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The quark contribution to the QCD pressure, Pq, is evaluated up to next-to-leading order (NLO) within
the renormalization group optimized perturbation theory (RGOPT) resummation approach. To evaluate the
complete QCD pressure we simply add the perturbative NLO contribution from massless gluons to the
resummed Pq. Despite this unsophisticated approximation our results for P ¼ Pq þ Pg at the central scale
M ∼ 2πT show a remarkable agreement with lattice predictions for 0.25≲ T ≲ 1 GeV. We also show that
by being imbued with RG properties, the RGOPT produces a drastic reduction of the embarrassing remnant
scale dependence that plagues both standard thermal perturbative QCD and hard thermal loop perturbation
theory applications.

DOI: 10.1103/PhysRevD.104.L031502

At the fundamental level, strongly interacting matter
composed by quarks and gluons is described by quantum
chromodynamics (QCD) whose coupling constant, αs, is
predicted to decrease with increasing energies as the system
evolves to a regime of asymptotic freedom (AF). This
property, together with the other crucial phenomena of
confinement and chiral symmetry, has triggered the pos-
sibility of studying eventual phase transitions related to (de)
confinement and chiral symmetry breaking/restoration in
the laboratory through experiments involving heavy ion
collisions. On the theoretical side, lattice QCD (LQCD)
ab initio simulations have predicted that the deconfinement
and chiral symmetry restoration occur via an analytic
crossover occurring at a pseudocritical temperature of order
Tpc ≃ 155 MeV with the baryon chemical potential, μB,
approaching zero [1]. The region at intermediate T and μB
values (T ∼ 100 MeV, μB ∼ 900 MeV), is currently being
explored by experiments such as the beam energy scan at
RHIC, whose aim is to confirm the existence of a critical
point which locates the end of a first order transition line
predicted to start at T ¼ 0 [2]. Another region, covering the
range T ∼ 0–30 MeV and μB ≳ 1000 MeV, is essential for
the description of compact stellar objects such as neutron
stars. Unfortunately, due to the notorious sign problem [3],
LQCD encounters a more hostile environment within these
two phenomenologically important regions where numeri-
cal simulations cannot yet be reliably implemented.

Therefore, the development of reliable alternatives with
more analytical tools remains timely. Several such alter-
natives can partly address the deconfinement and/or chiral
symmetry restoration, like extensions of the Nambu–Jona-
Lasinio model [2,4–6], or with more complete QCD
dynamics, the Dyson-Schwinger equations (see, e.g.,
[7,8]), the functional renormalization group [9], or other
approaches [10]. Our present approach is rather built on
weak-coupling expansion as a starting point in the evalu-
ation of physical observables in powers (and logarithms) of
g ¼ 4παs. However, perturbative results require a further
resummation to be compatible with strong or even mod-
erate coupling regimes (see Refs. [11–13] for reviews). At
finite temperatures, resumming the perturbative series cures
some of the infrared divergences from zero modes, improv-
ing also convergence issues (but does not solve the
intrinsically nonperturbative infrared issues due to static
magnetic fields [14]). An efficient way to perform a
resummation is to reorganize the perturbative series around
a quasiparticle mass parameter. Such an approach appears
in the literature under various names, like optimized
perturbation theory (OPT) [15–17], linear δ expansion
[18], variational perturbation theory [19], or in the thermal
context, screened perturbation theory (SPT) [20,21].
Analogous thermal resummations in the QCD gluon

sector are far from obvious due to gauge-invariance issues,
but had been circumvented byBraaten and Pisarski [22]who
proposed a gauge-invariant nonlocal Lagrangian embedding
hard thermal loop (HTL) contributions, Landau damping,
and screening gluon thermal mass, with momentum-depen-
dent self-energies and HTL-dressed vertices. The high
temperature approximation of HTL could be successfully
generalized in the so-called HTL perturbation theory
(HTLpt) [23], allowing for the evaluation of the QCD
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thermodynamics at the next-to-next-to-leading order
(NNLO) (three loop), considering both the glue [24] and
quark sectors at finite temperatures and baryonic densities
[25–27]. The final NNLO results turned out to be in good
agreement with LQCDpredictions for temperatures down to
T ≈ 1.5Tpc for the “central” renormalization scale choice

M¼2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2þμ2=π2

p
. Unfortunately this agreement quickly

deteriorates as moderate scale variations of a factor 2 induce
relative variations of order 1 or more. Moreover it has been
observed that this scale dependence strongly increases at
higher orders,most predominantly fromNLO toNNLO. It is
important to remark that standard perturbative QCD
(pQCD) results are also plagued by a similar growing and
strong scale dependence at high orders [11,28,29].
More recently an alternative resummation approach has

been proposed, the renormalization group (RGOPT) opti-
mized perturbation theory [30–33], that essentially com-
bines a variational mass prescription with embedded
consistent RG invariance properties. Within QCD, at
T ¼ μB ¼ 0, the method has been used to estimate the
coupling αs, predicting values [33] compatible with the
world averages [34]. Still at T ¼ 0 ¼ μ, a precise predic-
tion was obtained for the quark condensate [35,36]. In
thermal theories the RGOPT has been applied, e.g., to the
simpler scalar ϕ4 model [30,31] at NLO, showing how it
improves the generic residual scale dependence as com-
pared to both standard thermal perturbation theory and
SPT. Concerning QCD, the direct application of RGOPT to
the pure glue sector is however momentarily obstructed by
specific technical difficulties, as it involves new types of
very involved thermal integrals [37]. Yet at least a nontrivial
NLO evaluation of the QCD pressure can be performed in a
more simpleminded and relatively easy way, if one con-
siders the case of massive quarks and massless gluons. In
this vein we have recently applied the RGOPT to the QCD
quark sector only, while considering the gluons to be
massless, in order to evaluate the NLO pressure at finite
densities and vanishing temperatures [38]. Our NLO results
show a good numerical agreement with higher order state-
of-the-art Oðg3 ln2 gÞ pQCD predictions, with a visible
improvement (although relatively modest for cold matter)
of the residual scale dependence. In the present work, we
aim to extend the T ¼ 0; μB ≠ 0 application performed in
Ref. [38] in order to consider a thermal bath. Our strategy is
to apply our construction to the quark sector which,
together with the purely perturbative NLO contribution
of massless gluons, will compose our complete NLO QCD
pressure: PðT; μBÞ ¼ PRG

q þ PPT
g where PPT

g ∼ T4. We
believe that the results reported here represent a significant
step toward the determination of thermodynamical observ-
ables with RG-improved properties. Technical details may
be found in a companion paper [39].
Our starting point is the perturbative QCD pressure for

three quark flavors with degenerate masses, mu ¼
md ¼ ms ≡m, and massless gluons: P ¼ PPT

q þ PPT
g .

Let us consider first the quark contribution Pq and how
the RGOPT is built on it. At NLO [OðgÞ] themassive quark
contributions to the pressure can be obtained by combining
the vacuum results of Ref. [35] and T; μ ≠ 0 results of
Refs. [40,41]. The per flavor result reads

PPT
q

NfNc
¼ −

m4

8π2

�
3

4
− Lm

�
þ 2T4J1

− 3g
m4

2ð2πÞ4 CF

�
L2
m −

4

3
Lm þ 3

4

�

− gCF

��
m2

4π2
ð2 − 3LmÞ þ

T2

6

�
T2J2

þ T4

2
J22 þm2T2J3

�
; ð1Þ

where Lm ¼ lnðm=MÞ, g≡ 4παsðMÞ, M is the arbitrary
renormalization scale in the MS scheme, CF ¼
ðN2

c − 1Þ=ð2NcÞ, Nc ¼ 3, and Nf ¼ 3. In-medium and
thermal effects are included in the (dimensionless) single
integrals:

J1 ¼
Z

d3p̂
ð2πÞ3 fln ½1þ e−ðEpþμ

TÞ� þ ln ½1þ e−ðEp−
μ
TÞ�g; ð2Þ

with p̂≡ p=T, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þm2=T2

p
,

J2 ¼
Z

d3p̂
ð2πÞ3

1

Ep
½fþðEpÞ þ f−ðEpÞ�; ð3Þ

and in the double integral [after angular integration over
p · q=ðjpjjqjÞ]

J3 ¼
1

ð2πÞ4
Z

∞

0

Z
∞

0

dp̂p̂dq̂ q̂
EpEq

�
Σþ ln

�
EpEq − m2

T2 − p̂ q̂

EpEq − m2

T2 þ p̂ q̂

�

þ Σ− ln

�
EpEq þ m2

T2 þ p̂ q̂

EpEq þ m2

T2 − p̂ q̂

��
. ð4Þ

In Eq. (4) Σ� ¼ fþðEpÞf�ðEqÞ þ f−ðEpÞf∓ðEqÞ, with f�
the Fermi-Dirac distributions for antiquarks (þ) and
quarks (−) respectively [40], that depend on the quark
chemical potential μ, related to the baryonic chemical
potential via μB ¼ 3μ. In the present work we consider
symmetric quark matter and thus do not distinguish the
chemical potentials associated with different flavors
(μs ¼ μu ¼ μd ≡ μ). For the quark sector the Stefan-
Boltzmann limit is

PSB
q

NcNf
¼T4

�
7π2

180

��
1þ120

7

�
μ

2πT

�
2

þ240

7

�
μ

2πT

�
4
�
: ð5Þ
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Defining the (massive) homogeneous RG operator

M
d
dM

¼ M∂M þ βðgÞ∂g −mγmðgÞ∂m; ð6Þ

we note that acting with Eq. (6) on the massive pressure
equation (1) leaves a non-RG-invariant term of leading
order, ∼m4 lnðMÞ. To restore a perturbatively RG-invariant
massive pressure, we proceed as in Refs. [30,31,35] (or
closer to the present case, as in Ref. [38]), subtracting a
finite zero point contribution,

PRGPT
q

NcNf
¼ PPT

q

NcNf
−
m4

g

X
k

skgk; ð7Þ

where the si are determined at successive orders so
that Eq. (6) acting on Eq. (7) vanishes up to neglected
higher order terms, Oðg2m4Þ at NLO, where it suffices
to determine the first two s0 and s1 coefficients. They
involve, through Eq. (6), coefficients of the β function
and anomalous mass dimension, γm, relevant to the T ¼
μ ¼ 0 pressure. Our normalizations are βðgÞ ¼ −2b0g2 −
2b1g3 þOðg4Þ and γmðgÞ ¼ γ0gþ γ1g2 þOðg3Þ, where

ð4πÞ2b0 ¼ 11 −
2

3
Nf; ð4πÞ4b1 ¼ 102 −

38

3
Nf; ð8Þ

γ0 ¼
1

2π2
; ð4πÞ4γ1 ¼

404

3
−
40

9
Nf: ð9Þ

One then finds [35,38]

s0¼
−1

ð4πÞ2ðb0−2γ0Þ
; s1¼−

1

4

�
b1−2γ1

4ðb0−2γ0Þ
−

1

12π2

�
: ð10Þ

Implementing the RGOPT involves the following steps (see
for more details, e.g., [33,38,39]): (1) first one restores
(perturbative) RG invariance of the massive pressure,
giving Eq. (7) with Eqs. (10) and (12) at NLO. (2) The
resulting expression is variationally modified, according to
the prescription [33,38]

PRGPTðm → mð1 − δÞa; g → δgÞ≡ PRGOPT; ð11Þ

acting thus in the present case on Eq. (7). (3) Next one
reexpands Eq. (11) in powers of δ, setting δ → 1 to recover
the massless case. We stress that m is now an arbitrary
variational mass parameter, to be fixed by a sensible
prescription expounded upon below. (4) At this stage one
also needs to fix the exponenta introduced inEq. (11),whose
role is crucial for RG consistency in our framework.
Expanding toLO,Oðδ0Þ, and requiring the resultingpressure
to satisfy the reduced (massless) RG equation,

½M∂M þ βðgÞ∂g�PRGOPT
q ¼ 0; ð12Þ

leads to a ¼ γ0=ð2b0Þ [33,35,38]. At higher orders, we keep
for simplicity the same prescription, which has extra advan-
tages as explained below. The resulting NLO RGOPT-
modified pressure after steps (1)–(4) reads

PRG
q

NfNc
¼−

m4

8π2
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−Lm
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þ2T4J1þ
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4

�

−gCF
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4π2
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T2J2þ

T4

2
J22þm2T2J3
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g

�
1−

γ0
b0

�
þ
�
ðb1−2γ1Þπ2−

ðb0−2γ0Þ
3

��
: ð13Þ

At NLO, Eq. (12) with a ¼ γ0=ð2b0Þ is no longer exactly
satisfied, thus giving an independent constraint. Accord-
ingly in contrast with OPT/SPT the remnantm can be fixed
in two different manners [30,31,38]: using either a standard
stationarity criterion [15], the mass optimization prescrip-
tion (MOP),

∂PRGOPT
q

∂m
				
m̄
≡ 0; ð14Þ

or alternatively from Eq. (12). The coupling gðMÞ is
determined from standard PT two-loop running, with
renormalization scale M chosen as a multiple of πT as
usual. At NLO PRGOPT

q ðm̄ðgÞÞ inevitably has a remnant
scale dependence, basically because the subtractions in
Eq. (7) solely guarantee RG invariance up to remnant
higher order terms. But it is a nontrivial consequence of our
subsequent construction, mainly Eq. (11), that this remnant

dependence remains moderate, of order m4g2 at NLO, as
will be illustrated below. However, regarding Eq. (13), both
Eq. (14) and Eq. (12) fail to give a real dressed mass
m̄ðg; T; μÞ for a substantial part of the physically relevant T,
μ range. The occurrence of nonunique solutions at higher
orders, some being complex, is a well-known burden with
OPT/SPT approaches. In contrast a ¼ γ0=ð2b0Þ in Eq. (11)
guarantees that the only acceptable solutions are those
matching [33] the AF behavior for g → 0 at T ¼ 0, a
compelling criterion that often selects a unique solution.
In addition the nonreal solution issue can be cured in
a RG consistent manner by performing a renormalization
scheme change (RSC) [33,38,39]. With this aim we
define a RSC acting only on the variational mass in our
framework,

m → m0ð1þ B2g2Þ; ð15Þ
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where a singleB2 parametrizes aNLORSC from the original
MS scheme. The latter induces an extra term −4gm4s0B2 in
Eq. (1) (renaming afterwardsm0 → m the variationalmass to
avoid excessive notation changes), entering thus the MOP
equation (14) and RG equation (12). Now since we aim to
solve the latter for exact m and g dependence, Eq. (15)
modifies those purposefully, when now considered as con-
straints for the arbitrary mass m after the (all order)
modifications induced from Eq. (11). Accordingly B2 may
be considered an extra variational parameter, quite similarly
to m, thus to be fixed by a sensible prescription.
Considering specifically the RG equation (12), it can be

conveniently written as an equation for lnðm2=M2Þ,

− ln
m2

M2
þ Brg ∓ 8π2

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
DrgðB2Þ

r
¼ 0; ð16Þ

with Brg; DrgðB2Þ given respectively in Eqs. (4.10), (4.11)
of [39]. Note that a quite similar quadratic form can be
obtained for the MOP equation (14), with its specific
expressions Brg → Bmop, Drg → Dmop [39]. As anticipated
above, in the original MS scheme (B2 ¼ 0) one can have
Drg < 0 (or similarly Dmop < 0) in some physically
relevant parameter ranges due to some negative contribu-
tions, leading thus to nonreal NLO m̄ðT; μÞ solutions.
Accordingly to recover real solutions in a large range,
while at the same time fulfilling the crucial AF-matching
requirement, the comprehensive analysis performed in
Ref. [39] suggests the following prescriptions: The arbi-
trary RSC parameter B2 is fixed by partly (fully) canceling
Dmop (Drg). For the RG prescription explicitly

DrgðB2Þ ¼ 0 ð17Þ
uniquely fixes B2. It gives a single real solution for m̄,
determined by the first two terms of Eq. (16), the latter still
being an implicit equation in m for T; μ ≠ 0, and involving
arbitrary higher order contributions since Brg depends
nontrivially on g, m, T, μ [39]. Eq. (17) may be seen at
first as a rather peculiar choice, but there happen to be very
few other possible prescriptions to recover a real RG
solution. A similar analysis holds for the MOP equa-
tion (14), but leading to an m̄ having quite different
properties (we refer to Ref. [39] for details). We stress
that for the two prescriptions the resulting m̄ðB2Þ is an
intermediate variational parameter without much physical
meaning outside its use in the pressure. As illustrated below
both prescriptions give drastically reduced remnant scale
dependence as compared to pQCD, but the best results are
obtained from the RG prescription equations (16) and (17).
This is not very surprising as the latter more directly
embeds RG properties as compared to Eq. (14). However
for more complete and conservative coverage of the
possible variants at NLO, we will illustrate both RG and
MOP prescription results below.

Coming to the full QCD pressure, we simply add to
Eq. (13) the NLO glue contributions [42],

PPT
g ¼ 8π2

45
T4

�
1 −

15

ð4πÞ2 g
�
: ð18Þ

Thus we can now compare the NLO RGOPT full QCD
results with those from HTLpt [25,27] and (massless)
pQCD [28], as well as with available LQCD data from
Refs. [43–45]. For the numerical evaluations of NLO
quantities we take the exact two-loop running coupling
(see, e.g., Ref. [38]) where for the basic QCD scale we take
ΛMS ¼ 335 MeV for Nf ¼ 3, which is very close to the
latest world average value [34]. Notice that, for consistency,
the NNLO HTLpt [27] and Oðg3 ln gÞ pQCD [28] numeri-
cal results reproduced here have been obtained rather with a
three-loop order running coupling.
Figure 1 shows the RGOPT QCD pressure normalized

by PSB ≡ Pq
SB þ Pg

SB as a function of T for μB ¼ 0,
obtained with our best RG prescription, Eqs. (16) and
(17). One notices that for T ≳ 0.25 GeV our results display
a remarkable agreement with the LQCD data of [43] all the
way up to T ¼ 1 GeV (the highest value considered in
those simulations), as well as a very good agreement
with more recent LQCD data [44] at intermediate T.
Furthermore the RGOPT results are drastically more stable
than pQCD and HTLpt when M is varied, as clearly
indicated by the different bandwidths associated with the
different approximations. The NLO RGOPT results at
central scale, M ¼ 2πT, observe a better agreement
with LQCD data from [43] than NNLO HTLpt for
0.5 GeV≲ T ≲ 1 GeV, while the latter lies closer to the
higher T data of [45] as compared to RGOPT, showing
sizable differences. A concomitant feature however is the
visible tension between low [43] and higher T [45] LQCD

FIG. 1. NLO RGOPT (RG prescription) plus NLO PPT
g

pressure (brown band) compared to N3LOg3 ln g pQCD (light
blue band), NLO HTLpt (light green band), and NNLO HTLpt
(light red band), with scale dependence πT ≤ M ≤ 4πT, and to
lattice data [43–45] at μB ¼ 0.
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data in their common range [N.B. we show only statistical
uncertainties for LQCD, as given in publicly available files
[43–45] ]. In Fig. 1 one also notices that HTLpt at NLO and
pQCD at Oðg3 ln gÞ are still far from lattice data, moreover
the NLO HTLpt stays close to SB limit at intermediate to
low temperatures. We further mention that while the
RGOPT band width illustrated correctly reflects the total
remnant scale uncertainty resulting from both the (RG
resummed) PqðMÞ and (standard perturbative) NLO Pg, the
sole PqðMÞ uncertainty would be roughly comparable [39]
to the lattice error bars for T ≳ 0.5 GeV.
Next for completeness in Fig. 2 similar results are shown

for the other possible MOP prescription equation (14),
compared to lattice data and highest order pQCD.
As anticipated this prescription is somewhat less efficient
than the RG one, regarding the remnant scale uncertainty as

well as lattice data comparisons. Yet with respect to pQCD
or to (NLO) HTLpt, overall it also appears as a sharp
improvement, keeping in mind our NLO approximation.
Another physically interesting quantity is the interaction

measure, Δ ¼ E − 3P. In Fig. 3 the NLO RGOPT inter-
action measure at μB ¼ 0, obtained by a numerical deriva-
tive from our best RG prescription above, are compared to
the available LQCD data [43–45]. At temperatures
0.3 GeV≲ T ≲ 1 GeV a very good agreement is observed.
However, similarly to pQCD and HTLpt, NLO RGOPT as
applied here does not describe correctly the peak region
near the pseudocritical Tc temperature as exhibited by
lattice data.
In conclusion, we have compared RGOPT predictions

regarding the QCD pressure with lattice data for the first
time. Our NLO predictions for the central scale,M ¼ 2πT,
turned out to compare very well for temperatures starting at
T ≃ 0.25GeV which lies within the relatively strong cou-
pling regime (αs ≃ 0.3). This agreement persists up to
T ¼ 1GeV, the highest value for the LQCD data of [43].
Furthermore, comparing our NLO results with those from
NNLO HTLpt one observes that the consistent RG invari-
ance properties native to the RGOPT are drastically attenu-
ating the remnant scale dependence issue.While the striking
agreement with lattice data of [43] in Fig. 1 may be partly
numerically accidental, variants of our prescription in Fig. 2
still appear in very good agreement given our essentially
NLO-based construction, as compared to the state-of-the-art
perturbative higher order QCD. The differences of our
results with higher 1GeV≲ T ≲ 2GeV LQCD data [45]
are however visible. Incidentally the LQCD results in [43]
and in [45] appear to be in tension in their common range,
while the trace anomaly shows more continuity, a feature
that may call for more investigations independently of our
results. Regarding the comparisons with 2þ 1 flavor
LQCD, one may also keep in mind our presently not fully
realistic approximation ofNf ¼ 3 degenerate flavors.While
our simple prescription appears to describe fairly well the
moderate to high-T regimes T ≳ 0.25GeV ∼ 1.5Tpc,
beyond NLO one could not avoid to face the well-known
infrared divergences from gluon contributions, calling
for appropriate resummations. Finally we mention that
the NLO RG-improved properties exhibited here extend
without degradation to sizeable chemical potential values
[39]. The latter indicate the potential of our approach
towards a more systematic exploration of both hot and
dense QCD.

We thank P. Petreczky for bringing the results of Ref. [45]
to our attention. M. B. P. and T. E. R. are partially supported
by Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq-Brazil) and by Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior-(CAPES-
Brazil)-Finance Code 001. This work was also financed in
part by INCT-FNA (Process No. 464898/2014-5).

FIG. 2. NLO RGOPT (MOP prescription) plus NLO PPT
g

pressure as function of T at μB ¼ 0 (gray band) compared to
N3LOg3 ln g pQCD (light blue band), with scale dependence
πT ≤ M ≤ 4πT, and to lattice data [43–45].

FIG. 3. NLO RGOPT (RG prescription) trace anomaly
Δ≡ ε − 3P, including NLO ΔPT

g (brown band), compared to
lattice data [43–45]. The additional dashed lines illustrate the scale
uncertainty originating solely from RGOPT quark contributions
within the full scale uncertainty added by ΔPT

g (brown) band.
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