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—— Abstract

For delivering a precise Worst Case Execution Time (WCET), the WCET static analysers need
the executable program and the target architecture. However, a prediction — even coarse — of
the future WCET would be helpful at design stages where only the source code is available.
We investigate the possibility of creating predictors of the WCET based on the C source code
using machine-learning (work in progress). If successful, our proposal would offer to the designer
precious information on the WCET of a piece of code at the early stages of the development
process.
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1 Introduction

Context and Motivation

The Worst Case Execution Time (WCET) static analysers operate — for most of them [10, 7, 3,
12] — on the binary of the program under analysis, taking into account the target architecture.
With these elements the WCET estimate can be proven safe and might hopefully be precise.
Unfortunately these requirements make that the WCET estimate is available late in the
development process when many choices linked to the WCET have already been done.

» Situation 1. At Continental Automotive, any new SW project version is based on already
existing components on the shelf, as well as newly developed components. The existing
components usually have associated WCET (obtained by measurement) for some architectures.
For the components that have no timing attached or only timings for too distinct architectures,
a tool operating on source code and providing a prediction of the future WCET would be of
great help. In particular in multi-core context, an early estimation of the runtime would help
the integrator to choose the right core for integration.

Work In Progress

We are currently investigating the possibility of applying machine learning to obtain source-
code-based WCET predictors (specific to the compilation chain and architecture on which
they were learnt). In this article:
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Figure 1 Two ways to approach the WCET.

We introduce a framework for creating the so-called predictors (Section 2). This framework
rely on static analysis of the source code, on machine learning and on a set of programs
which final WCET estimate is known or can be computed.

We present a novel source code static analysis that counts certain events occurring in the
worst case execution (Section 3).

We discuss the application of machine learning in our setting (Section 4). In particular,
we list several questions that have not received satisfying answers yet.

2 Overview

In some industrial settings, as illustrated in Situation 1, the size of the project (e.g. 1.5 M
effective lines of code) or the complexity of the compilation chain makes it time consuming
to create the program binary and thus to obtain the WCET. In addition, the company
organisation might imply that distinct persons from distinct departments provide the source
code, integrate and build the binary. Due to the size of the projects, and the short development
times, a parallelization of the developments is mandatory, and therefore iterative integration
cycles are done. When doing an integration step, having an idea of the future WCET of a
given component (newly developed, or old but not measured nor analysed) is important since
it might influence the selection of the core, the position in the task, or in worst case, the
whole project architecture. Early availability of the information is here more important than
accuracy of the result, the effective real time behaviour being tested extensively or statically
analysed in a further phase. This need of an early WCET is also mentioned by [11, 6, 1].

Our current work pursues the idea that it might be possible to get a satisfying prediction
of the future WCET by applying a formula on some characteristics of the source code
(Figure 1). This formula has to be learnt from a set of programs which WCET estimate is
already known (Figure 2).

In Figure 1, we depict two ways of getting an idea of the WCET.

The top line is the usual WCET derivation, we call its result WCET estimate. This

estimate is by construction an over-approximation of the WCET.

The bottom line is our proposal. We call its result a WCET prediction. This prediction

cannot be safely used as WCET estimate but should give an relatively close approximation

of the top line WCET estimate if we can find a satisfying formula.
A similar pattern is followed by [6, 1] but relies on measurements (related work is detailed in
Section 5).
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Figure 2 Learning WCET source code predictors.
Discovering a formula linking precisely enough the WCET to the source code for a given

compilation chain and architecture is the main goal of our work. In order to achieve this
goal we put our faith in machine learning.

First of all, we note that machine learning cannot be applied straightforward on programs.

The best it can deliver us is to link the WCET estimate with discrete or continuous attributes
of the program source code. We identified two classes of attributes that can be fed to the
machine learning:

1. Count attributes. For example the maximal number of arithmetic operations, function
calls or global variable read accesses. These attributes give a concrete idea of the program
duration and could be assembled by the learning tool into a nice formula.

2. Style attributes. For example the number of lines of code, the maximal loop nesting,
whether the program was generated or hand-written. These attributes are by themselves
insufficient to get an idea of the program duration but they can help the learning tool to
define classes of programs.

We defined a static source code analysis that we call worst case event count analysis. It
extracts count attributes (Item 1) from the source code. This analysis provides more than
source-code-based WCET analysis [9] since it delivers counts for several categories of events
and not a single already-aggregated WCET estimate. In our process, aggregation is left to
machine learning. Details are given in Section 3.

The worst case event count analysis is performed in two situations:

Before applying the formula on a given source code (bottom line of Figure 1),

Before feeding a set of programs to the machine learning process (first step of Figure 2).

Figure 2 depicts the learning process. This process starts with a set of programs for
which the WCET estimates are known. The only assumption that we make on these WCET
estimates is that they intend to reflect the WCET of the source code compiled for a given
architecture. The worst case event counts are then extracted for these programs and paired
with the WCET estimates. The spreadsheet obtained is then fed to the machine learning tool

that will output a formula predicting the WCET estimate in function of the event counts.

Depending on the method used by the tool the formula can range from a linear combination
of the events to a neural network.
In Section 4 we discuss the problems we face in that learning process.

3 Count Attributes Extraction

In this section, we present how we extract worst case event counts from the C source code.

Our proposal is linked with source code timing scheme [9] but the data manipulated are
more complex (count by categories and sets of such metrics).

5:3

WCET 2017



5:4

Early WCET Prediction Using Machine Learning

Y
v X
| A\ /ax
X Xny
\ \
0 0
(a) X is smaller than Y in (b) X and Y are not ordered as in Figure 3a but an optimistic
each category Ay cost more than a pessimistic Ax

Figure 3 Two reasons for ignoring metric X in front of metric Y.

3.1 Analysis Principles

Our analysis is an evaluation of the source code syntax, aware of the loop bounds.

Analysis Domain

We consider an if-then-else statement where the then and else branch evaluations gave
respectively the metrics T and E such that:

T = [Arith — 10; Load — 3], E = [Arith — 2, Load — 5] .

Where Arith and Load respectively stand for performing a basic arithmetic operation and read
access to a variable. What should then be the evaluations of the if-then-else statement?
An imprecise but “sound” solution would be to use the smallest metric greater than 7" and
FE, also known as the least upper bound T'U F of T and E:

T U E = [Arith — max(10, 2); Load — max(3,5)]
= [Arith — 10; Load — 5] .

This option is appealing because it seems to mimic the over-approximation that will be
performed by the timing analysis. This is not the case. When the binary WCET analysis
has to select the then or the else branch it reasons on numbers of cycles that are totally
ordered. The solution it retains might really be the worst case. In our case, the metric TU F
is wrong: no “execution” can reach these figures. Using the average or the minimum instead
of the maximum would not deliver a more satisfying result.

The metrics are structured as a partially ordered set (poset) isomorphic to N© where c is
the set of event categories. A precise solution is to to keep track of sets of mazimal metrics.
For the if-then-else statement above the evaluation would be the set {T, E'} since none of
them is greater than the other. Potentially an evaluation could contain as many elements as
the number of permutations on c ie. |c|!. In practice the size of the set does not grow that
fast and we use some architectural knowledge in order to state for example that:

[Load — 5; Store — 2] < [Load — 40; Store — 1] .

The argument that sustains this ordering is the fact that one extra store cannot be more
expensive than 35 extra loads. More formally, each category receives a pessimistic and an
optimistic evaluation in terms of cycles. With these ranges we define the two functions
evalyess and evalypy that assign a numerical value to a metric. We then redefine the order on
the metrics as follows:

X <Y <= evalp(X —Z) < evalpess(Y — Z) with Z=XnNY.
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Table 1 Categories used by our worst case event count analysis.

Family Category Optimistic  Pessimistic
Simple 0.5 1
Operations  Multiplication 1 5
Division 1 10
Unconditional branch 0.5
Control Conditional branch 1
Computed branch 1
Call 0.5 10
Address setting 0.5 1
Memory Load 2 20
Store 2 20

where the metric X MY is the greater lower bound of X and Y (it is computed by keeping
the minimum for each category) and the metric X — Z is the difference of X and Z, category
by category. This ordering on metrics encompasses the point-wise ordering. Figure 3 can
give the visual intuition of this ordering.

Eventually, the set of maximal metrics computed for the whole program needs to be
brought back to a single metric in order to be fed to the learning process. At that stage
there is often few elements R; in the set because when numbers of events get large, the
ordering eliminates many metrics that cannot be the worst-case path. We approximate to
RyU...UR,.

Analysis Rules

The sets of maximal metrics (A, B) are combined according to these rules:

A and B are in sequence T{X+Y | XeAY € B},
A and B are alternatives T (AUB),
A is repeated n times {nx X |X e A}

where the metric X + Y is the sum of X and Y, category by category, the metric n x X is
the multiplication of each category of X by n and the set 1 S is the set of metrics S where
non-maximal elements have been removed.

3.2 Implementation

We implemented the analysis presented in Section 3.1 on top of the ORANGE static analysis
tool for C [8]. Table 1 shows the considered categories and associated optimistic and
pessimistic evaluation for events of these categories (in cycles).

4 Machine Learning

In this section, we present our machine learning environment (Section 4.1), discuss the
difficulties we face setting up the framework of Figure 2 (Section 4.2) and present our plans
for the near future (Section 4.3).

5:5
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4.1 Machine Learning Methods

We will use WEKA [5], a machine learning software. It is a collection of state-of-the-art
visualization tools and algorithms for data analysis and predictive modelling. Among other
techniques, it supports data preprocessing, clustering, classification and regression.

Once data has been collected on a large set of programs, the software will provide us
classifications, and ways to visualize our data. It allows the systematic comparison of the
predictive performance of WEKA’s machine learning algorithms on a collection of datasets.

WEKA can be set up to compute the error while learning: the data is divided in 10 packs;
in turn, 9 are used to learn and remaining one is used to compute the error.

The validity of the learnt formula depends on the quantity and the quality of the data.

4.2 Learning WCET Predictors
Program Set

In order to have a precise learning, the program set should be large and representative —

preferably thousands of elements. Finding such a set of programs is definitely an issue:
Benchmarks, like the TACLeBench [4], seldom contain more than a hundred programs.
These programs are representative but heterogeneous (size, style, purpose).
Program generators, like CSMITH [13], offer as many programs as needed. These programs
might be far from representative. In addition, their lack of meaning makes that clever
compiler may optimize them in unpredictable proportions (dead code elimination, pre-
computation) thus breaking any correlation between the source and the binary.
Industrial program base, like the one mentioned in Situation 1, may contain hundred of
software components. These program are representative and homogeneous.

The set of programs used should also be correlated with the categories of event considered.
Events that are absent or simply invariant in the program set might be integrated to the
formula in an absurd way.

Choice of the Learning Method

The WEKA machine learning application offers a huge number of learning methods, some
of them presenting tricky parameters. The exploration of this possibilities is a non-trivial
dimension of our problem.

Validation of the Predictor

As mentioned in Section 4.1, the machine learning algorithms already offer a notion of relative
error. When considering large programs, we would consider as successful a relative error
of £20%.

If the chosen method delivers us a weight for each event category we can validate that:

The weights are within the optimistic/pessimistic ranges used in Section 3.

The weights are sensible values for a WCET expert.

Relevant Event Categories

The categories listed in Table 1 where chosen because they seem relevant from a WCET
point-of-view. For example, multiplication and division have been set aside from the other
operations because their compilation can range from a shift to an emulation function.
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Some of these categories can be shown to be useless by our future work while some might
need to be refined. If our proposal is successful, the final categories could be considered as
an interesting production.

Feasibility
Eventually, we need to consider this hypothesis:
» Hypothesis 2. The formula we are looking for does not exists.

For a given compilation process and micro-architecture Hypothesis 2 means that it is
impossible to correlate any source code characteristics to the WCET of the binary. This
hypothesis is not absurd since the impact of the compilation and the hardware on the WCET
can be huge and far from regular. This hypothesis cannot be proven because failing to learn
can be the consequence of either nothing to learn or bad learning method.

If Hypothesis 2 holds, then we propose two ways to fight against it:

Make a step toward the binary by performing the front-end compilation passes, then

applying the worst case event count on the intermediate representation. Hopefully these

passes will be common to most compilation chains.

Restrict our claim to a family of programs.

4.3 Roadmap

A modified version of the static analyser ORANGE [8] provides us the worst case event count
analysis. The WCET analysis framework OTAWA [2] will be used to compute the WCETs of
the program base. The machine learning will be provided by the WEKA platform.

We have proceeded to a first experiment in order to get a proof of concept. We did the
experiment on random generated programs. The learnt formulae were too complex and the
imprecisions were too wide. We believe that this failure is due to the use of programs having
WCET of different magnitudes. We tried to learn from programs being too different.

Thus, for this work, our roadmap is as follow:

Getting a random program generator in order to calibrate the programs. We want to get

a classification prior to submit to WEKA: program having similar size, similar structure

(loops/no loop, conditions/no condition, nested/non nested loops, number of event...).

At first, we used CSMITH [13] but we need more calibration possibilities.

For each category of programs, getting a formula

Combining the class of programs and getting a new valid formula

Classifying the programs of a benchmark (or use case) and running the formula.

5 Related Work

In [6, 1], Gustafsson et al. address the same problem with a different tool. From a set of
measurement on several programs, they infer a timing model. Once learnt, this timing
model can be applied to the measurements of a new piece of code. The technique used
to learn the model is a variation of a linear regression adapted to the fact that only some
of the measurements might reflect worst case behaviours. This technical point prevents
the exploration of the learning techniques we can afford since it would lead to learning an
average behaviour. A important distinction between this work and our proposal is that our
proposal requires no access to the effective hardware but an already set up static analysis

5:7
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tool (e.g. OTAWA and the hardware model) while their work requires no pre-existing model
but an access to the execution platform.

As already mentioned in Section 2 and in the header of Section 3 our proposal offer a
feature similar to [9] with the difference that we transfer the task of aggregating cleverly the
software events to a machine learning tool. Our proposal is thus more complex (need worst
case event count analysis) but we benefit from machine learning and we can (try to) learn
any architecture.

6 Conclusion

Early WCET evaluation is a recurrent request in the domain. Our approach face two main
issues: finding relevant attributes and applying relevant machine learning analysis.

Our expertise on classical WCET evaluation by static analysis is solid. We think we are
able to identify and compute qualitative attributes for C programs.

The second issue will obviously require machine learning expertise in addition to time
analysis expertise. Once the programs are classified, we are confident that we will be able
to obtain a calculus for early WCET. Applying this approach to general programs is more
ambitious, our study will tell the conditions of applications.

Acknowledgements. We wish to thank Mathieu Serrurier for patiently sharing with us bits
of its expertise in machine learning.
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