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1 Introduction

The integrable nature of supersymmetric gauge theories with eight super charges has
gathered intensive interests since the groundbreaking work of Seiberg and Witten [2, 3].
In 4d, an R-matrix associated to the instanton counting was discovered on the full Ω-
background [4, 5], and such an R-matrix is known to be attached to an algebra constructed
by coproducting the affine Yangians of symmetric Kac-Moody Lie algebras. When the
gauge group of the gauge theory is G = An, the underlying algebra is a coproduct of n
copies of the affine Yangian of gl1 [4, 6]. The affine Yangian of gl1 can be further uplifted
to a K-theoretic version known as the Ding-Iohara-Miki algebra (or the quantum toroidal
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algebra of gl1) [7–9] and its elliptic version, the elliptic Ding-Iohara-Miki algebra [10].
Through these uplifted algebras, we can figure out the action of the algebra [11, 12] and
the R-matrix [13, 14] on the 5d N = 1 gauge theories and a special class of 6d N = (1, 0)
theories, which can be beautifully presented in the brane web picture of the gauge the-
ories [15, 16]. However, the quantum toroidal algebra acting on the gauge theories with
gauge groups other than the A-type ones is yet to be clarified (see e.g. footnote 8 in [14]). It
is thus still not clear whether the integrability holds on the full Ω-background (for example
we refer to the complicated expressions of the qq-characters of BCD-type gauge groups [17]
in contrast to A-type gauge groups [18–22]). The correspondence has been studied for ar-
bitrary G between G-SYM and L̂G-Toda chain in the absence of the Ω-background [23],
and there are some attempts [24, 25] to build the corresponding algebra from the Nekrasov
partition function of the BCD-type quiver gauge theories.1 Nevertheless, the structure of
the quantum algebra is still far from clear at the current stage.

In this work, we take a bottom-up approach to study the integrability of the gauge
theories with BCD-type gauge groups by generalizing the Bethe/Gauge correspondence
proposed in [1, 28, 29]. The original statement was about the duality between 2d N =
(2, 2)∗ (or resp. 3d N = 2∗; 4d N = 1∗) SU(N) gauge theories with XXX (resp. XXZ;
XYZ) spin chains. A more modern understanding of the relation with 4d N = 2 (resp.
5d N = 1; 6d N = (1, 0)) gauge theories is explained in [30–32] in details by Higgsing
the theory in the so-called Nekrasov-Shatashvili (NS) limit to obtain vortex strings in the
Higgs phase. See also ealier related works [33, 34]. In this description, the 2d N = (2, 2)∗
(or resp. 3d N = 2∗; 4d N = 1∗) theory that captures the integrability nature is an
effective theory on the worldvolume of the vortex strings. In relation to the underlying
algebra that hosts the R-matrix,2 we remark that a similar (rescaled) NS limit can take the
quantum toroidal algebra of gl1 to the quantum group Uq(ŝl2), whose finite dimensional
representations are known to give the solutions to the RTT -relation of the six-vertex model
(XXZ spin chain). In this article, we study the correspondence between 2d (or 3d) gauge
theories with SO or Sp gauge groups and XXX (or XXZ) spin chain with open boundary
conditions. We will also briefly discuss the relation between the results obtained here and
the string-theory set-up used in the derivation of the Bethe/Gauge correspondence in the
A-type case.

This article is organized as follows. In section 2, we give a brief review on the inte-
grability of the closed and open XYZ spin chain. In section 3, we review on the D2 (×S1)
partition function of 2d N = (2, 2) (3d N = 2) gauge theory, and write down the effective
potential. By using this effective potential, we first reproduce the well-known Bethe/Gauge
correspondence between the vacuum equation of the A-type gauge theories and the Bethe
ansatz equation of the closed XXX (or XXZ) spin chains in section 4, and extend this du-

1There is a fiber-base duality connecting the gauge theory with gauge group G1 and quiver structure Γ1

to the theory with gauge group G2 = Γ1 and quiver structure Γ2 = G1 [26] for G1,2 and Γ1,2 being ADE
type. The situation is expected to be more involved for the non-simply-laced cases. This duality was also
discussed in the algebraic approach in [27].

2A possible gauge theory interpretation of the R-matrix in the context of the Bethe/Gauge correspon-
dence has been addressed in [35].
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ality to the case of BCD-type gauge theories and open spin chains in section 5. We further
push forward the computation to the A2 quiver gauge theories in section 6, to a general
linear quiver in section 7, and discuss some potential physical meanings of our results in
the context of the string theory in section 8.

2 The R-matrix and integrable spin chains

The integrability of a spin chain is characterized by an R-matrix, R(u) : V ⊗V → V ⊗V ,
satisfying the Yang-Baxter equation,

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (2.1)

The most general R-matrix for a solvable spin- 1
2 sl2-XYZ spin chain model is given by [36]

R(u) =


α(u) δ(u)

β(u) γ(u)
γ(u) β(u)

δ(u) α(u)

 , (2.2)

where

α(u) =
θ0,1/2(u, 2τ)θ1/2,1/2(u+ η, 2τ)
θ0,1/2(0, 2τ)θ1/2,1/2(η, 2τ) , β(u) =

θ1/2,1/2(u, 2τ)θ0,1/2(u+ η, 2τ)
θ0,1/2(0, 2τ)θ1/2,1/2(η, 2τ) , (2.3a)

γ(u) =
θ0,1/2(u, 2τ)θ0,1/2(u+ η, 2τ)
θ0,1/2(0, 2τ)θ0,1/2(η, 2τ) , δ(u) =

θ1/2,1/2(u, 2τ)θ1/2,1/2(u+ η, 2τ)
θ0,1/2(0, 2τ)θ0,1/2(η, 2τ) , (2.3b)

with
θa1,a2(u, τ) =

∞∑
m=−∞

exp
(
iπ
(
(m+ a1)2τ + 2(m+ a1)(u+ a2)

))
. (2.4)

Let us list several useful properties of the above R-matrix.

• R(0) = P, where P is the permutation operator that acts as P(x ⊗ y) = y ⊗ x for
∀x, y ∈ V .

• R21(u) = R12(u) = R12(u)t1t2 , where ti stands for the transpose in the i-th vector
space.

• Unitarity: R12(u)R21(−u) = R12(u)R12(−u) = −σ(u−η)σ(u+η)
σ(η)2 I =: ρ(u)I, for

σ(u) = θ1/2,1/2(u, τ). (2.5)

Note that we used

θ2
0, 1

2
(x)θ2

0, 1
2
(y)− θ2

1
2 ,

1
2
(x)θ2

1
2 ,

1
2
(y) = θ0, 1

2
(x+ y)θ0, 1

2
(x− y)θ2

0, 1
2
(0), (2.6)

and
θ2

1
2 ,

1
2
(x)θ2

0, 1
2
(y)− θ2

0, 1
2
(x)θ2

1
2 ,

1
2
(y) = θ 1

2 ,
1
2
(x+ y)θ 1

2 ,
1
2
(x− y)θ2

0, 1
2
(0), (2.7)

in the derivation.
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• Crossing unitarity: R12(u) = V1Rt2
12(−u− η)V1 for V = −iσy, so we have

Rt1
12(u)Rt1

12(−u− 2η) = V1R12(u+ η)V 2
1 R12(−u− η)V1 = ρ(u− η)I

= −σ(u+ 2η)σ(u)
σ(η)2 I =: ρ′(u)I. (2.8)

A concrete integrable model is then given by the monodromy matrix, T(u) ∈
End(V (0) ⊗ V ⊗L), and the transfer matrix, t(u) ∈ End(V ⊗L) built from the R-matrix.3
The most well-studied model is the closed spin chain with periodic boundary condition,
whose monodromy matrix is given by

T0(u) = R0L(u− ϑL) . . .R01(u− ϑ1), (2.9)

where ϑi’s are called the inhomogeneous parameters in the closed spin chain.4 The mon-
odromy matrix satisfies the RTT-relation,

R00′(u− v)T0(u)T0′(v) = T0′(v)T0(u)R00′(u− v), (2.10)

which directly follows from the Yang-Baxter equation (2.1). The transfer matrix is then
given by

t(u) = tr0 (T0(u)) , (2.11)
and one can show by using (2.10) that[

t(u), t(u′)
]

= 0, for ∀u, u′. (2.12)

Following the property (2.12), it is easy to see that all the charges defined as the
expansion coefficients of the transfer matrix,

t(u) =:
∞∑
n=0

H(n)un, (2.13)

commute with each other, i.e.
[
H(n), H(m)

]
= 0 for ∀m,n. These charges characterize an

integrable system described by the Hamiltonian

H := 1
H(0)H

(1). (2.14)

The corresponding Hamiltonian for the closed spin- 1
2 XYZ chain constructed from (2.2)

(with all inhomogeneous parameters turned off) is given by

H = 1
2

L∑
n=1

(
Jxσ

(n)
x σ(n+1)

x + Jyσ
(n)
y σ(n+1)

y + Jzσ
(n)
z σ(n+1)

z

)
, (2.15)

where σ(n)
x,y,z are the Pauli matrices assigned to the site n, and the couplings are parametrized

as follows:

Jx = eiπη
σ(η + τ

2 )
σ( τ2 ) , Jy = eiπη

σ(η + 1+τ
2 )

σ(1+τ
2 )

, Jz =
σ(η + 1

2)
σ(1

2)
, (2.16)

and σ(u) is defined in (2.5).
3V (0) is called the auxiliary quantum space. One can certainly take L vector spaces, on which the

transfer matrix act, to be different. A typical choice is to take different representation of the R-matrix at
different site with spin si.

4Not to be confused with the theta functions (2.4).
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2.1 Reduction to XXZ chain

The XXZ limit can be taken by setting τ → i∞, and the following rewriting of the θ-
functions is useful to take the limit,

θ0,0(u, τ) =
∞∏
m=1

(1− q2m)(1 + e2πiuq2m−1)(1 + e−2πiuq2m−1), (2.17a)

θ0,1/2(u, τ) =
∞∏
m=1

(1− q2m)(1− e2πiuq2m−1)(1− e−2πiuq2m−1), (2.17b)

θ1/2,0(u, τ) = 2q
1
4 cos(πu)

∞∏
m=1

(1− q2m)(1 + e2πiuq2m)(1 + e−2πiuq2m), (2.17c)

θ1/2,1/2(u, τ) = −2q
1
4 sin(πu)

∞∏
m=1

(1− q2m)(1− e2πiuq2m)(1− e−2πiuq2m), (2.17d)

where we set q := eπiτ . In the XXZ limit, q → 0, and we see that

θ0,0(u, τ)→ 1, θ0,1/2(u, τ)→ 1, (2.18a)

θ1/2,0(u, τ) ∼ 2q
1
4 cos(πu), θ1/2,1/2(u, τ) ∼ −2q

1
4 sin(πu). (2.18b)

Therefore we have

Jx ∼ eiπη
sin(π(η + τ

2 ))
sin(πτ2 ) ∼ eiπη

exp(−iπ(η + τ
2 ))

exp(−iπτ2 ) → 1, (2.19a)

Jy ∼ eiπη
sin(π(η + 1+τ

2 ))
sin(π(1+τ)

2 )
∼ eiπη

exp(−iπ(η + 1+τ
2 ))

exp(−iπ(1+τ)
2 )

→ 1, (2.19b)

Jz ∼
sin(π(η + 1

2))
sin(π2 ) → cosπη, (2.19c)

and
α(u)→ sin(π(u+ η))

sin(πη) , β(u)→ sin(πu)
sin(πη) , γ(u)→ 1, δ(u)→ 0. (2.20)

One can further take the limit η → 0 with the spectral parameter rescaled by u → uη to
go to the XXX limit.

Let us introduce a new notation,

[x] := sin(πx)
sin(πη) , (2.21)

so that the R-matrix of XXZ spin chain can be expressed as

RXXZ(u) =


[u+ η]

[u] [η]
[η] [u]

[u+ η]

 . (2.22)

We also note that in the XXX limit, [u]→ u and [u+ η]→ u+ 1.

– 5 –
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In the case of the XXZ spin chain, if we use the notation

ι(θ) =
(

1 0
0 eiθ

)
, (2.23)

then we can confirm that ι(θ)⊗ ι(θ) commutes with the R-matrix,[
ι(θ)⊗ ι(θ),RXXZ(u)

]
= 0. (2.24)

This means that the θ-depending transfer matrix

t(u; θ) := tr0ι0(θ)T0(u), (2.25)

gives rise to an integrable closed XXZ spin chain with twisted periodic boundary condition,

σ(L+1)
x,y,z = e

i
2 θσzσ(1)

x,y,ze
− i

2 θσz . (2.26)

However, we note that the commutation relation (2.24) does not hold for the more general
XYZ R-matrix, unless eiθ = ±1.

2.2 Open spin chain

The open spin chains are more interesting to us in this article. The transfer matrix of an
open chain is given by [37]

t(u) = tr0K
−
0 (u)T(u)K+

0 (u)T−1(−u). (2.27)

T(u) ∈ End(V (0) ⊗ V ⊗L) is usually taken to be the same one as in the closed chain, (2.9),
and K±(u) ∈ End(V (0)) stands for the boundary operators, which respectively satisfy the
boundary Yang-Baxter equations

R12(λ1 − λ2)K+
1 (λ1)R21(λ1 + λ2)K+

2 (λ2) = K+
2 (λ2)R12(λ1 + λ2)K+

1 (λ1)R21(λ1 − λ2),
(2.28)

and

R12(−λ1 + λ2)K− t
1 (λ1)R21(−λ1 − λ2 − 2η)K− t

2 (λ2)
= K− t

2 (λ2)R12(−λ1 − λ2 − 2η)K− t
1 (λ1)R21(−λ1 + λ2), (2.29)

with η the characteristic parameter of the system, s.t.

Rt1(u)Rt1(−u− 2η) = ρ′(u)I, (2.30)

for some function ρ′(u). As has been shown in (2.8), ρ′(u) for the XYZ R-matrix is given by

ρ′(u) = −σ(u+ 2η)σ(u)
σ(η)2 . (2.31)

Note that we can rewrite the RTT-relation (2.10) into

T−1
2 (λ2)R12(λ1 − λ2)T1(λ1) = T1(λ1)R12(λ1 − λ2)T−1

2 (λ2), (2.32)

– 6 –
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and
T−1

1 (λ1)R12(λ2 − λ1)T2(λ2) = T2(λ2)R12(λ2 − λ1)T−1
1 (λ1), (2.33)

therefore
K̃+

0 (u) := T0(u)K+(u)T−1
0 (−u), (2.34)

is also a solution to the boundary Yang-Baxter equation (2.28), that is to say, we can
alternatively express the transfer matrix of the open spin chain as

t(u) = tr0K
−
0 (u)K̃+

0 (u). (2.35)

The commutation relation (2.12) can also be shown in this case with the following
calculation,

t(u)t(u′) = tr0,0′K
−
0 (u)K−0′ (u

′)K̃+
0 (u)K̃+

0′ (u
′) = tr0,0′K

− t
0 (u)K−0′ (u

′)K̃+ t
0 (u)K̃+

0′ (u
′)

= ρ′ −1(−u−u′−2η)tr0,0′K
− t
0 (u)K−0′ (u

′)Rt0′
00′(−u−u

′−2η)Rt0
00′(u+u′)K̃+ t

0 (u)K̃+
0′ (u

′)

= ρ′ −1(−u−u′−2η)tr0,0′

[(
K− t

0 (u)R00′(−u−u′−2η)K− t
0′ (u′)

)t0′
×
(
K̃+

0 (u)R00′(u+u′)K̃+
0′ (u

′)
)t0]

= ρ′ −1(−u−u′−2η)tr0,0′

×
[(
K− t

0 (u)R00′(−u−u′−2η)K− t
0′ (u′)

)t00′
K̃+

0 (u)R00′(u+u′)K̃+
0′ (u

′)
]

= ρ′ −1(−u−u′−2η)ρ−1(u′−u)

×tr0,0′

[(
R00′(u′−u)K− t

0 (u)R00′(−u−u′−2η)K− t
0′ (u′)

)t00′

×R00′(u−u′)K̃+
0 (u)R00′(u+u′)K̃+

0′ (u
′)
]

= ρ′ −1(−u−u′−2η)ρ−1(u′−u)

×tr0,0′

[(
K− t

0′ (u′)R00′(−u−u′−2η)K− t
0 (u)R00′(u′−u)

)t00′

×K̃+
0′ (u

′)R00′(u+u′)K̃+
0 (u)R00′(u−u′)

]
= t(u′)t(u), (2.36)

where t00′ = t0t0′ the transpose in both of the 0-th and the 0′-th auxiliary spaces, and we
used the unitarity of the R-matrix in the derivation.

We focus on the case of diagonal boundary operator,

K(u) =
(
e(u) 0

0 f(u)

)
, (2.37)

in this article. The boundary Yang-Baxter equation, (2.28), for this diagonal ansatz re-
duces to

α(u−v)δ(u+v)(e(v)f(u)−e(u)f(v))+α(u+v)δ(u−v)(e(u)e(v)−f(u)f(v)) = 0, (2.38a)
β(u+v)γ(u−v)(e(v)f(u)−e(u)f(v))+β(u−v)γ(u+v)(e(u)e(v)−f(u)f(v)) = 0, (2.38b)

– 7 –
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and one can further simplify them to one single equation,

θ0,1/2(u− v, 2τ)θ1/2,1/2(u+ v, 2τ) (e(v)f(u)− e(u)f(v))
+ θ0,1/2(u+ v, 2τ)θ1/2,1/2(u− v, 2τ) (e(u)e(v)− f(u)f(v)) = 0. (2.39)

Two trivial solutions are e(u) = ±f(u), but we would like to consider a more non-trivial
one. By using the identity

θ1/2,1/2(u±v, τ)θ0,1/2(u∓v, τ)θ0,0(0, τ)θ1/2,0(0, τ) (2.40)
= θ1/2,1/2(u,τ)θ0,1/2(u,τ)θ0,0(v, τ)θ1/2,0(v, τ)±θ1/2,1/2(v, τ)θ0,1/2(v, τ)θ0,0(u,τ)θ1/2,0(u,τ),

we found a solution to the boundary Yang-Baxter equation,

e(u) =
θ1/2,1/2(u+ ξ, 2τ)θ0,1/2(u− ξ, 2τ)

θ1/2,1/2(ξ, 2τ)θ0,1/2(ξ, 2τ) , f(u) = −
θ1/2,1/2(u− ξ, 2τ)θ0,1/2(u+ ξ, 2τ)

θ1/2,1/2(ξ, 2τ)θ0,1/2(ξ, 2τ) ,

(2.41)

where we normalized the boundary operator K(u) s.t. K(0) = I, as we can also see that
the R-matrix (2.2) trivializes at the same value of u = 0. In the XXZ limit, the boundary
operator becomes

KXXZ(u) = 1
[ξ]

(
[u+ ξ]

−[u− ξ]

)
. (2.42)

Remark. One can easily derive the following identities from (2.17a) to (2.17d),

θ0, 1
2
(2u, 2τ) =

( ∞∏
m=1

1 + q2m

1− q2m

)
θ0,0(u, τ)θ0, 1

2
(u, τ), (2.43a)

θ 1
2 ,

1
2
(2u, 2τ) =

( ∞∏
m=1

1 + q2m

1− q2m

)
θ 1

2 ,
1
2
(u, τ)θ 1

2 ,0
(u, τ). (2.43b)

Then we can rewrite

e(u) =
θ1/2,1/2(u+ξ

2 , τ)θ1/2,0(u+ξ
2 , τ)θ0,1/2(u−ξ2 , τ)θ0,0(u−ξ2 , τ)

θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ) , (2.44a)

f(u) = −
θ1/2,1/2(u−ξ2 , τ)θ1/2,0(u−ξ2 , τ)θ0,1/2(u+ξ

2 , τ)θ0,0(u+ξ
2 , τ)

θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ) , (2.44b)

and by further using the identity

θ1/2,1/2(x±y, τ)θ1/2,0(x∓y, τ)θ0,0(0, τ)θ0,1/2(0, τ) (2.45)
= θ1/2,1/2(x,τ)θ1/2,0(x,τ)θ0,0(y, τ)θ0,1/2(y, τ)±θ1/2,1/2(y, τ)θ1/2,0(y, τ)θ0,0(x,τ)θ0,1/2(x,τ),

we have

e(u) = θ1/2,1/2(u,τ)θ1/2,0(ξ, τ)+θ1/2,1/2(ξ, τ)θ1/2,0(u,τ)
2θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ)θ0,0(0, τ)θ0,1/2(0, τ)

= θ0,0(0, τ)θ0,1/2(0, τ)θ1/2,1/2(u,τ)θ1/2,0(u,τ)
2θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ)

(
θ1/2,0(ξ, τ)
θ1/2,0(u,τ) + θ1/2,1/2(ξ, τ)

θ1/2,1/2(u,τ)

)
,

f(u) = −θ1/2,1/2(u,τ)θ1/2,0(ξ, τ)+θ1/2,1/2(ξ, τ)θ1/2,0(u,τ)
2θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ)θ0,0(0, τ)θ0,1/2(0, τ)

= θ0,0(0, τ)θ0,1/2(0, τ)θ1/2,1/2(u,τ)θ1/2,0(u,τ)
2θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ)

(
− θ1/2,0(ξ, τ)
θ1/2,0(u,τ) + θ1/2,1/2(ξ, τ)

θ1/2,1/2(u,τ)

)
. (2.46)
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That is to say, one can decompose the boundary operator K(u) as

K(u) = θ0,0(0, τ)θ0,1/2(0, τ)θ1/2,1/2(u, τ)θ1/2,0(u, τ)
2θ1/2,1/2(ξ/2, τ)θ1/2,0(ξ/2, τ)θ0,1/2(ξ/2, τ)θ0,0(ξ/2, τ)

(
θ1/2,1/2(ξ, τ)
θ1/2,1/2(u, τ)I + θ1/2,0(ξ, τ)

θ1/2,0(u, τ)σz

)
.

(2.47)
We remark that up to the overall scaling (which is a free choice of the boundary operator),
the above decomposition matches with that given in [38, 39] as a special diagonal case. �

For (2.29), we again use the diagonal ansatz K̃ = diag (e′(u), f ′(u)), and obtain the
following equation,

θ0,1/2(−u+ v, 2τ)θ1/2,1/2(−u− v − 2η, 2τ)
(
e′(v)f ′(u)− e′(u)f ′(v)

)
+ θ0,1/2(−u− v − 2η, 2τ)θ1/2,1/2(−u+ v, 2τ)

(
e′(u)e′(v)− f ′(u)f ′(v)

)
= 0. (2.48)

We see that by replacing u→ −u− η, v → −v − η in (2.41), we obtain the following dual
solution for the boundary operator,

e′(u) =
θ1/2,1/2(−u− η + ξ̃, 2τ)θ0,1/2(−u− η − ξ̃, 2τ)

θ1/2,1/2(ξ̃, 2τ)θ0,1/2(ξ̃, 2τ)
, (2.49a)

f ′(u) = −
θ1/2,1/2(−u− η − ξ̃, 2τ)θ0,1/2(−u− η + ξ̃, 2τ)

θ1/2,1/2(ξ̃, 2τ)θ0,1/2(ξ̃, 2τ)
. (2.49b)

The Bethe ansatz provides a convenient approach to diagonalize the integrable system.
In this article, we compare the vacuum equation of the gauge theory with the Bethe ansatz
equation of the spin chain. Let us give a brief description on the (algebraic) Bethe ansatz.
We can schematically express the transfer matrix as a trace over the auxiliary space of
a matrix,

t(u) =: tr0

(
A(u) B(u)
C(u) D(u)

)
= A(u) +D(u), (2.50)

with the entries A(u), B(u), C(u), D(u) elements in End(V ⊗L). For a given ground state
|Ω〉 of the system, the Bethe ansatz assumes that all the eigenstates of the system takes
the form

M∏
i=1
B(ui) |Ω〉 , (2.51)

where the set of {ui} is determined by the so-called Bethe ansatz equation (BAE).
We give a more detailed review on how to derive the above Bethe ansatz equation in

appendix A.
The Hamiltonian of the open chain can be found in a similar way as in (2.14), and

we only write down the Hamiltonian of the open XXZ spin chain with diagonal boundary
conditions here [37]:

H =
L−1∑
i=1
Hi,i+1 + π

2 cot(πξ−)σ(1)
z + 1

2 tan(πη) cot(πξ+)σ(L)
z , (2.52)

where Hi,i+1 = 1
2

(
σ

(i)
x σ

(i+1)
x + σ

(i)
y σ

(i+1)
y + cos(πη)σ(i)

z σ
(i+1)
z

)
is the building block of the

XXZ spin chain, and we omitted some constant terms. We remark that ξ = 0 forces the
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corresponding σz at the boundary to be zero, which can be thought as a fixed-end (or
Direchlet) boundary condition, while taking ξ → i∞ gives cot ξ → −i and is also a special
limit in the spin chain (that minimizes the boundary coupling on the imaginary axis5).

3 Effective twisted superpotential of 3d N = 2 theory and 2d N = (2, 2)
theory

In this section, we quote the expression of the disk partition function of 3d N = 2 theory
(on D2×S1) and 2d N = (2, 2) theory (on D2), and then we compute the effective twisted
superpotential of the gauge theories.

3.1 3d N = 2 theory

The partition function of 3d N = 2 theory on D2 × S1 was computed in [40], where the
geometry of D2 × S1 is parameterized as

ds2 = `2(dθ2 + r2 sin2 θdϕ2) + dτ2, (3.1)

where the S1 circle has a periodicity β`.
The index on D2 × S1 is given by the following integral,

I = 1
|WG |

∫ dNσ
(2π)N e

−SclZvecZchiZbd, (3.2)

where we denote the Weyl group of G by WG, and the one-loop determinant of the vector
multiplet is given by

Zvec =
∏
α∈∆̂

e
1

8β2
(α·σ)2 (

eiα·σ; q2
)
∞
, (3.3)

with the set of the roots of G denoted by ∆̂, and the contribution from the chiral multiplet
with Neumann boundary condition reads

ZNeu
chi =

∏
w∈R

eE(iw·σ+∆β2+im)
(
e−iw·σ−imq∆; q2

)−1

∞
, q = e−β2 , (3.4)

with the set of the weights of the corresponding representation denoted by R, the R-charge
of the scalar in the chiral multiplet ∆, and

E(x) = β2
12 −

1
4x+ 1

8β2
x2. (3.5)

β1 is the fugacity of the rotation along S1, β2 is the U(1)R charge fugacity, β` = (β1 +β2)`
is the circumference of S1. The one-loop contribution of chiral multiplet with Direchlet
boundary condition reads

ZDir
chi =

∏
w∈R

e−E(−iw·σ+(2−∆)β2−im)
(
eiw·σ+imq2−∆; q2

)
∞
, (3.6)

5In the context of XXZ spin chain, it is very often to take u, η and ξ± to be pure imaginary.
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and one can confirm that the difference between the chiral multiplet in Direchlet boundary
condition and that in Neumann condition is given by a 2d Fermi multiplet living on the
boundary, T 2 = ∂(D2 × S1),

ZDir
chi = Z2d FermiZ

Neu
chi , (3.7)

with
Z2d Fermi =

∏
w∈R

e−2E(iw·σ+∆β2+FlMl)θ(e−iw·σ−FlMlq∆; q2), (3.8)

where the θ-function here is defined as

θ(y; q) =
∞∏
n=0

(1− yqn)(1− y−1qn+1) = 1
(1− y−1)(y; q)∞(y−1; q)∞, (3.9)

which is equivalent to θ1/2,1/2 up to the variable change (See (2.17d)).
The classical piece depends on the FI-term and the boundary Chern-Simons term

(defined on the boundary T 2 = S1 × S1), Scl = SFI − SbCS,

− SFI = 2πi`ζtrσ, (3.10)

and
SbCS = κ

4β trσ2. (3.11)

Remark. As noted in [40], when we focus on the special case of 3d N = 4 theory, the
D2 × S1 partition function can be identified with the Ω-background partition function
Cq2 × S1 presented in [41] (with proper boundary conditions on D2 chosen).6 The N = 4
hypermultiplet is decomposed into an N = 2 chiral multiplet in fundamental representa-
tion with Neumann b.c. and an N = 2 chiral multiplet in anti-fundamental representation
with Direchlet b.c. imposed. The N = 4 vector multiplet is decomposed into an N = 2
vector multiplet and an N = 2 chiral multiplet in the adjoint representation with Neu-
mann boundary condition. Under this identification, q2 is mapped to the Ω-background
parameter, and the R-charge fugacity q∆ is identified with q/t, where t2 is the fugacity
parameter of the vector U(1)F=JL+JR symmetry in the SU(2)L×SU(2)R R-symmetry of 3d
N = 4 SUSY algebra (t can also be understood as the adjoint mass). We can therefore
rescale β2 → β2ε/2 (together with ∆ = 1 − 2

ε logq t) in the partition function, and take
ε→ 1 to go to the classical limit. We will perform this procedure in section 3.2 to compute
the effective twisted superpotential of 3d N = 2 theories.

2d N = (2, 2) theory. The vortex partition of 2d N = (2, 2) theory on the plane C
with the Ω-background can be obtained in the zero radius limit of 3d partition function,
but it can alternatively be computed as a dimensional reduction of 4d N = 1 gauge theory
on the geometry,7

ds2 = | dz − iz(εdw + ε̄dw̄) |2+ | dw |2, (3.12)
6They basically discuss 3d N = 2∗ theory in [41], which is the mass deformation of N = 4 with the

adjoint matter. In fact, they start with 5d N = 1, then discuss 3d theory by considering the Higgs
branch locus.

7See [42] for a related discussion.
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where z = x1 + ix2, w = x3 + ix4. The explicit expression is known as (See, e.g. [43])

Ia,µ =
∫
Ca,µ

(
r∏
i=1

dσi
2πiε

)
exp

(
−2πiσ · τ

ε

)∏
α∈∆̂

Γ
(
α · σ
ε

)−1 ∏
w∈R

Nf∏
a=1

Γ
(
w · σ +ma

ε

)
,

(3.13)
where {τ} are the renormalized FI parameters for all the U(1) gauge groups, and the
contour Ca,µ picks up the poles satisfying

µi · σ = −mai − εki, (3.14)

with k1,...,r ∈ Zr≥0 and a1,...,r picking out r flavor labels. µi is a weight vector specifying
the poles we pick. The above partition function can also be viewed as a disk partition
function of 2d N = (2, 2) theory with Neumann boundary condition imposed on chiral
multiplets [44–46].

3.2 Effective potential in 3d and 2d

Let us extract out the effective potential of the gauge theory (in the classical limit of the
Ω-background, ε→ 0). One has

I ∼ exp
(1
ε
Weff(σ∗,m)

)
. (3.15)

To compute the effective potential in 3d, we need the formula

ε log(eix; q2)∞ = ε
∞∑
n=0

log(1− eixq2n) = −ε
∞∑
n=0

∞∑
m=1

1
m
eimxq2mn

= −ε
∞∑
m=1

1
m
eimx

1
1− e−mβ2ε

ε→0−−→ − 1
β2

∞∑
m=1

1
m2 e

imx = − 1
β2

Li2(eix), (3.16)

and a related useful identity is given by

exp
(
∂

∂x
Li2(e±x)

)
= (1− e±x)∓1. (3.17)

Under the rescaling β2 → β2ε/2 and ∆→ 1 + 2i
ε c̃, we obtain

W 3d
eff (σ,m) = − 1

β2

∑
α∈∆̂

Li2(eiα·σ) + 1
4β2

∑
α∈∆̂

(α · σ)2 + 1
β2

∑
w∈R

Nf∑
a=1

Li2(e−iw·σ−ima−iβ2c̃)

− 1
4β2

∑
w∈R

Nf∑
a=1

(w · σ +ma + β2c̃)2 + 2πi`ζtrσ, (3.18)

where all the chiral multiplets are put to satisfy the Neumann boundary condition, and
we also rescaled the FI-term ζ → ζ/ε. To switch the a-th chiral multiplet to the Direchlet
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boundary condition, we simply need to add a contribution

WFermi(σ,ma) =
∑
w∈R

1
2β2

(w · σ +ma + β2c̃)2

− 1
β2

∑
w∈R

(
Li2(eiw·σ+ima+iβ2c̃) + Li2(e−iw·σ−ima−iβ2c̃)

)
= π2

3β2
− π

β2

∑
w∈R

(w · σ +ma + β2c̃), (3.19)

where we used the following identity,

Li2(ex) + Li2(e−x) = π2

3 − iπx−
x2

2 , x/i ∈ [0, 2π). (3.20)

We remark that as discussed in the case of 2d N = (2, 2) theory, (3.14), the poles picked
up in the contour integral take the form

µi · σ = −mai − εβ2ki − εβ2∆, (3.21)

for some weight vector µi again. In the ε → 0 limit, the contour integral in the partition
function simply forces σ to take a specific value σ∗a as a linear function of ma’s. That is
why we are allowed to treat the effective potential as a normal function of the variables
σa = σ∗a, the on-shell values of the critical configuration.

In the case of 2d theory, we can take the log of the integrand of (3.13) by using Stirling’s
formula,

Γ(z + 1) ∼
√

2πz(z/e)z, (3.22)

to obtain

Weff(σ,m) = −
∑
α∈∆̂

α · σ(logα · σ − 1) +
∑
w∈R

Nf∑
a=1

(w · σ +ma) (log(w · σ +ma)− 1)

−
∑
w∈R

Nf∑
a=1

(w · σ +ma) log ε− 2πiτ · σ. (3.23)

Note that

−
∑
α∈∆̂

α · σ(logα · σ − 1) = −
∑
α∈∆̂+

(α · σ logα · σ − α · σ log ((−α) · σ))

=
∑
α∈∆̂+

α · σ log(−1) = 2πi
∑
α∈∆̂+

α

2 · σ = 2πiρ · σ, (3.24)

with the Weyl vector given by a half sum of the positive roots (their set denoted by ∆̂+),
ρ = 1

2
∑
α∈∆̂+

α. For theories we consider in this article (those have the same number of
fundamental and anti-fundamental matters), ∑w∈R

∑Nf
a=1(w · σ + ma) vanishes (up to a
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constant term), and we remark that such restriction to special matter contents agrees with
the cancellation condition of U(1)R anomaly in 2d. We finally arrive at

Weff(σ,m) = −2πiτ · σ + 2πiρ · σ +
∑
w∈R

Nf∑
a=1

(w · σ +ma) (log(w · σ +ma)− 1) . (3.25)

One can alternatively take a 2d limit of the 3d effective potential (3.18) to derive
the effective potential of 2d N = (2, 2) theories. To see this, we rescale σ to β`σ, and
ma to β`ma, then take the β ∼ β2 → 0 limit. It is very clear that the quadratic terms
in (3.18) vanish in this limit, and thus do not appear in the 2d effective potential. (3.25) is
reproduced (up to an overall scale of ` and irrelevant constant terms) in this limit by using
the following formula,

Li2(ex) = x (1− log(−x)) +
∞∑

k=0,k 6=1

ζ(2− k)
k! xk, (3.26)

and identifying i`σ in 3d with σ in 2d. A similar contribution as that proportional to log ε
in (3.23),

∑
w∈R

Nf∑
a=1

(w · σ +ma) log β`, (3.27)

also appears in the 2d limit of the 3d effective potential, and we again expect it to sum to
a constant term for the same reason as in the 2d case.

On the other hand, 3d N = 2 theories on D2 × S1 can be uplift to 4d N = 1 theories
on D2 × T 2 [47], and one would expect the Bethe/Gauge correspondence works parallelly
in 4d. However, the computation is more complicated, especially in the case of XYZ
open spin chain [39], so we plan to present the details of the correspondence in 4d in a
near-future work.

4 Dictionary between A-type gauge theories and closed spin chains

Let us now reproduce the known dictionary between the closed spin chains and SU-type
gauge theories. First recall that the Bethe ansatz equation in the twisted closed spin chain
(derived in appendix A) is given by

L∏
a=1

[ui + η/2 + ηsa − ϑa]
[ui + η/2− ηsa − ϑa]

= eiθ
m∏
j 6=i

[ui − uj + η]
[ui − uj − η] . (4.1)

Correspondingly, we consider 3d N = 2 U(N) theory with one adjoint chiral multiplet,
Nf fundamental matters, among which the first Nd obey the Direchlet boundary condition,
and N ′f anti-fundamental matters, among which the first N ′d obey the Direchlet boundary
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condition. The effective potential for this theory is given by

W 3d
eff (σ,m) =− 1

β2

N∑
i 6=j

Li2(ei(σi−σj))+ 1
β2

N∑
i 6=j

Li2(e−i(σi−σj)−imadj)− 1
4β2

N∑
i 6=j

(σi−σj +madj)2

+ 1
β2

N∑
i=1

Nf∑
a=1

Li2(e−iσi−ima)− 1
4β2

N∑
i=1

Nf∑
a=1

(σi+ma)2− 1
β2

N∑
i=1

N ′f∑
a=1

Li2(eiσi−im̄a)

− 1
4β2

N∑
i=1

N ′f∑
a=1

(σi−m̄a)2 + 1
4β2

∑
i 6=j

(σi−σj)2 +2πi`ζtrσ

− π

β2

N∑
i=1

Nd∑
a=1

(σi+ma)−
π

β2

N∑
i=1

N ′d∑
a=1

(−σi+m̄a), (4.2)

where several constant terms are dropped in the simplification and we absorbed β2c̃ into
the mass parameters. The vacuum equation given by

exp
(
β2i

∂

∂σ
W 3d

eff (σ,m)
)

= 1, (4.3)

reads

e−
i
2
∑Nf

a=1(σi+ma)− i
2
∑N′

f
a=1(σi−m̄a)∏

j 6=i

1−ei(σj−σi)

1−ei(σi−σj)
1−ei(σi−σj+madj)

1−ei(σj−σi+madj)

∏N ′f
a=1(1−ei(σi−m̄a))∏Nf
a=1(1−e−i(σi+ma))
×e−2πβ2`ζ−πi(Nd−N ′d) = 1,

(4.4)

where we used (3.17). We can simplify it to

(−1)N
′
f+Nd−N ′de−2πβ2`ζ

∏
j 6=i

sin(σi − σj +madj)
sin(σi − σj −madj)

∏N ′f
a=1 sin(σi − m̄a)∏Nf
a=1 sin(σi +ma)

= 1. (4.5)

We note that the adjoint matter is important to cancel the factor ei(σi−σj) from the vector
multiplet.

In the case Nf = N ′f (N = 2∗ theories), one can identify the above vacuum equation
with the Bethe ansatz equation of closed spin chain with L sites and m Bethe roots. The
dictionary is given by

m↔ N, L↔ Nf , (4.6a)
πui ↔ σi, (4.6b)
πη ↔ madj, (4.6c)
iθ ↔ πi(Nf +Nd +N ′d)− 2πβ2`ζ. (4.6d)

We also see that we need to specify the mass parameter of chiral multiplets to

π(η/2 + ηsa − ϑa)↔ ma, π(η/2− ηsa − ϑa)↔ −m̄a. (4.7)

The correspondence here certainly works in parallel after taking the 2d limit β ∼ β2 →
0 in the gauge theory and the XXX limit, [u]→ u, of the spin chain.
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5 Vacuum equations and Bathe ansatz equations of open spin chain

In this section, we explore the Bethe/Gauge correspondence between gauge theories with
SO and Sp gauge groups and open spin chains with diagonal boundary conditions. There
are mainly two reasons for which we consider the open spin chains as the dual integrable
system, instead of the closed spin chain. Firstly the symmetry σ ↔ −σ in the effective
potential of SO and Sp gauge theories naturally appears in the Bethe ansatz equation
of open spin chains with diagonal boundary conditions. Secondly, as we can see from the
definition of the open chain transfer matrix, (2.35) and (2.34), it can be viewed as a “folded”
version of the closed chain transfer matrix, and this “folding” process exactly corresponds
to the effect of the orientifold added to the brane construction of SO and Sp gauge theories.
We may further interpret the boundary operators K± as the realization of the orientifold
in the integrable system.

Let us recall the effective potential of a general 3d N = 2∗ theory (3.18) with a zero
FI-term,

W 3d
eff (σ,m) = − 1

β2

∑
α∈∆̂

Li2(eiα·σ) + 1
4β2

∑
α∈∆̂

(α · σ)2 + 1
β2

∑
w∈R

Nf∑
a=1

Li2(e−iw·σ−ima−iβ2c̃)

− 1
4β2

∑
w∈R

Nf∑
a=1

(w · σ +ma + β2c̃)2. (5.1)

We discuss the connection between the gauge theory results and the open spin chain models
based on this expression.

5.1 SO(2N) theory

In the case of an SO(2N) gauge theory with Nf chiral multiplet in the vector representation,
the effective potential is specified to

W 3d
eff (σ,m) =− 1

β2

N∑
i<j

Li2(ei(±σi±σj))+ 1
4β2

N∑
i<j

(±σi±σj)2+ 1
β2

N∑
i<j

Li2(e−i(±σi±σj)−iβ2c̃)

− 1
4β2

N∑
i<j

(±σi±σj+β2c̃)2+ 1
β2

N∑
i=1

Nf∑
a=1

Li2(e−(±iσi+ima+iβ2c̃))− 1
4β2

N∑
i=1

Nf∑
a=1

(±σi+ma+β2c̃)2,

(5.2)

as the positive roots of SO(2N) is given by ei ± ej (1 ≤ i < j ≤ N), where ± stands for
a summation over both signs. We did not impose a specific flavor symmetry on the chiral
multiplets at the moment. The vacuum equation reads

e−iσi
∏
j 6=i

1− e−i(σi±σj)

1− ei(σi±σj)
1− ei(σi±σj)−iβ2c̃

1− e−i(σi±σj)−iβ2c̃

Nf∏
a=1

1− eiσi−ima−iβ2c̃

1− e−iσi−ima−iβ2c̃
= 1, (5.3)

or ∏
j 6=i

sin(σi ± σj − β2c̃)
sin(−σi ± σj − β2c̃)

Nf∏
a=1

sin(σi −ma − β2c̃)
sin(−σi −ma − β2c̃)

= 1. (5.4)
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Changing the boundary condition of chiral multiplets does not affect the vacuum equation
in this case. Compared to the general Bethe ansatz equation for the open spin chain with
diagonal boundary conditions,[

ui + ξ+ − η
2
] [
ui − η

2 + ξ−
]
δ+(ui)δ−(−ui)[

ui − ξ+ + η
2
] [
ui + η

2 − ξ−
]
δ+(−ui)δ−(ui)

m∏
j 6=i

[uj − ui + η][ui + uj − η]
[uj − ui − η][uj + ui + η] = 1, (5.5)

the vacuum equation can be mapped to the above Bethe ansatz equation with the boundary
condition chosen as

ξ+ = i∞, ξ− = i∞, (5.6)

and we also map m ↔ N , πη ↔ β2c̃. We remark that ξ = i∞ is also a special choice in
the boundary Hamiltonian (2.52), but it is not the Dirichlet boundary condition.

Further using the explicit form of δ±,

δ+(u) =
L∏
a=1

[u+ η/2 + ηsa − ϑa], δ−(u) =
L∏
a=1

[u+ η/2− ηsa − ϑa], (5.7)

we see that 2L↔ Nf and the mass parameters {ma} have to be paired as

{ma + β2c̃} ↔
{
−πηsa −

πη

2 + πϑa,−πηsa + πη

2 − πϑa
}
, (5.8)

to establish the duality. We remark that besides the shift by the contribution from the
R-charge c̃ (correspondingly the part −πηsa in the spin chain) the mass parameters are
paired in the opposite sign. This is deemed to originate from the Sp(L) flavor symmetry
of the SO-type gauge theory. We remark that this correspondence and dictionary reduce
to the map between a 2d gauge theory with SO-type gauge theory and an open XXX spin
chain with the same boundary condition as (5.6).

5.2 SO(2N + 1) theory

In the case of SO(2N + 1) gauge group, all the roots are given by {±ei ± ej} for all the
possible combinations of i < j and {±ei}Ni=1 (the total number is 2N2). The effective
potential is thus given by

W 3d
eff (σ,m) =− 1

β2

N∑
i<j

Li2(ei(±σi±σj))+ 1
4β2

∑
i<j

(±σi±σj)2+ 1
β2

N∑
i<j

Li2(e−i(±σi±σj)−iβ2c̃)

− 1
4β2

N∑
i<j

(±σi±σj+β2c̃)2+ 1
β2

N∑
i=1

Nf∑
a=1

Li2(e−(±iσi+ima+iβ2c̃))− 1
4β2

N∑
i=1

Nf∑
a=1

(±σi+ma+β2c̃)2

− 1
β2

N∑
i=1

Li2(e±iσi)+ 1
2β2

σ2
i + 1

β2

N∑
i=1

Li2(e±iσi−iβ2c̃)− 1
4β2

N∑
i=1

(σi±β2c̃)2. (5.9)

The vacuum equation reads

e−iσi
1−e−iσi
1−eiσi

1−eiσi−iβ2c̃

1−e−iσi−iβ2c̃

∏
j 6=i

1−e−i(σi±σj)

1−ei(σi±σj)
1−ei(σi±σj)−iβ2c̃

1−e−i(σi±σj)−iβ2c̃

Nf∏
a=1

1−eiσi−ima−iβ2c̃

1−e−iσi−ima−iβ2c̃
= 1,

(5.10)
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or equivalently

sin(σi − β2c̃)
sin(σi + β2c̃)

∏
j 6=i

sin(σi ± σj − β2c̃)
sin(−σi ± σj − β2c̃)

Nf∏
a=1

sin(σi −ma − β2c̃)
sin(−σi −ma − β2c̃)

= 1, (5.11)

where we used the fact that the flavor symmetry is expected to be Sp(L), which means
Nf = 2L is an even integer. The same dictionary maps the above equation to the Bethe
ansatz equation of the open spin chain with the boundary condition

ξ+ = η

2 , ξ− = −η2 , for Nf : even, (5.12)

which is slightly different from the boundary condition for SO(2N) theory (5.6): the bound-
ary condition parameters are different at two ends of the spin chain.

5.3 Sp(N) theory

Similarly in the case of Sp(N) gauge theory, all the roots are given by {±ei± ej} for i < j

and {±2ei}Ni=1 (the total number is 2N2). The effective potential reads

W 3d
eff (σ,m) =− 1

β2

N∑
i<j

Li2(ei(±σi±σj))+ 1
4β2

N∑
i<j

(±σi±σj)2+ 1
β2

N∑
i<j

Li2(e−i(±σi±σj)−iβ2c̃)

− 1
4β2

N∑
i<j

(±σi±σj+β2c̃)2+ 1
β2

N∑
i=1

Nf∑
a=1

Li2(e−(±iσi+ima+iβ2c̃))− 1
4β2

N∑
i=1

Nf∑
a=1

(±σi+ma+β2c̃)2

− 1
β2

N∑
i=1

Li2(e±2iσi)+ 2
β2
σ2
i + 1

β2

N∑
i=1

Li2(e±2iσi−iβ2c̃)− 1
4β2

N∑
i=1

(2σi±β2c̃)2, (5.13)

and the vacuum equation is given by

sin2(2σi − β2c̃)
sin2(2σi + β2c̃)

∏
j 6=i

sin(σi ± σj − β2c̃)
sin(−σi ± σj − β2c̃)

Nf∏
a=1

sin(σi −ma − β2c̃)
sin(−σi −ma − β2c̃)

= 1. (5.14)

This equation does not directly correspond to a Bethe ansatz equation because of the factor
of 2 in sin(2σi±β2c̃), but in the 2d limit where [u]→ u, it becomes a Bethe ansatz equation
for the open spin chain with boundary condition,

ξ+ = 0, ξ− = 0. (5.15)

As mentioned around (2.52), this corresponds to the Dirichlet boundary condition on the
both ends of the spin chain.

We remark that there is a similar factor appeared in the study of C-type quiver gauge
theories in the literature [48, 49] as the squared factor sin2(2σi−β2c̃)

sin2(2σi+β2c̃)
in the above equation.

Such a factor appears in the context of the folding trick to construct the non-simply-laced
algebra from the simply-laced algebra.
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6 A2 quiver

In general, the correspondence between gauge theory and spin chain is promoted to the
highe rank cases [30–32, 50, 51]. In this section, we explore the correspondence between
A2 quiver, which is the simplest non-trivial quiver gauge theory, and sl3 spin chain model.

6.1 sl3 spin chain

The R-matrix associated to the quantum group Uq(ŝl3) is known to take the form [52]

R(u) =



[u+ η]
[u] eiπu[η]

[u] eiπu[η]
e−iπu[η] [u]

[u+ η]
[u] eiπu[η]

e−iπu[η] [u]
e−iπu[η] [u]

[u+ η]


, (6.1)

in the convention of this article. Needless to say, this R-matrix also satisfies various kinds
of basic properties of the R-matrix, and especially

R(0) = P. (6.2)

The Bethe ansatz of a general periodic spin chain associated to the R-matrix of the
Lie algebra g is well-known in the literature [53]. In the case of g = sl3, there are two sets
of Bethe roots, {u(1)

i }
m1
i=1 and {u(2)

i }
m2
i=1. The Bethe ansatz equations are [54, 55]

L1∏
a=1

[u(1)
i − ϑ

(1)
a + η/2]

[u(1)
i − ϑ

(1)
a − η/2]

m2∏
j=1

[u(1)
i − u

(2)
j + η/2]

[u(1)
i − u

(2)
j − η/2]

= eiδ
(1)

m1∏
j=1

[u(1)
i − u

(1)
j + η]

[u(1)
i − u

(1)
j − η]

, (6.3a)

L2∏
a=1

[u(2)
i − ϑ

(2)
a + η/2]

[u(2)
i − ϑ

(2)
a − η/2]

m1∏
j=1

[u(2)
i − u

(1)
j + η/2]

[u(2)
i − u

(1)
j − η/2]

= eiδ
(2)

m2∏
j=1

[u(2)
i − u

(2)
j + η]

[u(2)
i − u

(2)
j − η]

. (6.3b)

6.2 A2 quiver gauge theory

Correspondingly, we consider a 3d gauge theory with A2 quiver structure. That is we glue
two gauge nodes with two bifundamental chiral multiplets (they together form a 3d N = 4
bifundamental hypermultiplet in the massless limit). The quiver diagram of the theory we
consider is given by

N1 N2

N
(1)
f

N̄
(1)
f

N̄
(2)
f

N
(2)
f

(6.4)
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where yellow nodes are used to stand for SU-type gauge groups or flavor symmetry. The
contribution of these bifundamental matters to the effective potential reads

W 3d bfd
eff = 1

β2

N1∑
i=1

N2∑
j=1

Li2(e−i(σ
(1)
i −σ

(2)
j )−imbfd)− 1

4β2

N1∑
i=1

N2∑
j=1

(σ(1)
i − σ

(2)
j +mbfd)2

+ 1
β2

N1∑
i=1

N2∑
j=1

Li2(e−i(σ
(2)
j −σ

(1)
i )−imbfd)− 1

4β2

N1∑
i=1

N2∑
j=1

(σ(2)
j − σ

(1)
i +mbfd)2. (6.5)

The vacuum equations are then given by

eiθ
(1)

N1∏
j 6=i

sin(σ(1)
i −σ

(1)
j +m

(1)
adj)

sin(σ(1)
i −σ

(1)
j −m

(1)
adj)

∏N̄
(1)
f

a=1 sin(σ(1)
i −m̄

(1)
a )∏N

(1)
f

a=1 sin(σ(1)
i +m

(1)
a )

N2∏
k=1

sin(σ(2)
k −σ

(1)
i +mbfd)

sin(σ(1)
i −σ

(2)
k +mbfd)

= 1, (6.6a)

eiθ
(2)

N2∏
j 6=i

sin(σ(2)
i −σ

(2)
j +m

(2)
adj)

sin(σ(2)
i −σ

(2)
j −m

(2)
adj)

∏N̄
(2)
f

a=1 sin(σ(2)
i −m̄

(2)
a )∏N

(2)
f

a=1 sin(σ(2)
i +m

(2)
a )

N1∏
k=1

sin(σ(1)
k −σ

(2)
i +mbfd)

sin(σ(2)
i −σ

(1)
k +mbfd)

= 1, (6.6b)

where θ(1,2) are expressed in terms of the gauge theory quantities as (4.6d). If we can
adjust the mass parameters to satisfy mbfd = 1

2m
(1)
adj = 1

2m
(2)
adj ↔

η
2 , then we obtain the

A2-type Bethe ansatz equations from the above A2-quiver gauge theory under the map

δ(i) ↔ θ(i) + iπNi, N
(i)
f = N̄

(i)
f ↔ Li, Ni ↔ mi, (6.7a)

m(i)
a ↔

η

2 − ϑ
(i)
a , m̄(i)

a ↔
η

2 + ϑ(i)
a , (6.7b)

for i = 1, 2.

6.3 Open boundary condition

In the case of open spin chain, the Bethe ansatz has been worked out in [56]. We focus on
a special diagonal boundary operator of the form

K+(u) =

−e
iπu[u− ξ] 0 0

0 −eiπu[u− ξ] 0
0 0 e−iπu[u+ ξ]

 , (6.8)

and its dual

K−(u) =


e−iπu+ 5

2 iπη[u+ ξ̄+3η/2] 0 0
0 e−iπu+ 1

2 iπη[u+ ξ̄+3η/2] 0
0 0 −eiπu+ 3

2 iπη[u− ξ̄+3η/2]

 ,
(6.9)

in this article. The boundary operator K+(u) again satisfies (2.28), while the dual bound-
ary Yang-Baxter equation is slightly modified to

R12(−u1 + u2)K−1 (u1)M−1
1 R21(−u1 − u2 − 3η)M1K

+
2 (u2)

= K+
2 (u2)M−1

2 R12(−u1 − u2 − 3η)M2K
+
1 (u1)R21(u2 − u1), (6.10)
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where
M = diag

(
e4η, e2η, 1

)
. (6.11)

It follows from the crossing unitarity relation,

Rt1
12M1Rt1

21(−u− 3η)M−1
1 = ρ′′(u)I, (6.12)

for some function ρ′′(u), in the case of sl3 R-matrix.
The Bethe ansatz equations are

[2u(1)
i − η]

[2u(1)
i + η]

[u(1)
i + ξ + η/2][u(1)

i − ξ̄]
[u(1)
i − ξ − η/2][u(1)

i + ξ̄]

m1∏
j=1

[u(1)
i − u

(1)
j + η][u(1)

i + u
(1)
j + η]

[u(1)
i − u

(1)
j − η][u(1)

i + u
(1)
j − η]

m2∏
k=1

[u(1)
i − u

(2)
k −

η
2 ][u(1)

i + u
(2)
k −

η
2 ]

[u(1)
i − u

(2)
k + η

2 ][u(1)
i + u

(2)
k + η

2 ]

L1∏
a=1

[ui + θa − η
2 ][ui − θa − η

2 ]
[ui + θa + η

2 ][ui − θa + η
2 ] = 1, (6.13a)

[2u(2)
i + η]

[2u(2)
i − η]

[u(2)
i + ξ][u(2)

i − ξ̄ − η/2]
[u(2)
i − ξ][u

(2)
i + ξ̄ + η/2]

m1∏
j=1

[u(2)
i − u

(1)
j + η/2][u(2)

i + u
(1)
j + η/2]

[u(2)
i − u

(1)
j − η/2][u(2)

i + u
(1)
j − η/2]

m2∏
j=1

[u(2)
i − u

(2)
j − η][u(2)

i + u
(2)
j − η]

[u(2)
i − u

(2)
j + η][u(2)

i + u
(2)
j + η]

= 1. (6.13b)

In the context of gauge theory, there are two possibilities we would like to analyze.
One is an Sp(N1)-SO(2N2) quiver gauge theory, i.e. one gauge node (say the first node) is
Sp(N1) gauge group and the other (the second node) is SO(2N2) gauge group. Since all
the representations of Sp and SO Lie algebras are either real or pseudo-real, a 3d N = 4
half-hypermultiplet in these gauge theories is equivalent to one 3d N = 2 chiral multiplet
(See [57] for a related discussion in 4d N = 2 theory). The quiver structure thus looks like
the following (SO and Sp nodes are respectively depicted in blue and green).

N1 N2N
(1)
f N

(2)
f

(6.14)

The effective potential of the bifundamental matter part is given by8

W 3d bfd
eff = 1

β2

N1∑
i=1

N2∑
j=1

Li2(e−i(±σ
(1)
i +±σ(2)

j )−imbfd)− 1
4β2

N1∑
i=1

N2∑
j=1

(±σ(1)
i +±σ(2)

j +mbfd)2. (6.15)

The vacuum equations are found to be

sin2(2σ(1)
i −β2c̃1)

sin2(2σ(1)
i +β2c̃1)

N1∏
j 6=i

sin(σ(1)
i ±σ

(1)
j −β2c̃1)

sin(−σ(1)
i ±σ

(1)
j −β2c̃1)

N
(1)
f∏

a=1

sin(σ(1)
i −m

(1)
a −β2c̃1)

sin(−σ(1)
i −m

(1)
a −β2c̃1)

×
N2∏
j=1

sin(σ(1)
i ±σ

(2)
j −mbfd)

sin(−σ(1)
i ±σ

(2)
j −mbfd)

= 1,

(6.16a)
8One is allowed to turn on the fugacity parameter ∆ of the 3d N = 2 (bifundamental) chiral multiplet

that gives rise to an effective bifundamental mass mbfd. In the 2d limit, this corresponds to the twisted
mass deformation of the 2d N = (2, 2) chiral multiplet.
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∏
j 6=i

sin(σ(2)
i ±σ

(2)
j −β2c̃2)

sin(−σ(2)
i ±σ

(2)
j −β2c̃2)

N
(2)
f∏

a=1

sin(σ(2)
i −m

(2)
a −β(2)

2 c̃2)
sin(−σ(2)

i −m
(2)
a −β2c̃2)

N1∏
j=1

sin(σ(2)
i ±σ

(1)
j −mbfd)

sin(−σ(2)
i ±σ

(1)
j −mbfd)

= 1.

(6.16b)

We note that the Bethe ansatz equation (6.13a) and (6.13b) we want to map to is symmetric
about σ(1) ↔ σ(2) and ξ ↔ ξ̄. Similar to the case of A1 quiver gauge theory of Sp(N) gauge
group, we again found difficulties to realize the factor sin2(2σ(1)

i −β2c̃1)
sin2(2σ(1)

i +β2c̃1)
. However, if we take

the 2d limit, sin σ → σ, we can choose

ξ = 0, ξ̄ = 0, (6.17)

to match the Bethe ansatz equations (6.13a) and (6.13b). Here we used the dictionary

πη ↔ β2c̃1 = β2c̃2, −πη2 ↔ mbfd, (6.18)

and also added an imaginary site with ϑ(1)
0 = 0 in the spin chain (that is L1 − 1 ↔ N

(1)
f )

to absorb an overall factor of [u−η/2]2
[u+η/2]2 in equation (6.13a).

Another candidate theory we would like to consider is Sp(N1)-SO(2N2 + 1) quiver
gauge theory. The bifundamental contribution to the effective potential is

W 3d bfd
eff = 1

β2

N1∑
i=1

N2∑
j=1

Li2(e−i(±σ
(1)
i +±σ(2)

j )−imbfd)− 1
4β2

N1∑
i=1

N2∑
j=1

(±σ(1)
i +±σ(2)

j +mbfd)2

+ 1
β2

N1∑
i=1

Li2(e−i(±σ
(1)
i −imbfd)− 1

4β2

N1∑
i=1

(±σ(1)
i +mbfd)2 (6.19)

Then the vacua equations are found to be

sin2(2σ(1)
i −β2c̃1)

sin2(2σ(1)
i +β2c̃1)

N1∏
j 6=i

sin(σ(1)
i ±σ

(1)
j −β2c̃1)

sin(−σ(1)
i ±σ

(1)
j −β2c̃1)

N
(1)
f∏

a=1

sin(σ(1)
i −m

(1)
a −β2c̃1)

sin(−σ(1)
i −m

(1)
a −β2c̃1)

×
N2∏
j=1

sin(σ(1)
i ±σ

(2)
j −mbfd)

sin(−σ(1)
i ±σ

(2)
j −mbfd)

× sin(σ(1)
i −mbfd)

sin(−σ(1)
i −mbfd)

= 1,

(6.20a)

∏
j 6=i

sin(σ(2)
i ±σ

(2)
j −β2c̃2)

sin(−σ(2)
i ±σ

(2)
j −β2c̃2)

N
(2)
f∏

a=1

sin(σ(2)
i −m

(2)
a −β(2)

2 c̃2)
sin(−σ(2)

i −m
(2)
a −β2c̃2)

N1∏
j=1

sin(σ(2)
i ±σ

(1)
j −mbfd)

sin(−σ(2)
i ±σ

(1)
j −mbfd)

×sin(σ(2)
i −β2c̃2)

sin(σ(2)
i +β2c̃2)

= 1.

(6.20b)

Under the same map (6.18), we note that it is also possible in the 2d limit to choose

ξ = 0, ξ̄ = η

2 , (6.21)

to match the vacuum equations with the Bethe ansatz equations. This time we need to
further add two imaginary sites with ϑ(1)

0 = ϑ
(1)
0′ = 0 (L1 − 2↔ N

(1)
f ).
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7 Ar quiver

The corerspondence between gauge theory and spin chains is promoted to the higher rank
cases [30–32, 50, 51]. From this point of view, Ar quiver gauge theory with SO and Sp
symmetry is expected to correspond to slr+1 spin chain model with the diagonal-type open
boundary condition. The vacuum equations in such gauge theories are easy to find. For an
Sp gauge node at the α-th node, the vacuum equation for α = 1, 3, 5, . . . , 2b r−1

2 c+ 1 reads

sin2(2σ(α)
i −β2c̃α)

sin2(2σ(α)
i +β2c̃α)

Nα∏
j 6=i

sin(σ(α)
i ±σ

(α)
j −β2c̃α)

sin(−σ(α)
i ±σ

(α)
j −β2c̃α)

Nα−1∏
j=1

sin(σ(α)
i ±σ

(α−1)
j −m(α−1,α)

bfd )

sin(−σ(α)
i ±σ

(α−1)
j −m(α−1,α)

bfd )

×
Nα+1∏
k=1

sin(σ(α)
i ±σ

(α+1)
k −m(α,α+1)

bfd )
sin(−σ(α)

i ±σ
(α+1)
k −m(α,α+1)

bfd )
× sinδα−1 (σ(α)

i −m
(α−1,α)
bfd )

sinδα−1 (−σ(α)
i −m

(α−1,α)
bfd )

sinδα+1 (σ(α)
i −m

(α,α+1)
bfd )

sinδα+1 (−σ(α)
i −m

(α,α+1)
bfd )

= 1,

(7.1)

where we set the gauge group at the (α± 1)-th gauge node to be SO(2Nα±1 + δα±1). For
a gauge node with SO(2Nβ + δβ) gauge group at the β-th site for β = 2, 4, 6, . . . , 2b r2c,
we have

∏
j 6=i

sin(σ(β)
i ±σ

(β)
j −β2c̃β)

sin(−σ(β)
i ±σ

(β)
j −β2c̃β)

Nβ−1∏
j=1

sin(σ(β)
i ±σ

(β−1)
j −m(β−1,β)

bfd )

sin(−σ(β)
i ±σ

(β−1)
j −m(β−1,β)

bfd )

Nβ+1∏
k=1

sin(σ(β)
i ±σ

(β+1)
k −m(β,β+1)

bfd )
sin(−σ(β)

i ±σ
(β+1)
k −m(β,β+1)

bfd )

× sinδβ (σ(β)
i −β2c̃β)

sinδβ (σ(β)
i +β2c̃β)

= 1. (7.2)

We leave the comparison with the Bethe ansatz equations to a future work.

8 Conclusion and discussion

In this article, we generalized the Bethe/Gauge correspondence first proposed in [28, 29]
for A-type gauge theories to BCD-type gauge groups. We saw that the corresponding spin
chain on the Bethe side is modified to one with open boundaries. In the correspondence
with 2d gauge theories, we found that we can always choose diagonal boundary conditions
for open XXX spin chain with the parameters ξ being specified to either ξ = 0, ±1

2 or∞ to
realize the vacuum equation of gauge theory from the Bethe ansatz equation. Furthermore
in the case of SO-type gauge groups, one can uplift the correspondence to a map between
3d gauge theories and open XXZ spin chain. On the other hand, when the gauge group is
of Sp-type, then the straightforward uplift does not work for some reason. A similar story
happens when we consider an A2 quiver gauge theory with one node being SO-type and
another being Sp-type, that is such a Bethe/Gauge correspondence (with diagonal open
spin chain associated to the sl3 R-matrix) can be established in 2d but not in 3d.

We saw that the correspondence worked perfectly for 2d gauge theories, but not as
well in 3d. This might be explained in the relation to a string-theory background of these
gauge theories. The brane construction of 2d gauge theories with SO and Sp type gauge
groups has been given in [58] as an extension of the work [59] on the construction of 2d
U(N) gauge theories. In the case of U(N), one can use the T-duality to uplift the brane
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web of a 2d theory to that of a 3d theory, or even to a 4d theory. However, since the
construction of SO or Sp type gauge theory involves the use of an orientifold, and the
orientifold action is not preserved under the T-duality (see for example [60, 61]), the uplift
is no longer so straightforward in this case. More precisely, the orientifold action is defined
as a combination of the worldsheet and the spacetime parity, while the T-duality transforms
it to an operation usually denoted as Ω that reverses the left- and right-moving sectors in
perturbative string theory. Interestingly, the uplift works for SO(N) gauge theories, and
it might be related to the “trivial” action of Ω without introducing any additional factor
when exchanging the left and right Chan-Paton factors.

For a rather similar reason, the 4d/2d (5d/3d) correspondence [33, 34] also becomes
vague after adding an orientifold. O4 (or O5) plane used in the brane construction of 4d
(resp. 5d) gauge theories lies in the transverse directions to D2 (resp. D3) branes that
give rise to the vortices. The effective 2d (or 3d) gauge theories on the vortices in this
case is something unfamiliar to us, and it is clearly not the gauge theories with SO or
Sp gauge groups considered in this article. One can also see this point by looking at the
qq-characters of SO and Sp gauge theories derived in [17] which contain infinite number of
terms. The NS limit does not simplify much and the saddle-point equation of the instanton
partition function in this limit appears in a different form from the Bethe ansatz equation
of (diagonal) open spin chains. The quantum integrability of 4d and 5d SO and Sp gauge
theories still seems to require more effort to study with better idea in the future.

Last but not least, we recall that in the case of A-type gauge theories, starting from
the TQ-relation of the corresponding periodic XXZ spin chain,

TA(u)QA(u) = δ+(u)QA(u− η) + eiθδ−(u)QA(u+ η), (8.1)

in particular when we focus on the pure gauge theory, one can rewrite it into(
ŷ + eiθŷ−1 − TA(u)

)
QA(u) = 0, ŷ := eη∂u , (8.2)

which matches with the spectral curve of the A-type affine Toda chain in the classical
limit, where ŷ reduces to a normal function. On the other hand, the expression of the
eigenvalue T (u) of the transfer matrix in the open XXZ spin chain can be rewritten into a
TQ-relation,

[2u]T (u)Q(u) = [2u+ η][u+ ξ− − η/2][u+ ξ+ − η/2]δ+(u)δ−(−u)Q(u− η)
+ [2u− η][u− ξ− + η/2][u− ξ+ + η/2]δ+(−u)δ−(u)Q(u+ η), (8.3)

where we defined the Q-function as

Q(u) :=
m∏
i=1

[u± ui]. (8.4)

Note that the symmetry between u ↔ −u in the above TQ-relation restricts T (u) to be
an even function of u. Since the prefactors [2u ± η] are hard to be absorbed into the Q-
function, it is not straightforward at all to relate the TQ-relation of the open chain to the
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spectral curve of the affine Toda chain of BCD-type (as it is expected in the 2d (or XXX)
limit to take the form (P (u)(ŷ + µŷ−1) − T̃ (u))Q(u) = 0 for some factor µ independent
of u, some polynomial P (u) and T̃ (u) some function related to T (u)). This might again
be related to the fact that the classical limit of 4d N = 2 gauge theories gives rise to the
spectral curve of Toda chains [23], and the relation between 4d N = 2 theories and 2d
theories considered in this articles is still not clear at the current stage.
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A Derivation of Bethe ansatz equation for XXZ spin chain

In this appendix, we aim to derive Bethe ansatz equation for the open XXZ chain with the
diagonal boundary operator in the form

K(u, ξ) =
(

[u+ ξ]
−[u− ξ]

)
. (A.1)

We will first briefly review the derivation in closed chains with twisted periodic boundary
condition, and then mimic it in the open chain.

Let

T0(u) = R0L(u− ϑL) . . .R01(u− ϑ1) =:
(
A(u) B(u)
C(u) D(u)

)
, (A.2)

where A(u), B(u), C(u), D(u) ∈ End(V ⊗L). By inserting the explicit expression

T1(u1)T2(u2) =


A(u1)A(u2) A(u1)B(u2) B(u1)A(u2) B(u1)B(u2)
A(u1)C(u2) A(u1)D(u2) B(u1)C(u2) B(u1)D(u2)
C(u1)A(u2) C(u1)B(u2) D(u1)A(u2) D(u1)B(u2)
C(u1)C(u2) C(u1)D(u2) D(u1)C(u2) D(u1)D(u2)

 (A.3)

and

R(u) =


[u+ η]

[u] [η]
[η] [u]

[u+ η]

 , (A.4)

into the RTT relation,

R12(u1 − u2)T1(u1)T2(u2) = T2(u2)T1(u1)R12(u1 − u2), (A.5)
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we obtain the commutation relations,

[u1 − u2 + η]B(u1)A(u2) = [u1 − u2]A(u2)B(u1) + [η]B(u2)A(u1), (A.6a)
[u1 − u2 + η]D(u2)B(u1) = [u1 − u2]B(u1)D(u2) + [η]D(u1)B(u2), (A.6b)
[u1 − u2 + η]B(u2)D(u1) = [u1 − u2]D(u1)B(u2) + [η]B(u1)D(u2), (A.6c)

[u1 − u2]B(u1)C(u2) + [η]D(u1)A(u2) = [u1 − u2]C(u2)B(u1) + [η]D(u2)A(u1), (A.6d)

and therefore,

[u1 − u2]D(u2)B(u1) = [u1 − u2 − η]B(u1)D(u2) + [η]B(u2)D(u1). (A.7)

Let us consider the transfer matrix (2.25) with twisted periodic boundary condition
imposed. The ground state of the system |Ω〉 is an all-spin-up state satisfying

A(u) |Ω〉 = δ+(u) |Ω〉 , D(u) |Ω〉 = δ−(u) |Ω〉 , C(u) |Ω〉 = 0, (A.8)

and the Bethe ansatz state is generated from |Ω〉 by acting B(ui)’s,
m∏
i=1

B(ui) |Ω〉 . (A.9)

The transfer matrix acts on the Bethe ansatz state as(
A(u)+eiθD(u)

)
B(u1)B(u2) . . .B(um) |Ω〉=

m∏
i=1

[ui−u+η]
[ui−u] B(u1)B(u2) . . .B(um)A(u) |Ω〉

+eiθ
m∏
i=1

[ui−u−η]
[ui−u] B(u1)B(u2) . . .B(um)D(u) |Ω〉

−
m∑
i=1

[η]
[ui−u]

∏
j 6=i

[uj−ui+η]
[uj−ui]

B(u)
∏
j 6=i

B(uj)A(ui) |Ω〉

+eiθ
m∑
i=1

[η]
[ui−u]

∏
j 6=i

[uj−ui−η]
[uj−ui]

B(u)
∏
j 6=i

B(uj)D(ui) |Ω〉+ . . . (A.10)

An important property here is that [B(ui), B(uj)] = 0, which also directly follows from the
RTT relation. The non-diagonal terms can be canceled against each other by imposing∏

j 6=i
[uj − ui + η]δ+(ui) = eiθ

∏
j 6=i

[uj − ui − η]δ−(ui). (A.11)

When we take the spin-si representation at the i-th site, we have

δ+(u) =
L∏
a=1

[u+ η/2 + ηsa − ϑa], δ−(u) =
L∏
a=1

[u+ η/2− ηsa − ϑa], (A.12)

and thus the Bethe ansatz equation is given by

L∏
a=1

[ui + η/2 + ηsa − ϑa]
[ui + η/2− ηsa − ϑa]

= eiθ
m∏
j 6=i

[ui − uj + η]
[ui − uj − η] . (A.13)

– 26 –



J
H
E
P
0
3
(
2
0
2
1
)
2
2
7

In the case of open spin chain, we define

U−(u) := T(u)K(u− 1
2η, ξ−)σ2Tt(−u)σ2, (A.14)

which can be explicitly evaluated to

U−(u) =
(
A(u) B(u)
C(u) D(u)

)
, (A.15)

where

A(u) =
[
u− 1

2η + ξ−

]
A(u)D(−u) +

[
u− 1

2η − ξ−
]
B(u)C(−u), (A.16a)

B(u) = −
[
u− 1

2η + ξ−

]
A(u)B(−u)−

[
u− 1

2η − ξ−
]
B(u)A(−u), (A.16b)

C(u) =
[
u− 1

2η + ξ−

]
C(u)D(−u) +

[
u− 1

2η − ξ−
]
D(u)C(−u), (A.16c)

D(u) = −
[
u− 1

2η + ξ−

]
C(u)B(−u)−

[
u− 1

2η − ξ−
]
D(u)A(−u). (A.16d)

We note that the ground state |Ω〉 is also the ground state for the open chain with the
diagonal boundary condition, as we have

C(u) |Ω〉 = 0. (A.17)

In the same way, for open chains, we have an RURU relation given by

R12(u1 − u2)U1,−(u1)R12(u1 + u2 − η)U2,−(u2)
= U2,−(u2)R12(u1 + u2 − η)U1,−(u1)R12(u1 − u2). (A.18)

What we obtain are

[u1 − u2 + η][u1 + u2 − η]B(u1)A(u2) = [η][u1 + u2 − η]B(u2)A(u1)
+ [u1 − u2][u1 + u2]A(u2)B(u1) + [η][u1 − u2]B(u2)D(u1), (A.19a)

[u1 − u2 + η] [u1 + u2 − η]A(u2)C(u1) = [u1 − u2] [u1 + u2] C(u1)A(u2)
+ [η] [u1 + u2 − η]A(u1)C(u2) + [u1 − u2] [η]D(u1)C(u2), (A.19b)

[u1 − u2 + η] [u1 + u2 − η]D(u2)B(u1) = [u1 − u2] [u1 + u2]B(u1)D(u2)
+ [η] [u1 + u2 − η]D(u1)B(u2) + [u1 − u2] [η]A(u1)B(u2), (A.19c)

[u1 − u2 + η] [u1 + u2 − η] C(u1)D(u2) = [η] [u1 + u2 − η] C(u2)D(u1)
+ [u1 − u2] [u1 + u2]D(u2)C(u1) + [η] [u1 − u2] C(u2)A(u1), (A.19d)

and

[η] [u1 +u2]B(u1)D(u2)+[η]2A(u1)B(u2)+[u1−u2] [u1 +u2−η]D(u1)B(u2)
= [η] [u1−u2 +η]A(u2)B(u1)+[u1 +u2] [u1−u2 +η]B(u2)D(u1), (A.20a)

[η] [u1−u2 +η]B(u1)D(u2)+[u1 +u2] [u1−u2 +η]A(u1)B(u2)
= [u1−u2] [u1 +u2−η]B(u2)A(u1)+[η]2B(u2)D(u1)+[η] [u1 +u2]A(u2)B(u1).

(A.20b)
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We can further combine (A.19a) and (A.20b) together to obtain

[u1 +u2]A(u1)B(u2) = [η]
[u1−u2] [u1 +u2−η]B(u1)A(u2)

+ [u1−u2−η]
[u1−u2] [u1 +u2−η]B(u2)A(u1)− [η]B(u1)D(u2), (A.21)

and substitute (A.20a) in (A.19c) to have

[u1−u2+η] [u1+u2−η]D(u2)B(u1) = [u1−u2] [u1+u2]B(u1)D(u2)+[u1−u2] [η]A(u1)B(u2)

+ [η] [u1+u2] [u1−u2+η]
[u1−u2] B(u2)D(u1)+ [η]2 [u1−u2+η]

[u1−u2] A(u2)B(u1)

− [η]3

[u1−u2]A(u1)B(u2)− [η]2 [u1+u2]
[u1−u2] B(u1)D(u2)

= [u1+u2] [u1−u2+η] [u1−u2−η]
[u1−u2] B(u1)D(u2)+[η] [u1−u2+η] [u1−u2−η]

[u1−u2] A(u1)B(u2)

+ [η] [u1+u2] [u1−u2+η]
[u1−u2] B(u2)D(u1)+ [η]2 [u1−u2+η]

[u1−u2] A(u2)B(u1), (A.22)

where we used
[u1 − u2]2 − [η]2 = [u1 − u2 + η] [u1 − u2 − η] . (A.23)

By further using (A.21), we obtain

D(u2)B(u1) = [u1 +u2 +η] [u1−u2−η]
[u1−u2] [u1 +u2] B(u1)D(u2)+ [η] [u1 +u2 +η]

[u1−u2] [u1 +u2]B(u2)D(u1)

+2 [η]2 cosh(η)
[u1−u2] [u1 +u2]B(u1)A(u2)+[η] [u1−u2−2η]

[u1−u2] [u1 +u2]B(u2)A(u1),

(A.24)

where we used
[u1 − u2 − η] + [u1 − u2 + η] = 2[u1 − u2] cosh(η). (A.25)

We define a convenient notation instead of D(u),

D̃(u) = [2u]D(u)− [η]A(u), (A.26)

which following from (A.24) satisfies

D̃(u2)B(u1) = [u1 + u2 + η] [u1 − u2 − η]
[u1 − u2] [u1 + u2] B(u1)D̃(u2) + [η] [2u2 + η]

[u1 − u2] [2u1]B(u2)D̃(u1)

+ [η] [2u1 − η] [2u2 + η]
[u1 + u2] [2u1] B(u2)A(u1), (A.27)

and one can also rewrite (A.19a) to

A(u2)B(u1) = [u1 − u2 + η] [u1 + u2 − η]
[u1 − u2] [u1 + u2] B(u1)A(u2)− [η] [2u1 − η]

[u1 − u2] [2u1]B(u2)A(u1)

− [η]
[u1 + u2] [2u1]B(u2)D̃(u1). (A.28)
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By using (A.8), we have

A(u) |Ω〉 =
[
u− 1

2η + ξ−

]
δ+(u)δ−(−u), (A.29a)

D(u) |Ω〉 =
[
u− 1

2η + ξ−

] [η]
[2u]δ+(u)δ−(−u)−

[
u+ 1

2η − ξ−
] [2u− η]

[2u] δ+(−u)δ−(u),

(A.29b)

which implies
D̃(u) |Ω〉 = −

[
u+ 1

2η − ξ−
]

[2u− η]δ+(−u)δ−(u), (A.30)

and thus the transfer matrix at ground state is evaluated to

〈Ω| t(u) |Ω〉 =
[
u− 1

2η + ξ+

] [
u− 1

2η + ξ−

] [2u+ η]
[2u] δ+(u)δ−(−u)

+
[
u+ 1

2η − ξ+

] [
u+ 1

2η − ξ−
] [2u− η]

[2u] δ+(−u)δ−(u). (A.31)

Note that the above transfer matrix is symmetric about u↔ −u. We rewrite t(u) in terms
of D̃(u),

t (u) =
[
u+ η

2 + ξ+

]
A (u)−

[
u+ η

2 − ξ+

]
D(u)

=
[2u+ η]

[
u+ ξ+ − η

2
]

[2u] A(u)−
[
u+ η

2 − ξ+
]

[2u] D̃(u). (A.32)

For excited Bethe states, we need to consider(
[2u+η]

[
u+ξ+−

η

2

]
A(u)−

[
u+ η

2−ξ+

]
D̃(u)

)
B(u1)B(u2) . . .B(uk) |Ω〉

= [2u+η]
[
u+ξ+−

η

2

] k∏
i=1

[ui−u+η][u+ui−η]
[ui−u][u+ui]

B(u1)B(u2) . . .B(uk)A(u) |Ω〉

−[u+ η

2−ξ+]
k∏
i=1

[ui−u−η][ui+u+η]
[ui−u][ui+u] B(u1)B(u2) . . .B(uk)D̃(u) |Ω〉

−[2u+η]
[
u+ξ+−

η

2

] k∑
i=1

[η][2ui−η]
[ui−u][2ui]

∏
j 6=i

[uj−ui+η][ui+uj−η]
[uj−ui][ui+uj ]

B(u)
∏
j 6=i
B(uj)A(ui) |Ω〉

−[2u+η]
[
u+ξ+−

η

2

] k∑
i=1

[η]
[2ui][ui+u]

∏
j 6=i

[uj−ui−η][uj+ui+η]
[uj−ui][uj+ui]

B(u)
∏
j 6=i
B(uj)D̃(ui) |Ω〉

−
[
u+ η

2−ξ+

] k∑
i=1

[η] [2u+η]
[ui−u] [2ui]

∏
j 6=i

[uj−ui−η][uj+ui+η]
[uj−ui][uj+ui]

B(u)
∏
j 6=i
B(uj)D̃(ui) |Ω〉

−
[
u+ η

2−ξ+

] k∑
i=1

[η] [2ui−η] [2u+η]
[2ui][ui+u]

∏
j 6=i

[uj−ui+η][ui+uj−η]
[uj−ui][ui+uj ]

B(u)
∏
j 6=i
B(uj)A(ui) |Ω〉+. . .

(A.33)
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Therefore the Bethe ansatz equation is given by([
u+ η

2 −ξ+
]
[2u+η] [η]

[ui−u] [2ui]
+

[2u+η]
[
u+ξ+− η

2
]
[η]

[2ui] [u+ui]

)∏
j 6=i

[uj−ui−η][uj +ui+η]
[uj−ui][uj +ui]

D̃(ui) |Ω〉

+
(

[2u+η]
[
u+ξ+− η

2
]
[2ui−η] [η]

[ui−u] [2ui]
+
[
u+ η

2 −ξ+
]
[η] [2ui−η] [2u+η]

[2ui][ui+u]

)

×
∏
j 6=i

[uj−ui+η][ui+uj−η]
[uj−ui][ui+uj ]

A(ui) |Ω〉= 0, (A.34)

and it can be simplified to

[2ui − η]
[
ui + ξ+ − η

2
][

ui − ξ+ + η
2
] ∏

j 6=i

[uj − ui + η][ui + uj − η]
[uj − ui − η][uj + ui + η]A(ui) |Ω〉 = −D̃(ui) |Ω〉 . (A.35)

By substituting the explicit expression of A(u) |Ω〉 and D̃(u) |Ω〉, (A.29a) and (A.30) into
the above equation, we obtain the final result of the Bethe ansatz equation,[

ui + ξ+ − η
2
] [
ui − η

2 + ξ−
]
δ+(ui)δ−(−ui)[

ui − ξ+ + η
2
] [
ui + η

2 − ξ−
]
δ+(−ui)δ−(ui)

∏
j 6=i

[uj − ui + η][ui + uj − η]
[uj − ui − η][uj + ui + η] = 1. (A.36)
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