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We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem,
characteristic of elasto-hydrodynamic situations. Here, we consider the case of a finite reservoir of
liquid, emptying as the liquid is spread. We evidence the role of a central variable: the wetting
length lw, which sets a boundary between the wet and dry parts of the blade. We show that the
deposited film thickness e depends quadratically with lw. We study this problem experimentally
and numerically by integration of the elasto-hydrodynamic equations, and finally propose a scaling
law model to explain how lw influences the spreading dynamics.

PACS numbers:

The flapping of flags or the deformation of boat sails
are emblematic of the coupling of flexible sheets with a
fluid flow. Beyond these large-scale situations, there is a
blooming interest for smaller systems, in which the forces
responsible for the deformation of the solid are viscous
instead of inertial. Such situations are encountered when
a fluid is confined by an elastic plate, for example paper
sheets gliding on thin air just above the floor after falling
from a table [1].
The spreading or the scraping of liquids with a flexible
blade (Fig 1) is another paradigmatic example of this
class of fluid-structure problems, with a rich non-linear
behavior [1–3]. Flexible blade spreading is central in nu-
merous industrial processes such as paper coating, which
inspired early studies [4–8]. More recently, this problem
has been studied in the light of an elasticity-capillarity
analogy [9] and compared with another well-known sys-
tem, dip coating [10, 11]. Following this approach, the
elastic forces induced by the local curvature of the sheet
replace surface tension forces [12–14]. An elastic Landau-
Levich approach [12, 13] can be used to predict the film
thickness as a function of the blade properties. This
method, which successfully modeled selected experiments
[12] is based on two assumptions: i) the blade is fully cov-
ered with liquid (which amounts to neglecting capillarity)
and ii) while in motion, it is only deformed over a length
lx close to the tip. This internal length is analogous to
the dynamical meniscus length in dip-coating. However,
in a large majority of everyday situations, such as the
spreading of a paint on a wall, or cream on the skin, the
liquid reservoir is finite and the blade partially wet. This
introduces a new length scale, lw (as shown in Fig. 1),
and its existence challenges the Landau-Levich approach.
In this paper, we evidence the central role of lw on the

spreading dynamics, and we analyze the similarities and
differences with dip-coating.
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Figure 1: Experimental setup. A finite amount of fluid de-
posited under an elastic blade is emptied by moving the sub-
strate at a constant speed V . The thickness of the deposited
layer e is measured by a profilometer. As the reservoir emp-
ties, the wetting length lw diminishes, which impacts the de-
posit.

A Newtonian fluid (here silicone oil) with viscosity η
ranging from 480 to 960 mPa s is spread on an horizontal
smooth PMMA plate by a soft blade made of PET plas-
tic (Mylar) (Fig.1). The dynamic contact angles of oil
on both surfaces are denoted by δs and δb: in a typical
experiment, δs ' 100±10◦, and δb ' 15±10◦. The blade
is cut in a rectangular shape, with a constant width b =
4 cm, a length L of typically 6 cm and thickness u = 125
or 250 μm. The upper part of the blade is clamped per-
pendicularly to the surface, at a height H = 0.46 L. This
clamping height ensures that the free edge of the blade
is exactly tangent to the surface in absence of liquid. It
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is also the position for which the film thickness is the
largest [12]. The rigidity B of the blade is determined by
measuring its deflection under its own weight [15]. B is
typically varied by a factor 10 when changing the blade
thickness, with B = 1.0± 0.1 mNm for u = 125 μm and
B = 7.1 ± 0.5 mNm for u = 250 μm. Using B = E∗u3

12 ,
we obtain a modified Young Modulus E∗ of the material,
that already includes the Poisson ratio correction. Ex-
perimentally, E∗ ' 6.2 GPa, a value in good agreement
with what is expected for type A mylar [16].

A known volume of liquid Ω0 (between 0.1 and 1.5
mL) is deposited under the blade and then spread with
a one-way movement, by moving the substrate at a
constant speed V (2.5 < V < 10 mm/s). The thickness
of the scraped liquid film e is measured with an optical
profilometer (Keyence LJ-V7060K) positioned above the
film, 2 millimeters from the edge of the blade (Fig. 1).
A laser sheet of length 16 mm (in the y direction) is
projected onto the film, from which the film thickness
e(y, t) is measured as a function of time t and position y.
The liquid reservoir below the blade slowly empties as
oil is scraped over a distance of ' 10 cm. One important
variable here is the length of the blade in contact with
the liquid, which we call the wetting length lw (as visible
in Fig.1). During an experiment, lw(t) varies with
time and typically diminishes by 2 cm as the reservoir
empties. It is measured from the side and from the top
using two optical cameras, at 10 frames per second.
The camera and the profilometer are synchronized using
an in-house Labview program, so that e and lw are
recorded simultaneously during the spreading. The
initial time t = 0 corresponds to the setting in motion of
the horizontal stage.

In Fig. 2a, the thickness e of a silicone oil film (with
viscosity η = 960 mPa s) is mapped as a function of time
t and position y (y = 0 corresponding to the center of the
film). The color code varies from e ' 0 (dark blue) up
to e = 400 μm (bright yellow). Despite a small residual
noise due to multiple light reflections, the film thickness
is relatively uniform in the y-direction along the width
of the blade: edge effects are only visible 2 mm from the
edges, as shown in Supp. Fig. 1. It represents only 10%
of the blade width. However, the film exhibits very large
variations with time. This is even more striking when
looking at the mean thickness e(t), plotted in white in
Fig. 2a. The film profile exhibits a sharp increase in
the first 6 seconds, where the thickness grows from 0 to
230 μm. This corresponds to a transient state, associ-
ated with the setting in motion of the liquid below the
blade, which was previously observed in similar systems
[12]. However, the second part of the plot (corresponding
to the steady state) strongly differs from previous exper-
iments. We observe here a continuous reduction of the
film thickness e with time t - from 230 to 80 μm between 7
s and 20 s. The decrease of e with time is largest with the
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Figure 2: a. Map of the central part of the film (with vis-
cosity η = 480 mPa s) during the spreading, as a function of
the width y and time t. The color code varies from e ' 0
(dark blue) up to e = 400 μm (bright yellow). The white
line shows the mean thickness e(t) over the film width, as
a function of time. b. Film thickness e(t) as a function of
the wetting length lw at the same time t, for two different
oils with viscosity η = 480 mPa s (gray) and η = 960 mPa
s (black). The markers correspond to different initial fluid
volumes Ω0: • : Ω0 = 0.21 ± 0.01 cm3, N : Ω0 = 0.50 ± 0.03
cm3 and ? : Ω0 = 0.60± 0.02 cm3. The continuous lines show
the scaling law (Eq.4) with prefactors 0.15 (for η = 480 mPa
s) and 0.17 (for η = 960 mPa s) corresponding to the best
fits. The dashed lines are the numerical solutions. In both
experiments, V = 5 mm/s, B = 1.0 mNm and L = 5.7 cm.

softest blade and the more viscous fluids, and is observed
for both silicone oil and glycerine. We interpret this as
a consequence of the finite reservoir size. Indeed, as the
liquid empties, the length lw(t) of the blade effectively
wet by the liquid diminishes, which in turn impacts the
film thickness e(t). This intimate relation between e(t)
and lw(t) is evidenced in Fig. 2b, where e(lw) is measured
for two oils of viscosity η = 480 mPa s (gray circles) and
η = 960 mPa s (black triangles). Data points are taken
at a given time t, so that e and lw are treated quasi-
statically. The markers indicate the initial liquid volume
Ω0, varied by a factor 3. With η fixed, the data for all
Ω0 overlap, which indicates that the film thickness only
depends on the actual volume of the reservoir at the time
t – a quantity measured by lw(t). As shown in Fig. 2, the
relation between e and lw is non-linear: e increases more
slowly for larger lw. In addition, a strong dependency of
e with the fluid viscosity η is observed: e increases by
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roughly 50% from η = 480 mPa s to η = 960 mPa s.
To understand how the reservoir size influences the

spreading dynamics, we perform a full numerical study
of the experiment. Since e and lw evolve quasi-statically
with time, we solve the hydroelastic equations statically,
with a constant lw as an input parameter. The geometry
is split in two zones: i) the blade itself, which interacts
with the fluid below over a length lw (< L) and ii) the
free liquid film, spread by the blade. In the following, the
lubricated blade shape and the free liquid film are mod-
eled by two different sets of equations (Eq. 1 and Eq. 2),
coupled by boundary conditions at the tip of the blade.
In both cases, the Reynolds number Re in the liquid is
small, Re = ρeV

η < 10−3, and the oil is highly confined,
with lw � e, which allow us to use the lubrication ap-
proximation to describe the flow.
The blade shape is described as a large deflection prob-
lem, using Euler’s elastica [17, 18]. In the steady state,
the bending torque (expressed as a function of the curvi-
linear length s along the blade) is equal to the torque
Γ produced by the external forces, which arise from the
liquid below the beam. The fluid motion generates two
forces: a lift, perpendicular to the blade, due to the lu-
brication pressure p and a viscous drag force fv, locally
tangent to the surface. Both are calculated by solving
the Stokes equation in the lubrication approximation (see
Supplementary materials). We also include the capillary
forces arising from the liquid surface deformation on the
left and right parts of the wet area of the blade. They
exert a small torque on the blade and, more importantly,
impose the fluid pressure at s = sw and s = L through
the curvature of the liquid surface. Finally, the weight of
the plate is neglected. With these conditions, the deriva-
tive of the torque balance Γ = EI dθds (denoting I the
moment of inertia of the blade and θ the local tangent
angle of the blade with respect to the vertical) writes:

E∗I
d2θ

ds2
= b

∫ L

s

fv sin (θ(s)− θ(s′))− p cos (θ(s)− θ(s′))ds′,

(1)
with b the width of the blade. We neglect the contribu-
tion of capillary forces on the torque derivative dΓc

ds ∼ γb
(with γ the surface tension of the liquid), which is more
than 100 times smaller than the contribution of the lubri-
cating film dΓv

ds ∼ pblw (see Supplementary Materials).
In a second part, the free surface of the liquid deposited
by the blade is calculated through the canonical Landau
Levich equation (following [2]). The variables of the free
surface are distinguished here from those of the blade by
using an index l):

d2θl
ds2

= −3η

γ

(
V hl − q/b

h3
l

)
sin θl(s), (2)

with hl the film height, and q the flow rate of the liquid
in the reference frame of the blade.

Equations 1 and 2 can both be seen as 1D steady-state
non-linear heat equations where θ is equivalent to tem-
perature, with a conductivity equal to 1 and a source
distribution S(s, θ(s)) corresponding to the right hand
side of the equations. We use this analogy to solve the
set of coupled equations 1 and 2 (for the lubricated blade
and for the deposited film). To do so, we look for the sta-
tionary asymptotic solution to a transient heat equation
(Eq. 3) associated to Eqs. 1 and 2, where the derivative
of θ versus a virtual time τ is added (the volumetric heat
capacity is chosen unitary):

dθ

dτ
=
d2θ

ds2
+ S(s) (3)

Starting from an initial guess of the shape (θ(s) and θl(s))
and p(s = L), Eq. 3 is solved numerically by finite differ-
ences using a semi-implicit scheme [19]. The non-linear
source term S(s) is treated explicitly while the rest is
treated implicitly (see Supplementary Materials for the
details). This scheme is stable, and thus ensures conver-
gence to the stationary solution θ(s) (according to Lax
equivalence theorem [20]), for a given set of input vari-
ables lw, δs and δb. Two sets of boundary conditions
complete this modeling. For the blade, the fixed mount-
ing imposes θ(0) = 0, and the absence of torque at the
tip gives dθ

ds |s=L = 0. For the free surface, the Laplace
pressure equation imposes dθl

ds

∣∣
L

= −p(s=L)
γ at the con-

tact of the blade tip, while far from the blade the film is
horizontal, so that lim

x→+∞
θl = π/2. Finally, the matching

of the two solutions is done iteratively by imposing a con-
tinuity of the flow rate q. The liquid height at s = L is
continuous [3], but there is an angle discontinuity, similar
to what happens at a three phase contact line.

Integration of the blade and deposited film equations
thus give the film thickness e for a given lw, correspond-
ing to the height of the free surface hl for x→∞. In Fig.
2, the calculated film thicknesses (black and grey dashed
lines) are compared to the experiments for varying wet-
ting lengths lw. They match the experimental data for
both η = 480 mPa s and η = 960 mPa s, without any ad-
justable parameter. In addition, the numerical solution
of the blade shape (Eq. 1) also matches the experiments,
as shown in the supplementary materials.

How does the wetting length influence the spreading
dynamics? Since the presence of a meniscus below the
blade induces a pressure jump at s = sw, a first hy-
pothesis is that the dependency of e with lw results from
an elasto-capillary competition [21, 22]. To check this
idea, we compare in Fig. 3 numerical simulations of e(lw)
in two different configurations: in absence of a pressure
jump in s = sw (gray line), and for varying wetting con-
ditions (dotted lines). A major observation from Fig. 3
is that e varies with lw even when capillary forces are
absent. This indicates that the pressure jump at the
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Figure 3: Effect of wetting on e(lw). The continuous gray
line corresponds to the absence of a pressure jump p(sw) = 0.
The green, red and yellow dotted lines show three different
wetting configurations with varied contact angles δs and δb
on the substrate and on the blade. The numbers indicate the
pressure jump p(sw) due to the meniscus (in Pa).

meniscus does not cause the dependency of e with lw.
Wetting conditions only have a small influence on the
film thickness, by shifting the e(lw) curves: the dotted
lines correspond to varying contact angles δs and δb on
the surface and on the blade (as in Fig. 1). While e is
potentially increased by a factor two when comparing the
almost perfect wetting (δs = δb = 10◦) to the non-wetting
situation (δs = δb = 170◦), the latter is highly unlikely
as the film would be unstable and dewet the substrate.
In classical wetting configurations (green and red plots),
capillary forces cause a modest variation of e, close to
20%.
A second hypothesis is that the dependency of e with lw
arises from a modified balance between viscous and elas-
tic forces. Indeed, due to the finite size of the reservoir,
the pressure within the sheared film applies over a vari-
able distance lw, so that the viscous force lifting the blade
diminishes as the reservoir empties. Under this assump-
tion, we propose a scaling law for the film thickness e.
The region of the blade wet by oil (of size lw) is submit-
ted to a lubricating pressure p ∼ η Ve2 lw. p thus induces
a torque Γwet, pushing up the wet part of the blade (of
area blw). The lever arm is ∼ L− lw, so that Γwet writes
Γwet ∼ η Ve2 bl

2
w(L − lw). At equilibrium, this torque is

compensated by the rigidity of the dry part of the blade,
inducing a resisting torque Γdry ∼ E∗I dθds ∼

E∗I
(L−lw) . The

torque balance sets the deposition law:

e ∼ lw

√
ηV L2b

E∗I

(
1− lw

L

)
(4)

This scaling law is plotted in Fig. 2b (with a continuous
line). It very convincingly reproduces the dependency of
the film thickness e with both lw and η. The best fits are
obtained with similar prefactors: 0.15 for η = 480 mPa s

and 0.17 for η = 960 mPa s.
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Figure 4: Experimental (colored dots) and numerical (white
squares) film thickness, plotted as a function of the theoretical
thickness (Eq. 4). All points collapse on a line (in black)
with numerical prefactor of 0.17. Data correspond to varying
velocities V = 2.5 mm/s (light blue), 5 mm/s (blue, yellow,
purple), 7.5 mm/s (dark green) and 10 mm/s (red, fuchsia
pink, light green), viscosities η = 960 Pa.s (purple, light green)
and 480 Pa.s (all other colors), blade rigidities B = 7.1± 0.5
mNm (light green and fuchsia pink) and 1.0 ± 0.1 mNm (all
other colors) and lengths L = 7 cm (yellow, fuchsia pink, light
green) and 5.7 cm (all other colors).

To further validate our approach, we summarize in
Fig. 4 the film thickness measurements for different blade
rigidities B and length L, varying liquid viscosity η and
spreading velocity V (respectively varied by a factor 8,
0.3, 2 and 4). Each color corresponds to a different set
of parameters (see legend). When plotted as a function
of the theoretical film thickness, all data collapse on a
single line with slope 0.17. The numerical solution of
the elasto-hydrodynamic equations (Eqs. 1 and 2) is also
shown with white squares. Here, the same parameters
(V , η, B) as the experiments are used, and capillarity
is neglected. The numerical results also collapse on the
same master curve, which is a further validation of the
scaling law: it shows that the essential physical param-
eters are taken into account. The residual scattering of
the data might be explained by the influence of capillary
forces, neglected in Eq. 4, which induce a small variation
of the dynamic contact angles with V [23, 24].

The scaling law evidences the fundamental impact of
the wetting length lw, and allows us to put a central
point forward. With a finite reservoir, the viscous forces
of the lubricated film are exerted over an externally im-
posed distance lw that varies during the spreading. This
is fundamentally different from the capillary-elasticity
analogy approach, where the pressure applies over an
internal dynamical length lx ∼ (eL2)1/3 [9, 12] vary-
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ing with the blade and liquid parameters. This in turn
impacts the scaling of the film thickness, which writes

e ∼ L
(
ηV bL2

E∗I

)3/4

in the blade-meniscus analogy [12–
14]. In addition, the blade is here deformed by the film
over its whole length, as visible in Supplementary Figure
3, contrary to the meniscus in dip-coating experiments.
For this reason, the blade shape cannot be solved using
an asymptotic matching, as usually done for a liquid in-
terface.

This study has an important applicative scope: we in-
deed demonstrate that it is impossible to obtain a deposit
of constant thickness with an elastic blade if the spread-
ing is done at constant speed. In addition, we evidence
the role of capillarity, which only plays a role for very
hydrophobic substrates. Our work also suggests that the
analogy between elastic and capillary interfaces is not
valid when the blade is not fully covered with liquid.
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