_2\), i.e. \(C[M_1] \not\Downarrow_{\text{err}}\) and \(C[M_2] \not\Downarrow_{\text{err}}\) for some \(C\) such that \(\text{err} \vdash C \Downarrow\). Then we can construct \(\vdash C' \Downarrow\) such that \(C'[M_1] \not\Downarrow_{\text{ter}}\) and \(C'[M_2] \not\Downarrow_{\text{ter}}\) as follows.

\[
C'[\bullet] = \text{call/cc}(y. C_{\sigma, \Omega} \bullet)((\lambda z. \text{throw}() \text{ to } y)/err); \Omega
\]

where \(C_{\sigma, \Omega}\) is defined analogously to \(C_{\text{err}}\). Note that we add \(; \Omega\), because \(C[M_2] \not\Downarrow_{\text{err}}\) could be due to \(\not\Downarrow_{\text{ter}}\) (rather than divergence), and we want to make sure that \(C'[M_2]\) diverges, which will imply \(C'[M_2] \not\Downarrow_{\text{ter}}\).

This means that, because of the use of continuations, \(C'\) is an \(x\)-context only for \(x \in \{\text{HOSC}, \text{GOSC}\}\).

In this case, we also rely on \(\text{cont}_{\sigma} (K)\)-freeness (of \(M_2\)). If \(C[M_2] \not\Downarrow_{\text{err}}\) was due to \(\not\Downarrow_{\text{ter}}\) caused by \(\text{cont}_{\sigma} K\) in \(M_2\), then our \(; \Omega\) transformation might not imply divergence for \(C'[M_2]\).

B.3 Name invariance

We say that a permutation \(p\) of Names is **type-preserving** if it is also a permutation once restricted to each of \(\text{CN}ames_{\sigma}\) and \(\text{F}Names_{\sigma \rightarrow \sigma'}\). Given \(X \subseteq \text{Names}\), we say that \(p\) fixes \(X\) if \(p(x) = x\) for all \(x \in X\). Type-preserving permutations can be applied to traces in the obvious way. In particular, if \(t\) is \((N_O, N_P)\)-trace then \(p(t)\) is \((p(N_O), p(N_P))\)-trace. We write \(t_1 \sim_X t_2\) if there exists a type-preserving permutation \(p\) that fixes \(X\) such that \(p(t_1) = t_2\).

Lemma 21

Suppose \(C = (\cdots, \phi, h)\) is a configuration and \(p\) is a type-preserving permutation. If \(t \in \text{Tr}_{\text{HOSC}}(C)\) and \(p\) fixes \(\phi\) then \(p(t) \in \text{Tr}_{\text{HOSC}}(C)\).

Due to the arbitrariness of name choice in transitions (i.e. freedom to choose fresh names), \(\text{Tr}_{\text{HOSC}}(C)\) is closed under renamings that preserve types and the names already present in \(C\).

B.4 Proof of Lemma 4

Delegated to Section C.

B.5 Proof of Theorem 1

Proof. Suppose \(\text{Tr}_{\text{HOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{HOSC}}(\Gamma \vdash M_2)\). We handle \(\Gamma \vdash M_1 \not\Downarrow_{\text{HOSC(ciu)}} M_2\), as it is slightly more involved. The reasoning for \(\not\Downarrow_{\text{HOSC(ciu)}}\) is symmetric.

Let \(\Sigma, h, K, \gamma\) be such that \((K[M_1 \{\gamma\}], h) \not\Downarrow_{\text{err}}\). Suppose \((\vec{A}_1, \vec{\gamma}_1) \in \text{AVal}_I(\gamma)\) and \(c : \sigma' (c \notin o)\). By Lemma 4 (left-to-right), there exist \(t, c'\) such that \(t \in \text{Tr}_{\text{HOSC}}(C_{M_1}^{\vec{A}_1, c})\) and \(t^+ \overline{\delta}((), c') \in \text{Tr}_{\text{HOSC}}(C_{K, K, \gamma}^{\vec{A}_1, c})\). By \(\text{Tr}_{\text{HOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{HOSC}}(\Gamma \vdash M_2)\), we have \(t \in \text{Tr}_{\text{HOSC}}(C_{M_2}^{\vec{A}_1, c})\). Because \(t \in \text{Tr}_{\text{HOSC}}(C_{M_2}^{\vec{A}_1, c})\) and \(t^+ \overline{\delta}((), c') \in \text{Tr}_{\text{HOSC}}(C_{K, K, \gamma}^{\vec{A}_1, c})\), by Lemma 4 (right-to-left) we can conclude \((K[M_2 \{\gamma\}], h) \not\Downarrow_{\text{err}}\). Thus, \(\Gamma \vdash M_1 \not\Downarrow_{\text{HOSC(ciu)}} M_2\).
B.6 Proof of Lemma 5

Recall that abstract values are tuples consisting of boolean and integer constants, as well as function names. We can refer to them using projections of the form π_i, where $i \in \{1, 2\}^+$. on the understanding that $\pi_i \sigma = \pi_i (\pi_i \sigma)$.

- Suppose $\text{Num}(A) = \{(\tilde{i}, n) | \pi_i A = n : \text{Bool, Int}\}$. Then $\text{assert}(x \sim A)$ will act as shorthand for the following code if $\bigwedge_{(\tilde{i}, n) \in \text{Num}(A)} \pi_i x = n$ ($\in \Omega$),

 - which checks if the boolean/integer arguments match those of A.
 - Another operation, written $A[\pi x / f]$, will substitute for each $f \in \nu(A)$, the corresponding projection $\pi_i x$ (i.e. one such that $\pi_i A = f$).

This syntax will be used in all definability arguments.

Lemma 5 follows from the lemma given below for $i = 0$. Consider $h' = h_0$, $K' = \gamma_0 \setminus c$. We have $\nu(\text{img}(\gamma_0), \text{img}(h_0)) \subseteq \circ \cup \{\circ\}$. As names $\circ \sigma$ can only occur inside terms of the form $\text{cont}(K', \circ \sigma)$, we can conclude that $(h', K', \gamma') = (h_0, K_0, \gamma_0)$, where h, K, γ are from HOSC.

Lemma 22. Suppose $\phi \cup \{\circ\} \subseteq \text{FNames}$, $c \in \text{CNames}$ and $t = o_1 p_1 \cdots o_n p_n$ is a $(\circ \cup \{\circ\}, \phi \cup \{c\})$-trace starting with an O-action. Given $0 \leq i \leq n$, let $t_i = o_{i+1} p_{i+1} \cdots o_n p_n$. There exist passive configurations C_i such that $\text{Tr}^\text{even}(C_i)$ consists of even-length prefixes of $o_{i+1} p_{i+1} \cdots o_n p_n$ (along with their renamings via permutations on Names that fix ϕ_i). Moreover, $C_i = \langle \gamma_i, \xi_i, \phi_i, h_i \rangle$ $(0 \leq i \leq n)$, where

- $\text{dom}(\gamma_i)$ consists of $\phi \cup \{c\}$ and all names introduced by P in $o_1 p_1 \cdots o_i p_i$;
- $\nu(\text{img}(\gamma_i)) = \emptyset$;
- $\text{dom}(\xi_i)$ consists of c and all continuation names introduced by P in $o_1 p_1 \cdots o_i p_i$;
- for all $d \in \text{dom}(\xi_i)$, $\xi_i(d) = \text{top}_P(o_1 \cdots o_i)$ if d was introduced in p_j (we regard c as being introduced in p_0 and define $\text{top}_P(o_1 \cdots o_0) = \circ_\tau'$);
- ϕ_i consists of $\circ \cup \{\circ\} \cup \phi \cup \{c\}$ and all names introduced in $o_1 p_1 \cdots o_i p_i$;
- $\text{dom}(h_i) = \text{dom}(h_0)$;
- $\nu(\text{img}(h_i))$ may only contain elements of $\circ \cup \{\circ\}$ and names introduced by O in $o_1 p_1 \cdots o_i p_i$.

Proof. The main idea is to use references in order to record all continuations and functions introduced by O, so that they can be accessed in terms at the time when they need to be used by P. Other references will also be used to inject the right pieces of code into the LTS.

Below we explain how the content of C_i is meant to evolve and what invariants will be maintained by the construction for each kind of name in t.

FNames from P Suppose n_{FP} is the number of function names in ϕ and those introduced by P in t. We shall write f_j^P $(0 \leq j < n_{FP})$ to refer to the jth such name, on the understanding names from ϕ are introduced first and this is followed by names in t in order of appearance (from left to right).
For each $f^j_p : \sigma_j \to \tau_j$, we will have a dedicated reference $fpr_j : \text{ref}(\sigma_j \to \tau_j)$ in all heaps. The content of $h_i(fpr_j)$ will be changing at each step of the construction and it will be used to arrange for suitable behaviour following O-actions of the form $f^j_p(A,c)$. For example, if the action is not meant to generate a response at a stage, we can use $fpr_j := \lambda x.(fpr_j)x$ to cause divergence by creating a cycle in the heap.

If f^j_p was introduced in p_i (we take $i = 0$ for $f^j_p \in \phi$), then f^j_p will be present in all $\phi_{i'}, \gamma_{i'}$ for $i' \geq i$. We shall maintain the invariant $\gamma_{i'}(f^j_p) = \lambda x.(fpr_j)x$ for all $i' \geq i$.

Note that this is consistent with $\nu(\text{img}(\gamma_i)) = \emptyset$.

CNames from P Suppose n_{CP} is the number of continuation names introduced by P in t plus 1, to take c into account. Similarly to the previous case, we write $c^j_p \ (0 \leq j < c_{FP})$ to refer to the jth such name, on the understanding that $c^j_p = c$ and other names are enumerated in the same order as they appear in t (from left to right).

For each $f^j_p : \sigma_j$, we will have a dedicated reference $cpr_j : \text{ref}(\sigma_j \to \tau_j)$, if c^j_p was introduced in $p_{j'}$ and $\text{top}_O(o_1 \cdots o_{j'}) : \tau_j$, in all heaps.

Its content will be changing at each step of the construction, in order to provide suitable reactions to O-actions of the form $c^j_p(A)$.

If c^j_p was introduced in p_i (we take $i = 0$ for $c^j_p = c_p$) then c^j_p will be present in all $\phi_{i'}, \gamma_{i'}$ for $i' \geq i$. We shall maintain the invariant $\gamma_{i'}(c^j_p) = (\lambda x.(cpr_j)x) \check{}$ and $\xi_{i'}(c^j_p) = \text{top}_O(o_1 \cdots o_{j'})$, if c^j_p was introduced in $p_{j'}$.

Note that this is consistent with $\nu(\text{img}(\gamma_i)) = \emptyset$.

FNames from O We use similar notation here and suppose n_{FO} is the number of function names introduced by O. As in previous cases, we use $f^j_O \ (0 \leq j < n_{FO})$ to refer to such names.

For each $f^j_O : \sigma_j \to \tau_j$, we will have a corresponding reference $for_{j} : \text{ref}(\sigma_j \to \tau_j)$ in all heaps, which will be used to store the name as soon as it is played, i.e. if f^j_O is introduced in o_i (for o we take $i = 0$), then $h_{i'}(\text{for}_{j}) = f^j_O$ for all $i' \geq i$. Earlier we will use a divergent value, i.e. $h_{i'}(\text{for}_{j}) = \lambda x.(\text{for}_{j})x$ for $i' < i$.

f^j_O will be part of $\phi_{i'}$ for all $i' \geq i$.

Note that this is consistent with: $\nu(\text{img}(h_i))$ may only contain elements of $\circ \uplus \{o\}$ and names introduced by O in $o_1p_1 \cdots o_ip_i$.

CNames from O Suppose n_{CO} is the number of continuation names introduced by O in t. As before, we use $c^j_O \ (0 \leq j < n_{FO})$ to refer to such names.

For each $c^j_O : \sigma_j$, we will have a corresponding reference $cor_{j} : \text{ref}(\text{cont} \sigma_j)$, which will be used to store the name as soon as it is played, i.e. if c^j_O is introduced in o_i, then $h_{i'}(\text{cor}_{j}) = \text{cont}(\check{}, c^j_O)$ for all $i' \geq i$. Earlier we will use a divergent value, i.e. $h_{i'}(\text{cor}_{j}) = ((\lambda x.\Omega)\check{}, o_{i'})$ for $i' < i$, where Ω is a divergent term.

c^j_O will be part of $\phi_{i'}$ for all $i' \geq i$.

Note that this is consistent with: $\nu(\text{img}(h_i))$ may only contain elements of $\circ \uplus \{o\}$ and names introduced by O in $o_1p_1 \cdots o_ip_i$.
Overall, for each $0 \leq i \leq n$, we shall have

$$\text{dom}(h_i) = \{\text{fpr}_j | 0 \leq j < n_{FP}| \cup \{\text{cpr}_j | 0 \leq j < n_{CP}| \cup \{\text{for}_j | 0 \leq j < n_{FO}| \cup \{\text{cor}_j | 0 \leq j < n_{CO}|\}.$$

The above description specifies $\phi_i, \gamma_i, \xi_i, \text{dom}(h_i)$ and $h_i(\text{for}_j) (0 \leq j < n_{FO})$, $h_i(\text{cor}_j) (0 \leq j < n_{CO})$, for any $0 \leq i \leq n$. Hence, in the forthcoming argument we will focus on defining $h_i(\text{fpr}_j) (0 \leq j < n_{FP})$ and $h_i(\text{cpr}_j) (0 \leq i < n_{CP})$. Because the values written to these references will only contain elements from $\circ \cup \{\diamond\}$, it will follow that $\nu(\text{img}(h_i))$ may only contain elements of $\circ \cup \{\diamond\}$ and names introduced by O in $o_1 p_1 \cdots o_i p_i$.

We proceed by reverse induction, starting from $i = n$.

$i = n$ To complete the definition of C_n, it suffices to specify $h_n(\text{fpr}_j) (0 \leq j < n_{FP})$ and $h_n(\text{cpr}_j) (0 \leq j < n_{CP})$. We set $h_n(\text{fpr}_j) = (\lambda x.(!fpr_j)x)$ and $h_n(\text{cpr}_j) = (\lambda x.(!cpr_j)x)$, i.e. deferring will cause divergence. Consequently, because $\gamma_n(\text{fpr}_j) = \lambda x.(!fpr_j)x$ and $\gamma_n(\text{cpr}_j) = \lambda x.(!cpr_j)x$, any O action from C_n will trigger divergence. Thus, the only even-length trace that can be generated is the empty one, and we have $\text{Tr}^{\text{even}}(C_n) = \{\epsilon\}$, as required.

$0 \leq i < n$. Assume validity of the Lemma for $i + 1$ and suppose $C_{i+1} = \langle \gamma_{i+1}, \xi_{i+1}, \phi_{i+1}, h_{i+1} \rangle$. By case analysis on p_{i+1}, we first construct an active configuration $E_i = \langle M', c', \gamma_i, \xi_i, \phi_i, h_{i+1} \rangle$ such that $E_i \xrightarrow{p_{i+1}} C_{i+1}$.

Given an abstract value A, let $V_A = A[(\lambda x.(!fpr_j)x)/fpr_j]$, i.e. the function names fpr_j are replaced with function values $(\lambda x.(!fpr_j)x)$. Below we write $\phi_{i+1} \setminus X$, $\gamma_{i+1} \setminus X$ and $\xi_{i+1} \setminus X$ to stand for the removal of names in X from the domain of the respective function, while preserving values for other elements. The table below shows the components of E_i in each case.

<table>
<thead>
<tr>
<th>p_{i+1}</th>
<th>M'</th>
<th>c'</th>
<th>γ_i'</th>
<th>ξ_i'</th>
<th>ϕ_i'</th>
</tr>
</thead>
</table>
| $c_{O}^{\prime}(A)$ | V_A | c_{O}^{\prime} | $\gamma_{i+1} \setminus A$ | ξ_{i+1} | $\phi_{i+1} \setminus A$
| $f_{O}^{\prime}(A, c_{P}^{\prime})((\lambda x.(!cpr_j))x)/[f_{O}^{\prime}(V_A)]$ | $\text{top}_{P}(o_1 \cdots o_{i+1})$ | $\gamma_{i+1} \setminus A, c_{P}^{\prime} \setminus \xi_{i+1}$ | $\phi_{i+1} \setminus A, c_{P}^{\prime}$ |

Note that, in each case, $E_i \xrightarrow{p_{i+1}} C_{i+1}$. In particular, our definition of V_A (based on $\lambda x.(!fpr_j)x$) and the occurrence of $\lambda x.(!cpr_j)x$ in the second case guarantee that, after the step, γ_i' extends to γ_{i+1} in accordance with our description of γ_{i+1} at the beginning of the proof. Similarly, setting c' to $\text{top}_{P}(o_1 \cdots o_{i+1})$ in the second case means that ξ_i' will evolve into ξ_{i+1}.

As a next step we define another active configuration $D_i = \langle M'', \text{top}_{P}(o_1 \cdots o_{i+1}), \gamma_i', \xi_i', \phi_i', h_{i+1} \rangle$, where M'' is specified by the table below, by case analysis on p_{i+1}.
Note that $D_i \xrightarrow{\tau} E_i$.

\[
\begin{array}{c|c}
p_{i+1} & M'' \\
\hline
\bar{C}_O(A) & \text{throw } V_A \text{ to cont } (\bullet, o_A) \quad \bar{C}_O = o_A \\
\bar{C}_O(A) & \text{throw } V_A \text{ to } !\text{cor}_{j'} \quad \bar{C}_O \notin o \\\n\bar{f}_O(A, c_{p''}) (\lambda x. (l_{cpr_{j''}}) x)(\circ V_A) & \bar{f}_O = o \\
\bar{f}_O(A, c_{p''}) (\lambda x. (l_{cpr_{j''}}) x)((!\text{for}_{j'}) V_A) & \bar{f}_O \neq o
\end{array}
\]

Finally, we are ready to define $C_i = \langle \gamma_i, \xi_i, \phi_i, h_i \rangle$ by case analysis on o_{i+1}. Recall that $\phi_i, \gamma_i, \xi_i, \text{dom}(h_i), h_i(\text{for}_{j'})(0 \leq j < n_{FO}), h_i(\text{cor}_{j'})(0 \leq j < n_{CO})$ are covered by the invariants discussed at the beginning of the proof. Thus, it suffices to specify $h_i(fpr_{j'})$ and $h_i(cpr_{j'})$.

- Suppose $o_{i+1} = c_{p'}(A)$. Since o_{i+1} is the only O-move that should be responded to by P:
 - we let $h_i(fpr_{j'}) = \lambda x. (l_{fpr_{j'}}) x$ for any $0 \leq j' < n_{FP}$, in order to create divergence after any $f''_p(A, c_{p''})$;
 - we let $h_i(cpr_{j'}) = \lambda x. (l_{cpr_{j'}}) x$ for any $0 \leq j' < n_{CP}$ such that $j' \neq j$,
 - in order to create divergence after $c_{p''}(A)$ with $j' \neq j$.

To allow a suitable response after $c_{p'}(A)$, we set

\[
h_i(cpr_{j'}) = \lambda x. \text{assert}(x \sim A) ; \text{savefun}(A) ; \text{setheap}(i+1); M''
\]

where the special code fragments are explained below.

- $\text{savefun}(A)$ is meant to save all functions from A in the corresponding references. Let $\text{Fun}(A) = \{(\bar{i}, w) | \pi_{\bar{i}} A = f''_O\}$. Then $\text{savefun}(A)$ is the sequence of assignments $\text{for}_{w} := \pi_{\bar{i}} x$, for all $(\bar{i}, w) \in \text{Fun}(A)$.
- $\text{setheap}(i+1)$ is the sequence of assignments $\text{fpr}_{j'} := h_{i+1}(fpr_{j'}) (0 \leq j' < n_{FP})$ and $\text{cpr}_{j'} := h_{i+1}(cpr_{j'}) (0 \leq j' < n_{CP})$.

Suppose $c_{p'}$ was introduced in $p_{j'}$ then we have $\text{top}_p(o_1 \cdots o_{j'}) = \text{top}_p(o_1 \cdots o_{i+1})$, i.e. types of the codomains of $!cpr_{j'}$ and $!cpr_{j''}$ match, and indeed we can use M'' to define $h_i(cpr_{j'})$ (note that throw is not causing typing problems).

Then we have $C_i \xrightarrow{o_{i+1}} C_i$, where $C_i = \langle (\lambda x. (l_{cpr_{j'}}) A), \text{top}_p(o_1 \cdots o_{j'}), \gamma_i', \xi_i', \phi_i', h_i \rangle$ and $C_i \xrightarrow{\tau} D_i = \langle M'', \text{top}_p(o_1 \cdots o_{i+1}), \gamma_i', \xi_i', \phi_i', h_{i+1} \rangle$. Recall that we have already established $D_i \xrightarrow{\tau} E_i \xrightarrow{p_i} C_{i+1}$, so we are done.

- Suppose $o_{i+1} = f''_p(A, c_{p''})$. Then we let $h_i(cpr_{j''}) = \lambda x. (l_{cpr_{j''}}) x$ for $0 \leq j'' < n_{CP}$ to create divergence after any $c_{p''}(A)$, and $h_i(fpr_{j''}) = \lambda x. (l_{fpr_{j''}}) x$ for any $0 \leq j'' < n_{FP}$ such that $j'' \neq j$, to create divergence after any $f''_p(A, c_{p''})$ with $j'' \neq j$. Then, to arrange for the right reaction after o_{i+1}, we set

\[
h_i(fpr_{j'}) = \lambda x. \text{assert}(x \sim A) ; \text{savefun}(A) ; \text{call/cc}(y. cr_{j'} := y) ; \text{setheap}(i+1); M''
\]

where the special code fragments are specified above. Note that, similarly, we have $C_i \xrightarrow{o_{i+1}} C_i$, where $C_i = \langle (\lambda x. (l_{fpr_{j'}}) A), \gamma_i, \xi_i, \phi_i, h_i \rangle$, $C_i \xrightarrow{\tau} D_i =$
\(\langle M'' \rangle \) is the \(\top \)-value of the whole interaction.

The invariance property follows from Remark 2.

B.7 Proof of Theorem 2

Proof. Suppose \(\Gamma \vdash M_1 \triangleleft_{\text{c,HOSC}} M_2 \). Let \(\rho \) be a \(\Gamma \)-configuration, \(A_i = \rho(x_i) \), \(c : \sigma \) and \(t \in \text{Tr}_{\text{HOSC}}(C_{M_i}^{\rho,x}) \). Then \(t \) is a \((\nu(c) \cup \{c\}) \)-trace. Let \(t_1 = t[\sigma']/\sigma, \sigma'/\sigma \), where \(\sigma', \sigma' \) are fresh names of the same type as \(\sigma, \sigma \) respectively (this is done to ensure that \(\sigma, \sigma \) do not occur in \(t_1 \)). By Lemma 21, because \(t_1 \sim_{\nu(c)} t \), we also have \(t_1 \in \text{Tr}_{\text{HOSC}}(C_{M_i}^{\rho,x}) \). Let \(c' \) : Unit be fresh. Then \(t_2 = t_1[\sigma](c', c') \) is an \((\{\sigma\}, \nu(c) \cup \{c\}) \)-trace. By Lemma 5, there exists a passive configuration \(C_O = \{\sigma \}, \nu(c) \cup \{c, \sigma, \sigma\} \) such that \(\text{Tr}_{\text{HOSC}}(C_O) \) consists of all (even-length prefixes of) traces \(t' \) such that \(t' \sim_{\nu(c) \cup \{c, \sigma\}} t_2 \). Observe that \(C_O = C_{K,O}^{\rho,K} \), where \(K = \langle \gamma \rangle \rangle \rangle \{\varepsilon/\varepsilon\} \) and \(\gamma = \gamma \cup \nu(A) \). Hence, \(t_1 \in \text{Tr}_{\text{HOSC}}(C_{M_i}^{\rho,x}) \) and \(t_2[\sigma](c', c') \in C_{K,O}^{\rho,K} \). By Lemma 4 (right-to-left), \((K[M_{1})], h) \vdash_{\text{err}} \). Because \(\Gamma \vdash M_1 \triangleleft_{\text{c,HOSC}} M_2 \), \((K[M_{2})], h) \vdash_{\text{err}} \). By Lemma 4 (left-to-right), there exist \(t'' \) such that \(t'' \in \text{Tr}_{\text{HOSC}}(C_{M_2}^{\rho,x}) \) and \(t'' \sim_{\nu(c) \cup \{c, \sigma\}} t_2 \). By the definition of \(C_O \), we must have \(t'' \sim_{\nu(c) \cup \{c, \sigma\}} t_1 \). Because \(t'' \in \text{Tr}_{\text{HOSC}}(C_{M_2}^{\rho,x}) \), we have \(t_1 \in \text{Tr}_{\text{HOSC}}(C_{M_2}^{\rho,x}) \) by Lemma 21. Since \(t_1 \sim_{\nu(c) \cup \{c\}} t \), it follows that \(t \in \text{Tr}_{\text{HOSC}}(C_{M_2}^{\rho,x}) \), as required.

C Composite Interaction (Proof of Lemma 4)

Definition 22. A composite configuration \(D \) is a tuple \(\langle M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \) with \(M \) a term, \(c \) a continuation name, \(\gamma_P, \gamma_O \) two environments, \(\phi \) a set of names and \(h_P, h_O \) two heaps.

Definition 23. Taking a continuation function \(\xi \), we define a relation \(\prec_\xi \) between the continuation names as the graph of \(\xi \), i.e. \(c \prec_\xi c' \) when \(\xi(c) = c' \).

We write \(\circ \) for the final continuation name, used by Opponent to answer the resulting value of the whole interaction.

Definition 24. A valid composite configuration \(D \) is a tuple \(\langle M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \) with:

- \(\text{dom}(\gamma_P) \cap \text{dom}(\gamma_O) = \emptyset \) and \(\circ \notin \text{dom}(\gamma_P) \cup \text{dom}(\gamma_O) \);
- \(\text{dom}(\gamma_P) \cup \text{dom}(\gamma_O) \cup \{\circ\} = \phi \);
- \(\text{dom}(\xi) = (\text{dom}(\gamma_O) \cup \text{dom}(\gamma_P)) \cap \text{CNames} \);
- for all \(c \in \text{dom}(\xi) \), if \(c \in \text{dom}(\gamma_X) \) then \(\xi(c) \in \text{dom}(\gamma_{X+}) \), for \(X \in \{O, P\} \);
- the transitive closure of \(\prec_\xi \) is a strict partial order which admits a unique maximal element equal to \(\circ \);
Taking Lemma 23.

\[\begin{align*}
\text{(P\tau)} & \quad \langle M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \xrightarrow{c} \langle N, c', \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \\
\text{when } c & \in \text{dom}(\gamma_O) \text{ and } (M, c, h_P) \rightarrow (N, c', h_P) \\
\text{(PA)} & \quad \langle V, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \xrightarrow{c(A)} \langle K[A], \xi(c), \gamma_P \cdot \gamma', \gamma_O, \xi, \phi \uplus \text{dom}(\gamma'), h_P, h_O \rangle \\
\text{when } c & : \sigma, \gamma_O(c) = K, \text{ and } (A, \gamma') \in \text{AVal}_\sigma(V) \\
\text{(PQ)} & \quad \langle K[fV], c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \xrightarrow{f(A,c')\gamma} \langle V', A', c', \gamma_P \cdot \gamma' \cdot [c' \rightarrow K], \gamma_O, \xi \bowtie [c' \rightarrow c], \phi \uplus \text{dom}(\gamma') \uplus \{c'\}, h_P, h_O \rangle \\
\text{when } f & : \sigma \rightarrow \sigma', c' : \sigma', \gamma_O(f) = V' \text{ and } (A, \gamma') \in \text{AVal}_\sigma(V) \\
\text{(O\tau)} & \quad \langle M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \xrightarrow{c} \langle N, c', \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \\
\text{when } c & \in \text{dom}(\gamma_P) \text{ and } (M, c, h_O) \rightarrow (N, c', h_O) \\
\text{(OA)} & \quad \langle V, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \xrightarrow{c(A)} \langle K[A], \xi(c), \gamma_P \cdot \gamma' \cdot \xi, \phi \uplus \text{dom}(\gamma'), h_P, h_O \rangle \\
\text{when } c & : \sigma, \gamma_P(c) = K, \text{ and } (A, \gamma') \in \text{AVal}_\sigma(V) \\
\text{(OQ)} & \quad \langle K[fV], c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \xrightarrow{f(A,c')\gamma} \langle V', A, \gamma_P \cdot \gamma' \cdot [c' \rightarrow K], \xi \cdot [c' \rightarrow c], \phi \uplus \text{dom}(\gamma') \uplus \{c'\}, h_P, h_O \rangle \\
\text{when } f & : \sigma \rightarrow \sigma', c' : \sigma', \gamma_P(f) = V' \text{ and } (A, \gamma') \in \text{AVal}_\sigma(V)
\end{align*} \]

Fig. 9. Composite LTS for HOSC[HOSC]

- \(\gamma_P \cdot \gamma_O \) is well-typed;
- \(c \in \phi \) with \(c : \sigma \vdash M : \sigma \);
- \(\text{dom}(h_P) \cap \text{dom}(h_O) = \emptyset \).

The composite LTS, defined on such composite configurations, is given in Figure 9. Up to choice of name, it is deterministic.

Definition 25. Two valid HOSC-configurations \(C_P, C_O \) are said to be compatible if one of the two is active and the other one is passive, and, without loss of generality, supposing that \(C_P \) is the active configuration \(\langle M, c, \gamma_P, \xi_P, \phi_P, h_P \rangle \) and \(C_O \) the passive configuration \(\langle \gamma_P, \xi_O, \phi_O, h_O \rangle \), then \(\phi_O = \phi_P \uplus \{\circ, \xi\} \) and the composite configuration \(\langle M, c, \gamma_P, \gamma_O, \xi_P \cdot \xi_O, \phi_P, h_P, h_O \rangle \), written \(C_P \bowtie C_O \), is valid.

Lemma 23. Taking \(D \) a valid composite configuration and \(D' \) a composite configuration s.t. \(D \xrightarrow{a} D' \), then \(D' \) is valid.

Lemma 24. Taking \(C_P, C_O \) two compatible configurations, for all composite configuration \(D' \), if \((C_P \bowtie C_O) \xrightarrow{a} C' \) then there exists two compatible configurations \(C_P', C_O' \) s.t.:

- \(D' = C_P' \bowtie C_O' \);
- \(C_P \xrightarrow{a} C_P' \) and \(C_O \xrightarrow{a} C_O' \).

Proof. Without loss of generality, we suppose that \(C_P \) is the active configuration and \(C_O \) the passive one. So we write \(C_P \) as \(\langle M, c, \gamma_P, \phi, h_P \rangle \) and \(C_O \) as \(\langle \gamma_O, \phi, h_O \rangle \).
Lemma 25. Taking C_P, C_O two compatible configurations, if

- $\mathit{C}_P \nRightarrow \mathit{C}_P'$;
- $\mathit{C}_O \nRightarrow \mathit{C}_O'$;

then C_P', C_O' are two compatible configurations and $(\mathit{C}_P \land \mathit{C}_O) \nRightarrow (\mathit{C}_P' \land \mathit{C}_O')$.

Proof. Without loss of generality, we suppose that C_P is the active configuration and C_O the passive one. So we write C_P as (M, c, h_P) and C_O as (γ_O, ϕ, h_O).

- If a is a Player Answer $\bar{c}(A)$, then there exists V, h_P' s.t.

 $$(\mathit{C}_P \land \mathit{C}_O) \nRightarrow (V, c', \gamma_P, \gamma_O, \xi, \phi, h_P', h_O)$$

 so that $(M, c, h_P) \rightarrow (V, c', h_P')$. Then there exists K, c'' s.t. $\gamma_O(c') = K, \xi(c') = c''$ and there exists σ, γ' s.t. $\bar{c} : \sigma$ and $(A, \gamma') \in \mathbb{AVal}_\sigma(V)$, so that $D' = (K[A], c'', \gamma_P \cdot \gamma', \gamma_O, \phi \cup \text{dom}(\gamma'), h_P', h_O)$.

 We then define C_P' as $(\gamma_P \cdot \gamma', \phi \cup \text{dom}(\gamma'), h_P')$ and C_O' as $(K[A], c'', \gamma_O, \phi \cup \text{dom}(\gamma'), h_O)$. One easily check that:

 - $\mathit{C}_P', \mathit{C}_O'$ are two compatible configurations;
 - $D' = \mathit{C}_P' \land \mathit{C}_O'$;
 - $\mathit{C}_P \nrightarrow (V, c', \gamma_P, \phi, h_P') \bar{c}(A) \Rightarrow \mathit{C}_P'$;
 - $\mathit{C}_O \bar{c}(A') \Rightarrow \mathit{C}_O'$.

- If a is a Player Question $\bar{f}(A, c')$, then there exists K, V, c'', h_P' s.t.

 $$(\mathit{C}_P \land \mathit{C}_O) \nRightarrow (K[f V], c'', \gamma_P, \gamma_O, \xi, \phi, h_P', h_O)$$

 so that $(M, c, h_P) \rightarrow (K[f V], c'', h_P')$. Then there exists V' s.t. $\gamma_O(f) = V'$, and there exists σ, σ', γ' s.t. $f : \sigma \rightarrow \sigma'$, and $(A, \gamma') \in \mathbb{AVal}_\sigma(V)$, so that $D' = (V'[A], c', \gamma_P \cdot \gamma', \gamma_O, \xi \cdot \{c' \rightarrow c''\}, \phi \cup \text{dom}(\gamma') \cup \{c'\}, h_P', h_O)$.

 We then define C_P' as $(\gamma_P \cdot \gamma', \gamma_O, \phi \cup \text{dom}(\gamma') \cup \{c'\}, h_P')$ and C_O' as $(V'[A], c', \gamma_O, \phi \cup \text{dom}(\gamma') \cup \{c'\}, h_O)$. One easily check that:

 - $\mathit{C}_P', \mathit{C}_O'$ are two compatible configurations;
 - $D' = \mathit{C}_P' \land \mathit{C}_O'$;
 - $\mathit{C}_P \nrightarrow (K[f V], c'', \gamma_P, \phi, h_P') \bar{f}(A, c') \Rightarrow \mathit{C}_P'$;
 - $\mathit{C}_O \bar{f}(A, c') \Rightarrow \mathit{C}_O'$.

Then one easily checks that C'_P, C'_O are two compatible configurations, and:

\[
(C_P \& C_O) \xrightarrow{f(A, c')} \langle V, c', \gamma_P, \gamma_O, \xi, \phi, h'_P, h_O \rangle
\]

so that $(K[A], c'', \gamma_P \cdot \gamma, \gamma_O, \phi \cup \text{dom}(\gamma'), h'_P, h_O) = C'_P \& C'_O$.

- If a is a Player Question $f(A, c')$, there exists $K, V, c'', h'_P, s.t. C_P \xrightarrow{f(A, c')} \langle K[f V], c'', \gamma_P, \phi, h'_P \rangle$ so that $(M, c, h_P) \rightarrow (K[f V], c'', h'_P)$. Then:
 - there exists $\sigma, \sigma' s.t. f : \sigma \rightarrow \sigma'$, and $V', \gamma', s.t. \gamma_O(f) = V'$ and $(A, \gamma') \in AVal_o(V)$ so that $C'_P = (\gamma_P \cdot \gamma'. [c' \rightarrow K], \xi \cdot [c' \rightarrow c''], \phi \cup \text{dom}(\gamma') \cup \{c', h'_P\}$;
 - there exists $V' s.t. \gamma_O(f) = V'$ and $C'_O = \langle V'A, c', \gamma_O, \phi \cup \text{dom}(\gamma') \cup \{c', h_O \rangle$.

Then one easily checks that C'_P, C'_O are two compatible configurations, and:

\[
(C_P \& C_O) \xrightarrow{f(A,c')} \langle K[f V], c', \gamma_P, \gamma_O, \xi, \phi, h'_P, h_O \rangle
\]

so that $(K[A], c'', \gamma_P \cdot \gamma, \gamma_O, [c' \rightarrow K], \gamma_O, \xi \cdot [c' \rightarrow c''], \phi \cup \text{dom}(\gamma') \cup \{c', h'_P, h_O \rangle = C'_P \& C'_O$.

Definition 26. A composite configuration D terminates following a trace t, written $D \Downarrow^*_t$, when there exists a final composite configuration $D_f = (\langle \rangle, o, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O)$ s.t. $D \xrightarrow{\tau} D_f$. We often omit the trace t and simply write $D \Downarrow_t$.

Definition 27. A composite configuration D errors following a trace t, written $D \Downarrow^*_t$, when there exists a composite configuration $D_f = (\langle \text{err} \rangle, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O)$ s.t. $D \xrightarrow{\tau} D_f$. We often omit the trace t and simply write $D \Downarrow_t$.

Lemma 26. Taking C_P, C_O two compatible configurations if $(C_P \& C_O) \Downarrow^*_t$ then:

- if C_P is active and C_O passive, t is even-length;
- if C_P is passive and C_O active, t is odd-length.

Proof. By induction on the length of t:

- If $t = \epsilon$, then $C_P \& C_O$ can be written as $(\langle \rangle, o, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O)$. Writing ϕ_P for the name environment component of C_P, and ϕ_O for the one of C_O, then $\phi = \phi_O = \phi_P \cup \{o\}$. So necessarily is the C_O active one.
- If $t = a \cdot t'$, then we conclude using Lemma 24 and the induction hypothesis.

Definition 28. Taking C_P, C_O two compatible configurations, one write $(C_P | C_O) \Downarrow^*_y$, with $y \in \{\text{ter, err}\}$, when $t \in \text{Tr}(C_P)$ and

- if $y = \text{ter}$ then $t^+ \cdot \delta(\langle \rangle) \in \text{Tr}(C_O)$;
- if $y = \text{err}$ then $t^+ \cdot \delta(\langle \rangle, c) \in \text{Tr}(C_O)$ for some $c \in \text{CNames}$;
Lemma 27. Taking C_P, C_O two compatible configurations and t a trace, then $(C_P | C_O) \Downarrow^y_t$ iff $(C_P \And C_O) \Downarrow^c_y$, with $y \in \{ \text{ter}, \text{err} \}$.

Proof. We first prove that if $(C_P | C_O) \Downarrow^y_t$ then $(C_P \And C_O) \Downarrow^c_y$ by induction on the length of t:

- if t is empty and $y = \text{ter}$, then $\delta(()) \in \text{Tr}(C_O)$, so there exists γ_O, ϕ, h_O s.t. $C_O \xrightarrow{} ((), \phi, \gamma_O, \phi, h_O)$. Since C_O is an active configuration, C_P must be a passive configuration, that we write as (γ_P, ϕ, h_P). Then $C_P \And C_O = (\gamma_P, \phi, \gamma_O, \phi, h_P, h_O)$, so that indeed $(C_P \And C_O) \Downarrow^c_{\text{ter}}$.
- if t is empty and $y = \text{err}$, then $\text{err}(((), c) \in \text{Tr}(C_O)$, so there exists γ_O, ϕ, h_O s.t. $C_O \xrightarrow{} (K[\text{err}](), c, \gamma_O, \phi, h_O)$. Since C_O is an active configuration, C_P must be a passive configuration, that we write as (γ_P, ϕ, h_P). Then $C_P \And C_O = (K[\text{err}](), c, \gamma_P, \gamma_O, \phi, h_P, h_O)$, so that indeed $(C_P \And C_O) \Downarrow^c_{\text{ter}}$.
- if $t = a \cdot t'$, then there exists two configurations C'_P, C'_O s.t.:
 - $C_P \xrightarrow{a} C'_P$;
 - $C_O \xrightarrow{a} C'_O$;
 - $(C'_P, C'_O) \Downarrow^c_{\text{ter}}$.
From Lemma 25, we get that C'_P, C'_O are two compatible configurations and $(C_P \And C_O) \xrightarrow{a} (C'_P \And C'_O)$. Using the induction hypothesis we get that $(C'_P \And C'_O) \Downarrow^c_y$. So $(C_P \And C_O) \Downarrow^c_y$.

We now prove that if $(C_P \And C_O) \Downarrow^c_y$ then $(C_P | C_O) \Downarrow^y_t$, by induction on the length of t:

- if t is empty and $y = \text{ter}$, then $(C_P \And C_O) \xrightarrow{} ((), \phi, \gamma_P, \gamma_O, \phi, h_P, h_O)$. So $C_O \xrightarrow{} ((), \phi, \gamma_O, \phi, h_O)$ and $C_P = (\gamma_P, \phi, h_P)$, Thus $C_O \xrightarrow{} (\gamma_O, \phi, h_O)$, so $(C_P | C_O) \Downarrow^y_{\text{ter}}$.
- if t is empty and $y = \text{err}$, then $(C_P \And C_O) \xrightarrow{} (K[\text{err}](), c, \gamma_P, \gamma_O, \phi, h_P, h_O)$. So $C_O \xrightarrow{} (K[\text{err}](), c, \gamma_O, \phi, h_O)$ and $C_P = (\gamma_P, \phi, h_P)$, Thus $C_O \xrightarrow{} (\gamma_O, \phi, h_O)$, so $(C_P | C_O) \Downarrow^y_{\text{ter}}$.
- if $t = a \cdot t'$, then there exists a composite configuration D' s.t. $(C_P \And C_O) \xrightarrow{a} D'$ and $D' \Downarrow^c_{\text{ter}}$. From Lemma 24, we get the existence of two compatible configurations C'_P, C'_O s.t.:
 - $D' = C'_P \And C'_O$;
 - $C_P \xrightarrow{a} C'_P$;
 - $C_O \xrightarrow{a} C'_O$.
From $(C'_P \And C'_O) \Downarrow^c_y$, we get from the induction hypothesis that $(C'_P | C'_O) \Downarrow^c_y$. So $(C_P | C_O) \Downarrow^y_t$.

Definition 29. Taking γ, ξ a valid environment and c,c' two continuation names s.t. $c \leftarrow^\xi c'$, we define the evaluation context $K_{c,c'}$ as:

We write \(K\) defined as the relation:
\[
\delta \triangleq \{ (f, V) \mid f \in \text{dom}(\gamma) \land \gamma(f) = V \} \cup \{ (c, K) \mid c \in \text{dom}(\gamma) \land \gamma(c) = K \}
\]
\[
\delta^0 = \{ (f, V) \mid f \in \text{dom}(\gamma) \land \gamma(f) = V \} \cup \{ (c, K) \mid c \in \text{dom}(\gamma) \land \gamma(c) = K \}
\]
\[
\delta^{i+1} = \{ (f, V(\delta)) \mid (f, V) \in \delta^i \} \cup \{ (c, K(\delta)) \mid (c, K) \in \delta^i \}
\]
then there exists \(n \in \mathbb{N}\) s.t. \(\delta^{n+1} = \delta^n\), and \(\delta\) is then defined as \(\delta^n\).

One need this iterative construction to get the idempotency result, that corresponds to the fact that the support of the values and evaluation contexts in the codomain of \(\delta\) are empty (i.e. they do not have continuation or functional names anymore). This is possible because there is no cycles between names.

Lemma 28. Taking \(D = \langle K[f \triangleright V], c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle\) a valid composite configuration that is going to perform a question, with \(f \in \text{dom}(\gamma)\), where \(\gamma = \gamma_P \cdot \gamma_O\), there exists a functional name \(g\), an abstract value \(A\), a composite configuration \(D'\) and a trace \(\tau\) formed by questions s.t.:

\(\gamma(g)\) is a \(\lambda\)-abstraction \(\lambda x. M\);

\(\delta(f) = \delta(g)\), writing \(\delta\) for the idempotent substitution associated to \(\gamma\);

\(D \xrightarrow{\tau} D'\);

\(D'\) can be written as \(\langle g A, c', \gamma_P \cdot \gamma'_P, \gamma_O \cdot \gamma'_O, \phi \cup \text{dom}(\gamma'_P), h_P, h_O \rangle\);

\(A(\delta') = V\), with \(\delta'\) the idempotent substitution associated to \(\gamma_P' \cdot \gamma'_O\);

\(K_{\gamma_{\alpha,c}} = \bullet\).

Lemma 29. Let \(D = \langle V, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle\) be a valid composite configuration that is going to perform an answer. Suppose that there exists \(c'\) s.t. \(c \prec \gamma_{\alpha,c'}\) and \(K_{\gamma_{\alpha,c'}} = \bullet\). Then there exists a composite configuration \(D' = \langle A, c', \gamma_P \cdot \gamma_P', \gamma_O \cdot \gamma'_O, \phi \cup \text{dom}(\gamma'_P), h_P, h_O \rangle\) and a trace \(\tau\) formed by answers s.t. \(D \xrightarrow{\tau} D'\) and \(A(\delta') = V\), with \(\delta'\) the idempotent substitution associated to \(\gamma_P' \cdot \gamma'_O\).

Definition 31. One define the configuration transformation \(\theta\) from valid composite configurations to pair formed by a term and a heap, defined as

\[
\theta: \langle M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle \mapsto (\langle K^c_\gamma[M] \{\delta\}, (h_P \cdot h_O)\{\delta\}\rangle)
\]

writing \(\gamma\) for \(\gamma_P \cdot \gamma_O\) and \(\delta\) for the idempotent substitution associated to \(\gamma\).

Lemma 30. Taking \(D, D'\) two valid composite configuration and an action (different of \(\tau\)) s.t. \(D \xrightarrow{\alpha} D'\) then \(\theta(D) = \theta(D')\).

Proof. Let us write \(D\) as \(\langle M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O \rangle\). Without loss of generality, we suppose the composite configuration \(D\) to be \(P\)-active, i.e. \(c \in \text{dom}(\gamma_O)\).

We reason by case analysis over \(\alpha\):
If $\alpha = \bar{c}(A)$, so that M is a value V. Then we have:
- $\gamma_O(c) = K$ and $c : \tau$ for some context K and type τ;
- $\gamma'_O = \gamma_O, \gamma'_P = \gamma_P \cdot \gamma_A$ and $\phi' = \phi\psi\text{dom}(\gamma_A)$; with $(A, \gamma_A) \in \text{AVVal}_e(V)$;
- $h'_P = h_P$ and $h'_O = h_O$;
- $M' = K[A]$.

We conclude using these and the fact that:
- $K'_2 = K'_2[K]$, where $c' = \xi(c)$;
- $A\{\gamma_A\} = V$;
- that $(K'_2[V])\{\delta\} = (K'_2[K[A]])\{\delta'\}$. So $\theta(D) = \theta(D')$.

If $\alpha = f(A, c')$, so that M is a callback $K[f V]$ for some context K, value V, and functional name f. Then we have:
- $\gamma_O(f) = V'$ and $f : \sigma \to \sigma'$ for some value V and type σ, σ';
- $\gamma'_O = \gamma_O, \gamma'_P = \gamma_P \cdot \gamma_A \cdot \{\xi', \gamma' \to K\}, \xi' = \xi \cdot \{\xi' \to c\}$ and $\phi' = \phi\psi\text{dom}(\gamma_A)$ ·
- $\{\xi', \gamma' \to K\}, \xi' = \xi \cdot \{\xi' \to c\}$ and $\phi' = \phi\psi\text{dom}(\gamma_A)$ ·
- $h'_P = h_P$ and $h'_O = h_O$;
- $M' = V' A$.

We conclude using these and the fact that:
- $K'_2 = K'_2[K]$;
- $\gamma_O(f) = V'$;
- $A\{\gamma_A\} = V$;
- that $(K'_2[K[f V]])\{\delta\} = (K'_2[V'[A]])\{\delta'\}$. So $\theta(D) = \theta(D')$.

Definition 32. Taking D, D' two composite configuration, we write $D \leadsto D'$ when there exists a trace t of actions (without any τ-actions) s.t. $D \xrightarrow{\tau} D'$.

Lemma 31. The configuration transformation θ is a functional bisimulation between the transition system over composite configurations (CompConf, \leadsto) and the operational transition system $(A \times \text{Heap}, \rightarrow)$, that is, for all valid composite configuration D:

- for all composite configuration D', if $D \leadsto D'$ then $\theta(D) \rightarrow \theta(D')$;
- for all pairs (N, h) formed by a term an a heap h', if $\theta(D) \rightarrow (N, h')$ then there exists a valid composite configuration D' s.t. $D \leadsto D'$ and $(N, h') = \theta(D')$.

Proof. We write:

- D as $(M, c, \gamma_P, \gamma_O, \xi, \phi, h_P, h_O)$;
- γ for $\gamma_P \cdot \gamma_O$;
- δ for the idempotent substitution associated to $\gamma_P \cdot \gamma_O$;
- $\theta(D)$ as $(K'_2[M])\{\delta\}, h)$ with $h = (h_P \cdot h_O)\{\delta\}$.

We first suppose that $D \leadsto D'$, i.e. there exists a trace t of actions (without any τ) and a composite configurations D_1 s.t. $D \xrightarrow{\tau} D_1 \xrightarrow{\tau} D'$. From Lemma 30, we get that $\theta(D) = \theta(D_1)$.

Without loss of generality, we suppose the composite configuration D_1 is P-active. We write D' as $(M', c', \gamma'_P, \gamma'_O, \phi', h'_P, h_O)$ and D_1 as $(M_1, c_1, \gamma'_P, \gamma'_O, \phi', h'_P, h_O)$, so that we have $(M_1, c_1, h_P) \rightarrow (M', c', h'_P)$.
From Lemma 20, there is three possible cases for the reduction N.

Now, we suppose that there exists a term N and a substitution to M.

- Either $(M, c, h_P \cdot h_O)$ is reducible. Without loss of generality, we suppose the composite configuration D is P-active, so that (M, c, h_P) is reducible. Then there exists (M', c', h_P') s.t.:
 - $(M, c, h_P) \rightarrow (M', c', h_P');$
 - $N = (K^{\gamma_2}_{c_2} [M']) \{ \delta \};$
 - $h' = (h'_P \cdot h_O) \{ \delta \}.$

So we take $D' = \langle M', c', \gamma_P, \gamma_O, \xi, \phi, h'_P, h_O \rangle$ so that $D \xrightarrow{\tau} D'$.

- Or M is a callback:
 - $M = K[f V]$ for some context K, value V, and functional name f;
 - $\delta(f)$ is a λ-abstraction that we write $\lambda x.P \ (\text{with } x \notin \text{dom}(\delta));$
 - $N = (K^{\gamma_2}_{c_2} [K[P/V/x]]) \{ \delta \};$
 - $h' = h.$

From Lemma 28, there exists a functional name g, an abstract value A_1, a composite configuration D_1 and a trace t formed by questions s.t.:

- $\gamma(g)$ is a λ-abstraction $\lambda x.\hat{P};$
- $\delta(f) = \delta(g);$
- $D \xrightarrow{\gamma} D_1;$
- D_1 can be written as $\langle g, A_1, c_1, \gamma_P \cdot \gamma_1, \gamma_O \cdot \gamma_1, \phi \psi \text{dom}(\gamma_1, P), h_P, h_O \rangle;$
- $A_1 \{ \delta_1 \} = V$, with δ_1 the idempotent substitution associated to γ_1.

Without loss of generality, we suppose the composite configuration D_1 is P-active. Then we have:

$$
D \xrightarrow{\delta} D_1 \xrightarrow{\tau} D_2 \xrightarrow{\gamma} D'$$

with $\gamma_2 = \lambda x.\hat{P}$ and $A_2 \{ \gamma_2 \} = A_1$. From Lemma 30, we have that $\theta(D) = \theta(D_2)$. We prove that $(P\{A_2/x\}) \{ \delta_2 \} = P\{V/\delta/x\}$ from the fact that:

- $A_2 \{ \delta_2 \} = V[\delta]$ since $A_1 \{ \delta_1 \} = V$ and $A_1 = A_2 \{ \gamma_2 \};$
- $\hat{P}[\delta] = \hat{f}$ since $\delta(f) = \delta(g)$, $\delta(f) = \lambda x.P$ and $\gamma(g) = \lambda x.\hat{P}.$

Finally, from $K^{\gamma_2}_{c_2} = K$ and $\gamma_2(c_2) = (\bullet, c_1)$, we get that $K^{\gamma_2}_{c_2} = K^{\gamma_2}_{c_2} [K]$. So $\theta(D') = (N, h).$
– Or \(M \) is a value \(V \) and \(K^?_c \) an evaluation context larger than \(\bullet \). Then there exists a continuation name \(c_1 \) s.t.:
 - \(c \prec^* c_1 \)
 - \(K^?_{c,c_1} = \bullet \).
 - \(\gamma(c_1) = K \) with \(K \) an evaluation context larger than \(\bullet \).

From Lemma 29, there exists an abstract value \(A_1 \), a composite configuration \(D_1 \) and a trace \(t \) formed by answers s.t.:
- \(D \xrightarrow{t} D_1 \);
- \(D_1 \) can be written as \(\langle A_1, c_1, \gamma_1 \cdot P, \gamma_1 \cdot O, \phi \oplus \text{dom}(\gamma_1 \cdot O), h_P, h_O \rangle \);
- \(A_1 \{ \delta_1 \} = V \), with \(\delta_1 \) the idempotent substitution associated to \(\gamma_1 \cdot P \cdot \gamma_1 \cdot O \):

Without loss of generality, we suppose the composite configuration \(D_1 \) is \(P \)-active. Then we have:

\[
D \xrightarrow{\xi(A_2)} D_1 \xrightarrow{c_1} \langle K[A_2], c_2, \gamma_2 \cdot P, \gamma_2 \cdot O, \phi_2, h_P, h_O \rangle
\]

with \(\xi(c_1) = c_2, \gamma_2 \cdot P = \gamma_1 \cdot P \cdot \gamma_A, 2 \) and \(A_2 \{ \gamma_A \} = A_2 \).

From Lemma 30, we have that \(\theta(D) = \theta(D_2) \). From \(K^?_{c,c_1} = \bullet \), we get that \(K^?_c = K^?_{c_1} \), so that \(K^?_{c_1}[K] = K^?_c \). Since \(K \) is larger than \(\bullet \), \(K[A_2] \) cannot be a value, so from Lemma 19 we have that:
 - either \((K[A_2], c_2, h_P) \) is reducible, and we conclude using a similar reasoning as in the first case, on \(D_2 \).
 - or \(K[A_2] \) is a callback, and we conclude using a similar reasoning as in the second case, on \(D_2 \).

Corollary 5. Taking \(D \) a valid composite configurations, \(D \downarrow_{\text{ter}} \) iff \(\theta(D) \downarrow_{\text{ter}} \).

Proof. We write \(D \) as \(\langle M, c, \gamma_1 \cdot P, \gamma_1 \cdot O, \xi, \phi, h_P, h_O \rangle \).

We first prove that if \(D \downarrow_{\text{ter}} \) then \(\theta(D) \downarrow_{\text{ter}} \). From \(D \downarrow_{\text{ter}} \), we get the existence of a sequence of reductions \(D \rightsquigarrow^* \langle(), \xi, \gamma_1 \cdot P, \gamma_1 \cdot O, \phi, h_P, h_O \rangle \). We reason by induction over the length of this reduction.

- if \(D = D_f \), then \(\theta(D) = \langle(), _ \rangle \) since \(M = () \) and \(c = _ \) so that \(K^?_{\gamma_1 \cdot O} = \bullet \),
- if there exists a composite configuration \(D' \) s.t. \(D \rightsquigarrow D' \rightsquigarrow^* D_f \), then by induction hypothesis \(\theta(D') \downarrow_{\text{ter}} \), and from Theorem 31 one has that \(\theta(D) \rightsquigarrow \theta(D') \), so that \(\theta(D) \downarrow_{\text{ter}} \).

We now prove that if \(\theta(D) \downarrow_{\text{ter}} \) then \(D \downarrow_{\text{ter}} \). From \(\theta(D) \downarrow_{\text{ter}} \) we get the existence of \(\langle(), h \rangle \) s.t. \(\theta(D) \rightsquigarrow^* \langle(), h \rangle \). We reason by induction over the length of this reduction.

- if the reduction is empty, then \(\theta(D) = \langle(), h \rangle \). So necessarily \(M = () \) and \(K^?_{\gamma_1 \cdot O} = \bullet \). Then from Lemma 29, \(\theta(D) \downarrow_{\text{ter}} \).
- if there exists \((M', h') \) s.t. \(\theta(D) \rightsquigarrow (M', h') \rightsquigarrow^* ((), h) \), then from Theorem 31, there exists a configuration \(D' \) s.t. \(\theta(D) \rightsquigarrow \theta(D') \) and \(\theta(D') = (M', h') \). Then by induction hypothesis, since \(\theta(D') \rightsquigarrow^* ((), h) \), we get that \(\theta(D') \downarrow_{\text{ter}} \), so that \(\theta(D) \downarrow_{\text{ter}} \).
Corollary 6. Taking D a valid composite configurations, $D \Downarrow_{\text{err}}$ iff $\theta(D) \Downarrow_{\text{err}}$.

Finally, we can prove Lemma 4

Lemma 32 (Correctness). Let $\Gamma \vdash M : \tau$ be a cr-free HOSC term, let Σ, h, K, γ be as above, $(\vec{A}, \vec{\gamma}_i) \in \text{AVal}_F(\gamma)$, and $c : \tau$ ($c \not\in \circ$). Then

- $(K[M(\gamma)], h) \Downarrow_{\text{err}}$ iff there exist t, c' such that $t \in \text{Tr}_{HOSC}(C_M^{\vec{x},c})$ and $t \downarrow (\vec{A}, c')' \in \text{Tr}_{HOSC}(C_{h,K,\gamma})$.

- $(K[M(\gamma)], h) \Downarrow_{\text{ter}}$ iff there exist t, A, τ such that $t \in \text{Tr}_{HOSC}(C_M^{\vec{x},c})$ and $t \downarrow (\vec{A}, c)_{\gamma}(A) \in \text{Tr}_{HOSC}(C_{h,K,\gamma})$.

Moreover, t must satisfy $\nu(t) \cap (\circ \cup \{\diamond\}) = \emptyset$.

Proof. Let $y \in \{\text{ter}, \text{err}\}$. Note that $(K[M(\gamma)], h) \Downarrow_{y}$ iff $\theta(C_M^{\vec{x},c} \uplus C_{h,K,\gamma}^{\vec{\gamma}_i}) \Downarrow_{y}$. From Corollary 5 and 6, this is equivalent to the existence of a trace t such that $(C_M^{\vec{x},c} \uplus C_{h,K,\gamma}^{\vec{\gamma}_i}) \Downarrow_{y}^t$. By Lemma 27, this is the same as $(C_M^{\vec{x},c} | C_{h,K,\gamma}^{\vec{\gamma}_i}) \Downarrow_{y}^t$, which implies the Lemma.

D Additional material for Section 4 (GOSC[HOSC])

D.1 Proof of Lemma 7 (visibility)

We write $C \overset{\tau}{\rightarrow} C'$ to say that there exists a sequence of transitions from C to C' such that the collected labels, including τ transitions, give a trace t. The proof is based on an auxiliary lemma (Lemma 33), which generalizes P-visibility to configurations, enabling an inductive proof.

Lemma (Original Statement of Lemma 7). Let $C_O = C_{h,K,\gamma}^{\vec{\gamma}_i}$, where h, K, γ are from GOSC, and $(\vec{A}, \vec{\gamma}_i) \in \text{AVal}_F(\gamma)$. All traces in $\text{Tr}_{\text{even}}(C_O)$ are P-visible.

Proof. Suppose $C_O \xrightarrow{a_1 \cdots a_{2i+1}} C$ and $C \xrightarrow{\tau} C' \xrightarrow{a_{2i+2}} C''$. By Lemma 33, $C' = \langle M', c', \cdots \rangle$ with $\nu(M', c') \subseteq \text{Vis}_P(a_1 \cdots a_{2i+1})$. Because the O-names in a_{2i+2} come from $\nu(M', c')$, P-visibility follows.

Lemma 33. Suppose $C_O \xrightarrow{a_1 \cdots a_k} C$.

1. If $C = \langle \gamma, \xi, \phi, h \rangle$ then, for any $n \in \text{dom}(\gamma)$, if n was introduced in $a_{2i} \ (0 \leq i \leq k/2)$ then $\nu(\gamma(n)) \subseteq \text{Vis}_P(a_1 \cdots a_{2i-1})$ and if $n \in \text{CNames}$ then $\xi(n) \in \text{Vis}_P(a_1 \cdots a_{2i-1})$ (introduced in a_0 is taken to mean \circ and $\text{Vis}_P(a_1 \cdots a_0)$ stands for $\{\circ, \diamond\}$).

2. If $C = \langle M, c, \gamma, \xi, \phi, h \rangle$ then $\nu(M, c) \subseteq \text{Vis}_P(a_1 \cdots a_k)$ and all of the conditions listed above hold.
Proof. By induction on the number of transitions between C_O and C, including τ-transitions.

The base case is $C_O = C$. The Lemma then holds because $\nu(\gamma) \subseteq \{\circ\}$, $\xi(c) = \circ$, and $\text{Vis}_P(a_1 \ldots a_0) = \{\circ, \circ\}$.

Suppose $C_O \xrightarrow{a_1 \ldots a_k} C'$ and $C_O \xrightarrow{t} C \xrightarrow{\bar{z}} C'$, where t is a trace and x is an action or $x = \tau$.

- If $x = \tau$ then γ, ξ do not change during the transition and the reduction does not generate new names by Lemma 6. Hence, the Lemma follows from IH.

- Suppose x is an O-action, i.e. $x = a_k$. Then $C' = \langle M', c', \gamma', \xi', \phi', h' \rangle$ and $C = \langle \gamma, \xi, \phi, h \rangle$. By IH for C, all the conditions for γ, ξ hold, so it remains to check $\nu(M', c')$.
 - If $x = c'(A'')$ then $\nu(M, c') = \nu(\gamma'(a'')|A''), \xi'(c''))$. By IH for C, c'', assuming c'' was introduced in a_{2i}, we get $\nu(M, c') \subseteq \text{Vis}_P(a_1 \cdots a_{2i-1}) \cup \nu(A'') = \text{Vis}_P(a_1 \cdots a_k)$.
 - If $x = f(A'', c'')$ then $\nu(M, c') = \nu(\gamma(f)|A''), c'')$. By IH for C, f, assuming f was introduced in a_{2i}, we get $\nu(M, c') \subseteq \text{Vis}_P(a_1 \cdots a_{2i-1}) \cup \nu(A'') \cup \nu(A''') \cup \nu(\gamma^n) = \text{Vis}_P(a_1 \cdots a_k)$.

- Suppose x is a P-action, i.e. $x = a_k$. Then $C' = \langle \gamma', \xi', \phi', h' \rangle$.
 - If $x = c''(A'')$ then $C = \langle V, c'', \gamma' \nu(A''), \xi', \phi \nu(A''), h' \rangle$. By IH, $\gamma' \nu(A'')$ and ξ' satisfy the Lemma. It suffices to check $\nu(\gamma'(n))$ for $n \in \nu(A'')$. Observe that then $\nu(\gamma'(n)) \subseteq \nu(V, c'')$ and, by IH for C, $\nu(V, c'') \subseteq \text{Vis}_P(a_1 \cdots a_{k-1})$, as required.
 - If $x = f(A'', c'')$ then $C = \langle K[fV], c'', \gamma' \nu(A''), \xi' \nu(A'') \cup \nu(\gamma)(c''), h' \rangle$, where $X = \nu(A'') \cup \nu(c'')$. By IH, $\gamma' \nu(X)$ and $\xi'(c'')$ satisfy the Lemma. It suffices to check $\nu(\gamma'(n))$ for $n \in \nu(A'')$. Observe that then $\nu(\gamma'(n)) \cup \nu(\gamma'(c'')) \subseteq \nu(K[fV], c''')$ and, by IH for C, $\nu(K[fV], c''') \subseteq \text{Vis}_P(a_1 \cdots a_{k-1})$, as required.

D.2 Proof of Theorem 3

Proof. Suppose $\text{Tr}_{\text{GOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{GOSC}}(\Gamma \vdash M_2)$. Consider Σ, h, K, γ (as in the definition of $\preceq_{\text{GOSC}(c_{\text{inu}})}$) such that $(K[M_1 \{\gamma\}], h) \nless_{\text{err}}$. In particular, h, K, γ consist of GOSC syntax. Suppose $(\bar{A}, \gamma_i) \in A\text{Val}_P(\gamma)$ and $c : \tau (c \notin \circ)$. By Lemma 4 (left-to-right), there exist t, c' such that $t \in \text{Tr}_{\text{HO}}(C_{\check{h}_i, K, \nu})$ and $t \check{\delta}((), c') \in \text{Tr}_{\text{HO}}(C_{\check{h}_i, K, \nu})$. By Lemma 7, $t \check{\delta}((), c')$ is P-visible. Thus, t is O-visible and, by Lemma 36 (right-to-left), $t \in \text{Tr}_{\text{GOSC}(C_{\check{h}_i, K, \nu})}$. From $\text{Tr}_{\text{GOSC}}(\Gamma \vdash M_1) \subseteq \text{Tr}_{\text{GOSC}}(\Gamma \vdash M_2)$, we get $t \in \text{Tr}_{\text{GOSC}(C_{\check{h}_i, K, \nu})}$. By Lemma 36 (left-to-right), $t \in \text{Tr}_{\text{HO}}(C_{\check{h}_i, K, \nu})$. Because $t \in \text{Tr}_{\text{HO}}(C_{\check{h}_i, K, \nu})$ and $t \check{\delta}((), c') \in \text{Tr}_{\text{HO}}(C_{\check{h}_i, K, \nu})$, by Lemma 4 (right-to-left), we can conclude $(K[M_2 \{\gamma\}], h) \nless_{\text{err}}$. Thus, $\Gamma \vdash M_1 \preceq_{\text{GOSC}(c_{\text{inu}})} M_2$.

D.3 Proof of Lemma 9

Lemma 5 follows from the lemma given below for \(i = 0 \). Consider \(h' = h_0 \), \(K' = \gamma_0(c) \), \(\gamma' = \gamma_0 \setminus c \). We have \(\nu(\text{img}(\gamma_0), \text{img}(h_0)) \subseteq \diamond \cup \{c\} \). As names \(\circ \) can only occur inside terms of the form \(\text{cont}(K', \circ) \), we can conclude that \((h', K', \gamma') = (h_0, K_0, \gamma_0) \), where \(h, K, \gamma \) are from GOSC.

Lemma 34. Suppose \(\phi \cup \{c\} \subseteq \text{FNames} \), \(c \in \text{CNames} \) and \(t = o_1p_1 \cdots o_np_n \) is a \(P \)-visible \(\{c\} \)-trace starting with an \(O \)-action. Given \(0 \leq i \leq n \), let \(t_i = o_{i+1}p_{i+1} \cdots o_np_n \). There exist passive configurations \(C_i \) such that \(\text{Tr}^{\text{even}}(C_i) \) consists of even-length prefixes of \(o_{i+1}p_{i+1} \cdots o_np_n \) (along with their renamings via permutations on Names that fix \(\phi_i \)). Moreover, \(C_i = (\gamma_i, \xi_i, \phi_i, h_i) \) (\(0 \leq i \leq n \)), where

- \(\text{dom}(\gamma_i) \) consists of \(\phi \cup \{c\} \) and all names introduced by \(P \) in \(o_1p_1 \cdots o_i \);
- \(\text{img}(\gamma_i) \) contains GOSC syntax;
- \(\nu(\gamma_i(x)) \subseteq \text{Vis}_P(o_1p_1 \cdots o_i) \) if \(x \) has been introduced in \(p_i \) (\(\phi \cup \{c\} \) are deemed to have been introduced in \(p_0 \) and we assume \(\text{Vis}_P(o_1p_1 \cdots o_0) = \diamond \cup \{c\} \));
- for all \(d \in \text{dom}(\gamma_i) \cap \text{CNames} \), if \(d : \sigma_d \) and \(d \) was introduced in \(p_j \) then \(\vdash \gamma_i(d) : \sigma_d \rightarrow \sigma_j \), where \(\text{top}_p(o_1 \cdots o_j) = \circ_{\gamma'} \);
- \(\text{dom}(\xi_i) \) consists of \(c \) and all continuation names introduced by \(P \) in \(o_1p_1 \cdots o_i \);
- for all \(d \in \text{dom}(\xi_i) \), \(\xi_i(d) = \text{top}_p(o_1 \cdots o_1) \) if \(d \) was introduced in \(p_j \) (we regard \(c \) as being introduced in \(p_0 \) and define \(\text{top}_p(o_1 \cdots o_0) = \circ_{\gamma'} \));
- \(\phi_i \) consists of \(\diamond \cup \{c\} \cup \phi \cup \{c\} \) and all names introduced in \(o_1p_1 \cdots o_i \);
- for all \(0 \leq i \leq n \), \(h_i = \{\text{time} \mapsto i\} \), where \(\text{time} : \text{ref Int} \).

Proof. Note that the heap will consist of a single reference only, which will correspond to counting steps in the translation. At every step of the translation, the value of the reference will be used to schedule the right actions and disable others.

The above description already specifies \(\phi_i \), \(\text{dom}(\gamma_i) \), \(\xi_i \) and \(h_i \). To complete the definition of \(C_i \), it remains to specify the environments \(\gamma_i \). Recall that, we need to define \(\gamma_0(x) \) for \(x \in \phi \cup \{cP\} \) and, in other cases, \(\gamma_j(x) \) \((x \in \text{Names}) \) will be defined for all \(j \geq i \) if \(x \) was introduced by \(P \) in \(p_i \). Recall also that once \(\gamma_i(x) \) is defined, it never changes. Hence if \(x \) was introduced by in \(p_i \), we will only specify \(\gamma_i(x) \) on the understanding that \(\gamma'_i(x) = \gamma_i(x) \) for all \(i' > i \).

We define \(\gamma_i(x) \) by induction using the reverse order of name introduction in \(t \), i.e. when defining \(\gamma_i(x) \) we will refer to \(\gamma_i'(y) \), where \(y \) is introduced in a later move in \(t \). In particular, the names \(\phi \cup \{c\} \) are deemed to be introduced first. Once \(\gamma_i(x) \) is defined, we will argue that \(\nu(\gamma_i(x)) \subseteq \text{Vis}_P(o_1p_1 \cdots o_i) \).

- Suppose \(f : \sigma_f \rightarrow \tau_f \) is a function name introduced by \(P \) in action \(p_i \) \((1 \leq i \leq n) \) or \(f \in \phi \), in which case we let \(i = 0 \). Consider all subsequent occurrences of \(f \) in \(t \): suppose \(I_f = \{i < u \leq n \mid o_u = f(A_u, c_u)\} \), i.e. \(I_f \) contains all the time points when it is necessary to respond to \(f(A', c') \). Then we let

\[
\gamma_i(f) = \lambda x. \text{time} := !\text{time} + 1; \text{if } (!\text{time} \in I_f) (\text{assert}(x \sim A_{\text{time}}); M_{\text{time}}) \Omega,
\]
Suppose now that \(\rho = (\text{assert}(x \sim A_u); M_u) \) for \(u = !\text{time} \in \mathcal{I}_f \). The term \(\text{assert}(x \sim A_u) \) has been defined earlier, so we specify \(M_u (u \in \mathcal{I}_f) \), aiming to have \(x : \sigma_f \vdash M_u : \tau_f \) in each case. \(M_u \) will depend on the shape of \(p_u \). Note that if \(\mathcal{I}_f = \emptyset \), i.e. \(f \) is not used in \(t \), then the construction degenerates to \(\gamma(f) = \lambda x. (\text{time} := !\text{time} + 1); \Omega \).

\(p_u = c'_u(A'_u) \) As \(u > i \), \(\gamma_u \) is already defined for all names in \(A'_u \). Let \(V = A'_u\{\gamma_u\} \). Recall that \(o_u = f(A_u,c_u) \). We let

\[
M_u = \text{call/cc}(\ y. (\text{throw } V \text{ to cont } ((\bullet,c'_u)) [\ y/\text{cont }((\bullet,c_u)] [(\pi x/A_u)]).
\]

- \([y/\text{cont }((\bullet,c_u)] \) is meant to mimic the reversal of the reduction rule for call/cc: because after \(o_u \) the continuation name in the active configuration will be \(c_u \), the then current continuation will be \(\bullet, c_u \). Since all continuation names \(c' \) are only ever used via the term \(\text{cont }((\bullet,c'), \) the substitution \([y/\text{cont }((\bullet,c_u)] \) will remove all occurrences of \(c_u \) from \(V \).

- The substitution \([(\pi x/A_u)] \) has been defined before the first definability proof.

Note that, because of throw, \(M_u \) can indeed be given type \(\tau_f \). Overall, the shape of \(M_u \) guarantees the desired progression \((o_u,p_u) \) at time \(u \) (the configuration will reduce to \((V,c'_u,\cdots) \), to be followed by \(p_u = c'_u(A'_u) \)). Because we can assume \(\nu(\gamma_u(x)) \subseteq \text{Vis}_P(o_1 \cdots o_u) \) for any \(x \) introduced in \(p_u \) (IH), we have \(\nu(V) = \nu(A'_u\{\gamma_u\}) \subseteq \text{Vis}_P(o_1 \cdots o_u) \). As all names introduced in \(o_u \) will be substituted for, we have \(\nu(M_u) \subseteq \text{Vis}_P(o_1 \cdots o_i) \cup \{c'_u\} \). However, by P-visibility, we have \(c'_u \in \text{Vis}_P(o_1 \cdots o_u) \), so either \(c'_u = c_u \) or \(c'_u \in \text{Vis}_P(o_1 \cdots o_i) \). Either way, we can conclude \(\nu(M_u) \subseteq \text{Vis}_P(o_1 \cdots o_i) \), i.e. \(\nu(\gamma_i(f)) \subseteq \text{Vis}_P(o_1 \cdots o_i) \).

\(p_u = f'(A'_u,c'_u) \) As in the previous case, by IH, \(\gamma_u \) is already defined for all names in \(A'_u \) and \(c'_u \). Let \(V = A'_u\{\gamma_u\} \) and \(K = \gamma_u(c'_u)[\bullet] : \sigma_c \rightarrow \sigma_j \), where \(\text{top}_P(o_1 \cdots o_u) : \sigma_j \) (IH). Note that \(\text{top}_P(o_1 \cdots o_u) = c_u \) in this case, i.e. \(\tau_f = \sigma_j \). We let

\[
M_u = K[f'V][\pi x/A_u].
\]

The shape of \(M_u \) then guarantees the right progression in the \(u \)th step \(o_u p_u \) (after \(o_u \) the LTS will reach a configuration of the form \((\gamma_u(c'_u)[f'V],\text{top}_P(o_1 \cdots o_u),\cdots) \), from which \(p_u = f'(A'_u,c'_u) \) can follow).

Because \(\nu(V),\nu(\gamma_u(c'_u)) \subseteq \text{Vis}_P(o_1 \cdots o_u) \) and all names introduced in \(o_u \) are substituted for above, we have \(\nu(M_u) \subseteq \text{Vis}_P(o_1 \cdots o_i) \). By P-visibility, \(f' \in \text{Vis}_P(o_1 \cdots o_i) \), so we can conclude that \(\nu(M_u) \subseteq \text{Vis}_P(o_1 \cdots o_i) \), i.e. \(\nu(\gamma_i(f)) \subseteq \text{Vis}_P(o_1 \cdots o_i) \).

Suppose now that \(d : \sigma_d \) is a continuation name introduced by P in action \(p_i \) \((1 \leq i \leq n) \), or \(d = c \), in which case we let \(i = 0 \). Let us consider all subsequent occurrences of \(d \) in \(t \): suppose \(\mathcal{I}_d = \{i < u \leq n \mid o_u = d(A_u)\} \). Then we let

\[
\gamma_i(d) = (\lambda x. (\text{time} := !\text{time} + 1); \text{if } (!\text{time} \in \mathcal{I}_d) (\text{assert}(x \sim A_{time}); M_{time} \Omega)[\bullet] \]
where the terms $M_u (u \in \mathcal{L})$ are the same as in the previous case, though this time we aim for $x : \tau_d \vdash M_u : \tau_j$, where $d : \tau_d$ and $top_P(o_1 \cdots o_u) : \tau_j$ (recall that $\xi_i(d) = top_P(o_1 \cdots o_u)$). As argued above, in the second case M_u will have the required type and in the first case it can be forced thanks to throw.

Similarly, we can conclude that $\nu(\gamma_i(d)) \subseteq Vis_P(o_1 \cdots o_i)$.

This completes the definition of configurations. They evolve as required by construction, because the definition of γ_i is compatible with the evolution of the GOSC[HOSC] LTS: at each stage, the value of the clock time is incremented and the corresponding term M_u is selected.

It is is easy to check that the syntax used in the construction belongs to GOSC only.

D.4 Proof of Theorem 4

Proof. We follow the same path as in the proof of Theorem 2 except that, in this case, we will have $t, t_1 \in Tr_{GOSC}(\mathcal{C}_\rho \vec{A}_i, c_{M_1})$. Consequently, we can conclude that $t_2 = t_1^+ \tilde{\sigma}((), c')$ is P-visible and invoke Lemma 9 (instead of Lemma 5) to obtain \mathcal{C}_O that corresponds to h, K, γ from GOSC. Because k, K, γ are in GOSC, we can then appeal to the assumption $\Gamma \vdash M_1 \preceq_{err}^{GOSC(ci_u)} M_2$ and complete the proof like for Theorem 2.

E Additional material for Section 5 (HOS[HOSC])

E.1 Proof of Lemma 11

To enable a proof by induction we generalize the Lemma as follows.

Lemma 35. Consider $\mathcal{C}_O = \mathcal{C}_{h,K,\gamma}$, where h, K, γ are from HOS and $(\vec{A}_i, \gamma_i) \in \text{AVal}_f(\gamma)$. Let $t \in Tr_{HOSC}(\mathcal{C}_O)$ and suppose $\mathcal{C}_O \xrightarrow{t} \mathcal{C}$.

- If t' is of odd length then $\mathcal{C} = \langle M, c', \cdots \rangle$ and $c' = top_P(t')$.
- If t' is of even length and $t' = t\tilde{f}(A, c')$ then $\mathcal{C} = \langle \cdots, \xi, \cdots \rangle$ and $\xi(c') = top_P(t)$.
- If t' is of even length and $t' = t\tilde{c}(A)$ then $c' = top_P(t)$.

Proof. By induction on the number of transitions in $\mathcal{C}_O \xrightarrow{t} \mathcal{C}$. In the base case (no transitions) the Lemma holds vacuously.

Note that the Lemma is preserved by silent transitions (t is of odd length then) by Lemma 10.

Suppose $\mathcal{C}_O \xrightarrow{t} \mathcal{C} \xrightarrow{a} \mathcal{C}'$.

- The even-length cases follow immediately the odd-length case due to the shape of LTS rules.
- Suppose $t' = ta$ is of odd length.
such references will not be needed. We know continuations in a reference, and we know from the previous point that "throw" is redundant. Well, because they are only used in connection with "throw", and we already be eliminated.

E.2 Proof of Theorem 5

Proof. Suppose \(\mathbf{Tr}_{HOS}(\Gamma \vdash M_1) \subseteq \mathbf{Tr}_{HOS}(\Gamma \vdash M_2) \). Consider \(\Sigma, h, K, \gamma \) (as in the definition of \(\preceq_{ciu, err}^{HOS} \)) such that \((K[M_1 \{ \gamma \}], h) \not\preceq_{err} \). In particular, \(h, K, \gamma \) consist of HOS syntax. Suppose \((\tilde{A}_i, \tilde{\gamma}_j) \in \mathbf{AVal}_f(\gamma) \) and \(c : \sigma \ (c \neq \circ) \). By Lemma 4 (left-to-right), there exist \(t, c' \) such that \(t \in \mathbf{Tr}_{HOSC}(C_{M_1}^{\tilde{A}_i, c'}) \) and \(t^\circ \tilde{\sigma}() , c' \) is O-bracketed and, by Lemma 12 (right-to-left), \(t \in \mathbf{Tr}_{HOS}(C_{M_1}^{\tilde{A}_i, c'}) \). From \(\mathbf{Tr}_{HOS}(\Gamma \vdash M_1) \subseteq \mathbf{Tr}_{HOS}(\Gamma \vdash M_2) \), we get \(t \in \mathbf{Tr}_{HOS}(C_{M_2}^{\tilde{A}_i, c'}) \). By Lemma 12 (left-to-right), \(t \in \mathbf{Tr}_{HOSC}(C_{M_2}^{\tilde{A}_i, c'}) \). Because \(t \in \mathbf{Tr}_{HOSC}(C_{M_2}^{\tilde{A}_i, c'}) \) and \(t^\circ \tilde{\sigma}() , c' \) is \(\mathbf{Tr}_{HOSC}(C_{M_2}^{\tilde{A}_i, c'}) \), by Lemma 4 (right-to-left), we can conclude \((K[M_2 \{ \gamma \}], h) \not\preceq_{err} \). Thus, \(\Gamma \vdash M_1 \not\preceq_{ciu, err} M_2 \).

E.3 Proof of Lemma 13

Proof. We take advantage of the definability result for HOSC (Lemma 34) and argue that, for P-bracketed traces, continuation-related syntax can be eliminated. This will follow from the careful integration of \(\mathbf{top}_P() \) in the construction.

Indeed, the only place where "throw" is needed in the construction is to transition from configuration \(D_i \) to \(E_i \). The second component (current continuation) in \(D_i \) is equal to \(\mathbf{top}_P(a_1 \cdots a_{i+1}) \), whereas the second component in \(E_i \) in this case is \(\gamma''_j \). For a P-bracketed trace, the two continuation names will be the same (Definition 17). Consequently, the use of "throw" in this case is trivial: it will have the form \(\langle \text{throw} V_A \rangle \) to \(\text{cont}(\bullet, c, c, \cdots) \), where \(c = \gamma''_j \), because the continuation in \(\text{cor}_j \) is \(\text{cont}(\bullet, c'_{\gamma''_j}) \) by one of our invariants. This use of "throw" can be replaced simply by \((V_A, c, \cdots) \), i.e. occurrences of "throw" can be eliminated.

Next, one observes that references to continuations \(\langle \text{cor}_j \rangle \) are redundant as well, because they are only used in connection with "throw", and we already know that "throw" is redundant.

Finally, "callcc" is redundant, because the only purpose of invoking it was to record continuations in a reference, and we know from the previous point that such references will not be needed.

Overall this yields a construction that involves only HOS syntax.
E.4 Proof of Theorem 6

Proof. We follow the same path as in the proof of Theorem 2 except that, in this case, we have \(t, t_1 \in \text{Tr}_{\text{HOS}}(\rho_{M_1}^c) \). Consequently, we can conclude that \(t_2 = t_1^1 \circ (c, c') \) is P-bracketed and invoke Lemma 36 (instead of Lemma 5) to obtain \(C_\circ \) that corresponds to \(h, k, \gamma \) from HOS. Because \(k, K, \gamma \) are in HOS, we can appeal to the assumption \(\Gamma \vdash M_1 \preceq_{\text{HOS}} M_2 \) and complete the proof like for Theorem 2.

F Additional material for Section 6 (GOS[HOSC])

F.1 GOS[HOSC] LTS

\[(P\tau)\quad (M, c, \gamma, \xi, \phi, h, F) \quad \xrightarrow{\tau} \quad (N, c', \gamma, \xi, \phi, h', F) \quad \text{when} \ (M, c, h) \rightarrow (N, c', h') \]

\[(PA)\quad (V, c, \gamma, \xi, \phi, h, F) \quad \xrightarrow{\ell(A)} \quad \{\gamma \cdot \gamma', \xi, \phi \uplus \nu(A), h, F(c) \uplus \nu(A), c'\} \quad \text{when} \ c : \sigma, (A, \gamma') \in AVal(V), \xi(c) = c' \]

\[(PQ)\quad (K[f\circ\circ], c, \gamma, \xi, \phi, h, F) \quad \xrightarrow{f(A,c')} \quad \{\gamma \cdot \gamma' : [c' \rightarrow K], \xi : [c' \rightarrow c], \phi \uplus \phi', h, F(f) \uplus \phi', c'\} \quad \text{when} \ f : \sigma \rightarrow \sigma', (A, \gamma') \in AVal(V), c' : \sigma' \quad \text{and} \ \phi' = \nu(A) \uplus \{c'\} \]

\[(OA)\quad (\gamma, \xi, \phi, h, F, V, c') \quad \xrightarrow{\ell(A)} \quad \{K[A], c', \gamma, \xi, \phi \uplus \nu(A), h, F \cdot [\nu(A) \rightarrow V]\} \quad \text{when} \ c \in V, c = c', c : \sigma, A : \sigma, \gamma(c) = K, \xi(c) = c' \]

\[(OQ)\quad (\gamma, \xi, \phi, h, F, V, c') \quad \xrightarrow{f(A,c') \circ \circ \circ} \quad \{V[A, c, \gamma, \xi] : [c' \rightarrow c''], \phi \uplus \phi', h, F \cdot [\phi' \rightarrow V]\} \quad \text{when} \ f \in V, f : \sigma \rightarrow \sigma', A : \sigma, c : \sigma', \gamma(f) = V \quad \text{and} \ \phi' = \nu(A) \uplus \{c\} \]

Given \(N \subseteq \text{Names} \), \([N \rightarrow V]\) stands for the map \([n \mapsto V] \mid n \in N\).

Recall that, given a \(\Gamma \)-assignment \(\rho \), term \(\Gamma \vdash M : \tau \) and \(c \in \text{CNAMES}_c \), the active configuration \(C_{M}^{\rho, c} \) was defined by \(C_{M}^{\rho, c} = \langle M\{\rho\}, c, \emptyset, \emptyset, \nu(\rho) \cup \{c\}, \emptyset \rangle \). We need to upgrade it to the LTS by initializing the new components: \(C_{M,\text{vis},\text{bra}}^{\rho, c} = \langle M\{\rho\}, c, \emptyset, \emptyset, \nu(\rho) \cup \{c\}, \emptyset, \emptyset \rangle \).

Definition 33. The GOS[HOSC] trace semantics of a cr-free HOSC term \(\Gamma \vdash M : \tau \) is defined to be \(\text{Tr}_{\text{GOS}}(\Gamma \vdash M : \tau) = \{((\rho, c), t) \mid \rho \text{ is a } \Gamma \text{-assignment, } c : \tau, t \in \text{Tr}_{\text{GOS}}(C_{M,\text{vis},\text{bra}}^{\rho, c})\} \).

By construction and from the GOS and HOS sections, it follows that

Lemma 36. \(t \in \text{Tr}_{\text{GOS}}(C_{M,\text{vis},\text{bra}}^{\rho, c}) \) iff \(t \in \text{Tr}_{\text{HOS}}(C_{M}^{\rho, c}) \) and \(t \) is O-visible and O-bracketed.
Lemma 37 (Definability). Suppose $\phi \uplus \{\diamond \} \subseteq \text{FNames}$ and t is an even-length P-bracketed and P-visible $(\{\circ_{\tau^{'}} \diamond \}, \phi \uplus \{c\})$-trace starting with an O-action. There exists a passive configuration C such that the even-length traces $\text{T}_{\text{HOSC}}(C)$ are exactly the even-length prefixes of t (along with all renamings that preserve types and $\phi \uplus \{c, \circ_{\tau^{'}} \diamond \}$). Moreover, $C = \langle \gamma \cdot [c \mapsto K], \{c \mapsto \circ_{\tau^{'}} \}, \phi \uplus \{c, \circ_{\tau^{'}} \diamond \}, h \rangle$, where h, K, γ are built from GOS syntax.

Proof. Follows from the argument for GOSC. We first observe that throw is needed before answer actions to adjust the continuation from $\text{top}_O(a_1 \cdots a_i)$. With P-bracketing there is no need for such adjustments. Consequently, we do not need call/cc, which was used to generate continuations to be used in future adjustments.