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Abstract6

A fully coupled thermoelastic framework is formulated to cope with the free vibration response of anisotropic multilayered plates in7

three dimensions. The laminated structure consists of homogeneous laminae of arbitrary thickness and width under simply supported8

edge conditions in thermal environment. The general and exact field expressions of the temperature, heat flux, displacement and stress9

components are expressed in terms of double Fourier series expansions in any rectangular plate, which lead to the extended Stroh10

formalism with thermomechanical coupling effects in a concise and compact matrix form. Different imperfect interface conditions are11

introduced to characterize specific structural and thermal contact properties at the bounding interfaces, and further to determine the12

finite complex valued coefficients in the suitable series relations. The complete time-harmonic solutions in the laminated composites13

in the presence of perfect/imperfect interfaces are recursively obtained by means of the modified dual variable and position technique14

with explicit layer-to-layer transfer matrices. Results are obtained for different layups, length-to-thickness ratios and interfacial boundary15

conditions for two application examples, namely the graphite/epoxy cross-ply composites and the thermal barrier coatings on superalloys,16

without suffering from numerical exponential instability. These investigations reveal that the natural frequencies and first and higher17

vibration mode shapes of the multilayered structures can be considerably affected by increasing the environmental temperature and the18

severity of the interfacial imperfections. Since the through-thickness stress distribution in 2, 5, and 10 layered composites appears to19

be strongly correlated to the layups, such modal stress analysis could be exploited to locate the fatigue hotspots operated in dynamic20

structures and to guide the structural design of aircraft and spacecraft composite laminates subjected to residual vibrations.21

Keywords: Thermoelasticity, fully coupling effects, anisotropy, free vibration, multilayered plate, imperfect interface, recursive field22

solutions23

1. Introduction24

Multilayer composites are largely used in the aeronautical and aerospace industries as well as modern high-technology sectors from25

low-cost manufacturing of semiconductor and thin-film devices to high-value added functional products in medicine. In contrast with26

monolithic samples, such laminated structures are composed of several homogeneous plates with desirable functional properties and27

specific arrangements to provide improved combinaisons of strength and ductility with attractive strength-to-weight and stiffness-to-28

weight ratios. The constant demand to move towards the most efficient and performant structures in aircraft and spacecraft engines29

is pushing the operating temperatures of the structural components to unprecedented levels [1, 2]. In severe temperature conditions30

combined with high frequency vibration events in gas-turbine engines, the thermal stresses and thermo-mechanical coupling effects play31

a crucial role in the structural integrity and operational life of aircraft materials and structures, including thermal barrier coatings for32

Ni-based superalloys as well as ceramic-matrix composites. Due to open-mode delamination of these multilayered structures in the33

critical thermal environment, externally forced and free vibration responses in damage prediction are considered in the earlier stages34

of the structural design process. In this respect, the present work focuses on a fully coupled thermo-mechanical formulation for the35

vibration response of simply supported composite laminates using anisotropic thermoelasticity theory in three dimensions.36
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The theory of thermoelasticity represents a generalization of both the classical linear elasticity and heat conduction theories in37

isotropic and anisotropic solids. It is therefore considered as an extension of the standard theory of isothermal elasticity, within which38

the deformation and stress states are produced not only by mechanical forces, but also by thermal forces due to temperature changes.39

The effect of the temperature field on the deformation state is also not a one-way phenomenon [3–6] since a local deformation of40

the body leads to temperature variation such that both mechanical and thermal characteristics are undoubtedly coupled, removing the41

paradox inherent in the classical uncoupled theory of thermoelasticity. In most practical engineering problems, however, the effect of42

the strain rate in the heat conduction equation has been neglected in the static, quasi-static and dynamic problems of thermoelasticity,43

including the forced and free vibration analysis of isotropic, orthotropic, laminated composite, sandwich and functionally graded plates44

with temperature-dependent material properties in thermal environments. Along this line, various analytical investigations using exact45

closed-form thermoelastic solutions [7–13], classical and higher-order plate theories [14–18], hierarchical Ritz-based models [19, 20]46

and numerical finite-element approaches [21–26] have been widely proposed for thermal analysis of homogeneous and heterogeneously47

laminated plates. In the aforementioned approaches, the partially coupled governing equations for the displacement field solutions48

require a priori the temperature distribution along the thickness direction, thus separately determined through thermal analysis alone49

and then prescribed for subsequent stress analysis. On the other hand, when the time variation of thermal sources in homogeneous and50

specially heterogeneous materials for most advanced aircraft structures is comparable with other terms in the heat conduction equation,51

the inverse effect in which the strain rate contributes to the temperature change must be included. The corresponding field solutions52

in terms of displacements and temperature must therefore be obtained through the fully coupled equations of thermoelasticity. While53

relevant fully coupled thermo-mechanical models have been proposed in the open literature, these two-side coupling approaches have54

been applied to various semi-analytical and numerical problems with different balance among accuracy, efficiency and robustness, within55

which both temperature and displacement fields are primary variables in the governing and constitutive equations [27–38]. The present56

approach fits into the second category of fully coupled models applied to anisotropic multilayered materials in presence of structurally57

and thermally imperfect boundary conditions at internal interfaces. The effect of such interfacial imperfections on the free vibration58

response of fully coupled thermoelastic multilayered composites has not yet been treated.59

Interfacial imperfections represent a significant factor in the failure of laminated composite materials, which are evidenced by60

large local gradients of the field solutions close to the intrinsic interfaces. Compared to single layer structures, delamination and61

interface debonding in multilayered materials are also of great importance in designing modern aerospace composite structures, causing62

stiffness and strength degradation as well as reduction in the thermal reduction of the contacting dissimilar materials. While the common63

assumption of ideal perfectly bonded conditions at interfaces between adjoining plates is conducted by most of the previous works,64

structural imperfections can be applied by using the spring-type model [39–41], for which the components of the displacement jump65

are assumed to be linearly proportional to the interfacial traction components. Furthermore, weakly conducting interfaces can be taken66

into account by imposing Kapitza contact thermal resistance with a temperature jump proportional to the normal heat flux at the internal67

boundary [42], whereas a discontinuity in the normal heat flux across the interface is used to describe highly conducting interfaces [43–68

45]. These imperfect mechanical and thermal contacts between constituents are incorporated in the extended Stroh formalism, which69

is consistently formulated by completing the traditional propagation matrix method with the dual variable and position technique to70

overcome numerical instability issues at high frequency and wavenumber [13, 46]. The principal motivation is therefore to investigate71

the dependance of the environmental temperature and the interfacial properties on the eigenfrequencies and the corresponding first and72

higher eigenmode shapes of free vibration systems composed of anisotropic heterogeneous multilayered structures with possible large73

difference in material stiffnesses.74

The Stroh formalism [47–49] provides exact solutions to the governing equations of anisotropic elasticity under generalized plane-75

strain deformations in terms of analytic functions. Using Fourier series representation, field solutions have been derived to describe76
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Figure 1: Three-dimensional schematics of a multilayered anisotropic system for free vibration analysis. In presence of perfect/imperfect internal interfaces, the laminated

structure is arbitrarily composed of N homogeneous, orthotropic and rectangular layers with specific thermoelastic properties.

the thermoelastic deformations of anisotropic laminated plates subjected to arbitrary mechanical and thermal interface conditions at77

the edges [8, 12, 13], in which the external and internal boundary conditions are commonly used to determine the coefficients in the78

series expansions. The present formulation is also extended to the fully coupled thermoelastic problems of free vibration of multilayered79

structures with interfacial imperfections. The paper falls into four parts and is organized as follows. The fully coupled boundary-value80

problem is described in Section 2. In Section 3, the general time-harmonic solutions for each homogeneous plates are derived by81

means of double Fourier series expansions, while the recursive relations of the field solutions between the bottom and top surfaces for82

any arbitrary multilayers in presence of perfect/imperfect internal interfaces are obtained by means of the dual variable and position83

technique. Two application examples dealing with graphite fiber/epoxy matrix composites and thermal barrier coated superalloys are84

exhibited in Section 4.1, and conclusions are drawn in Section 5.85

2. The hetero-thermoelastic problem86

Figure (1) describes the three-dimensional multilayered system that consists of an arbitrary number of N -bonded orthotropic, dis-87

similar, linearly thermoelastic, and rectangular layers with fully coupled thermo-mechanical effects. The k
th homogeneous layer is88

surrounded by two internal lower and upper interfaces, located at z = zk and z = zk+1, respectively. The corresponding thickness is89

hk = zk+1 � zk. A global orthogonal system (x,y,z) = (x1,x2,x3) with Cartesian coordinates is attached to the multilayers where90

the origin is located at one of the four corners on the bottom surface and all plates are defined in the positive z-region, while the in-91

plane x k x1- and y k x2- directions are aligned with the horizontal edges to the plate boundaries. It also follows that z = z1 = 0 and92

z = zN+1 =H at the bottom and top surfaces, respectively, where H is the total thickness in the vertical direction of the multilayers.93

The dimensions in the x k x1- and y k x2- directions are Lx and Ly for all thermoelastic plates, respectively. The four lateral sides are94

assumed to satisfy the simply supported boundary conditions, and the internal interfaces between two adjacent layers are perfectly or95

imperfectly connected, which will be discussed later on.96
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2.1. Governing equations

In the reference state, the body is undeformed and is stress-free at a uniform absolute (reference) temperature T0 in the absence of 

external forces. Without considering heat sources in the present context of thermoelasticity theory, the multilayered system undergoes
a temperature change field ✓(xj , t) = T (xj , t) � T0 in Kelvin (K), accompanying by a deformation state specified by the position- and 

time-dependent displacement vector ui(xj , t), expressed in meter (m). Assuming infinitesimal deformation and temperature changes,

the mechanical and thermal properties of the material are considered as constants during deformation and temperature processes since
|@ui(xj , t)/@xj |  ⌧  1 and |✓(xj , t)/T0|  ⌧  1, when the body is subjected to external forces. The constitutive equation for the anisotropic 

heat conduction problem relates linearly the heat flux vector qi in W/m2 to the local temperature gradient, as follows
104

qi =�kij ✓,j , (1)

105

106

107

108

109

110

where kij are the coefficients of thermal conductivity tensor in W/m/K. In eq. (1), a comma followed by index j denotes partial 

differentiation with respect to the position xj of a material point with j = 1,2,3, and a repeated index implies summation over the 
range of the index. In the following algebraic manipulation, the flux vector qi⇤ is introduced such that qi⇤ = �qi = kij ✓,j , with opposite 

sign according to eq. (1), in order to make carefully use of the mathematically elegant and numerically powerful Stroh formalism. The 

crucial reason is that the explicit thermoelasticity-based matrix T, provided in the following by eq. (20a), is required to be symmetric 

and positive definite, as will be made consistent with the Stroh formalism [47–51]. On the other hand, the anisotropic stress-strain 

constitutive relations for each linear and homogeneous thermoelastic plate including thermal stresses are given by111

�ij = cijkluk,l��ij✓ = cijkluk,l� cijkl↵kl✓ , (2)

where �ij is the elastic stress tensor in N/m2, cijkl are the elastic stiffness constants in N/m2, and �ij are the thermal constants in112

N/m2/K. In general, the coefficients �ij can be obtained in terms of the thermal expansion coefficients ↵kl in 1/K and the stiffness113

tensor, as stipulated in eq. (2). For orthotropic materials with the three orthogonal planes of symmetry in the fixed Cartesian coordinates114

(x1,x2,x3), eq. (2) can be expressed in the matrix form as115

2

6666666666664

�11

�22

�33

�23

�13

�12

3

7777777777775

=

2

6666666666664

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

3

7777777777775

2

6666666666664

u1,1

u2,2

u3,3

u2,3 +u3,2

u1,3 +u3,1

u1,2 +u2,1

3

7777777777775

�

2

6666666666664

�11

�22

�33

0

0

0

3

7777777777775

✓ , (3)

with cij the stiffness tensor indexed in Voigt notation. From thermodynamic theory, the use of the principle of conservation of energy116

reads [52]117

q
⇤
i,i = ⇢cp✓̇+T0�iiu̇i,i , (4)

with ⇢ the mass density in kg/m3, cp the specific heat capacity at constant strain in J/kg/K, and the superposed dot denotes the differen-118

tiation with respect to time. Furthermore, the equation of motion for the linear thermoelastic deformations is defined by119

�ij,j = ⇢üi , (5)

120

121

without body forces acting on the body, in which the thermal effects implicitly arise from the constitutive relation (3). Assuming time-

harmonic vibration motion in the present work, the field solution of the elastic displacement vector ui in eqs. (3) and (5) is sought in the 

complex standard form and is separated into a function of position and a function of time, as follows122

ui (x1,x2, z, t) = ûi (x1,x2, z) ei!t
, (6)
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where ûi is the time-independent displacement vector, ! is the angular vibration frequency of excitation in rad/s, and t is time in s.

Substituting separately eq. (6) into eqs. (1) and (2), the nonlinear heat conduction relation and the governing partial differential equation

of motion in eq. (4) and (5) read

8
<

:

i! (⇢cp✓+T0�iiui,i)�kii ✓,ii = 0 ,

⇢!
2
ui+ cijkluk,lj ��ii✓,i = 0 ,

(7a)

(7b)

exhibiting the fully coupled displacement-temperature equations of motion and heat conduction. As proposed in the recent uncoupled123

thermoelastic formulation in Ref. [13], a representation of field solutions by means of double Fourier trigonometric expansions is124

considered in each layer to solve the three-dimensional time-harmonic system of eqs. (7), as follows125

2

4✓ (x1,x2, z, t)

q3 (x1,x2, z, t)

3

5= ei!t
•

Â
m=1

•

Â
n=1

2

4✓̄ (z) sin(pmx1) sin(qnx2)

q̄3 (z) sin(pmx1) sin(qnx2)

3

5= ei!t e⌘z
•

Â
m=1

•

Â
n=1

2

4cT sin(pmx1) sin(qnx2)

dT sin(pmx1) sin(qnx2)

3

5 , (8)

where ⌘ and the expansion coefficients cT and dT are to be determined from the boundary conditions at the internal interfaces between126

adjoining plates, and must satisfy all the prescribed boundary conditions. In eq. (8), the half-wave numbers are given by pm =m⇡/Lx127

and qn = n⇡/Ly , with m and n being two positive integers, so that all Fourier series expansion coefficients are related to the summations128

for m and n. The in-plane and normal flux components of q⇤i are given from eq. (1) by129

q
⇤
1 (x1,x2, z, t) = k11 pei!t e⌘zcT cos(px1) sin(qx2) , (9a)

q
⇤
2 (x1,x2, z, t) = k22 q ei!t e⌘zcT sin(px1) cos(qx2) , (9b)

q
⇤
3 (x1,x2, z, t) = k33 ⌘ ei!t e⌘zcT sin(px1) sin(qx2) , (9c)

so that cT is linearly related to dT by130

dT = k33 ⌘ cT , (10)

according to the second relation in eqs. (8) and eq. (9c). In eqs. (9) and in the following, both superscripts over pm and qn and both131

infinite sums as in eqs. (8) are omitted to avoid notational complexity, although whenever the periodic terms {p,q} arise, summation132

over m and n must be made. In virtue of the infinite series expansion in eqs. (8), the elastic displacements, tractions and in-plane stresses133

are written as follows134

ui (x1,x2, z, t) = ei!t

2

6664

ū1(z)cos(px1) sin(qx2)

ū2(z)sin(px1) cos(qx2)

ū3(z)sin(px1) sin(qx2)

3

7775
= ei!t e⌘z

2

6664

a1 cos(px1) sin(qx2)

a2 sin(px1) cos(qx2)

a3 sin(px1) sin(qx2)

3

7775
, (11a)

ti (x1,x2, z, t) = ei!t

2

6664

�̄31(z)cos(px1) sin(qx2)

�̄32(z)sin(px1) cos(qx2)

�̄33(z)sin(px1) sin(qx2)

3

7775
= ei!t e⌘z

2

6664

b1 cos(px1) sin(qx2)

b2 sin(px1) cos(qx2)

b3 sin(px1) sin(qx2)

3

7775
, (11b)

⌧i (x1,x2, z, t) = ei!t

2

6664

�̄11(z)sin(px1) sin(qx2)

�̄12(z)cos(px1) cos(qx2)

�̄22(z)sin(px1) sin(qx2)

3

7775
= ei!t e⌘z

2

6664

c1 sin(px1) sin(qx2)

c2 cos(px1) cos(qx2)

c3 sin(px1) sin(qx2)

3

7775
, (11c)
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where ai, bi and ci are complex valued constants to be determined. According to eqs. (11), eq. (3) reads135

2

6666666666664

⌧1

⌧3

t3

t2

t1

⌧2

3

7777777777775

= ei!t e⌘z

2

6666666666664

c1 sin(px1) sin(qx2)

c3 sin(px1) sin(qx2)

b3 sin(px1) sin(qx2)

b2 sin(px1) cos(qx2)

b1 cos(px1) sin(qx2)

c2 sin(px1) cos(qx2)

3

7777777777775

= ei!t e⌘z

2

6666666666664

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

3

7777777777775

2

6666666666664

�pa1 sin(px1) sin(qx2)

�qa2 sin(px1) sin(qx2)

⌘a3 sin(px1) sin(qx2)

(⌘a2 + qa3)sin(px1) cos(qx2)

(⌘a1 +pa3)cos(px1) sin(qx2)

(qa1 +pa2)sin(px1) cos(qx2)

3

7777777777775

� ei!t e⌘z

2

6666666666664

�11cT sin(px1) sin(qx2)

�22cT sin(px1) sin(qx2)

�33cT sin(px1) sin(qx2)

0

0

0

3

7777777777775

,

(12)

which gives rise to the following relations on the unknown expansion coefficients, here between bi and [ai, cT]
t for the normal stress136

components, i.e.137

2

6664

b1

b2

b3

3

7775
=

2

6664

⌘ c55 0 pc55 0

0 ⌘ c44 q c44 0

�pc13 �q c23 ⌘ c33 ��33

3

7775

2

6666664

a1

a2

a3

cT

3

7777775
, (13)

as well as between ci and [ai, cT]
t for the in-plane shear stress components, i.e.138

2

6664

c1

c2

c3

3

7775
=

2

6664

�pc11 �q c12 ⌘ c13 ��11

q c66 pc44 0 0

�pc12 �q c22 ⌘ c23 ��22

3

7775

2

6666664

a1

a2

a3

cT

3

7777775
, (14)

for which both 3⇥4 matrices in eqs. (13) and (14) depend on ⌘, pm and qn as well as the thermoelastic constants for each homogeneous139

plate. Combining eqs. (10) and (13), the components that link the displacement/temperature with the normal stress/flux are obtained as140

follows141

2

6666664

b1

b2

b3

dT

3

7777775
=

2

6666664

⌘ c55 0 pc55 0

0 ⌘ c44 q c44 0

�pc13 �q c23 ⌘ c33 ��33

0 0 0 ⌘k33

3

7777775

2

6666664

a1

a2

a3

cT

3

7777775
, (15)

which becomes a fundamental relation in the fully coupled relation between [bi,dT]
t and [ai, cT]

t. Further appropriate relations between142

ai and cT can be derived from eq. (7a), such that143

cT
�
�p

2
k11 � q

2
k22 +⌘

2
k33

�
� i!⇢cpcT = i!T0 (��11pa1 ��22qa2 +�33⌘a3) , (16)

6



while the equation of time-harmonic motion in eq. (7b) gives144

p(�pc11a1 � qc12a2 +⌘c13a3 ��11cT)� c66q (qa1 +pa2)+ c55⌘ (⌘a1 +pa3)+⇢!
2
a1 = 0 , (17a)

�pc66 (qa1 +pa2)+ q (�pc12a1 � qc22a2 +⌘c23a3 ��22cT)+ c44⌘ (⌘a2 + qa3)+⇢!
2
a2 = 0 , (17b)

�pc55 (⌘a1 +pa3)� qc44⌘ (⌘a2 + qa3)+⌘ (�pc13a1 � qc23a2 +⌘c33a3 ��33cT)+⇢!
2
a3 = 0 , (17c)

for which both eqs. (16) and (17) can conveniently be combined and together be recast into a four-dimensional eigenvalue problem, as145

follows146

2

6666664

�p
2
c11 � q

2
c66 +⌘

2
c55 +⇢!

2 �pq (c12 + c66) p⌘ (c13 + c55) �p�11

�pq (c66 + c12) �p
2
c66 � q

2
c22 +⌘

2
c44 +⇢!

2
q⌘ (c23 + c44) �q�22

�p⌘ (c55 + c13) �q⌘ (c44 + c23) �p
2
c55 � q

2
c44 +⌘

2
c33 +⇢!

2 �⌘�33

i!p�11T0 i!q�22T0 �i!⌘�33T0 �p
2
k11 � q

2
k22 +⌘

2
k33 + i⇢!cp

3

7777775

= N 4⇥4

2

6666664

a1

a2

a3

cT

3

7777775
=

2

6666664

0

0

0

0

3

7777775
,

(18)

where N4⇥4 depends on the vibration frequency ! and the environmental temperature T0 in addition to pm, qn and to the thermoelastic147

material properties of the plates. Partitioning eq. (15) into two parts, as148

bT = [⌘T+R1]aT , (19)

with 4⇥1 vectors aT and bT defined by aT = [ai,dT]
t and bT = [bi,dT]

t, while T and R1 are given by149

T =

2

6666664

c55 0 0 0

0 c44 0 0

0 0 c33 0

0 0 0 k33

3

7777775
, (20a)

R1 =

2

6666664

0 0 pc55 0

0 0 qc44 0

�pc13 �qc23 0 ��33

0 0 0 0

3

7777775
, (20b)

and further substituting eq. (19) into eq. (18), a simple quadratic eigenequation with respect to ⌘ is obtained, as follows150

⇥
⌘

2T+⌘ (R1 +R2)+Q
⇤
aT = 0 , (21)

which resembles in structure to the original Stroh formalism in terms of the double Fourier expansions for three-dimensional problems.151

In eq. (21), both matrices R2 and Q are given by152

R2 =

2

6666664

0 0 pc13 0

0 0 qc23 0

�pc55 �qc44 0 0

0 0 �i!�33T0 0

3

7777775
, (22a)

Q =

2

6666664

�p
2
c11 � q

2
c66 +⇢!

2 �pq (c12 + c66) 0 �p�11

�pq (c12 + c66) �p
2
c66 � q

2
c22 +⇢!

2 0 �q�22

0 0 �p
2
c55 � q

2
c44 +⇢!

2 0

i!p�11T0 i!q�22T0 0 �p
2
k11 � q

2
k22 + i!⇢cp

3

7777775
, (22b)

7



which are formulated as function of ! and T0, in contrast to T and R1 in eqs. (20). Finally, both eqs. (19) and (21) can be converted into153

the following linear eigensystem of equations, i.e.154

2

4 �T�1R1 T�1

�Q+R2T�1R1 �R2T�1

3

5

2

4aT

bT

3

5= ⌘

2

4aT

bT

3

5 , (23)

which corresponds to an extension of the pseudo-Stroh formalism for fully coupled thermoelastic problem, where ⌘ are the complex155

valued eigenvalues, while aT and bT are the corresponding eigenvectors. The linear pseudo-Stroh eigensystem in eq. (23) is solved for156

the eight eigenvalues and eigenvectors, which appear in complex conjugate pairs [53] and can be conveniently rearranged such that the157

four eigenvalues {⌘1,⌘2,⌘3,⌘4} have positive real parts, while the remaining solutions have opposite signs.158

2.2. The boundary conditions159

In the present boundary-value problem, the appropriate boundary conditions that must be satisfied are those on the external surfaces,160

i.e., at the edges of the multilayered rectangular plate and both horizontal (bottom and top) surfaces with combined time-harmonic161

thermal and mechanical aspects, as well as those on the internal interfaces of the multilayered rectangular plates. These boundary162

conditions are described in the following sections.163

2.2.1. External boundary conditions164

For the simply supported rectangular composite materials with ideal constraints at the edges, the prescribed boundary conditions at165

four vertical surface planes are expressed in the physical domain as166

u2 = u3 = �11 = ✓ = 0 , at : x1 = 0, and x1 = Lx , (24a)

u1 = u3 = �22 = ✓ = 0 , at : x2 = 0, and x2 = Ly , (24b)

for all plates along the entire thickness of the multilayered materials. For free vibration analysis, the boundary conditions are given as167

traction-free at the bottom and top surfaces of the multilayered structures, while the normal heat flux is arbitrary zero on these boundaries168

for the thermal conduction conditions, i.e.169

t1 = t2 = t3 = q3 = 0 , at : z = 0 , (25a)

t1 = t2 = t3 = q3 = 0 , at : z =H , (25b)

for which the two-dimensional Fourier series ansatz for field solutions given in eqs. (8) and (11) satisfy the homogeneous lateral and170

external boundary conditions given in eqs. (24) eq. (25), for any m and n occurring as parameters. In terms of the present thermal171

boundary conditions from eqs. (25), the external surfaces are perfectly insulated, such that no heat can flow through these surfaces as172

described by the ideal Neumann boundary conditions. Other thermal conditions than the ones in eqs. (25) can straightforwardly be173

applied, as mixed Dirichlet/Neumann boundary conditions, e.g., q3 = 0 and ✓ = 0 on the bottom and top surfaces, respectively, or vice174

versa.175

2.2.2. Internal boundary conditions176

The traditional boundary condition for mechanically compliant non-ideal interfaces in anisotropic composite laminates, which en-177

ables conformability to non-flat and irregularly shaped surfaces to accommodate the residual stresses between two adjacent materials,178

are formulated as follows179

J�3j (x1,x2, z = zk, t)K
+

� = �3j (x1,x2, z = z
+

k, t)��3j (x1,x2, z = z
�
k, t) = 0 , (26a)

Juj (x1,x2, z = zk, t)K
+

� = uj (x1,x2, z = z
+

k, t)�uj (x1,x2, z = z
�
k, t) = ↵

(k)

j �j3 (x1,x2, zk, t) , (26b)
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where both superscripts + and � denote the limit values from the upper and lower sides of any interface located at z = zk, with180

k = 2, . . . ,N . The mechanical contact feature in eqs. (26) is the general spring-type interface condition where traction is continuous but181

the elastic displacements experience a jump crossing the interface. The proportional interface coefficients ↵(k)

j in m3/N are also designated182

by interface compliances. In practice, when the latter interface compliances approach zero, the standard condition for ideal mechanical183

interfaces is verified, while the completely mechanically debonded interfaces are characterized when the interface coefficients tend to184

infinity. For semi-coherent interfaces heterostructures [54, 55], it is also worth noting that misfit dislocation density-based boundary185

conditions [56–59] can introduced in place of the phenomenological requirement in eq. (26b) to describe the non-uniform internal186

structures of imperfect interfaces, which in turn govern interfacial properties such as impurity precipitation, point defect mobility, and187

shearing resistance. Such boundary conditions dedicated to interface patterning will be therefore incorporated in a follow-up formulation188

using thermoelasticity theory.189

As part of the thermal conduction, two anisotropic boundary conditions are taken into account to represent weakly and highly190

conducting non-ideal interfaces. For weakly conducting interfaces, the Kapitza model is used to describe a possible interfacial thermal191

resistance, as follows192

Jq3 (x1,x2, z = zk, t)K
+

� = q3 (x1,x2, z = z
+

k, t)� q3 (x1,x2, z = z
�
k, t) = 0 , (27a)

J✓ (x1,x2, z = zk, t)K
+

� = ✓ (x1,x2, z = z
+

k, t)�✓ (x1,x2, z = z
�
k, t) =��

(k)

T q3 (x1,x2, zk, t) , (27b)

causing a jump in the temperature and thus reduces the effective thermal conductivity of the composite material. In eq. (27b), the193

adiabatic condition at the contact interfaces is obtained when the non-negative interfacial constant �(k)

T in Km2/W tends to infinity. On194

the other hand, the boundary conditions for highly conducting imperfect interfaces are written as195

Jq3 (x1,x2, z = zk, t)K
+

� = q3 (x1,x2, z = z
+

k, t)� q3 (x1,x2, z = z
�
k, t) = �

(k)

T —2
2D ✓ (x1,x2, zk, t) , (28a)

J✓ (x1,x2, z = zk, t)K
+

� = ✓ (x1,x2, z = z
+

k, t)�✓ (x1,x2, z = z
�
k, t) = 0 , (28b)

where —2
2D = (@11 +@22) is the surface Laplacian operator and �

(k)

T is a non-negative interfacial parameter in W/K, for which the upper196

material is connected to the adjacent lower material with infinite conductivity if �(k)

T approaches infinity.197

For both interfacial heat conditions given in eqs. (27) and (28), the perfect thermal conditions for ideal interfaces are met when198

�
(k)

T = �
(k)

T = 0, exhibiting the continuity of temperature and heat flux at ideal interfaces. Because all aforementioned relations are199

proportional to the common factor ei!t, the above mechanical and thermally internal boundary conditions can conveniently be expressed200

with respect to time-independent field quantities by omitting the time characteristics in eqs. (26), (27) and (28).201

3. General and recursive series solutions202

General and exact field solutions for each homogeneous plate are derived using an extension of the Stroh formalism for fully coupled203

thermoelastic problems in three dimensions. The expressions fulfill exactly both governing equations in terms of Fourier series expansion204

functions as well as the external and internal boundary conditions previously defined. The determination of the specific transfer matrix205

between field solutions combined with the dual variable and position technique is used to propagate these solutions recursively through206

all layers of a given multilayered structure without numerical instability issues, including the mechanical and thermal imperfections207

at interfaces. In the following, because only the z-dependent field expressions from the former solutions are needed to derive the208

propagation and imperfect matrices using algebraic manipulations, the sine and cosine functions of x1 and x2 as well as the time-209

dependent factor ei!t are conveniently omitted.210
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3.1. Field relations for each homogeneous plate211

The general solution for the z-dependent coefficients of the following appropriate 4 ⇥ 1 vectors ū✓̄ =
⇥
ū(z) , ✓̄ (z)

⇤t and t̄q̄ =212

[t̄(z) , q̄3 (z)]
t for each layer k can be expressed in the Fourier-transformed domain as213

2

4ū✓̄ (z)

t̄q̄ (z)

3

5=

2

4A† A††

B† B††

3

5

2

4he
⌘†zi 0 4⇥4

0 4⇥4 he⌘††zi

3

5

2

4K†

K††

3

5 , (29)

where K† and K†† are 4⇥ 1 constant vectors to be determined from the thermo-mechanical interface boundary conditions. The eight214

complex eigenvalues ⌘ =
⇥
⌘†,⌘††

⇤t from the linear eigensystem of equations in eq. (23) and quantities K = [K†,K††]
t in eq. (29) are215

ordered as follows216

⌘† =
h
⌘1, ⌘2, ⌘3, ⌘4

it
, ⌘†† =

h
⌘5, ⌘6, ⌘7, ⌘8

it
,

K† =
h
K1, K2, K3, K4

it
, K†† =

h
K5, K6, K7, K8

it
,

(30)

and the corresponding 4⇥4 submatrices are defined as217

A† =
h
aT1 , aT2 , aT3 , aT4

i
, A†† =

h
aT5 , aT6 , aT7 , aT8

i
,

B† =
h
bT1 , bT2 , bT3 , bT4

i
, B†† =

h
bT5 , bT6 , bT7 , bT8

i
,

(31)

such that A† and B† are the collections of eigenvectors associated with the first four eigenvalues ⌘†, while A†† and B†† are related to the218

eigenvectors of the conjugate eigenvalues ⌘††. In eq. (29), the z-dependent diagonal and exponential matrices are represented by219

he⌘†zi= diag
h
e⌘1z, e⌘2z, e⌘3z, e⌘4z

i
, he⌘††zi= diag

h
e⌘5z, e⌘6z, e⌘7z, e⌘8z

i
, (32)

which complete the thermoelastic solutions in eq. (29). For the k
th homogeneous layer of finite thickness hk with the lower surface at220

z = zk and the upper surface at z = zk+1, the transferring relation of thermoelastic field solutions between these two locations, which is221

conveniently considered in general problems of multilayered system, is given by222

2

4ū✓̄ (z)

t̄q̄ (z)

3

5

z=zk+1

= Pk (hk)

2

4ū✓̄ (z)

t̄q̄ (z)

3

5

z=zk

, (33)

where the 8⇥ 8 forward transfer matrix Pk(hk) is expressed as function of the finite thickness hk. Using a local material coordinate223

system that is attached to the individual layer k, where the lower surface is located to z= zk = 0, the vectors K† and K†† can be expressed224

from eq. (29) as follows225

2

4K†

K††

3

5

k

=

2

4A† A††

B† B††

3

5
�12

4ū✓̄ (z)

t̄q̄ (z)

3

5

z=zk=0

, (34)

while setting z = zk+1 = hk in eq. (29) for the upper surface and then substituting eq. (34) into the subsequent result, the following226

equation is straightforwardly obtained227

2

4ū✓̄ (z)

t̄q̄ (z)

3

5

z=zk+1=hk

=

2

4A† A††

B† B††

3

5

2

4he
⌘†hki 0 4⇥4

0 4⇥4 he⌘††hki

3

5

2

4A† A††

B† B††

3

5
�12

4ū✓̄ (z)

t̄q̄ (z)

3

5

z=zk=0

, (35)

which is also used to determine the transfer matrix Pk(hk) in eq. (34), as follows228

Pk (hk) =

2

4P11 P12

P21 P22

3

5

k

=

2

4A† A††

B† B††

3

5

2

4
⌦
e⌘†hk

↵
0 4⇥4

0 4⇥4

⌦
e⌘††hk

↵

3

5

2

4A† A††

B† B††

3

5
�1

, (36)

where the 4⇥4 submatrices [P�#]k are individually defined for any homogeneous layer with specific thermoelastic properties as well as229

230

231

the specific thickness of the plate k. Each substantial transfer matrix that is associated with each plate is therefore used to connect the 

field solutions from the bottom to upper surfaces of the entire multilayered system, formally viewed as an assembly of individual plates 

with particular boundary conditions between two adjacent plates.232
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3.2. Recursive field solutions in multilayered plates233

By use of eq. (29), the criss-cross field solutions at z = zk and z = zk+1 can be rearranged as follows234

2

4ū✓̄ (zk)

t̄q̄ (zk+1)

3

5=

2

4 P11 0 4⇥4

�P21 I 4⇥4

3

5
�1

k

2

4 I 4⇥4 �P12

0 4⇥4 P22

3

5

k

2

4ū✓̄ (zk+1)

t̄q̄ (zk)

3

5

=

2

4 P�1
11 �P�1

11 P12

P21P�1
11 �P21P�1

11 P12 +P22

3

5

k

2

4ū✓̄ (zk+1)

t̄q̄ (zk)

3

5= Vk
8⇥8

2

4ū✓̄ (zk+1)

t̄q̄ (zk)

3

5 ,

(37)

where Vk
8⇥8 is the dual variable and position matrix with components that are related to the transfer submatrices as follows235

Vk
11 =

h
P�1

11

i

k
, Vk

12 =
h
�P�1

11 P12

i

k
,

Vk
21 =

h
P21P�1

11

i

k
, Vk

22 =
h
�P21P�1

11 P12 +P22

i

k
,

(38)

for any plate k bonded by the lower interface at zk and the upper interface at zk+1. The iterative procedure is established by considering236

the similar sequence for the adjacent layer k�1 bounded by both interfaces at z = zk�1 and z = zk, and by making use of the continuity237

conditions of the expansion coefficients at z = zk. Thus, the recursive relation that propagates the thermoelastic solutions from the238

bottom interface of (k�1)th layer and the upper interface of the adjacent kth layer is given by239

2

4ū✓̄ (zk�1)

t̄q̄ (zk+1)

3

5= Vk�1:k
8⇥8

2

4ū✓̄ (zk+1)

t̄q̄ (zk�1)

3

5=

2

4Vk�1:k
11 Vk�1:k

12

Vk�1:k
21 Vk�1:k

22

3

5

2

4ū✓̄ (zk+1)

t̄q̄ (zk�1)

3

5 , (39)

where the superscripts k�1:k denote the resulting propagation submatrices from the layer k� 1 to layer k, for any perfect internal

interfaces identified by k = 2, . . . ,N . The corresponding 4⇥4 recurrence layer-to-layer submatrices in eq. (39) are defined by

Vk�1:k
8⇥8 :

8
>>>>>>>><

>>>>>>>>:

Vk�1:k
11 = Vk�1

11 Ṽk
11 +Vk�1

11 Ṽk
12

⇥
I 4⇥4 �Vk�1

21 Ṽk
12

⇤�1
Vk�1

21 Ṽk
11 ,

Vk�1:k
12 = Vk�1

12 +Vk�1
11 Ṽk

12

⇥
I 4⇥4 �Vk�1

21 Ṽk
12

⇤�1
Vk�1

22 ,

Vk�1:k
21 = Ṽk

21 + Ṽk
22

⇥
I 4⇥4 �Vk�1

21 Ṽk
12

⇤�1
Vk�1

21 Ṽk
11 ,

Vk�1:k
22 = Ṽk

22

⇥
I 4⇥4 �Vk�1

21 Ṽk
12

⇤�1
Vk�1

22 ,

(40a)

(40b)

(40c)

(40d)

where the individual elements Vk�1
�# are specified by replacing k with k� 1 in eqs. (38), thus by using the corresponding thickness240

hk�1 in eqs. (36) and the specific thermoelastic properties of the layer k� 1, while the elements Ṽk
�# are associated with the k

th plate.241

The superposed tilde is used to account for the interfacial imperfections, conceptually considered as dissimilar layers with infinitely242

small thicknesses (i.e., hk ! 0). Thus, the layer k corresponds either to a fictitious thin-thickness imperfect interface or a traditional243

finite-thickness material layer. In a general and concise form, Ṽk
�# are defined for the former by eqs. (45), which are reduced for the244

latter to Ṽk
�# = Vk

�# with a perfectly bonded interface between the adjacent layers k�1 and k, as reported in the following section.245

3.2.1. Thermo-mechanical properties at internal interfaces246

For the general multilayered case in presence of imperfect interfaces, the layer-to-layer eqs. (40) are derived by introducing the247

8⇥8 interfacial material matrix Zint
k that characterizes the thermal and mechanical imperfections at a given internal interface at z = zk.248

Because the discrete imperfect interfaces are conceptually considered as distinct and individual layers with infinitely small thicknesses,249

a supplementary propagation relation, bounded by two fictitious horizontal surfaces, i.e., between the lower side at z = z
�
k to the upper250

side at z = z
+

k of the interface is incorporated in eqs. (38). Thus, the lower interface of the layer k with specific thermal and mechanical251

properties is described by252

2

4ū✓̄ (z
�
k)

t̄q̄ (z
+

k)

3

5= Zint
k

2

4ū✓̄ (z
+

k)

t̄q̄ (z
�
k)

3

5 , (41)
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where the corresponding elements of the interfacial matrix Zint
k are given by [13]253

Zint
k =

2

4Zint
11 Zint

12

Zint
21 Zint

22

3

5

k

=

2

4
I 4⇥4 �diag

h
↵

(k)

1 , ↵
(k)

2 , ↵
(k)

3 ,�(1��)�(k)

T

i

diag
h
0, 0, 0,���

(k)

T
�
p

2 + q
2�
i

I 4⇥4

3

5 , (42)

within which the mechanical and thermal interface properties ↵(k)

j , �(k)

T , and �
(k)

T are defined by virtue of eqs. (26b), (27b) and (28a) at254

z = zk, respectively. In eq. (42), the binary term � is assigned for weakly conducting interfaces with � = 0, while � = 1 is related to255

highly conducting interfaces. According to eq. (37) with eq. (38), the propagation from z
+

k to zk+1 in material layer k is described by256

2

4ū✓̄ (z
+

k)

t̄q̄ (zk+1)

3

5=

2

4Vk
11 Vk

12

Vk
21 Vk

22

3

5

2

4ū✓̄ (zk+1)

t̄q̄ (z
+

k)

3

5 , (43)

so that eqs. (41) and (43) are combined as follows257

2

4ū✓̄ (z
�
k)

t̄q̄ (zk+1)

3

5=

2

4Ṽk
11 Ṽk

12

Ṽk
21 Ṽk

22

3

5

2

4ū✓̄ (zk+1)

t̄q̄ (z
�
k)

3

5 , (44)

where the corresponding recurrence relations are given by
8
>>>>>>>><

>>>>>>>>:

Ṽk
11 = Vk

11 +Vk
11 Zint

12

⇥
I 4⇥4 �Zint

12 Vk
21

⇤�1
Vk

21 ,

Ṽk
12 = Vk

12 +Vk
11 Zint

12

⇥
I 4⇥4 �Zint

12 Vk
21

⇤�1
Vk

22 ,

Ṽk
21 = Zint

21 +
⇥

I 4⇥4 �Zint
12 Vk

21

⇤�1
Vk

21 ,

Ṽk
22 =

⇥
I 4⇥4 �Zint

12 Vk
21

⇤�1
Vk

22 ,

(45a)

(45b)

(45c)

(45d)

completing eqs. (40). It is worth noting that both sets of eqs. (40) and (45) are obviously equivalent in structure, in which the transfer258

matrices dedicated to layer k� 1 are replaced with the interfacial submatrices, and that the submatrices Ṽk
�# in eqs. (45) are reduced259

to Vk
�# given by eqs. (38) for the perfect interfacial case, thus when the perfect thermoelastic interface conditions are satisfied, i.e.,260

↵
(k)

j = �
(k)

T = �
(k)

T = 0 in eq. (42).261

4. Application examples262

Illustrative examples of the fully coupled thermoelasticity theory in multilayered structures are provided for free vibration analysis.263

Two example cases are analyzed and specific effects on the field solutions in modern applications are qualitatively described. Case 1 is264

related to the free vibration response of a graphite fiber/epoxy matrix composite with high anisotropy for different stacking sequences265

of symmetric and anti-symmetric cross-ply layups with 0� (i.e., fibers along the x1 direction) and 90� (i.e., along the x2 direction) plies.266

Case 2 illustrates further effects of different interfacial boundary conditions between both ZrO2 and CMSX4 constituents in thermal267

barrier coated superalloys on the natural frequencies and vibration mode shapes. The residual stress modal analysis is also investigated268

for two different environmental temperatures, at T0 = 293 K and T0 = 1500 K. For the second high-temperature application example,269

the material coefficients of CMSX4 are defined at T0 = 1500 K only, while the material properties of the zirconium dioxide (ceramic)270

have been chosen equal to the ones at room temperature. The material properties used in these two cases are defined in Table 1, from271

different references in the open literature. Without loss of generality, since the lowest frequencies are the most important in the free272

vibration analysis of thermoelastic plates, the following discussions are based on calculations with m= n= 1 and Lx = Ly = L.273

4.1. Free vibration responses274

The thermoelastic field solutions can be propagated through all layers from the bottom external surface at z = z1 = 0 to the top275

surface at z = zN+1 =H , by continuously transferring eq. (39) from one layer to the adjacent layer and passing all internal interfaces276
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case 1 case 2

Property unit graphite/epoxy ZrO2 CMSX4

T0 K 293 293 293 1500

k11 W/m/K 50.0 1.5 7.0 25.0

k22 W/m/K 0.5 1.5 7.0 25.0

k33 W/m/K 0.5 1.5 7.0 25.0

↵11 10�6/K �2.0 10.0 14.0 20.0

↵22 10�6/K 50.0 10.0 14.0 20.0

↵33 10�6/K 50.0 10.0 14.0 20.0

c11 GPa 201.55 405.0 174.0 130.5

c22 GPa 9.16 405.0 174.0 130.5

c33 GPa 9.16 405.0 174.0 130.5

c12 GPa 3.10 110.0 97.0 72.75

c13 GPa 3.10 110.0 97.0 72.75

c23 GPa 2.32 110.0 97.0 72.75

c44 GPa 2.20 58.0 112.0 84.0

c55 GPa 5.00 58.0 112.0 84.0

c66 GPa 5.00 58.0 112.0 84.0

⇢ kg/m3 1575.0 5680.0 8374.0 7898.0

cp J/kg/K 687.0 1050.0 397.0 1150.0

Table 1: Constituent thermoelastic properties for an effective graphite fiber/epoxy matrix composite (case 1) and a multilayered thermal barrier on a nickel based 

superalloy (case 2). The thermal expansion coefficients kii are in W/m/K, the thermal conductivities ↵ii in 10�6 /K, the elastic stiffness components cij in GPa, the density 

⇢ in kg/m3, and the specific heat capacity cp in J/kg/K. These material properties are defined with respect to two environmental temperatures T0.

13



with the corresponding interfacial properties, as follows277

2

4ū✓̄ (0)

t̄q̄ (H)

3

5= V1:N
8⇥8

2

4ū✓̄ (H)

t̄q̄ (0)

3

5=

2

4V1:N
11 V1:N

12

V1:N
21 V1:N

22

3

5

2

4ū✓̄ (H)

t̄q̄ (0)

3

5 , (46)

where the built-in layer-to-layer submatrices Vk�1:k
�# from the layer k� 1 to layer k with k = 2, 3 , . . . ,N , are given by eqs. (40) with278

eqs. (45) for interfacial imperfections. According to the external boundary conditions in terms of the tractions and normal heat flux279

written in eqs. (25) on both external surfaces, eq. (46) is also reduced to280

2

6666664

ū(0)

✓̄ (0)

0

0

3

7777775
=

2

6666664

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

3

7777775

2

6666664

ū(H)

✓̄ (H)

0

0

3

7777775
, (47)

because t̄(0) = t̄(H) = 0 under the traction-free boundary condition, and q̄ (0) = q̄ (H) = 0 for the thermal part by the ideal Neumann281

boundary conditions. The last two sets of expressions in eq. (47) yield282
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5

2
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21

2
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3

5 , (48)

for which the dispersive relation is therefore given by283

det
�
V1:N

21
�
=M42 det

�
M31 �M

�1
42 M32 ⌦M41

�
= 0 , (49)

by requiring a nontrivial solution of eq. (48) in terms of ū✓̄(H), with M42 , 0 and ⌦ the dyadic product between both vectors M32

and M41. In order to determine the fully coupled thermoelastic solutions {ū✓̄(zf ), t̄q̄(zf )} at any field point zj in layer k, eq. (46) is

conveniently split into two equivalent systems that recursively propagate the solutions from z1 = 0 to zf and also from zf to zN+1 =H

to obtain at the following sets of linear equations, i.e.
8
>>>>>>><

>>>>>>>:

2
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(50a)

(50b)

which can be recast as follows284
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2
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t̄q̄ (zf )

ū✓̄ (0)

3

7775
, (51)

because of the prescribed boundary conditions at both external surfaces, i.e., t̄q̄(0) = t̄q̄(H) = 0 4⇥1 in eqs. (50). Thus, the natural285

frequencies are obtained by solving eq. (49), while the first and higher displacement and stress mode shapes for the free vibration286

characteristics of any thermoelastic multilayers with imperfect interfaces are determined by solving the homogeneous systems in eq. (51)287

with eqs. (40) and (45).288

Before illustrating the dispersion equations for the fully coupled thermoelastic multilayered systems, it is worth noting that a pre-289

liminary validation has been carried out to demonstrate the accuracy and efficiency of the present plate formalism in determining the290

natural frequencies in a homogeneous anisotropic elastic plate, thus by neglecting the thermoelastic coupling effects. The results (not291

shown here) are in exact agreement within 10�7% deviations with the explicit analytical solutions in Ref. [60] for the simplified cases292

dedicated to the free vibration responses of homogeneous simply supported rectangular structures.293
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Figure 2: Influence (a) of the number of orthotropic layers N in anti-symmetric (even) and symmetric (odd) cross-ply laminates with L/H = 10 and (b) of the length-to-

thickness ratio L/H on the normalized natural frequency W1. All rectangular multilayered structures are characterized by the same total thickness H with Lx =Ly =L,

and the thermoelastic calculations are performed at T0 = 293 K.

4.1.1. Graphite/epoxy cross-ply laminates294

The free vibration response of graphite/epoxy fiber-reinforced planar laminated composite materials is presented and discussed for295

different numbers of thermoelastic plates with orientation and sequence of 0� (i.e., fibers oriented along the x1 direction) and 90�296

(i.e., along the x2 direction) plies with perfectly bonded conditions at interfaces. The calculations are performed at the environmental297

temperature T0 = 293 K, and the frequencies in the following are normalized as W = !H

p
⇢/c11, where the material properties are298

299

300

301

302

303

1304

305

306

307

308

listed in Table 1. To generalize the results from the graphite/epoxy examples, the dimensions of the rectangular plates are normalized as 

well, where the lateral dimension L is used to normalize the dimensions of the plates.

Figure (2a) illustrates the effect of the number of orthotropic layers N in anti-symmetric (even) and symmetric (odd) cross-ply 

laminated structures with L/H = 10, while keeping the total thickness H constant for all present multilayered cases. For a low number 

of layers, the normalized fundamental frequency (i.e., the lowest frequency W1) depends on the anti-symmetric and regular symmetric 

cross-ply laminations, whereas the fundamental frequency converges to the same natural frequency W• = 0.02597, when the number of

layers increases. Thus, for a large number of thermoelastic plates, i.e., N � 10 layers, the multilayered systems with harmonic temporal

dependence tend to vibrate at a single ply-independent frequency. Figure (2b) shows that the fundamental frequency dramatically 

decreases with increasing the length-to-thickness ratio L/H for multilayers with 2, 5 and 10 thermoelastic plates. Although large
differences in the magnitude of W1 are exhibited between the 2- and 5-layered cases when L/H  60, the fundamental frequency tends 

towards the same single value, i.e., 2 ⇥ 10�4, for very large length-to-thickness ratios of thin-plate multilayers.
309

Figure (3) displays the first mode shape contours in the (x1, z)-plane at x2/L = 2 for three layups with 2, 5, and 10 plates, while310

L/H = 10 for these three layered cases. In the plots, the dimensionless quantity �
# is introduced for the different thermoelastic field311

solutions, such that �# = �/max(|�|) with � = {✓, q3, �ij}. It is observed that for different layups, the dimensionless temperature312

change ✓
# and normal flux q

#
3 are anti-symmetrically and symmetrically distributed through the thickness z with respect to the median313

plane at x2 =H/2, depicted by the horizontal dashed lines, respectively. The three residual normal stress components �#
11, �#

22 and �
#
33314

are differently distributed, for which the latter field �
#
33 is anti-symmetric with respect to x2 =H/2, while the amplitude, with positive315

maximum (negative minimum) value in the middle of the lower (upper) half-space, is roughly three orders of magnitude smaller than the316

in-plane stress components. The stress concentration of �#
11 is significantly higher in the 0� graphite/epoxy layers than in the 90�-oriented317

plates, where the fibers are oriented along the x1 direction, whilst �#
22 leads to the largest concentrations in the 90�-oriented plates with318
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high stress gradients at the interfaces. The stress repartition in such orthotropic multilayers is also consistent with the rotation of the319

principal material axes with respect to the global (x1,x2, z) coordinates. The von Mises stress field �
#
vm, which is a positive definite value,320

reaches the maximum values on the top surface and the single internal interface for the two-layered structure. The maximum values321

are located on the bottom and top traction-free surfaces for the 5-layered laminate, while maximum �
#
vm is situated in the second layer322

from bottom up and on the top surface for the 10-layered structure. Figure (4) depicts from Fig. (3) the through-thickness distribution of323

the first mode shape at x1/L = 2. Overall, it is shown that the boundary conditions are fully satisfied by the present numerical results,324

e.g., the traction-free boundary conditions on the bottom and top surfaces for �#
33 as well as the continuity of the normal stresses at the325

internal interfaces. The in-plane stress components are linearly distributed through each individual layer and are discontinuous at the326

interfaces with large stress gradients. Furthermore, the symmetric profiles of the dimensionless normal flux q
#
3 with respect to z =H/2327

shows that the local peaks of q#
3 are close to the internal interfaces with alternating positive and negative values. This heat flux is zero at328

the external surfaces, as required by the present adiabatic (perfectly insulated) boundary conditions. It is worth noting that the increase329

of the number of thermoelastic layers tends to homogenize the free vibration thermal profiles in each plate and to reduce the von Mises330

stress discontinuities at the interfaces, which is a major cause of fracture and interfacial delamination in multilayered systems.331

Figure (5) shows the convergent behaviors for the first three eigenfrequencies with respect to the thin-plate layup numbers, with332

a higher aspect ratio L/H = 100 than the one that depicts the results in Fig. (2a). In particular for the fundamental frequency W1,333

the thermoelastic coupling decreases when increasing the length-to-thickness ratio. It is also illustrated that the lowest frequency W1334

of anti-symmetric (even) and symmetric (odd) cross-ply laminated structures in Fig. (5a) approaches the same ”homogenized” plate335

eigenvalue with increasing the number of layers N , i.e., W1 = 0.0003, more rapidly than the second W2 = 0.0222 and third W3 = 0.0241336

eigenfrequencies, where deviations in amplitude for these two last normalized frequencies are still relevant for 20 layers. In other words,337

the high eigenfrequencies are more sensitive to the different lamination sequences, such that a higher eigenfrequency is recommended to338

identify or invert the free vibration characteristics of suitable layup features with oriented carbon fibers. Interestingly, the fundamental339

frequency W1 is (not) dependent on the number of plates with N  10 layers with anti-symmetric (symmetric) cross-ply laminates. On340

the other hand, the second and third natural frequencies do not depend on N with anti-symmetric cross-ply laminates, while W2 (W3)341

increases (decreases) in amplitude with increasing the number of plates.342

Figure (6) displays the mode shape contours for the normalized thermoelastic field quantities of the first three low eigenfrequencies343

W1, W2, and W3, for which the laminates are regularly symmetric and composed of three layers with 0�/90�/0� layups. First, the present344

formulation predicts the same natural frequencies for the sandwich plates with 0�/90�/0� and 90�/0�/90� sequences, which remains true345

for any arbitrary number of layers. From Fig. (6), the following interesting features can be observed: 1. Only the higher eigenmode346

shapes of the temperature change ✓
# or q#

3 are correlated with the layup of the laminate, since the mode shapes of the fundamental347

frequency W1 are not; 2. In terms of the residual stress field components, the first and third mode shapes of the in-plane components �#
11348

and �
#
22 are undeniably correlated with the lamination scheme of the three-layered composites as well, where �

#
33 is approximately five349

orders of magnitude smaller than the in-plane stress components. These complex profiles lead to spatially heterogeneous distribution of350

the von Mises shear stress �
#
vm; 3. The higher eigenmode shapes tend to concentrate the normal heat flux q

#
3 at the internal interfaces;351

4. The in-plane stress component �#
22 (�#

11) is considerably larger in magnitude for the eigenfrequency W2 (W3) than for W3 (W2) in the352

90� (0�) fiber-oriented plate(s). Figure (7) further shows the mode shape profiles from Fig. (6) along the thickness direction z at x=L/2,353

illustrating the field correlations between the mode shapes and layups of the three-layered laminates. These features indicate that the354

through-thickness amplitude is extremely dependent on the mode shapes, while only certain of them can be applied to invert the layup355

structures of the involved laminate. The temperature change ✓
# is roughly zero at the interfaces for W2 and W3 with steep local profiles,356

which are responsible to the heterogeneous distribution of the normal heat flux profiles. Depending on the natural eigenfrequencies, the357

compressive or tensile stress components can change in sign, which also alter the residual von Mises stress magnitudes from layer to358
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layer in the laminated structures.359

4.1.2. Thermal barrier coated superalloys360

The free vibration analysis on a thermal barrier coated superalloy made of two anisotropic plates, namely the zirconium dioxide361

(ceramic) ZrO2 coated Ni-based single crystal superalloy CMSX4, is investigated under two environmental temperatures T0 = 293 K362

and T0 = 1500 K, for which the material properties are specified in Table 1. Furthermore, both mechanically and thermally (weakly363

conducting) imperfections at the internal ZrO2/CMSX4 interfaces are included to describe the effect of imperfect interfaces in the364

free vibration responses, where the thickness of each plate are hZrO2 = 100 µm and hCMSX4 = 500 µm. As a preliminary study, the365

real fundamental frequency ! of the superalloy specimens at T0 = 293 K without any thermal barrier coatings is !1 = 5469.54 rad/s,366

while the frequency increases to !1 = 7249.62 rad/s by including the 100 µm-thickness ceramic coating. Overall, the fundamental367

frequency varies linearly with hZrO2 . At T0 = 1500 K, the thermal barrier coated system yields !1 = 6787.52 rad/s, such that the368

fundamental frequency !1 decreases with increasing the environmental temperature and the latter has a more significant effect on the369

higher frequencies than that for the lower (not shown here).370

Figure (8) illustrates the influence of environmental temperature T0 as well as the structurally interfacial imperfection on the free371

vibration characteristics. The variation of the normalized fundamental frequency of the two-layered plate with respect to the isotropic372

interfacial spring-like stiffness components ↵j with j = {1,2,3} under both environmental temperature is shown in Fig. (8a). Here,373

the fundamental frequencies are normalized as W1 = !1/!
0
1, where !

0
1 correspond to the case with perfectly bonded conditions with374

↵j = 0 at the ZrO2/CMSX4 interfaces. Three features are found: 1. The fundamental frequencies decrease with increasing the severity375

of imperfection at both room and high environmental temperatures; 2. The environmental temperature has more impact on the bilayers376

with imperfect mechanical contact properties than the perfect interfacial case; 3 For a given imperfect interface (i.e., with given interface377

stiffness at the contact interface), a higher environmental temperature would correspond to a lower natural frequency. Figures (8b�d)378

depict the three-dimensional mode shapes for the normalized displacement u#
1, in-plane shear stress �

#
12, and von Mises stress �

#
vm.379

While label A is for the mode shape with perfect interface under high temperature T0 = 1500 K, label B is related to the mode shape380

with imperfect interface, i.e., ↵j = 0.1, under the same thermal environment. It is displayed from these three-dimensional figures that381

under a high environmental temperature with large interface stiffnesses, the signature mode shapes can operationally be enhanced with382

much apparent deformation shapes and patterns, as compared to label A.383

Figure (9) shows the mode shape variation of the fundamental frequency W1 in the thickness direction for different normalized field384

solutions under different imperfect interface conditions, namely the influence of the structural boundary conditions with different values385

of ↵j in mm3/N is illustrated in Figs. (9a) and (9b) at T0 = 293 K and T0 = 1500 K, respectively, while the influence of the thermally386

weakly conducting interfaces at high temperature is depicted in Fig. (9c) by varying the Kapitza parameter �T in Km2/W. For comparison387

between the various cases, these field quantities are normalized by the corresponding maximum values in the considered application388

samples. For instance, in the middle column, the temperature change is normalized by the maximum among all the different interface389

stiffness cases, while the in-plane stress field �
#
11 is normalized by the maximum among all the different interface stiffness cases and390

among all the stress components. These figures indicate that with increasing interface parameters, the modal feature of the field quantities391

is significantly altered, in terms of both shapes and magnitudes. Furthermore, with increasing interface parameter, the discontinuity in392

the in-plane stresses (including also the von Mises stress field) increase. In contrast to the calculations at room temperature, the structural393

coefficients ↵j might have strong effects at high temperature on the thermal quantities ✓# and q
#
3. In particular, the normal heat flux at394

the ZrO2/CMSX4 interface that increases with increasing the amplitude of ↵j , where a complete reversal variation of q#
3 (green curve)395

in comparison with lower values (e.g., red and blue curves) is observed close to the internal interface. Since the mode shape is the396

fundamental feature in the free vibration analysis of multilayered composites, these trends and investigations are useful in inverting397

interface structures in layered composites. More particularly, for any interfaces that are partially delaminated (adiabatic) the magnitude398
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of the von Mises stress field �
#
vm decreases from ↵j = 0 to 0.1 Km2/W (increases from �T = 0 to 10�5 Km2/W) in the entire thermal399

barrier coated superalloys.400

5. Concluding remarks401

Exact solutions for the free vibration response of three-dimensional, anisotropic, simply supported and multilayered composites402

with imperfect interfaces have been derived using the fully coupled thermoelasticity theory. For each homogeneous layer in thermal403

environment, the general field expression of the temperature, heat flux, displacement and stress components is formulated in terms of404

double Fourier series expansions, which gives rise to a simple and elegant extension of the Stroh formalism including thermomechanical405

coupling effects. Using the specific conditions at the internal interfaces between adjacent layers, the complete time-harmonic solutions406

in the multilayered structure is obtained by combining the modified dual variable and position technique with explicit layer-to-layer407

transfer matrices. The present framework admits different mechanical and thermal boundary conditions to take into account interfa-408

cial imperfections, and can be applied to thick and thin laminated structures, without producing numerical instability issue from high409

frequency and/or large wavenumber.410

Results are presented for two application examples, namely the graphite/epoxy cross-ply composites and the thermal barrier coatings411

on superalloys, for which effects such as stacking lamination sequence, length-to-thickness ratio and the interfacial conditions on the412

natural frequencies and first and higher vibration mode shapes are deeply investigated. The calculations reveal that the natural frequencies413

and first and higher vibration mode shapes of the multilayered structures can be considerably affected by increasing the environmental414

temperature as well as the thermal and mechanical severity of the interfacial imperfections. From these numerical results, the following415

main features and conclusions can be drawn:416

1. The value of the fundamental frequency increases with increasing plate thickness, while the natural frequencies in the graphite/epoxy417

cross-ply laminates are independent of the lamination sequence in multilayers with the same number of alternating thermoelastic layers,418

2. The first three natural frequencies of the cross-ply composites converge to single values with increasing number of layers, which419

depend significantly on the anti-symmetrically and symmetrically distributed stacking sequence,420

3. In contrast with the fundamental frequency, only the higher eigenmode shapes of the temperature change and the heat flux are421

correlated with the layup of the laminate, where the latter is strongly concentrated at the internal interfaces,422

4. In the two-constituent thermal barrier coated superalloys, the natural frequencies increase as the thickness of ceramic increases,423

while the fundamental frequencies decrease with increasing the spring-like stiffness properties of the imperfect interface at both room424

and high environmental temperatures,425

5. The vibration signature region in the thermal barrier coated superalloys has much apparent deformation shapes and patterns at426

high temperature with partially delaminated (i.e., with interfacial damage) interfaces than the equivalent samples at room temperature427

with perfectly bonded conditions,428

6. For imperfect interfaces that are partially delaminated, the magnitude of the von Mises stress mode shapes decreases in the429

entire thermal barrier coated superalloys, while its magnitude increases in presence of partially insulated (i.e., with interfacial thermal430

resistance) interfaces,431

7. The numerous through-thickness stress distributions in 2, 5, and 10 layered composites are intimately correlated to the layups432

with perfect/imperfect interfaces, so that modal stress analysis as experienced in the present investigations could be exploited to locate433

the fatigue hotspots in dynamic structures and to guide the structural design of aircraft and spacecraft composite laminates subjected to434

residual vibrations in the context of reverse interfacial engineering.435

Extensions of the formalism to modern free vibration problems as well as buckling [61] and bending [62] analysis of metallic436

multilayered structures are also possible. For instance, the time-harmonic interactions between semicoherent heterophase interfaces437
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438

439

440

441

442

443

with core-spreading dislocation structures [63] with extrinsic dislocation loops [64] and interfacial cracks [65, 66] in multifunctional 

composites would be of great importance to understand their effects on the natural frequencies and lower and higher thermoelastic 

mode shapes for future renewable energy devices in aerospace structures [67]. Due to the present versatile formalism to take care of 

imperfect interfaces, other interfacial considerations as the elastic-slip interface model [68, 69] and surface/interface model [70] raised 

by Gurtin and Murdoch [71] can be introduced for appropriate applications, as well as nonlocal size effects [13] in nano- and micro-scale 

structures.
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Figure 9: Effect of the imperfect boundary conditions in thermal barrier coated superalloys. Structural boundary conditions are applied at (a) T0 = 293 K and (b)

T0 = 1500 K with different values of ↵j in mm3/N, while (c) thermal conditions are imposed at the weakly conducting ZrO2/CMSX4 interface using the Kapitza model

at T0 = 1500 K with different value of �T in Km2/W. The black curves in all profiles are related to the perfect interfacial case.
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