
IEEE ROBOTICS AND AUTOMATION LETTERS 1

Model Predictive Control With Obstacle Avoidance
for Inertia Actuated AFM Probes Inside a

Scanning Electron Microscope

1

2

3

Shuai Liang , Mokrane Boudaoud, Pascal Morin, Jonathan Cailliez, Barthelemy Cagneau ,
Weibin Rong, and Stephane Régnier

4

5

Abstract—The Atomic Force Microscope (AFM) is a reliable tool6
for 3D imaging and manipulation at the micrometer and nanometer7
scales. When used inside a Scanning Electron Microscope (SEM),8
AFM probes can be localized and controlled with a nanometer res-9
olution by visual feedback. However, achieving trajectory control10
and obstacles avoidance is still a major concern for manipulation11
tasks. We propose a Model Predictive Control (MPC) to address12
these two issues while AFM probes are actuated by Piezoelectric13
Inertia type Actuators (PIA). The novelty of this letter is that the14
model of our MPC-based approach relies on a velocity map of PIAs.15
It enables path following and obstacle avoidance while preserving16
safety margins. Control inputs are optimized by Quadratic Pro-17
gramming, referring to their increment and distance constraints.18
A cost function is defined to navigate the AFM probe with a19
specified velocity. Simulations and experiments are carried out to20
demonstrate that the proposed algorithm is suitable to perform21
path following with obstacle avoidance using map-based velocity22
references. This is the first time that MPC is implemented in23
micro/nano-robotic systems for autonomous control inside SEM.24

25

Index Terms: Atomic Force Microscopy, Robot Control, 
Path planning.

26

I. INTRODUCTION27

NANO-ROBOTIC systems operating inside Scanning Elec-28

tron Microscopes (SEM) have become key tools to face the29

current challenges in micro/nano technologies for both industry30

and academic research [1]. They have been applied in a wide31

range of emerging domains, such as nano-material characteri-32

zation [2], [3], nano-assembly [4], [5] and dual SEM/AFM33

imaging [6]. The choice of using SEM is mainly motivated by34

some of its performance that can not be achieved with classical35
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optical microscopes such as the nano-metric imaging resolution 36

and the depth of field which is necessary to simultaneously 37

observe robots end effectors and samples. 38

Works in the literature have tackled critical issues of robotics 39

inside SEMs. The degree of automation can be categorized 40

into three levels: low-automated, semi-automated and fully- 41

automated. The low-automated level control is based on tele- 42

operated systems which performances strongly depend on user 43

skills and available information [7], [8]. The process is time- 44

consuming and often not repeatable because of the user-centered 45

approach. The semi-automated level provides the user with en- 46

hanced information even for non-observable environments (e.g. 47

vision, sound and touch). Virtual Reality (VR) is a well-known 48

example of such strategies [9], [10]. In other applications, the 49

task might be divided between automated and manual process 50

[11] while other strategies automatically repeat a manually 51

pre-defined sequence [12], [13], [14], [15]. The fully automated 52

level control makes sense if high success rate can be achieved 53

instead of one-shot operated tasks. Therefore, it is often per- 54

formed with specific conditions and/or with dedicated tools [4]. 55

For example, in [16], given an initial random configuration, 56

nanoparticles are organized into desired patterns. However, the 57

method is not robust against actuators model uncertainties since 58

an accurate model is required to compensate for drift, creep and 59

hysteresis effects. In [17], authors explain why combining AFM 60

and SEM would be a convenient solution to manipulate objects 61

while imaging. However, again, specific modes of operation 62

or dedicated sensors and actuators limit its development for 63

fully automated tasks. Regarding the literature, it is thus still 64

challenging to complete advanced automated tasks without the 65

need of specific conditions or tools. 66

This letter targets the development of a user-friendly interface 67

that can manage elementary robotic tasks needed inside a SEM 68

by simply defining graphical instructions with a mouse click 69

on the SEM screen. This capability can be included into a hu- 70

man/robot semi-automated control. More specifically, we target 71

the design of a SEM vision based path following control strategy 72

with a Model Predictive Controller (MPC) for nano-robot end 73

effectors with obstacle avoidance capabilities. Since SEM pro- 74

vides a week depth information, obstacle avoidance in needed 75

to avoid damaging the robot end effector when moving across 76

areas with several objects located along its desired trajectory. 77

Such objects can be surrounded by restricted zones drawn by the 78

user on the SEM screen. These zones are considered as obstacles 79

that the end effector must avoid. In this work, the end effector 80

is a self-sensing Atomic Force Microscope (AFM) probe. The 81
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AFM operates in micrometer and nanometer sized areas when82

working around the target area for topography applications or83

micro/nano-manipulation. However, to bring the AFM probe84

into these target areas, it requires a long range positioning.85

Particularly, when used inside SEM, the long range positioning86

can reach several millimeters. For this reason, the AFM probe87

is mounted on a 3 axes Cartesian nanorobot actuated by Piezo-88

electric Inertia Actuators (PIAs) as it enables motions in the89

centimeter range with a nanometer resolution [18], [19], [20].90

The objective of the controller is twofold. When no obstacle91

is in the neighborhood of the path, a path following control92

algorithm without prediction capabilities is sufficient. However,93

when it comes to avoid an obstacle, the MPC is of importance.94

The latter uses an internal model of the process to predict its95

future states. This prediction is needed to be able to adjust the96

dynamics of the robotic system (i.e. controlled energy reduction)97

when approaching the obstacle and to avoid it in a secure way.98

The novelty of this letter is that the model of our MPC-based ap-99

proach relies on a velocity map of PIAs. It enables path following100

and obstacle avoidance while preserving safety margins. Control101

inputs are optimized by Quadratic Programming, referring to102

their increment and distance constraints. A cost function is103

defined to navigate the AFM probe with a specified velocity.104

The paper is organized as follows. Section II recalls some105

basis of MPC. The experimental platform as well as the charac-106

terization of the velocity map of PIAs are described in section107

III. The control strategy is detailed in section IV-VI. Simulations108

and experiments are carried out in section VII to demonstrate109

the effectiveness of the proposed algorithm.110

II. MODEL PREDICTIVE CONTROL111

Model Predictive Control (MPC) is one of the most popu-112

lar technic to achieve path following with obstacle avoidance113

ability. This method relies on an internal dynamic model of the114

controlled process to anticipate its future behavior. One of the115

main advantages of this control method is that it can anticipate116

future events and then adapt the control law accordingly.117

The use of an internal model of the process is then fundamen-118

tal for MPC. In the case of PIAs, we have proposed in [18] a119

comprehensive model of such class of actuators. These actuators120

include several dynamics such as those of a piezoelectric element121

and those of the presiding caused by friction. Due to the high res-122

onance frequency of the piezoelectric element (around 64 kHz123

and 118 kHz), this model requires a high sampling frequency124

for its real time implementation. Therefore, we propose here a125

novel idea for the design of MPC controller in the case of PIAs126

based on a velocity map easy to implement in real time. PIAs are127

actuated by sawtooth type voltages. The velocity of the actuator128

depends on the amplitude and the frequency of the sawtooth129

input voltage as well as its slope at each period. This slope also130

defines the direction of motion of the actuator. See [18] and131

[21] for more details about the working principle and velocity132

properties of PIAs.133

III. ISIR-ROBOTEX NANO-ROBOTIC PLATFORM AND134

VELOCITY CHARACTERIZATION135

The parts of the ISIR-robotex nano-robotic platform [18] that136

will be used in this letter are composed of (Fig. 1) a 3 axes XYZ137

Cartesian nano-robotic system actuated by PIA of type stick-slip138

(SLC-1720), a SEM (ZEISS EVO LS 25) and a controller board.139

Fig. 1. Dual SEM/AFM schematic view.

The nano-robot operates inside the SEM which provides visual 140

feedback. The controller board (dSPACE DS1007) and a control 141

interface (dSPACE ControlDesk) are used for control algorithms 142

implementation to drive the nano-robotic system. The Z axis of 143

the nano-robot holds a self-sensing AFM probe. 144

The obstacles can be identified with the SEM vision. Several 145

SEM scanning speeds are available from scan mode 1 to scan 146

mode 9. The scan mode 1 is the fastest one. It allows obtaining an 147

image every 1.3 s, but at the price of a limited image resolution. 148

A better image quality can be obtained with scan mode 5, but the 149

acquisition time increases to 15 s. Thus, the real-time capability 150

to identify obstacles depends on a tradeoff between the image 151

quality and the scan speed. In addition, in the working conditions 152

of the paper, the obstacles are static. It is not necessary to identify 153

them at each sampling time. 154

Experiments in [21] have illustrated that the velocity of PIAs 155

is dependent on the direction, the amplitude and the frequency 156

of the driving sawtooth input voltage. Here a velocity map of 157

PIAs is characterized in a low velocity range, i.e. <25 μm/s, 158

which has not been performed in previous works. 159

The experiments are repeated for sawtooth voltages with the 160

following frequencies: 1 Hz, 3 Hz, 5 Hz, 7 Hz, 9 Hz, 11 Hz, 161

13 Hz, 15 Hz, 17 Hz, 19 Hz, 20 Hz. For each frequency, different 162

amplitudes are applied, namely 35 V, 40 V, 60 V, 80 V, 90 V. 163

For each operating point, the average velocity is calculated as 164

in [21]. The velocity map of x and y axes are fitted by a poly- 165

nomial interpolation. For instance, Fig. 2 shows the identified 166

velocity map of y axis. The max velocities are 17.23μm/s and 167

−22.96μm/s for forward and backward directions respectively. 168

Due to the friction force, the PIAs have a dead zone below 169

10 V. We have selected 35V-90 V to be well above this dead-zone. 170

Below 35 V, the velocity is considered equal to zero. The velocity 171

map is used in the sequel for plant states estimation and for MPC 172

algorithm optimization. 173

IV. NOTATION AND MODELING 174

The ISIR-robotex platform is modeled as a holonomic system 175

moving in the plane with fixed orientation. The objective is to 176

make the platform follow a given reference path, while avoiding 177

obstacles. These obstacles are assumed to be fixed. The proposed 178

approach is described in the case of a single obstacle. It can be 179
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Fig. 2. Identified velocity maps on Y axis: forward direction (left) and back-
ward direction (right).

Fig. 3. Kinematic model for model predictive control and obstacle avoidance.

applied in the presence of several obstacles provided the obsta-180

cles are separated enough so that the safety discs surrounding181

each obstacle (as defined below) do not intersect. The following182

notation is used, in accordance with Fig. 3.183
� Points in Euclidean space are denoted with bold uppercase184

letters. Coordinates of points with respect to a frame are185

denoted with ordinary (i.e., non-bold) lowercase letters.186
� Vectors in Euclidean space are denoted with bold lowercase187

symbols. Coordinates of vectors w.r.t. (with respect to) a188

frame are denoted with ordinary letters.189
� F0 = {O, ı0, j0} is a fixed (inertial) frame.190
� Γ is the reference path.191
� P is the point to be controlled, which corresponds to the192

AFM probe tip. The vector of coordinates of P w.r.t. F0 is193

denoted as p = [px, py]
T .194

� Fs = {P s, ıs, js} is the Frenet frame of Γ with origin P s195

given by the orthogonal projection of P onto the reference196

pathΓ. The vector of coordinates ofP s w.r.t.F0 is denoted197

as ps = [psx , psy ]
T .198

� The obstacle is modeled by a covering disc of radius rc199

centered at point C. The vector of coordinates of C w.r.t.200

F0 is denoted as c = [cx, cy]
T . Fc = {Pc, ıc, jc} is the201

Frenet frame of Γ with origin P c given by the orthogonal202

projection of C onto the reference path Γ. The vector of203

coordinates of P c w.r.t. F0 is denoted as pc = [pcx , pcy ]
T .204

� A so-called “safety radius” is defined as the radius rs > rc205

of a circle centered at C.206
� lborder is the line that is tangent to the circle centered at C207

of radius rs, parallel to jc, and intersects the axis {Pc, ıc}208

at a positive abscissa along this axis. It is treated as the 209

terminating border of the obstacle, after which the obstacle 210

avoidance is considered as complete. The intersection point 211

of lborder with Γ is denoted as P b and to this point we 212

associate a frame {P b, ıb, jb} with jb parallel to jc. 213

The kinematic model is simply given by: 214

ṗ = v = [vx, vy]
T (1)

where vh for h ∈ {x, y} is defined as: 215

vh =

{
v+h = F+

h (ah, fh) for forward motion
v−h = F−

h (ah, fh) for backward motion
(2)

HereF+
h andF−

h are the velocity maps discussed in the previous 216

section, with F+
y and F−

y depicted on Fig. 2, and ah, fh respec- 217

tively denote the amplitude and frequency of the sawtooth input 218

voltage. 219

V. MPC ALGORITHM 220

An MPC algorithm is used for planning and control. We 221

provide below the discrete-time dynamic equations of the AFM 222

probe tip that are used to define the MPC strategy. In the sequel, 223

for any time-function ξ and any integer k, ξ|k = ξ(kTh) where 224

Th is a sampling period. Using an explicit Euler scheme,(1) is 225

discretized as follows: 226

p|k+1 = p|k + Thv|k (3)

For h ∈ {x, y} and dh ∈ {+,−}, the function vdh

h in (2) is 227

discretized as follows: 228

vdh

h|k+1 = vdh

h|k +
∂F dh

h

∂ah
(ah|k, fh|k)Δah|k

+
∂F dh

h

∂fh
(ah|k, fh|k)Δfh|k

(4)

where the amplitude increments Δah|k = ah|k+1 − ah|k and 229

frequency increments Δfh|k = fh|k+1 − fh|k of the sawtooth 230

voltages are the discrete-time control variables of the MPC 231

algorithm. From (3) and (4), one obtains for each “motion 232

direction” d = (dx, dy) with dx, dy ∈ {+,−} a discrete-time 233

dynamic model of the AFM probe tip defined as follows: 234{
Xk+1 = AXk +Bd

kUk

Yk = CXk

(5)

with state vector Xk, input Uk and output Yk defined as: 235⎧⎪⎨
⎪⎩

Xk = [pT|k , v
T
|k , ax|k , fx|k , ay|k , fy|k]

T

Yk = [pT|k , v
T
|k]

T

Uk = [Δax|k , Δfx|k , Δay|k , Δfy|k]T
(6)

and state matrices A,Bd
k , and C given by: 236

A =

[
I2 (ThI2 02×4)

06×2 I6

]
, C =

[
I4 04×4

]

Bd
k =

⎡
⎢⎢⎢⎢⎣

02×4
∂Fdx

x

∂ax
(ax|k, fx|k)

∂Fdx
x

∂fx
(ax|k, fx|k) 0 0

0 0
∂F

dy
y

∂ay
(ay|k, fy|k)

∂F
dy
y

∂fy
(ay|k, fy|k)

I4

⎤
⎥⎥⎥⎥⎦

(7)
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where 0m×n denotes the m× n zero matrix and Im the m×m237

identity matrix. Note that A and C are constant matrices, i.e.,238

they depend neither on the sampling time nor on the motion239

direction. In contrast, Bd
k depends on both the sampling time240

and the motion direction.241

For a given cost function, at each sampling time kTh the MPC242

strategy takes into account the process model (5) to optimize a243

sequence of control inputs over a prediction horizon NTh. Only244

the first input value Uk is applied and this process is iterated at245

the following sampling times (k + 1)Th, (k + 2)Th, . . . Let246

−
Yk =

⎡
⎢⎢⎢⎣
Yk+1

Yk+2

...
Yk+N

⎤
⎥⎥⎥⎦,

−
Xk =

⎡
⎢⎢⎢⎣

Xk

Xk+1

...
Xk+N−1

⎤
⎥⎥⎥⎦,

−
Uk =

⎡
⎢⎢⎢⎣

Uk

Uk+1

...
Uk+N−1

⎤
⎥⎥⎥⎦ (8)

Then, one verifies that247

−
Y k =

−
Ak

−
Xk +

−
Bd

k

−
Uk (9)

with248

−
Ak =

⎡
⎢⎢⎢⎣

CA

CA2

...
CAN

⎤
⎥⎥⎥⎦

−
Bd

k =

⎡
⎢⎢⎢⎣

CBd
k 0 . . . 0

CABd
k CBd

k+1 . . . 0
...

...
. . .

...
CAN−1Bd

k CAN−2Bd
k+1 . . . CBd

k+N−1

⎤
⎥⎥⎥⎦

Let249

−
Y �|k =

⎡
⎢⎢⎢⎣
Y�|k+1

Y�|k+2

...
Y�|k+N

⎤
⎥⎥⎥⎦ ,

−
Y d|k =

⎡
⎢⎢⎢⎣
Yd|k+1

Yd|k+2

...
Yd|k+N

⎤
⎥⎥⎥⎦ (10)

with250

Y�|k+i =

[
p|k+i

V|k+i

]
, Yd|k+i =

[
ps|k+i

Vd|k+i

]
(i = 1, . . . , N) (11)

Here V = ‖v‖ and Vd ≥ 0 is a desired velocity, which will251

usually be specified by the user. Note that Y� can be easily252

computed from Y . The objective of the path following problem253

is to stabilize P to P s (i.e., make the AFM probe tip track its254

projection P s onto the path Γ) while ensuring a motion speed255

of the tip equal to Vd. In other words, the objective is to make256

Y� converge to Yd. To solve this problem, the MPC algorithm257

computes
−
U�
k as follows:258

−
U�
k = argmin

−
Uk

N∑
i=1

‖Y�|k+i − Yd|k+i‖w2

such that {set of constraints}
(12)

where ‖ξ‖2w =
∑3

i=1 wiξ
2
i , ∀ξ ∈ R3, for some weights259

w1, w2, w3.260

Quadratic Programming (QP) is used to calculate the optimal 261
−
U�
k . The set of constraints contains both input constraints and 262

state constraints. The input constraints are defined as follows: 263

∀k, ∀j = 1, . . . , 4, Uj,min ≤ Uk,j ≤ Uj,max (13)

The state constraints are defined as follows: 264

∀k, ∀h ∈ {x, y} , ah,min ≤ ah,k ≤ ah,max

∀k, ∀h ∈ {x, y} , fh,min ≤ fh,k ≤ fh,max

∀k, ρk ≥ rs
(14)

with ρk = ‖p|k − c‖ denoting the distance between the AFM 265

probe tip and the center of the obstacle at sampling time kTh. 266

VI. TWO LAYERS CONTROL SCHEME 267

The discrete-time dynamic model (5) is a standard linear 268

model provided the direction vector d is constant. In this case, 269

one can make use of standard techniques to solve at each 270

sampling time the MPC optimization problem, as explained in 271

the previous section. Changing the motion direction of the robot 272

may require to change the direction vector, however, so that a 273

strategy is needed at this level. In this work, a two-layers control 274

structure is proposed, customizing the direction-dependency of 275

PIA (Fig. 4). Firstly the high-level layer determines the com- 276

ponents dx, dy of the AFM probe direction vector. Secondly, 277

according to the selected velocity maps, the low-level layer 278

executes the MPC optimization as described in the previous 279

section. Following [22], a varying sampling period Th is used, 280

with Tmin
h ≤ Th ≤ Tmax

h . Indeed, during obstacle avoidance a 281

longer time horizon interval is beneficial to pre-view further 282

interaction between the AFM probe and the obstacle. The choice 283

of both the direction vector and sampling period depends on 284

the location of the AFM probe tip with respect to the obstacle. 285

To present the proposed strategy, some additional notation is 286

needed. In addition to the circles centered at C of radius rc and 287

rs, we define two other circles centered at C, or radius rh,1 and 288

rh,2 with rh,2 = 2rc < rh,1 = 3rc. Finaly, we denote as γ the 289

vector from P to the orthogonal projection of P onto the line 290

lborder. From there, dx, dy , and Th are chosen as follows: 291

Case 1: ρk > rh,1 or γ · ıb ≤ 0. These conditions imply that 292

the collision risk is low. Then we set: 293

dx=sign((ıs+δjs) · ı0), dy=sign((ıs+δjs) · j0), Th=Tmin
h

with: δ = sign(PPs · js), where PPs is the vector from P to 294

Ps. 295

Case 2: rh,2 < ρk ≤ rh,1 and γ · ıb > 0. In this case the 296

collision risk is more important and we set: 297

dx = sign((ıc + δjc) · ı0), dy = sign((ıc + δjc) · j0)

Th = Tmin
h +

Tmax
h − Tmin

h

rh,1 − rh,2
(rh,1 − dk)

with: δ = sign(PPs · jc), where PPs is the vector from P to 298

Ps. 299

Case 3: ρk ≤ rh,2 and γ · ıb > 0. In this case the collision 300

risk is high and we set: 301

dx=sign((ıc+δjc) · ı0), dy=sign((ıc+δjc) · j0), Th=Tmax
h

with: δ = sign(PPs · jc), where PPs is the vector from P to 302

Ps. 303
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Fig. 4. Model predictive control (MPC)-based obstacle avoidance scheme. The high-level layer determines the direction. The low-level layer applies the control
law.

Fig. 5. Eight-shape reference MPC path following repeatability analysis
with a specified velocity of 3 μm/s for 10 trials. (a) Path following result.
(b) Repeatability results.

VII. EXPERIMENT304

Experiments focus on two aspects: the path following with a305

specified advancing velocity and the capability to avoid obsta-306

cles. The AFM probe position feedback is provided by Template307

Matching from SEM vision. qpOASES is used as the QP solver308

for MPC optimization.309

The limit values for input and state constraints (see (13)–(14))310

are defined as follows:311

U1,min = U3,min = −1V , U1,max = U3,max = 1V

U2,min = U4,min = −5Hz , U2,max = U4,max = 5Hz

ax,min = 34V , ay,min = 30V , ax,max = ay,max = 80V

fx,min = fy,min = 5Hz , fx,max = fy,max = 20Hz (15)

The values of Tmin
h , Tmax

h are defined as 2 s and 8 s respec-312

tively.313

A. Path Following by Model Predictive Control314

An eight-shape curve is defined as the reference path, which315

is characterized with varying curvatures and different motion316

directions in order to comprehensively and representatively test317

the tracking performance of the proposed algorithm. The aim of318

this experiment is to control the AFM probe to track the defined319

path with a specified advancing velocity.320

Fig. 6. Eight-shape reference MPC path following performance. (a) Tracking
errors for 10 trials. (b) AFM probe velocity for 10 trials.

The tracking result is presented in Fig. 5(a). It can be found 321

that the proposed algorithm is able to tune the AFM probe 322

to track the defined reference path with various curvatures in 323

various directions. The tracking repeatability is carried out by 324

applying path following control on the AFM probe from the 325

same initial location for 10 trials, as shown in Fig. 5(b). The 326

AFM probe performs better when tracking the partial path with 327

less curvature, and shortcuts more when it meets sharp turns. 328

In addition, it vibrates more when moving on y axis direction 329

compared with x axis direction. The vibrations can have several 330

origins. The main probable raison is that at the corners of the 331

path in Fig. 5, the velocity in y direction is close to 0. The 332

path distance where the velocity is close to 0 is longer in y axis 333

compared to x axis. The lowest the velocity of a PIA actuator, the 334

highest are the amplitude of the vibration. The latter is caused by 335

the presliding dynamics of the slip motion [18]. One possible 336

solution is to increase the frequency of the sawtooth signal to 337

speed up the motion of the actuator (increasing velocity) and to 338

minimize the duration where the velocity should be close to zero. 339

However, this solution must be done considering the limitation 340

of the SEM image acquisition rate for vision-based control. 341

Fig. 6 presents the position tracking error result (Fig. 6(a)) and 342

the velocity tracking result (Fig. 6(b)), respectively. The position 343

tracking error curve of Fig. 6(a) illustrates the convergences of 344

the AFM probe to the eight-shape curve. There are fluctuations 345

of the position tracking error curve because of the vibrations 346

during the motion on y axis direction and sharp turns. On the 347

other hand, the velocity control result of Fig. 6(b) shows that 348

the actual AFM probe velocity fluctuates around the desired 349

velocity, i.e. 3 μm/s. It decreases at the sharp turns. 350
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Fig. 7. Obstacle avoidance experimental results. The obstacle is shown in
yellow. (a) Tracking results for a straight line shape reference path. (b) Tracking
results for a sinusoidal shape reference path.

Fig. 8. Obstacle avoidance repeatability. (a) Controlled trajectories for 10 trials
with a straight line reference path. (b) Controlled trajectories for 10 trials with
a sinusoidal reference path.

Fig. 9. Distance ρ between the AFM probe tip and the obstacle during the
obstacle avoidance. (a) Straight line reference path. (b) Sinusoidal reference
path.

Based on the 10 trials data, the position tracking performance351

are evaluated by the mean tracking error. The mean tracking352

error is 2.5 pixels, within an image sized of 610× 460 pixels,353

which is considered good. One pixel corresponds to 1 μm.354

This path following controller can be used in future works to355

define elementary trajectories for the manipulation of objects356

Fig. 10. PIA sawtooth input values. Subplots (a)–(d): obstacle avoidance with
straight line reference path. Subplots (e)–(h): obstacle avoidance with sinusoidal
reference path. Input constraints are defined by (15).

inside SEM. For objects whose dimensions is 100 μm and more 357

(for instance spherical objects with 100 μm diameter), the path 358

following with a mean error of 2.5 μm is considered enough. In 359

addition, it is possible to see in Fig. 6(a) that the maximum error 360

in the worst case is lower than 10 μm. It is possible to reduce 361

significantly this error by reducing the vibrations of PIA during 362

the path following control. Indeed, due to the limited frequency 363

rate of the SEM, we have limited the advancing velocity to 364

3 μm/s. At this speed, the slip effect (let us recall that the PIA 365

works with a stick and slip principle) generates vibrations. If 366

the actuator is controlled at a higher speed, by increasing the 367

frequency of the sawtooth voltage, the motion of the PIA will 368

be smoother and therefore the mean error of the path following 369

will be reduced. The reader can refer to our previous work [23] 370

related to the dynamic control of PIAs. 371

B. Obstacle Avoidance by Model Predictive Control 372

A virtual obstacle is introduced along the reference path Γ. 373

The obstacle is a circle of radius rc = 18 pixels, and we set 374

rs = 20 pixels. The aim is to control the AFM probe tip to follow 375

the curve Γ and simultaneously avoid the virtual obstacle. The 376

control procedure is executed under the previously defined input 377

constraints. The tracking result is shown on Fig. 7. A straight 378

line shape reference path and a sinusoidal shape reference path 379

are used in Fig. 7(a) and Fig. 7(b) respectively. In both cases the 380

AFM probe tip succeeds in converging to the path and bypassing 381

the obstacle. 382

IEEE ROBOTICS AND AUTOMATION LETTERS
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To prove the repeatability, ten trials of obstacle avoidance con-383

trols are executed with both straight line and sinusoidal reference384

paths. Fig. 8 demonstrates that the obstacle avoidance behavior385

under the proposed algorithm is experimentally repeatable.386

Fig. 9 shows the evolution of the distance ρ from the AFM387

probe tip to the center of the obstacle. The state constraintρ ≥ 20388

pixel is always satisfied.389

Fig. 10 presents the PIA sawtooth input values, i.e., the390

amplitudes and the frequenciesax,fx,ay andfy . The constraints391

for these variables are dfined by (15). The input constraints are392

globally well respected, with some deviations for the sinusoidal393

reference path.394

The basic performances (step response and frequency char-395

acteristics of X and Y axis) are those of the low level control396

of the piezoelectric stick slip actuators (Fig. 4). In a previous397

work [23], [24], we have presented a detailed study about the398

basic performances of such actuators in open loop and closed399

loop. Considering the global MPC controller, the frequency of400

the sawtooth signal is limited to 20 Hz. The velocity is 3 μm/s.401

Therefore, for a reference position of 100 μm, the response time402

is 33 s.403

VIII. CONCLUSION404

In this letter, a Model Predictive Control (MPC) has been for-405

mulated considering the specific working principle of piezoelec-406

tric inertia actuators (PIA) driven by a sawtooth type voltage. For407

that purpose, the idea has been to define a velocity map of such408

actuators which has been used as a reference model for MPC.409

A complete procedure for the synthesis of MPC considering410

such kind of actuators has been proposed. The controller has411

been applied for the specific case of path following and obstacle412

avoidance of an AFM probe held by PIAs and operating inside413

a SEM. The developed technique enriches the motion capability414

of nano-robotic systems operating inside SEM, accelerating the415

process towards a fully-automation for robotic manipulation416

purposes at small scales.417
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