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1 Introduction

Theories with extended supersymmetry have interesting massive spectra protected against
decay by the BPS constraint (see e.g. [1]). Many techniques have been developed for com-
puting exact counting functions on the BPS spectrum, notably topological string methods
and localization, see [2] and [3] for reviews. Rather than starting with a set of fundamental
fields and their interactions and deriving the resulting spectrum of the theory, the start-
ing point of many of these approaches is a wholesale construction of the theory from the
outset, in terms of its embedding in string theory. Having access to a subsector of the
complete spectrum, we can ask how the latter is constrained by consideration of just the
low lying spectrum. Ultimately, we would like to understand, if and if yes then in how
many ways a given low lying spectrum can be completed to a consistent spectrum of a UV
complete theory. The swampland program, as initiated in [4], is an overarching term for
work attempting to address this question, with the emphasis that the UV complete theory
encompass gravity; see [5, 6] for recent reviews.
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In this work, we will be concerned with the BPS spectra of 5d gauge theories with 8
supercharges obtained via compactification on a circle of rank 1 6d theories with (1,0) super-
symmetry. These theories are dubbed 5d KK theories in [7]. Much work has been expended
in studying their superconformal limits [8–11]. Here, we will be interested in the theories
at a generic point on their Coulomb branch and the associated spectrum of BPS particles.

Rank 1 theories are readily constructed via F-theory compactifications [12, 13] on el-
liptically fibered Calabi-Yau manifolds X [14–16]. The rank in the context of 6d theories
indicates the dimension of the tensor branch, which geometrically corresponds to the num-
ber of compact homology 2-cycles in the base of the fibration. Requiring that an elliptic
fibration X over a given base be a Calabi-Yau manifold imposes a minimal singularity
on the elliptic fiber, which maps to the gauge algebra g of the 6d theory obtained by F-
theory compactification on X. Resolving the singularity via blow-ups does not change the
6d physics, but moves the associated 5d KK theory away from the origin of its Coulomb
branch. Upon specializing the complex structure of X, the singularity can be enhanced,
leading to a larger gauge algebra g′ of the compactified theory. Physically, the transition
g′ → g corresponds to Higgsing. The graph with nodes consisting of elliptically fibered
Calabi-Yau manifolds and links describing the process of specializing complex structure
to a singularity, then resolving it by blowing up, is referred to as a Higgsing tree. Rank
1 Higgsing trees, constructed over the base surfaces O(−n) → P1, for n = 0, . . . , 8, 12,
provide the setting for our computations.

A counting function for 5d BPS states is famously given by the topological string
partition function Ztop [17–19]. In [20, 21], examples of the type of transformation encoded
in the links of Higgsing trees were dubbed geometric transitions and studied in detail for
several 2 and 3 parameter Calabi-Yau manifolds. The genus 0 Gromov-Witten invariants
of the 1 parameter Calabi-Yau models obtained after the transition were shown to be
related to those of the parent theory by summing over the Kähler parameters associated
to the blown-down curves. In this work, we will obtain a stronger form of this result for
the nodes and links of rank 1 Higgsing trees. By invoking modularity results [22–25], the
computation of Ztop at a given order in an expansion in the base curve exponentiated
Kähler parameter QB, schematically Ztop ∼

∑
k ZkQ

k
B, reduces to the determination of a

holomorphic weak Weyl invariant Jacobi form [26–28]1 of determined index and weight,
with the coarsest choice of Weyl group possible being that of the gauge group of the
engineered theory, W (g). We conjecture that the topological string partition functions of
nodes of the Higgsing tree specialize upon moving towards the root of the tree according
to maps J(g′) → J(g) relating the ring of Jacobi forms of the associated Weyl groups.2
We provide ample evidence for this conjecture by computing Zk at k = 1 for a host of
examples and demonstrating the specialization explicitly.

Note that the topological string is insensitive to complex structure deformations.3
From its vantage point, all nodes of a Higgsing tree can hence be seen as singular geome-

1This being the only class of Jacobi forms we will be concerned with in this paper, we will drop the
adjective weak in the following.

2The connection between different nodes of rank 1 Higgsing trees was studied for some examples in a
different presentation of Ztop in [29, 30].

3Here and in the following, we speak from the perspective of the so-called A-model [31].
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tries lying on subslices of the Kähler moduli space. One parent theory (which on infinite
length Higgsing trees would depend on infinitely many parameters) should hence capture
all geometries subsumed in a Higgsing tree. This perspective could offer a path towards the
proof of our conjecture; the point to be addressed is that the topological string partition
function exhibits singularities on the subslices of moduli space corresponding to the sin-
gular geometries. For the models that we consider, we demonstrate by computation that
these singularities are only apparent.

The elements of J(g) at given weight and index span a finite dimensional vector space
over Q. The computation of Zk in the class of models we are considering is reduced to
obtaining the expansion coefficients in an appropriate basis of this space. The reduction
of the computation to a finite dimensional problem is conceptually important. Practically,
the number of coefficients grows rapidly with the rank of g and the base degree k. Luckily,
Zk for many of the geometries we consider turns out to exhibit a higher symmetry than
merely the Weyl group W (g). These enhanced symmetries have various origins. The
most straight-forward cases are 1-form symmetries as well as constraints arising from the
fact that a theory arises via Higgsing. Somewhat more surprisingly, the fact that some
maps J(g′) → J(g) are injective, hence invertible on their image, can lead to enhanced
symmetries motivated by moving opposite the Higgsing arrow. We call this phenomenon
“reverse inheritance”. This latter class of enhanced symmetries can also be explained
intrinsically, without reference to Higgsing, via a cancellation mechanism described in [32].
Notably, we argue for symmetry enhancement at the level of the massless 6d spectrum of
the parent theory of the 5d theory, yet find computationally that the symmetry extends
to the full BPS spectrum, begging the question (which we leave for future study) whether
this had to be the case. The elliptic genus in 6d or 4d theories as expressed in terms of
Jacobi forms or related structures is enlisted to study various conjectures relating to the
swampland program in the works [33–38].

We conclude this introduction with a summary of the ensuing sections. We begin
with a rapid review of the physical setting, and discuss the general structure of Zk in
section 2, completing the discussion in the literature to encompass all rank 1 theories. In
section 3, we take a first look at the constraints arising from being a node of a Higgsing
tree, and discuss in detail the specialization of Zk upon descending a Higgsing tree towards
its root. We also derive how our specialization results for Zg

k manifest themselves at the
level of Gromov-Witten invariants. Section 4 is dedicated to the discussion of symmetry
enhancements of Zk derived both from the perspective of neighboring nodes in the Higgsing
tree and intrinsically. Several technical appendices conclude the paper: in appendix A, we
explicitly give Z1 for one among the many models for which we have computed it, to convey
the general flavor of our results. Appendix B contains tables of Gromov-Witten data which
exemplify the specialization results derived in section 3. Appendix C summarizes data on
simple Lie algebras which is relevant for the discussion in the main text. Appendix D gives
explicit formulae for the generators of the ring of Jacobi forms for all simple groups other
than En, n = 6, 7, 8. Appendix E provides further details regarding the specialization maps
between these. Appendix F provides a brief introduction to Weyl invariant polynomials,
and explains how these enter in our calculations. Finally, appendix G provides a very brief
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review of elliptically fibered Calabi-Yau manifolds, and reproduces some rank 1 Higgsing
trees for the reader’s convenience.

2 How to capture BPS degeneracies via Weyl invariant Jacobi forms

2.1 The topological string and BPS states of the 5d theory

The topological string was born as a worldsheet theory [31, 39]. To a Calabi-Yau manifold
X and to each worldsheet genus g, it assigns a power series Fg in Kähler parameters
Qi associated to the homology 2-cycles of X (see footnote 3). The coefficients are the
celebrated Gromov-Witten invariants of X. Upon introducing a formal parameter gtop, a
putative theory tying together all Fg is assigned the partition function

Ztop(X) = exp
(∑

g

Fg g
2g−2
top

)
. (2.1)

In [17, 18], it was shown that Ztop(X) is not merely a formal construct; it captures the
non-perturbative BPS spectrum of M-theory compactified on X, arising from M2 branes
wrapping holomorphic curves in X (see [19] for a succinct summary of these matters).

The 5d theories of interest in this paper arise upon compactifying M-theory on a certain
class of elliptically fibered, interlinked Calabi-Yau manifolds X constituting the nodes of
so-called Higgsing trees, as we review in appendix G. We will call the theory obtained upon
compactification on X M[X] for the purposes of this section. The massless perturbative
spectrum of M[X] is captured by the compactification of 11 dimensional supergravity on X.
For non-compact X, this spectrum consists of h1,1(X) massless vector fields and h2,1(X)+1
uncharged massless hypermultiplets.

The symmetries constraining Ztop(X) become manifest at special points in the Kähler
moduli space of X in which this massless spectrum is enhanced. The description of these
points of enhancement is most natural from a 6d perspective, arising from compactifying
F-theory on X. In this description, only the complex structure of the elliptic fiber of X is
physical. Considering a representative of the geometry in which all exceptional curves in
the fiber are blown down brings the gauge symmetry g associated to the resulting singular
fiber to light, together with hypermultiplets charged under g. This theory yields M[X] upon
circle compactification, as follows from M-theory/F-theory duality [40]. In contrast to the
F-theory compactification, the elliptic fiber now is fully physical, with its size inversely
proportional to the size of the compactification circle [40]. Away from the singular limit of
the fiber, we recover the perturbative massless spectrum described above.

2.2 The topological string and Jacobi forms

On an elliptically fibered Calabi-Yau manifold X, an astute rewriting of the holomorphic
anomaly equations [39, 41] can be used to demonstrate that the topological string partition
function inherits modular properties of the elliptic fiber [22, 42–44]: upon extracting a
universal fiber independent contribution Z0 and expanding in the base class QB,

Ztop = Z0

1 +
∑
k>0

ck(Q)QkBZk

 , (2.2)
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with ck(Q) a coefficient on which we shall comment momentarily, the expansion coefficients
Zk can be shown to be meromorphic Jacobi forms (with a simple multiplier due to a
contribution from the Dedekind η function). An alternative route towards unearthing this
modular structure proceeds by identifying Zk with the elliptic genera of k non-critical
strings in the spectrum of the 6d theory describing F-theory compactified on X [24, 25,
29, 45–48]. From either route, the following ansatz for Zk can be motivated:

Zk = 1
ηn(k)(q)

N
D

(q,Q, gtop) , (2.3)

where N and D are holomorphic Jacobi forms with modular parameter the Kähler param-
eter q of the generic fiber,

q = Q0
∏
i

(Qi)ai . (2.4)

Here, Q0 and Qi, i = 1, . . . , rk (g), denote exponentiated Kähler parameters of fibral curves
(Q0 being associated to the only curve among these which intersects the base B of the
fibration).4 The ai coincide with the marks5 of g. The elliptic parameters of the Jacobi
forms are given by Qi as well as gtop, with the Weyl group W (g) acting on the former.

The denominator D has a universal contribution present for all rank 1 models which
depends only on τ and gtop. Its form is largely fixed by comparison with the Gopakumar-
Vafa expansion [17, 18] of the topological string:

Duniv =
k∏

m=1
φ−2,1(mgtop) . (2.5)

For all X leading to gauge symmetry, the denominator also depends on the Kähler param-
eters of the resolved curves in the fiber. The expression for this contribution that we will
use is derived in [51] by lifting the result for Ztop in the gauge theory limit [52] to 6d [53].
Recall [54] that an instanton solution for the gauge group SU(2) [55] can be embedded
into the gauge group G via the embedding of the gauge algebra a1 into g, with image a
generator Tα of the Cartan subalgebra associated to a given root α and the corresponding
lowering and raising operators. The bilinear form on g takes the form

tr(Tαa Tαb ) = cαδab (2.6)

on these three generators. Choosing the normalization of the bilinear form such that cα is
equal to 1 for all long roots, the constant takes the following values for short roots:

cα = 2, G = Bn, Cn and F4,

cα = 3, G = G2.
(2.7)

4Note that in addition to these parameters, dependence on flavor fugacities can be introduced in the
elliptic genus [29, 30]. At the level of the geometry and the topological string partition function, this
requires including additional divisors in X. For further discussion of flavor symmetry in the SCFT limit of
5d theories, see [49, 50].

5Note that this equation appears with the ai identified as comarks in several previous works. The
distinction is of course irrelevant for simply laced groups.
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In the following, we will drop the index α: c will refer to the appropriate value given
in (2.7). An SU(2) instanton with instanton number kSU(2) maps under this embedding to
a G instanton with instanton number kG = cαkSU(2).

Following [51], we identify the contribution of an SU(2) instanton of instanton number
k to the denominator D as

DA1
k,α =

∏
ab≤k,a,b>0

φ−1, 12
((a− b)gtop +mα)φ−1, 12

((a− b)gtop −mα) (2.8)

mα is the contribution of the gauge fugacity or Kähler parameter associated to the positive
root α of A1 to which we will return below.

The contribution for a general gauge group G can then be expressed as

Dg
k = DGk,LD

g
k/c,S , (2.9)

with
Dg
k,L =

∏
α∈∆+

L

DA1
k,α, Dg

k,S =
∏

α∈∆+
S

DA1
k,α , (2.10)

where we have indicated the set of positive long and short roots as ∆+
L and ∆+

S respectively.
Note that (2.9) is invariant under permutations on the sets of long and short positive roots,
and DA1

k,α is invariant under α → −α. As the Weyl group W (g) is a subgroup of the
permutation group on all roots that does not mix long and short roots, this establishes the
invariance of Dg

k under its action.
Note further that at k = 1, (2.9) is independent of gtop.
The power n(k) of the Dedekind η function occurring in (2.3) has been determined from

topological string considerations [22] for the minimal singularities over the base surfaces
Fn equal to F0, F1 and F2 to be −12kCB · K = 12k(n − 2). Here, CB is the base curve
of the Hirzebruch surface, K is its canonical divisor. In [24], it was given for minimal (i.e.
maximally Higgsed) models for n > 2 as n(k) = 4kh∨G, with h∨G the dual Coxeter number of
the gauge group of the corresponding model, which happens to be given by h∨G = 3(n− 2)
for all occurring cases, as noted by [56]. By matching to Gromov-Witten invariants, we find
that expressing n(k) in terms of the dual Coxeter number of the gauge group is misleading.
In fact, it is the self-intersection number of the base curve which determines this quantity.
The correct expression valid for all rank 1 Higgsing tree geometries is

n(k) = 12k|n− 2| . (2.11)

Turning now to the prefactor ck(Q) which enters in extracting Zk from Ztop in (2.2),
it was given in [22] as ck(Q) = q−

k(n−2)
2 for the minimal models over F0,F1,F2. For the

minimal models over Fn, n > 2, [24] identified it as ck(Q) = (√q/∏iQ
ai
i )kh∨G/3 . We find

that this latter formula should be modified by adding a factor of Q0 to the product in the
denominator, and replacing h∨G by 3(n − 2) for all geometries over a base Fn. This yields
an expression valid for all bases Fn:

ck(Q) =
( √

q∏
iQ0Q

ai
i

)k(n−2)

= q−
k(n−2)

2 . (2.12)
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The final ingredient is the numerator N of Zk. Its exact expression depends sensitively
on the geometry considered. Upon determining the appropriate ring J of holomorphic
Jacobi forms in which it lies, an ansatz can be made in terms of the finite basis of J at
appropriate weight and index. The expansion coefficients must then be fixed by imposing
appropriate boundary conditions, as we discuss in subsection 2.5. Beyond the problem of
providing sufficient boundary conditions, the sheer number of coefficients to be determined
quickly becomes computationally untenable. By imposing the symmetries of the massless
spectrum of the 5d theory on all of Zk, the number of coefficients can be sufficiently
reduced to render many more calculations feasible. In this work, we provide an a posteriori
justification for this procedure by demonstrating that the constrained ansatz is consistent
with Gromov-Witten invariants obtained via mirror symmetry.

2.3 The map between the Kähler cone and elliptic parameters

The exceptional fibral curves of the class of elliptic fibrations we are considering organize
themselves in terms of representations of the corresponding Lie algebra g. As such, each
curve can be identified with an element of the weight lattice Λw of g. It is therefore natural
to identify the fiber components m of the Kähler form with an element of the complexified
dual lattice, the coroot lattice, such that the Kähler parameter mC associated to the curve
C, obtained by integrating the complexified Kähler form against the curve class, is given
by the pairing

mω = (ω,m) , (2.13)

with ω ∈ Λw the weight identified with C.
−2 rational curves in the fiber of the elliptic fibration organize themselves into the

adjoint representation. Each such curve thus maps to a root α of g, which just as any
other weight lies in Λw. The corresponding Kähler parameters

mα = (α,m) (2.14)

are identified with the gauge fugacities of the elliptic genus. They have already featured
in the formula (2.8) above, while the exponentiated Kähler parameters

Qi = e2π(αi,m) , (2.15)

with αi a simple root, appear in equation (2.4) above. Note that the dependence of the
elliptic genus on the gauge fugacities will generically contain fractional powers of e2πimα ,
as the weight lattice is generically finer than the root lattice.

In theories with a Lagrangian description, m can be identified with the VEV of the
real scalar field φ in the 5d gauge multiplet, under identification of the complexified coroot
lattice with the Cartan subalgebra of g. This gives rise to masses for hypermultiplets
as follows. The scalar fields (Q, Q̃) of a hypermultiplet transforming in the irreducible
representation ρ of the gauge group couple to φ via

(Q̃, ρ(φ)Q) . (2.16)

– 7 –
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Recall that Q and Q̃ transform in dual representations; in the above formula, (·, ·) indicates
the pairing between the dual spaces. φ acquiring a VEV gives rise to the mass term

(Q̃, ρ(m)Q) . (2.17)

Decomposing the vector Q in terms of weight eigenspaces, Q = ∑
λQλ (assuming non-

degenerate eigenspaces for notational simplicity), this yields

(Q̃, ρ(m)Q) =
∑
λ,λ̃

(Q̃λ̃, (λ,m)Qλ) =
∑
λ

(λ,m)(Q̃λ̃, Qλ) , (2.18)

where we have denoted by λ̃ the conjugate weight to λ. Note that if the irreducible
representation ρ has highest weight λh, all the weights λ occurring in the mass term (2.18)
are of the form

λ = λh −
∑
i

niαi , ni ∈ N , (2.19)

where the sum is over the simple roots of g. The hypermultiplet in representation ρ hence
introduces dependence on the parameter (λh,m) in addition to the parameters (αi,m).

As explained in the previous subsection, the numerator of Zk as presented in (2.3) is
a Weyl invariant Jacobi form with, aside from gtop, m featuring as the elliptic parameter.
Correctly identifying the dependence on m requires some care. We will mostly take the
generators of the ring J(g) of Weyl invariant Jacobi forms as derived in [28] as our starting
point. These depend on rk g parameters xi, which determine a point in a Euclidean lattice
En. The action ofW (g), the Weyl group of g, on these parameters, as well as their behavior
under shifts by elements of Λr(g), the root lattice of g, follows from the embedding of the
root lattice into En (note that n can be larger than rk (g); as is the case e.g. for the A-series).

From our identification of Kähler parameters with (2.13), we conclude that it is shifts
of m via elements of the coroot lattice which should be symmetries of the theory. When
studying the elliptic genus for the Lie algebra g, we hence need to consider Weyl invariant
Jacobi forms of the Lie algebra g̃ whose root lattice equals the coroot lattice of g. For
simply laced groups, we can identify roots with the corresponding coroots as elements of
the orthogonal lattice, and this distinction is irrelevant.6 For F4 and G2, root and coroot
lattice are isomorphic, the map between the two does not however preserve the inner
product: short roots are mapped to long coroots and vice versa. E.g., in our conventions,
the set of coroots for G2 as embedded in E3 is given by

±(ei − ej), i 6= j, ±(2ei − ej − ek), i 6= j 6= k 6= i;

while the set of roots is given by

±(ei − ej), i 6= j, ±1
3(2ei − ej − ek), i 6= j 6= k 6= i.

Finally, the root lattice of Bn is isomorphic to the coroot lattice of Cn, and vice versa. We
must hence use the Weyl invariant forms assigned to the Lie algebra Cn in the conventions
of [28] to describe Zk on a background leading to gauge symmetry Bn, and vice versa.

6Note that in the following, it will be convenient to refer to all the roots of simply laced root systems
as long.
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2.4 Determining weight and index

Zk is a weight 0 Jacobi form whose index is determined by the anomaly polynomial of the
elliptic genus or equivalently by the holomorphic anomaly of the topological string partition
function [23]. The anomaly polynomial for the elliptic genus of a string carrying charges
Qi (not to be confused with the exponentiated Kähler parameters; in the type IIB picture,
these charges encode the class of the base curves Ci that the D3 brane giving rise to the
string is wrapping) is given by [56, 57]

I4 = ΩijQiQj
2 (c2(L)− c2(R)) + (2.20)

Qi

(
1

4h∨ΩiaTr adjF 2
a −

2− Ωii

4 (p1(T )− 2c2(L)− 2c2(R)) + h∨Gic2(I)
)
,

where Ωij = −Ci ·Cj is (minus) the intersection matrix of the curves in the base, c2(L) and
c2(R) are the second Chern classes associated to the left and right parts of the Poincaré
symmetry SU(2)L × SU(2)R of the normal bundle of the string in the 6d spacetime, c2(I)
is the second Chern class for the SU(2) R-symmetry bundle, p1(T ) is the first Pontryagin
class of the tangent bundle of the 6d spacetime, and Fa is the field strength associated to
the curve Ca in the base. This latter index a includes compact curves associated to gauge
fields indexed by i above and non-compact ones associated to global symmetries.

Specializing to rank 1, i.e. to the case of only one compact cycle in the base B, giving
rise to one tensor multiplet, making the replacement c2(R) = c2(I) = 0, c2(L) = −g2

s for
the unrefined string [23–25], and introducing the norm

(·, ·) = 1
2h∨Tradj (2.21)

on the Cartan subalgebra of the Lie algebra, which is normalized so that short coroots have
norm squared 2, we obtain the index bilinear form for Zk,

IZ = iZ,topg
2
top + iZ,gauge(m,m) (2.22)

with

iZ,top = −1
2(nk2 + (2− n)k) , (2.23)

iZ,gauge = −kn . (2.24)

Here, −n = Ω11 = CB · CB is the self-intersection number of the base curve, and we have
replaced F by m, which we will use from now on.

To compute the index of the denominator in the presentation (2.3) for Zk, we add the
index bilinear form of each factor. For the universal part Duniv in (2.5), it is given by

k∑
m=1

m2g2
top .
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G Simply laced Bn Cn G2 F4

κG — 1
2n−1

n−1
n+1

1
4

1
3

Table 1. (m,m)s = κG(m,m).

For the gauge group contribution DGk , the index bilinear form is|∆L|
∑
ab≤k
a,b>0

(a− b)2 + |∆S |
∑

ab≤k/c
a,b>0

(a− b)2

 g2
top + tk,L2h∨(m,m)l + tk,S2h∨(m,m)s ,

where
tk,L = #{ab ≤ k | a, b > 0} , tk,S = #{ab ≤ k/c | a, b > 0} , (2.25)

and
(m,m)S/L = 1

2h∨
∑

α∈∆S/L

mα . (2.26)

As the Weyl group does not mix short and long roots, the two inner products (·, ·)S/L are
Weyl invariant and therefore proportional to the inner product of the lattice,

(m,m)S = κG(m,m), (m,m)L = (1− κG)(m,m). (2.27)

The value of κG for all simple Lie algebras is given in table 1.
Combining these contributions, the index bilinear form of the denominator reads

ID = iD,topg
2
top + iD,gauge(m,m) , (2.28)

where

iD,top =
k∑

m=1
m2 + |∆L|

∑
ab≤k
a,b>0

(a− b)2 + |∆S |
∑

ab≤k/c
a,b>0

(a− b)2, (2.29)

iD,gauge = 2h∨ ((1− κG)tk,L + κGtk,S) . (2.30)

By IN = IZ + ID, the index bilinear form of the numerator N of (2.3) is then easily
determined to be

IN = iN ,topg
2
top + iN ,gauge(m,m) , (2.31)

with

iN ,top =−1
2(nk2+(2−n)k)+

k∑
m=1

m2+|∆L|
∑
ab≤k
a,b>0

(a−b)2+|∆S |
∑

ab≤k/c
a,b>0

(a−b)2 , (2.32)

iN ,gauge =−kn+2h∨ ((1−κG)tk,L+κGtk,S) . (2.33)

For the case k = 1, iN ,top = 0 and we conclude that the numerator does not depend on gtop.
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To determine the weight wN of the numerator, note that the weights of N and D
must be equal, as Zk has weight 0. The factor involving the Dedekind η function in
equation (2.3) contributes the weight 1

2n(k) = 6k|n − 2|, the universal contribution Duniv
to the denominator has weight −2k, and the gauge contribution DG

k has weight −|∆L|tk,L−
|∆S |tk,S . Adding these contributions, we obtain

wN = 6k|n− 2| − 2k − |∆L|tk,L − |∆S |tk,S . (2.34)

2.5 Imposing boundary conditions

As the numerator N in the ansatz (2.3) for Zk is a holomorphic Jacobi form, it can
be expanded in terms of a finite basis of forms of given weight (2.34) and index (2.32)
and (2.33). Most of this work will be concerned with identifying the ring of Jacobi forms
best adapted to a given gauge theory, i.e. maximally constrained by the symmetries of
the problem. Once the ring is chosen and the expansion of N in appropriate generators
is performed, appropriate boundary conditions must be imposed on Zk to determine the
expansion coefficients.

In [22, 23, 25, 58], these boundary conditions are imposed in the form of so-called
vanishing conditions: the constraint that Gopakumar-Vafa invariants of a given curve
class must vanish at sufficiently high genus. In [22], it was argued that imposing generic
vanishing conditions (i.e. requiring that these invariants vanish eventually) is sufficient to
fix Zk for theories without gauge symmetry; this argument was extended to the refined
context in [23]. In [25], it was argued that imposing generic vanishing conditions does not
suffice to fix Zk for theories with gauge symmetry. Imposing sharp vanishing conditions,
it was conjectured, does suffice. This was demonstrated in the case of the A2 theory over
the base F3 up to base wrapping number 3 and the D4 theory over F4 for base wrapping 1.

An alternative would be to compute Gopakumar-Vafa invariants for these geometries
by imposing elliptic blow-up equations [30, 59–61]. For the purposes of this work, we rely
on the technically less arduous path of mirror symmetry and impose genus 0 Gromov-
Witten invariants as boundary conditions. This allows us to fix Zk at base wrapping k = 1
completely, and some coefficients in the expansion of N for higher k (only in the case of
the E-string (of arbitrary rank) can Zk for all k be determined solely by imposing genus 0
invariants [62]).

To determine the Gromov-Witten invariants for the various nodes of rank 1 Higgsing
trees, we construct, where possible, the underlying geometry as hypersurfaces in toric
varieties [14–16, 32] to which we apply well-established mirror symmetry techniques [63, 64].
We organize the invariants in terms of a basis of curve classes adapted to the gauge theory
interpretation by identifying the distinguished curves in the geometry as intersections of
toric divisors with the hypersurface. We refer to [32] for a detailed exposition of these
techniques.

Cn and Dn singularities cannot be imposed torically on the elliptic fiber over base a
Hirzebruch surface Fn [15, 32]. We hence cannot compute the elliptic genus for theories
with these gauge groups directly using our techniques. However, the fact that all Dn

theories in rank 1 Higgsing trees arise via Higgsing of theories that we can solve provides
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us with an alternative path to obtaining their elliptic genus, as we explain in section 3.
Reversing the arrow of dependencies, we can thus compute the genus 0 Gromov-Witten
invariants for these geometries, invariants which are not available via traditional mirror
symmetry techniques.

3 Specializing along Higgsing trees

Descending via Higgsing from a theory with gauge group g imposes constraints on the
spectrum of charged matter of the resulting theory with gauge group g′. While the nature
of these constraints generically strongly depends on the details of the Higgsing considered,
some general statements can be made. E.g., when rk (g) = rk (g′), the Weyl symmetry of g
decomposes into W (g′)nDynkinSym(g′), with the Dynkin diagram symmetries continuing
to act as an automorphism on the theory. The charged matter spectrum of the Higgsed the-
ory must therefore be invariant under the action of DynkinSym(g′) on the representations
of g′. We see many examples of this phenomenon in the rank 1 Higgsing trees:

• W (G2) = W (A2) n DynkinSym(A2): the Dynkin diagram symmetry exchanges the
fundamental representations 3 and 3̄ of A2. Symmetry under this exchange is however
already required by CPT invariance, hence does not constrain the A2 gauge theories
further.

• W (F4) = W (D4)nDynkinSym(D4): the Dynkin diagram symmetry of D4 famously
permutes its vector and two spinor representations, and indeed, all D4 theories oc-
curring in rank 1 Higgsing trees (all descending from F4 theories via Higgsing) have
a charged matter spectrum invariant under such permutations.

• W (Bn) = W (Dn)nDynkinSym(Dn): the Z2 Dynkin diagram symmetry of Dn (n >
4) exchanges the two spinor representations. For n odd, these are conjugate to
each other, hence the Z2 symmetry is imposed by CPT invariance. However, for
n even, the spinor representations are self-conjugate, allowing for the presence of
half hypermultiplets in the spectrum of these theories. Here, DynkinSym(Dn) is an
additional constraint on the spectrum. In perusing the rank 1 Higgsing trees, we
indeed observe that this symmetry is not realized only in the case of the D6 theories
of the F2 and F3 Higgsing trees; these are the only D2n theories not descending from
a B2n theory.

In section 4, we will see that these symmetries of the massless spectrum of the theory are
inherited by the elliptic genus. What is more, at least at the level of the elliptic genus,
symmetries of a Higgsing theory can be “reverse inherited” by the unHiggsed theory. Thus
e.g., via the B4 and F4 to D4 branch of a Higgsing tree, W (F4) has repercussions for the B4
theory, even though it does not descend via Higgsing from a theory with gauge group F4.

In this section, we will study the relation between the elliptic genera of theories related
by Higgsing g→ g′ in detail. We will define for each Higgsing a linear embedding

ι : h′ ↪→ h (3.1)
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between the Cartan subalgebras. In practice, these maps have simple presentations in terms
of the orthogonal coordinates xi on the Euclidean lattices in which Λcr(g′) and Λcr(g) are
embedded. The map ι induces a map ι∗ between functions on the complexified Cartan
algebra and in particular the Jacobi forms associated to the corresponding Lie algebras.
Up to some possible change of coordinates, dictated by our explicit embeddings of Λcr(g)
in Eg, the map ι∗ corresponds to restricting the modular forms to the subspace ι(h′). We
give these restrictions for all simple Lie algebras, except E6, E7 and E8.

It is natural to ask whether the relation between Zg and Zg′ is governed by ι. In all
the models we consider, we find this to be the case, at least at base wrapping 1:

ι∗(Zg) = Zg′ . (3.2)

In particular, when the Higgsed gauge algebra has fewer roots, the apparent extra diver-
gences in equation (2.9) disappear.

We will discuss this specialization separately for the numerator and the denominator
of the ansatz (2.3) for the elliptic genus.

3.1 Restriction maps between rings of Jacobi forms

The specialization map ι∗ takes Jacobi forms of the Lie algebra g to Jacobi forms of the
Lie algebra g′. We begin by studying how to specialize the generators of the ring of Jacobi
modular forms along the Higgsing trees. Some technical details are relegated to appendix E.

3.1.1 G2 to A2

The (co)root lattices of the Lie algebras A2 and G2 are isomorphic. We can therefore
choose ι to be the identity. The Weyl groups of the two algebras are related via

W (G2) = W (A2) nDynkinSym(A2). (3.3)

The ring J(G2) of G2 Jacobi forms is thus equal to the subring of the ring J(A2) of A2
Jacobi forms whose elements are Dynkin diagram symmetric. At the level of the standard
basis of the orthogonal lattice E3, the latter symmetry is realized by exchanging the lattice
generators e1 and e3 and flipping the sign of all three generators. Note that e1 ↔ e3 is
already an element of W (A2). Of the three generators of J(A2), only φA2

−3,1 is not invariant
under xi → −xi; it changes by a sign. This observation fixes the relation between the two
sets of generators, as summarized in figure 1.

The relation between the generators of J(A2) and J(G2) in particular implies that the
numerator N of the elliptic genus of all A2 theories obtained via Higgsing from a G2 theory
must permit an expansion in an even power of the generator φA2

−3,1. This however does not
impose an independent constraint, as the weight of the numerator in the expression (2.3)
for the elliptic genus is even for all k, and φA2

−3,1 is the only generator of odd weight.

3.1.2 B3 to G2

All rank 1 models with G2 gauge group arise via Higgsing of theories with gauge group B3.
We recall that the relevant ring of Jacobi forms for the latter, in the conventions of [28],
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φG2
0,1 φG2

−2,1 φG2
−6,2

φA2
0,1 φA2

−2,1 (φA2
−3,1)2

Figure 1. The map between J(G2) and J(A2) generators. The vertical arrows denote equality.

φC3
0,1 φC3

−2,1 φC3
−4,1 φC3

−6,2

φG2
0,1 φG2

−2,1 0 φG2
−6,2

Figure 2. The specialization of J(C3) to J(G2) generators. The vertical lines correspond to setting
x1 + x2 + x3 = 0 and multiplying by a constant.

is J(C3), as its elements are shift symmetric under coroots of B3. We identify the Cartan
algebras of G2 and B3 with the subspace x1 + x2 + x3 = 0 of R3 and R3 itself. The map ι
is then the inclusion

ι : {x1 + x2 + x3 = 0} ↪→ R3.

The root lattice of C3, as embedded in the orthogonal lattice E3, reduces to the root
lattice of G2 upon restriction to the subspace x1 + x2 + x3 = 0; likewise, the Weyl group
of C3 (equal to the Weyl group of B3) maps to the Weyl group of G2. The restriction ι∗
hence provides a map from J(C3) to J(G2). In fact, this map is surjective: it maps one of
the generators of J(C3) to 0, and the other three to the generators of J(G2), see figure 2.

3.1.3 F4 to D4

All rank 1 models with D4 gauge group arise via Higgsing of theories with gauge group F4.
The root lattices of D4 and F4 are isomorphic, but are embedded differently in R4 in

the conventions of [65]. We give a map ι between these two realizations in appendix D.5.
The Weyl group of F4 coincides with the semi-direct product of the Weyl group of D4 with
the Dynkin diagram symmetry of D4,

W (F4) = O(F4) = W (D4) nDynkinSym(D4) = W (D4) n S3 .

Therefore, ι∗ embeds J(F4) as a subring into J(D4), its elements consisting of W (D4)
symmetric Jacobi forms which in addition exhibit D4 Dynkin diagram symmetry. Imposing
this symmetry on the generic elements of J(D4) of appropriate weight and index, we arrive
at the generators of J(F4) given in figure 3.

3.1.4 A-series

The Higgsing tree over F1 and over F2 both exhibit a branch of An gauge theories for n
arbitrarily large, with a sequence of Higgsings An+1 → An all the way down to a theory
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φF4
0,1 φF4

−2,1 φF4
−6,2 φF4

−8,2 φF4
−12,3

φD4
0,1 − 2

3E4φ
D4
−4,1 φD4

−2,1 φD4
−6,2 − 1

18φ
D4
−2,1φ

D4
−4,1

(
φD4
−4,1

)2
+ 3

(
ωD4
−4,1

)2
φD4
−4,1

(
ωD4
−4,1

)2
− 1

9

(
φD4
−4,1

)3

Figure 3. The specialization of J(F4) to J(D4) generators. The vertical lines correspond to
composition via an isomorphism of the two lattices which is given explicitly in appendix D.5.

...
...

... . . .
...

...
...

φAn0,1 φAn−2,1 φAn−3,1 . . . φAn−n,1 φAn−n−1,1 0

φ
An−1
0,1 φ

An−1
−2,1 φ

An−1
−3,1 . . . φ

An−1
−n,1 0

...
...

... . . .
...

φA2
0,1 φA2

−2,1 φA2
−3,1 0

φ0,1 φ−2,1 0

Figure 4. Restriction of the A-series Jacobi forms. The vertical arrows correspond to setting the
last coordinate to 0 and multiplying by a constant.

with gauge symmetry A1.7

The root lattice of An is embedded in the orthogonal lattice En+1 via the constraint∑n+1
i=1 xi = 0. The Weyl group of An is the group Sn+1 of permutations on the n + 1

generators of En+1. The map ι for the An+1 → An Higgsing is induced by the inclusion of
the orthogonal lattices: En+1 ↪→ En+2. Restricting to the sublattice xn+2 = 0 thus maps
the root lattice and the Weyl group of An+1 to that of An. This restriction maps the lowest
weight generator φ−(n+1),1 to 0, and otherwise preserves weight and index, leading to the
relation between generators summarized in figure 4.

3.1.5 . . . → Dn+1 → Bn → Dn → . . .

The Higgsing trees over Fn for n = 0, 1, 2, 3, 4 exhibit branches of Bn and Dn gauge theories
for n arbitrarily large. Along these branches, the pattern of Higgsing is . . . → Dn+1 →
Bn → Dn → . . ..8

7The Higgsing of certain theories over the bases F1 and F2 is studied from the perspective of the 2D
quiver theory living on the BPS strings in [66].

8These branches over the bases F2, F3 and F4 were studied from the perspective of brane-systems in [67].
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...
...

... . . .
...

...
...

φ
Dn/Cn
0,1 φ

Dn/Cn
2,1 φ

Dn/Cn
4,1 . . . φ

Dn/Cn
2n−2,2 φCn2n,2 = (ωDnn,1)2 0

φ
Dn−1/Cn−1
0,1 φ

Dn−1/Cn−1
2,1 φ

Dn−1/Cn−1
4,1 . . . φ

Cn−1
2n−2,2 = (ωDn−1

n−1,1)2 0

...
...

... . . .
...

φ
D4/C4
0,1 φ

D4/C4
2,1 φ

D4/C4
4,1 φ

D4/C4
6,2 φC4

8,2 = (ωD4
4,1)2

φ
D3/C3
0,1 φ

D3/C3
2,1 φ

D3/C3
4,1 φC3

6,2 = (ωD3
3,1)2 0

Figure 5. Restriction of the D/C series Jacobi forms. The vertical arrows correspond to setting
the last coordinate to 0 and multiplying by a constant (for C3 we picked a different basis). This is
the same table as in [68].

Recall that in the conventions of [28], J(Cn) is the appropriate ring of Jacobi forms
for the construction of the elliptic genera for Bn gauge theories, as its elements are shift
symmetric under Λcr(Bn) = Λr(Cn).

The orthogonal lattice for Cn and Dn is En. For the Higgising Bn → Dn, the map ι is
simply the identity. The root lattices of Cn and Dn coincide. Furthermore,

W (Cn) = Sn n (Z2)n = W (Dn) nDynkinSym(Dn) ; (3.4)

in addition to permutations of the generators of the Euclidean lattice En, W (Cn) includes
arbitrary sign flips, whereas W (Dn) includes only even numbers of sign flips. The gener-
ators of J(Dn) and J(Cn) can be chosen to reflect the close relation between these two
groups: n of the generators can be chosen to coincide (i.e. are in particular invariant under
arbitrary sign flips). The final generator for J(Dn) is odd under an odd number of sign
flips. Its square provides the missing generator for J(Cn).

For the Dn → Bn−1 Higgsing, the map ι is induced by the inclusion En−1 ↪→ En. By
restricting to xn = 0, the root lattice and Weyl group of Dn are mapped to Λr(Cn−1) and
W (Cn−1), respectively. Consequently, setting xn = 0 maps the generators of J(Dn) to
those of J(Cn−1). These relations are summarized in figure 5.

For the case n = 4, the restriction to xn = 0 does not yield the standard basis of C3
Jacobi forms (as given for instance in [28]), which introduces some awkwardness in the
reduction. The details are given in appendix E.
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...
...

... . . .
...

...
...

φBn0,1 φBn−2,1 φBn−4,1 . . . φBn−(2n−2),1 φBn−2n,1 0

φ
Bn−1
0,1 φ

Bn−1
−2,1 φ

Bn−1
−4,1 . . . φ

Bn−1
−2(n−1),1 0

...
...

... . . .
...

φB3
0,1 φB3

−2,1 φB3
−4,1 0

Figure 6. Restriction of the B-series Jacobi forms. The vertical arrows correspond to setting the
last coordinate to 0 and multiplying by a constant.

3.1.6 C-series

The numerator of the elliptic genus of models with Cn gauge symmetry, which arise as nodes
of the F1 Higgsing tree, take value in J(Bn). As the necessary singularity enhancements
of the elliptic fiber cannot be obtained torically [15, 32], we did not study these models in
this work. However, as we will discuss in the next section, due to symmetry enhancement,
the numerators of the elliptic genus of theories with gauge symmetry of D- and B-type
over F4 are elements of these rings.

The map ι for the Cn → Cn−1 Higgsing is induced by the inclusion En−1 ↪→ En. Once
we set xn = 0, the Weyl group and root lattice of Bn map to the Weyl group and root
lattice of Bn−1, yielding the simple transformation law in figure 6.

3.2 Specialization of the elliptic genus

The structure of the denominator as given in (2.9) is dictated by the roots of the Lie algebra.
As explained in section 2.3, we choose conventions for the roots in the orthogonal basis
(i.e. the embedding of roots in a Euclidean lattice) such that the coroots of the Lie algebra
g coincide with the expressions as given by [65] for the roots of the dual Lie algebra. We
recall that this is the natural normalization for us as the argument of the elliptic genus is
an element of the (complexified) Cartan algebra hC periodic under translation by elements
of the coroot lattice (rather than the root lattice).

In subsection 3.1, we defined for each Higgsing g → g′ a restriction map ι∗. Under
this mapping, the image of a W (g) invariant function is W (g′) invariant. Furthermore, the
positive roots of g′ are mapped by ι onto a subset of positive roots of g. It follows that

ι∗(Dg
k)

Dg′

k
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is an element of the ring J(g′)⊗ J(A1) (the second factor having elliptic parameter gtop).
Our prediction is that this element factors out of ι∗(N g

k ), thus establishing (3.2).9 Below,
we perform this reduction explicitly for various Higgsings.

Once we have established (3.2), we can invoke the specialization mechanism to improve
our ansatz for Zk as we move away from the root of a Higgsing tree. We distinguish between
two cases.

The first case is when the map induced by ι∗ between J(g) and J(g′) is one-to-one.
In this case, we can impose the reduced denominator (ι∗)−1(Dg′

k ) for the theory with g

gauge symmetry. In fact, the elliptic genera Zg
k and Zg′

k as functions on the Euclidean
lattice (which coincides for both algebras) coincide. The two differ as functions of gauge
fugacities or Kähler parameters, as the map between the Euclidean lattice and the Kähler
cone of the underlying geometries (explained in subsection 2.3) differ.10 In section 4, we
will discuss symmetry enhancements which allow to choose N g to lie in a smaller ring
than J(g). For such an ansatz to be sufficient, it is necessary to impose the reduced
denominator; otherwise, factors not invariant under the enhanced symmetry are required
in the numerator to cancel corresponding terms in the denominator. This effect becomes
apparent in the base degree 2 example that we study in section 4.5.

The second case arises when Higgsing to a theory with smaller rank. In this case, the
map ι∗ : J(g)→ J(g′) has a non-trivial kernel. We again have

ι∗(N g) = N g′ ι
∗(Dg

k)
Dg′

k

,

i.e.

N g ∈ (ι∗)−1
(
N g′ ι

∗(Dg
k)

Dg′

k

)
.

Now, any two elements in this preimage differ by an element of the kernel. The kernel of ι∗
is a principal ideal ψJ(g) generated by an element ψ ∈ J(g) which can be read off from the
figures in section 3.1. If we pick a particular element in the preimage φ̂ ∈ (ι∗)−1

(
N g′ ι

∗(Dg
k
)

Dg′
k

)
(for instance by going to section 3.1 and following the arrows in reverse), we have that

N g = φ̂+ ψφ.

If one has already computed N g′ , this reduces the calculation of N g to the determination of
φ, whose weight and index are (in absolute value) smaller than those of N g, thus reducing
the number of coefficients that must be determined. In practice however, this reduction is
not substantial: the weight and index of ψ are small against those of N g already at k = 1;
as ψ is a fixed form while the weight and index of the numerator increase rapidly with base
degree k, the reduction becomes even more marginal as k increases.

9Note that the power of the Dedekind η function in (2.3) only depends on the base of the elliptic fibration.
10This is why [25, 47] could extract Gopakumar-Vafa invariants of the D4 geometry over base F4 from

the B4 geometry one node up the Higgsing tree, resolving an issue raised in footnote 14 of [32].

– 18 –



J
H
E
P
0
4
(
2
0
2
1
)
2
2
4

3.2.1 G2 to A2

As the long roots of A2 and G2 coincide in our conventions (see the discussion at the end
of subsection 2.3),

DG2
k,L = DA2

k,L .

For the short roots, we have for m ∈ Λcr(G2)⊗ C that by ∑3
i=1 xi = 0,(2

3ei −
1
3ej −

1
3ek,m

)
= 2

3xi −
1
3xj −

1
3xk = xi, i 6= j 6= k 6= i.

Thus,

DG2
k,S =

3∏
i=1
DA1
k,ei

.

As the map ι∗ : J(G2)→ J(A2) is one-to-one, equation (3.2) actually implies that we
can refine our ansatz by taking the A2 denominator in all of the theories with G2 gauge
symmetries, as all of them can be Higgsed to A2.

We have computed Z1 for all A2 and G2 nodes of rank 1 Higgsing trees (these occur
over Fn, n = 0, . . . , 3). At k = 1, only the long roots contribute to the denominator. Hence,

DA2
1 = DG2

1 . (3.5)

We have verified that as functions of orthogonal coordinates xi,

ZG2
1 = ZA2

1 .

3.2.2 B3 to G2

The map ι∗ associated to the Higgsing B3 → G2 is implemented by imposing the condition
x1 + x2 + x3 = 0 on the orthogonal coordinates of the Cartan algebra of B3. The six long
roots of G2, given by ±(ei − ej), coincide with 6 of the 12 long roots of B3, while the
contribution of the remaining long roots maps under ι∗ to that of the short roots of G2.
Thus,

DB3
k,L|∑xi=0 = DG2

k,L

∏
α=ei+ej

DA1
k,α = DG2

k,LD
G2
k,S

Furthermore, ι∗ maps the contribution of the short roots of B3 to the contribution of the
short roots of G2. Hence,

DB3
k,S |x1+x2+x3=0 = DG2

k,S .

We thus expect that ι∗(NB3
k ) factorizes to cancel the contribution DG2

k,S .
We have computed Z1 for all B3 nodes of rank 1 Higgsing trees (these occur over the

base Fn for n = 0, . . . , 3).11

At k = 1, DG2
k,S evaluates to∏

α=ei+ej
DA1

1,α = (−1)3∏
i

φ−2,1(xi) = −φG2
−6,2 , (3.6)

11The maximally Higgsed theories over the bases F0 and F2 are equivalent [12]. This however is no longer
the case once one moves up from the root of the trees [32].
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and we verify that ι∗(NB3
1 ) is indeed divisible by −φG2

−6,2, such that

ZB3
1

∣∣∣∑
xi=0

= 1
ηn(1)

NB3

DB3

∣∣∣∣∣∑
xi=0

= 1
ηn(1)

NG2

DG2
= ZG2

1 .

3.2.3 F4 and B4 to D4

The respective maps ι map the long roots of D4 to those of B4, F4 respectively. As
ι : hD4 → hB4 is the identity, we suppress it (as well as the corresponding ι∗) in this
subsection to lighten notation. ι in the following will thus refer to the map (D.27). With
this understanding,

ι∗DF4
k,L = DB4

k,L = DD4
k,L = DD4

k .

For the specializations ι∗(ZF4
k ) = ZD4

k and ZB4
k = ZD4

k (the latter as an identity of functions
of the orthogonal lattice coordinates) to be correct, we thus expect

ι∗(N F4
k ) = ι∗(DF4

k/c,S)ND4
k , NB4

k = DB4
k/c,SN

D4
k . (3.7)

We have computed Z1 for the B4 and F4 nodes of rank 1 Higgsing trees over the base Fn
for n = 0, . . . , 4 and checked the specialization equations by verifying

ι∗(ZF4
1 ) = ZB4

1 . (3.8)

As explained in section 2.5, we could not directly compute the elliptic genera for D4,
as we cannot compute the required Gromov-Witten invariants using toric methods. But
having demonstrated that specialization holds by verifying (3.8), we can use our results to
compute ZD4

1 and extract the associated Gromov-Witten invariants. A non-trivial check
on our results is that they specialize correctly (for Fn, n = 0, . . . , 3) to the appropriate B3
gauge theories, whose elliptic genera we compute independently.

In section 4.5, we test the factorization (3.7) at base degree 2 and genus 0.

3.2.4 A-series

The map ι∗ for the Higgsing An → An−1 is given by

ι∗ = ·|xn+1=0 . (3.9)

The roots of An are given by the roots of An−1 together with the set ±(ei − en+1), i =
1, . . . , n. Therefore,

DAnk
∣∣∣
xn+1=0

= DAn−1
k

n∏
i=1

DA1
k,ei

.

For the specialization ι∗(ZAnk ) = Z
An−1
k to be correct, we thus expect

ι∗(NAn
k ) = ι∗

(
n∏
i=1

DA1
k,ei

)
NAn−1
k . (3.10)
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At base degree 1, the prefactor of NAn−1
k in the above equation evaluates to

n∏
i=1

DA1
1,ei

∣∣∣∣∣
xn+1=0

=
n∏
i=1

(−φ−2,1(xi)) = (−1)n(φAn−1
−n,1 )2 .

We have checked the factorization (3.10) for the gaugings A3 → A2 over the bases F1
and F2.

3.2.5 . . . → Dn+1 → Bn → Dn → . . .

The map ι∗ for the Higgsing Dn → Bn−1 is given by

ι∗ = ·|xn=0 . (3.11)

The long roots of Dn are given by the long roots of Bn−1 together with the set ±(ei± en),
i = 1, . . . , n− 1, which gives rise to the second factor on the r.h.s. of the following equality,

DDnk
∣∣∣
xn=0

= DBn−1
k,L

n−1∏
i=1

(DA1
k,ei

)2

For the specialization ι∗(ZDnk ) = Z
Bn−1
k to be correct, we thus expect

ι∗(NDn
k ) = ι∗

(
n∏
i=1

DA1
k,ei

)2

NBn−1
k . (3.12)

At base degree 1, we have

DDn1

∣∣∣
xn=0

= DBn−1
1

(
n−1∏
i=1

φ−2,1(xi)
)2

= DBn−1
1 (φCn−1

−2(n−1),2)2.

For n = 4, we checked the factorization (3.12) and thus the specialization

ZD4
1

∣∣∣
x4=0

= ZB3
1 (3.13)

for the corresponding nodes of the rank 1 Higgsing trees over bases F0,F1, and F2, with
ZD4

1 computed as explained in subsection 3.2.3
The map ι associated to the Higgsing Bn → Dn is the identity, the induced map

ι∗ : J(Cn) ↪→ J(Dn) is injective. The long roots of both gauge algebras coincide, hence

DBnk,L = DDnk .

For the specialization ι∗(ZBnk ) = ZDnk to be correct, we thus expect

ι∗(NBn
k ) = ι∗(DBn

k/c,S)NDn
k . (3.14)

Furthermore, as ι∗ is injective, we expect

ZBnk = ZDnk (3.15)

as functions of orthogonal coordinates.
Since we cannot compute ZDnk directly (see the discussion in subsection 2.5), we cannot

check (3.14) and (3.15) directly. However, given the numerous checks that our specialization
formulae have passed, we feel confident in invoking (3.15) to identify the elliptic genera of
Dn gauge theories.
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3.2.6 C-series

The map ι∗ for the Higgsing Cn → Cn−1 is given by

ι∗ = ·|xn=0 . (3.16)

The denominators DCnk are mapped to zero under ι∗, as the root en leads to a factor φ(2xn)
which vanishes at xn = 0. However, one of the generators of J(Bn) also lies in the kernel
of ι∗, and must factor out of the numerators NCn

k to cancel these apparent poles.
The long roots of Cn are given by the long roots of Cn−1 together with the roots ±en.12

Then

DCnk,L = DA1
en,L
DCn−1
k,L = −φ−2,0(2xn)

∏
ab≤k,a,b>0

ab 6=0

φ−2,0[(a− b)gtop]DCn−1
k,L +O(x2

n) .

The short roots of Cn are given by the short roots of Cn−1 together with ±ei±en. Therefore,

DCnk,S
∣∣∣
xn=0

=
n−1∏
i=1

(DA1
k,ei

)2DCn−1
k,S .

At base degree 1, these relations reduce to

DCn1 = −φ−2,0(2xn)DCn−1
1

We did not study models with Cn gauge symmetry, as the Gromov-Witten invariants
are not accessible torically, see the discussion in subsection 2.5. They could presumably
be solved by imposing vanishing conditions on Gopakumar-Vafa invariants, but we did not
pursue this approach here.

3.2.7 E6, E7, E8

Rank 6 puts already the smallest of the Lie algebras E6, E7, E8 out of computational
reach. We do however want to briefly discuss the specialization of the denominator for
these theories. Similar to the C-series, the denominator for a theory with En+1 gauge
symmetry vanishes once we restrict to the Cartan algebra of En.

In somewhat more detail, the contribution of the roots ±(e7 + e8) of E8 to the denom-
inator cause it to vanish once we impose the E7 constraint x7 + x8 = 0:

DE8
1 ∝ α

2(x7 + x8) x7+x8=07−−−−−−→ α2(0) = 0 .

We expect the E8 numerator to be proportional to α2(0) once we restrict to x7 + x8 = 0.
Checking this claim however lies beyond the scope of this work: the ring J(E8) being the
only ring ofW (g) invariant Jacobi forms for g a simple Lie algebra which is not polynomially
generated [27, 69], the strategy employed in this paper does not extend straightforwardly
to this case.

12Note that (m, en) = 2xn as the inner product here is 2dx2, see the B-series column in table 6.
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For the E7 → E6 Higgsing, the story is very similar. The roots ±(e7 − e6) lead to a
divergence once we impose the E6 constraint x7 − x6 = 0:

DE8
1 ∝ α

2(x7 − x6) x7−x6=07−−−−−−→ α2(0) = 0.

Again, we expect this divergence to be cancelled by the numerator. Contrary to the E8 case,
theories with E6 and E7 gauge symmetry could be solved with our techniques, given more
computational power, or more patience, and this claim could thus be checked explicitly.

3.3 Specializing Gromov-Witten invariants

The specialization in equation (3.2) implies that the Gromov-Witten invariants of theories
related by Higgsing g→ g′ are closely related. Naively,

F g′ =
∑

κ∈H2(Xg′ )

g2g−2
top rg

′
g,κQ

κ = logZg′ = ι∗ logZg = ι∗F g =
∑

κ∈H2(Xg)
g2g−2

top rgg,κι
∗Qκ ,

(3.17)
such that

rg
′

g,κ′ =
∑

κ∈H2(Xg)
ι∗(Qκ)=Qκ′

rgg,κ . (3.18)

This reasoning must however be applied with care: the map ι was introduced in (3.1) to
relate Weyl invariant expressions. As such, composition with any Weyl transformation
yields an equally suitable map. However, Weyl transformations on the parameter m in-
troduced in section 2.3 map the set {Qi = exp(2πi(αi,m))} of exponentiated fibral Kähler
parameters to a new set {Q̃i} involving negative powers of the Qi (a consequence of the
fact that any Weyl transformation maps a Weyl chamber to a distinct Weyl chamber).
They hence do not commute with the Taylor expansion, indicated in (3.17), required to
extract Gromov-Witten invariants from Zg. When comparing Gromov-Witten invariants,
the appropriate representative in the Weyl orbit of the map ι needs to be chosen in order
to relate the Taylor expansions in terms of positive powers of the respective exponentiated
Kähler parameters. Note that ι∗ only acts on the exponentiated fibral Kähler parameters,
not on those of the base curve Qb nor of the general fiber q. The action on the affine
parameter Q0 follows from Q0 = q/

∏
Qaii .

How to determine the appropriate representative?

1. When a choice exists such that ι∗Qg′ is a monomial in only positive powers of Qg,
this uniquely determines the map ι which commutes with the Taylor expansion.

2. Else, if in terms of orthogonal coordinates on the coroot lattice, ι∗ identifies the
denominator of Zg, in the presentation (2.3), with that of Zg′ , the appropriate repre-
sentative is the one which allows the identification (up to a constant) of the prefactors
pgk and pg

′

k in the presentation

Dk = pk(Q)
(

1 +
∑
κ>0

aκQ
κ

)
(3.19)

of the denominator, as functions of orthogonal coordinates.
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For k = 1, the prefactor takes the simple form

p1(Q) = exp(−(2iπ)mρL) , (3.20)

where ρL is the sum of all positive long roots.

3. Finally, only in the case of specializations An → An−1, neither condition 1 nor condi-
tion 2 apply. It turns out that the composition of the Weyl transformation xn ↔ xn+1
with the map ι which sets xn+1 = 0 gives the correct transformation in this case.

3.3.1 G2 to A2

For the specialization from G2 to A2, no choice of ι exists which maps the fibral Kähler
parameters for the G2 geometry to monomials of the Kähler parameters for the A2 geom-
etry. However, the denominators of the associated Z1 coincide, see the discussion around
equation (3.5). We are hence in case 2. With

mG2
α1 = −x1 , mG2

α2 = x1 − x2 (3.21)

and
mA2
α1 = x1 − x2 , mA2

α2 = x1 + 2x2 , (3.22)

we obtain
mG2
ρL

= −2x1 − 2x4 , mA2
ρ = 4x1 + 2x2 . (3.23)

The map ι proposed in section 3.1.1 is the identity. To match the quantities mG2
ρL

and mA2
ρ ,

we thus perform the Weyl transformation x1 7→ −x2 , x2 7→ −x1. This yields the map

QG2
1 7→

(
QA2

2
QA2

1

)1/3

,

QG2
2 7→ QA2

1 , (3.24)

so that
QG2

0 = q

(QG2
1 )3(QG2

2 )2
7→ q

QA2
1 QA2

2
= QA2

0 . (3.25)

We conclude that the G2 Gromov-Witten invariant associated to the curve aBCB +
a0C0 +a1C1 +a2C2 coincides with the A2 Gromov-Witten invariant associated to the curve
aBCB + a0C0 + (a2 − a1

3 )C1 + a2
3 C2:

rG2
aB ,a0,a1,a2 = rA2

aB ,a0,a2−
a1
3 ,

a1
3
. (3.26)

3.3.2 B3 to G2

For the specialization B3 to G2, we are in case 1. Performing the Weyl transformation

x1 7→ x3 ,

x2 7→ −x2 ,

x3 7→ −x1 ,
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we obtain the map

QB3
1 7→ QG2

1

QB3
2 7→ QG2

2

QB3
3 7→ QG2

1 , (3.27)

and
QB3

0 = q

QB3
1 (QB3

2 )2(QB3
3 )2

7→ q

(QG2
1 )3(QG2

2 )2
= QG2

0 , (3.28)

which involves only positive powers of the exponentiated Kähler parameters of the G2
geometry. The relation among Gromov-Witten invariants which follows from this map is

rG2
aB ,a0,a1,a2 =

∑
a3

rB3
aB ,a0,a1−a3,a2,a3 . (3.29)

Table 5 in the appendix exemplifies this relation.

3.3.3 F4 and B4 to D4

Both specializations F4 → D4 and B4 → D4 fall under case 2. For D4 and B4,

mD4
ρ = 6x1 + 4x2 + 2x3 = mB4

ρL
,

while for F4, the choice for ι corresponding to (D.27) yields

mF4
ρL

ι7−→ 6x1 + 4x2 + 2x3 . (3.30)

It follows that no additional Weyl transformations are needed. We obtain the maps

QB4
1 7→ QD4

1 , QB4
2 7→ QD4

2 , QB4
3 7→ QD4

3 , QB4
4 7→

√√√√QD4
4

QD4
3

, (3.31)

and

QF4
1 7→ QD4

2 , QF4
2 7→ QD4

1 , QF4
3 7→

√√√√QD4
3

QD4
1

, QF4
4 7→

√√√√QD4
4

QD4
3

, (3.32)

such that
q

QB4
1 (QB4

2 )2(QB4
3 )2(QB4

4 )2
= q

QD4
1 (QD4

2 )2QD4
3 QD4

4
= q

(QF4
1 )2(QF4

2 )3(QF4
3 )4(QF4

4 )2

QB4
0 = QD4

0 = QF4
0

(3.33)

This implies the following relation between Gromov-Witten invariants:

rB4
aB ,a0,a1,a2,a3,a4 = rD4

aB ,a0,a1,a2,a3−
a4
2 ,

a4
2

= rF4
aB ,a0,a2,a1+a3,2a3,a4 . (3.34)

Table 3 in the appendix exemplifies these relations.
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3.3.4 A-series

For the A3 → A2 specialization, we find that composing ι with the Weyl transformation
x3 ↔ x4 yields the correct map between Kähler parameters:

QA3
1 7→ QA2

1 ,

QA3
2 7→

(QA2
2 )1/3

(QA2
1 )1/3

,

QA3
3 7→ (QA2

1 )1/3(QA2
2 )2/3 , (3.35)

so that,
QA3

0 = QA2
0 . (3.36)

This gives the relation among the invariants

rA2
aB ,a0,a1,a2 =

∑
a3

rA3
aB ,a0,a1+a2−a3,3a2−2a3,a3 . (3.37)

We conjecture that this generalizes to the general case An+1 → An, yielding the map

QAni 7→ Q
An−1
i , i = 1, . . . , n− 2 ,

QAnn−1 7→
(QAn−1

n−1 )1/n∏n−2
i=1 (QAn−1

i )i/n
,

QAnn 7→
n−1∏
i=1

(QAn−1
i )i/n , (3.38)

so that
QAn0 = Q

An−1
0 . (3.39)

The relation among the invariants is then

rAn−1
aB ,a0,a1,...,an−1 =

∑
an

rAnaB ,a0,a1+an−1−an,...,ai+i(an−1−an),...,an−2+(n−2)(an−1−an),nan+1−(n−1)an,an .

3.3.5 . . . → Dn+1 → Bn → Dn → . . .

For the Bn → Dn specialization, we are in case 2. As mDn
ρL

and mBn
ρL

coincide, no extra
Weyl transformation is required. The map between Kähler parameters is

QBni 7→ QDni , i = 1, . . . , n− 1 ,

QBnn 7→
(QDnn )1/2

(QDnn−1)1/2
, (3.40)

so that
QBn0 = QDn0 , (3.41)

implying the relation

rBnaB ,a0,a1,...,an = rDn
aB ,a0,a1,...,an−2,an−1−an2 ,an2

(3.42)

among the Gromov-Witten invariants.
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Regarding the Dn → Bn−1 Higgsing, the naive transformation reveals this to be a case
1 specialization, with map between Kähler parameters

QDni 7→ Q
Bn−1
i , i = 1, . . . , n− 1 ,

QDnn 7→ Q
Bn−1
n−1 . (3.43)

The relation among the Gromov-Witten invariants that follows is

rBn−1
aB ,a0,a1,...,an−1 =

∑
an

rDnaB ,a0,a1,...,an−2,an−1−an,an =
∑
an

rBnaB ,a0,a1,...,an−2,an−1,an . (3.44)

We check this relation for the specialization B4 → B3 in table 4.

4 Enhanced symmetries

The methods developed up to this point in this paper allow us to express the elliptic genus
for any of the rank 1 models in terms of Weyl invariant Jacobi forms. However, depending
on the matter representations present, some theories exhibit a higher symmetry than that
implied merely by the gauge symmetry. Invoking this higher symmetry, the elliptic genus
can be expanded in terms of a set of more restrictive Jacobi forms, in some cases drastically
reducing the number of expansion coefficients which need to be determined.

Symmetry enhancement due to the absence of certain matter representations is rem-
iniscent of center symmetry in gauge theory: a given Lie algebra g is compatible with a
maximal center symmetry (the center of the simply connected Lie group among all Lie
groups associated to g), but part or all of this symmetry is ruled out by certain matter
representations. We will show that the symmetry enhancement we are seeing can indeed
in some cases be interpreted in terms of center symmetry, though we also have examples
in which the symmetry is enhanced beyond what full center symmetry would suggest.

What is remarkable is that the symmetry enhancement that we see at the level of the
massless matter spectrum, or equivalently, at the level of fibral curves, turns out to persist
at the level of the entire elliptic genus. We present abundant evidence for this enhancement
at base wrapping degree 1, and further evidence at base wrapping degree 2 in section 4.5. To
solve for the elliptic genus completely at higher base wrapping degree requires an alternative
to genus 0 Gromov-Witten invariants as a source of boundary conditions. The elliptic genus
for the A2 theory over base F3 was computed in [25] up to base degree 3 by invoking exact
vanishing conditions on Gopakumar-Vafa invariants. Those results further corroborate
the claim that symmetry enhancement persists beyond the massless spectrum. It would be
important to establish this fact independently from explicit computations, both by arguing
within the framework of gauge theory and, independently, geometrically.

In terms of explicit computation, imposing the additional constraints dictated by en-
hanced symmetries puts otherwise burdensome models within computational reach. The
extent of these simplifications is tabulated in table 2.

The symmetry enhancement in our computations rests on two pillars: the enhancement
of the Weyl group, and the enhancement of the shift symmetry. We will discuss these two
mechanisms in turn.
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4.1 Enhancement of the shift symmetry by elements of the coweight lattice
and center symmetry

Let ω lie in the subspace of H2(X,Z) spanned by the classes of exceptional fibral curves of
X. The elliptic genus depends on the exponential of parameters

(ω,m) (4.1)

whenever the class ω is represented by a holomorphic curve. If a generating set of the entire
weight lattice Λw is represented by such curves, the theory will possess the minimal amount
of shift symmetry of m compatible with the gauge symmetry, namely shift symmetry by
the dual lattice to Λw, the coroot lattice Λcr. Conversely, the presence of enhanced gauge
symmetry with Lie algebra g implies that at least the classes α corresponding to roots of
g (in particular the simple roots αi) are represented by holomorphic curves. If only these
classes are represented, the shift symmetry of m will be enhanced from Λcr to the dual of
the root lattice Λr, the coweight lattice Λcw of g. The cases in between are when only some
weights in Λw/Λr are represented by holomorphic curves. Let λ represent such a class.
The shift symmetry of m compatible with the presence of λ will then be given by elements
of the sublattice of Λcw for which

Λshift(λ) = {ω∨ ∈ Λcw | (λ, ω∨) ∈ Z} . (4.2)

Now let us connect this discussion to center symmetry. Recall that the center of a Lie
group equals the intersection of all possible choices of maximal tori, hence lies in the image
of any choice h of Cartan subalgebra of the Lie algebra under the exponential map. Recall
also that for given Lie algebra g, the exponential map depends on the particular Lie group
G associated to g. For any G,

Z = exp(Λcw) , Λcr ⊂ ker(exp) , (4.3)

the identification h ∼= Λcr⊗C being understood. The kernel of the exponential map however
depends on the choice of G. For G simply connected, ker(exp) = Λcr, hence

Z ∼= Λcw/Λcr . (4.4)

The question of the amount of center symmetry preserved by a representation λ of the group
(we are using bold faced symbols to distinguish between representations of the group and
of the algebra) hence amounts to deciding when an element of the center is represented
trivially. The following lemma answers this question:

λ(exp(ω∨)) = 1 ⇔ (λ, ω∨) ∈ Z . (4.5)

We conclude that the lattice of shift symmetries of the elliptic genus due to the absence of
certain matter representations is equal to exp−1(Z), with the Z the largest center compat-
ible with the matter representations present.
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4.2 Enhancement of the Weyl group by Dynkin diagram symmetries

At the level of the gauge theory, the Weyl symmetry acting on the Coulomb moduli of the
theory is a remnant of the full gauge symmetry not fixed by the choice of which maximal
torus the gauge symmetry is broken to. In contrast, symmetries of the Dynkin diagram of
the gauge algebra, if respected by the matter representations present in the theory, give
rise to an additional automorphism of the theory.

4.3 Further symmetry enhancements

We also encounter examples where the shift symmetry is enhanced even beyond the maxi-
mal amount of center symmetry compatible with the Lie algebra g, i.e. beyond Λcw(g), and
the Weyl symmetry beyond the extension by the Dynkin diagram symmetry. All examples
of such symmetry enhancements that we encounter arise when the specialization maps ex-
hibited in the previous section are invertible (e.g. in the case G2 → A2). In these cases,
the theory with larger gauge group can “reverse inherit” the enhanced symmetry of the
Higgsed theory. In such cases, the enhancement can be explained intrinsically (i.e. without
reference to the Higgsed theory) by noting that certain weights associated to the matter
representations present in the theory coincide with roots of g, and their contribution to
the elliptic genus cancels. The cancellation is best described geometrically [32]: a root
contributes the value -2 to the Gromov-Witten invariant of the associated curve class, and
each half-hypermultiplet associated to a weight contributes +1. It is not at all evident
that the enhanced symmetries of the lattice obtained due to this cancellation should be
inherited by the full elliptic genus. In all of the examples we study, this however turns out
to be the case. It would be interesting to study whether this symmetry enhancement has
repercussions in the gauge theory beyond its effect on the elliptic genus.

4.4 Examples

4.4.1 A2 and G2 over F3

The model with A2 gauge symmetry over F3 has no matter. Hence, the shift symmetry
is enhanced from Λcr(a2) to Λcw(a2), and the Weyl group symmetry is enhanced by the
Dynkin diagram symmetry Z2, yielding the Weyl group of G2, see (3.3). Our task is thus
to construct Jacobi forms invariant under the action of W (G2) and shifts by Λcw(a2).

Conveniently, the A2 coweight lattice is isomorphic to the coroot lattice of G2, upon
multiplying the inner product of the former by a factor of 3.13 With regard to the realiza-
tions of these two lattices in the conventions of Bourbaki [65], an explicit isomorphism is
given by

ψ :
{

1
3(2eA2

1 − e
A2
2 − e

A2
3 ) 7→ eG2

1 − e
G2
2

1
3(−eA2

1 + 2eA2
2 − e

A2
3 ) 7→ eG2

2 − e
G2
3~�

ψ : x1e
A2
1 + x2e

A2
2 + x3e

A2
3 7→ (x2 − x3)eG2

1 + (x1 − x2)eG2
2 + (x3 − x1)eG2

3 .

13We thank Haowu Wang for pointing this out to us, as well as further very useful comments both
regarding the A2 theory over base F3 and the D4 theory over base F4 discussed further below.
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Note that this isomorphism pulls back the metric on Λcr(g2) to 3 times the metric on
Λcw(a2), as announced:

ψ∗
(
ds2
G2 =

∑
i

(dxi)2
)

= 3
∑
i

(dxi)2 .

The map ψ thus induces via composition a map from J(G2) (whose elements for the
purposes of the composition are considered as functions on Λcr(g2)) to J(A2) which triples
the index. The image of this map is a subring of J(A2) generated by

φA2
0,3 = φG2

0,1 ◦ ψ ,

φA2
−2,3 = φG2

−2,1 ◦ ψ ,

φA2
−6,6 = φG2

−6,2 ◦ ψ . (4.6)

By the underlying assumption of this section that symmetries of the massless spectrum are
inherited by the elliptic genus, the numerator N in the ansatz (2.3) of the elliptic genus
of the massless A2 theory should be an element of this subring. The subring of Dynkin
diagram and Λcw(a2) shift symmetric forms was already identified in [25] as the appropriate
ring in which N should lie, and it was conjectured that this ring should be generated by
the set of generators (4.6). We have now integrated the former observation into the larger
context of enhanced symmetries of elliptic genera of rank 1 models, and provided a proof
of the latter statement.

In [25], it was furthermore noticed that the function ψ has a very simple expansion in
terms of the coefficients mi = (m,αi), m = m1ω

∨
1 +m2ω

∨
2 :

m = m1ω
∨
1 +m2ω

∨
2 = 2m1 +m2

3 eA2
1 + −m1 +m2

3 eA2
2 + −m1 − 2m2

3 eA2
2

ψ7−→ m1e
G2
1 +m2e

G2
2 + (−m1 −m2)eG2

3 .

Now let us climb up one node in the Higgsing tree, and consider the theory with gauge
group G2 arising over the base F3. As we discussed in detail in section 3, the elliptic
genus specializes when moving from the branches towards the roots of the Higgsing tree.
The specialization from a G2 node to an A2 node is particularly simple, see figure 1; in
particular, it is invertible: the numerator N of the elliptic genus of an A2 theory obtained
via Higgsing from a G2 theory necessarily involves only even powers of the generator φA2

−3,1.
Replacing the square of this generator by φG2

−6,2 and retaining the two other generators
which coincide between the two gauge groups yields the numerator of the G2 theory. This
however poses a conundrum: the symmetry enhancement of the matterless A2 theory just
described must be reverse inherited by the G2 theory with matter in the 7 representation.
How does the enhancement of the shift symmetry to Λcw(a2) arise in this theory? The
answer to this puzzle was already explained in general terms above: the weights of the
7 representation coincide with the short roots of G2. The curves giving rise to the 2
half hypermultiplets in the 7 hence contribute to the same Gromov-Witten invariants as
those giving rise to the gauge fields associated to these roots, and in fact cancel the latter
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contribution. The remaining contributions are those due to the long roots. The lattice
spanned by these is precisely the A2 root lattice, with dual lattice Λcw(a2).

Note that as the two fundamental representations of A2 are complex conjugates, the
spectrum of any A2 gauge theory with 8 supercharges will always be Dynkin diagram
symmetric, hence cannot present an obstruction to the theory descending via Higgsing
from a G2 theory.

4.4.2 The B4 and F4 to D4 branch

All rank 1 Higgsing trees branch above a D4 node, to a branch with adjacent node B4,
and another with adjacent node F4. The matter content of the D4 theory over the base
Fk is V ⊕(k−4)⊕S⊕(k−4)

+ ⊕S⊕(k−4)
− . In particular, it is invariant under the Dynkin diagram

symmetry of D4, consistent with the fact that the theory is obtained upon Higgsing an F4
theory, given that the Weyl group of D4 enhanced by the Dynkin diagram symmetry yields
the Weyl group of F4.

By the hypothesis underlying this section, the numerator N of the elliptic genus of
the D4 theory should therefore lie in the subring of J(D4) whose elements exhibit Dynkin
diagram symmetry. As the root lattices of D4 and F4 are isomorphic, this subring is
isomorphic to J(F4), as explained further in appendix D.5, hence spanned by {φF4

−n,k ◦ i−1},
the generators of J(F4) composed with the isomorphism i−1 : Λr(D4)→ Λr(F4).

The specialization of the elliptic genus for Bn theories to that of Dn theories is equally
simple as that from G2 to A2 theories: all but one generator of the two rings J(Cn) and
J(Dn) coincide.14 The remaining generator of the former, φCn−2n,2, is the square of that
of the latter, ωDn−n,1. This implies in particular that the expansion of the numerator N of
the elliptic genus of the D4 theory in J(D4) generators should exhibit only even powers
of ωD4

−4,1. However, as only even powers of ωD4
−4,1 occur in the subring of J(D4) compatible

with the F4 Higgsing, this provides no further restriction on N .
Inverting the specialization map from B4 to D4, we can conclude that B4 must exhibit

the same symmetry enhancement as the D4 theory, i.e. from W (B4) to W (F4). To explain
this enhancement intrinsically (i.e. without reference to the D4 theory), we can invoke a
more intricate realization of the mechanism at play in the transition from G2 to A2: the B4
theories have matter content V ⊕(4−k)+1⊕S⊕(4−k) over Fk. Two half hypermultiplets in the
vector representation cancel the contribution of the short roots of B4 to the Gromov-Witten
invariants of the theory. The long roots of B4 coincide with the roots of D4, hence are
invariant under W (F4). Furthermore, having cancelled one vector representation against
the short roots, the remaining matter content, (V ⊕S)⊕(4−k), is also invariant underW (F4),
thus explaining the occurrence of this symmetry for these B4 theories.

4.4.3 D4, B4 and F4 over F4

The symmetry enhancement of the D4 theory over F4 was already noted in [25]. The
absence of matter means, once again, that the numerator N of the elliptic genus is invariant
under translations by the coweight lattice Λcw(D4), and that the expansion is Dynkin-
diagram symmetric.

14Recall that J(Cn) is the appropriate ring to expand the elliptic genus of Bn theories in.
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The D4 coweight lattice is isomorphic to the coroot lattice of F4 upon multiplying
the inner product of the former by a factor of 2. The D4 Weyl group is enhanced by the
Dynkin diagram symmetry of D4 to the F4 Weyl group. We conclude that the ring J(F4)
can be mapped to the subring of J(D4) with precisely the enhancement of shift and Weyl
symmetry that we require. Note that unlike the situation in section 4.4.2, we do not need
to invoke the map ι∗, as the two lattices Λcw(D4) and Λcr(F4) coincide as embedded in
the Euclidean space R4. In particular, this implies that due to the factor of 2 relating the
inner products, elements of J(F4) interpreted as elements of J(D4) with enhanced shift
symmetry have twice the index. Specifically, the subring of J(D4) in question is spanned
by the generators

φD4
0,2 = φF4

0,1 , (4.7)
φD4
−2,2 = φF4

−2,1 ,

φD4
−6,4 = φF4

−6,2 ,

φD4
−8,4 = φF4

−8,2 ,

φD4
−12,6 = φF4

−12,3 .

We can move up the Higgsing tree to the F4 node as in the previous subsection via
the map (ι∗)−1. As only the generators (4.7) arise, the F4 theory will inverse inherit the
enhanced symmetry of the D4 theory. In particular, the numerator of the corresponding
elliptic genus will permit an expansion in terms of the generators

φF4
0,2 = (ι∗)−1φD4

0,2 ,

φF4
−2,2 = (ι∗)−1φD4

−2,2 ,

φF4
−6,4 = (ι∗)−1φD4

−6,4 ,

φF4
−8,4 = (ι∗)−1φD4

−8,4 ,

φF4
−12,6 = (ι∗)−1φD4

−12,6 .

To argue for this enhancement intrinsically, note that the contribution of the 2 half hy-
permultiplets in the 26 representation of F4 cancel the contribution of the gauge fields
associated to the short roots of F4 to the Gromov-Witten invariants. Hence, following the
logic of this section, we expect the numerator N of the elliptic genus of this F4 theory to
have an expansion in the subring of J(F4) whose elements have a shift symmetry under the
dual lattice to the sublattice of Λr(F4) spanned by the long roots. This dual lattice is iso-
morphic to Λcw(D4), as we can verify explicitly by considering the image of the sublattice
of long roots of F4 under the map i. Recall that we are identifying the embedding of the
lattice Λr(F4) in Z4 as given in table 7 (which reflects the conventions of Bourbaki [65])
with the isomorphic lattice Λcr(F4). We can obtain the dual lattice Λr(F4) via the map
α = 2

(α∨,α∨)α
∨, which in particular maps short coroots to long roots. The image of the

long roots under the map i is thus equal to the image of the short coroots, which we readily
identify with Λr(D4) = Λcr(D4). The dual lattice is hence Λcw(D4), as we wished to argue.
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Choosing the other branch of the Higgsing tree, the next node up from the minimal D4
theory is a theory with B4 gauge symmetry and 2 half hypermultiplets in the vector repre-
sentation. In addition to the symmetry enhancement discussed in section 4.4.2, this theory
must also reverse inherit the enhanced shift symmetry under Λcw(D4) which is particular
to the massless D4 theory. This enhancement follows the general pattern exhibited in this
section: the contribution of the two half hypermultiplets to the Gromov-Witten invariants
of the geometry cancels that of the gauge fields associated to the short roots of B4. The
remaining lattice of long roots of B4 is the D4 root lattice, with dual the D4 co-weight
lattice.

4.4.4 Dn and Bn over F4

As already pointed out in [70], the only rank 1 models with matter present which does not
break all of the center symmetry are the Dn and Bn models over F4. These exhibit matter
in the vector representation.

We first consider the theories with Dn gauge symmetry. The Z2 Dynkin diagram
symmetry (for n > 2) exchanges the two spinor representations. As the only matter
present in the Dn series over F4 is in the vector representation, this is a symmetry of these
theories, enhancing the Weyl group symmetry to that of Bn:

W (Dn) nDynkinSym(Dn) = W (Bn) . (4.8)

Furthermore, the shift symmetry consists of all elements of the coweight lattice of Dn which
have integral pairing with the fundamental weight ω1 associated to the vector representa-
tion: in our conventions, this yields the lattice Zn, which is the root lattice of Bn. The
subring of J(Dn) which exhibits the enhanced symmetry of the Dn theory over F4, is thus
the ring J(Bn). Note however that the inner product on the enhancement of the lattice
Λcr(D4) is the conventionally normalized Euclidean inner product dx2. With regard to
this norm, the indices of the generators of J(Bn) (defined with regard to the inner product
2dx2) are doubled.

Following the general strategy of this section, we expect the numerator of the elliptic
genus for the Dn theory over F4 to lie in this subring.

We have computed the elliptic genus explicitly at base wrapping 1 for the model D5.
The ansatz in terms of the ring J(B5) with indices doubled indeed allows us to match all
Gromov-Witten invariants as obtained via mirror symmetry.

For theories with Bn gauge symmetry, the shift symmetry is enhanced from Λcr(Bn)
(identified with Λr(Cn), as explained above) to the sublattice of Λcw(Bn) whose elements
have integer pairing with ω1, the fundamental weight associated to the vector representation
of Bn. As ω1 is also a root of Bn, this sublattice is indeed all of Λcw(Bn), i.e. Zn with
inner product dx2. We are hence seeking a subring of J(Cn) with this shift symmetry. The
ring J(Bn) provides this subring, as W (Bn) = W (Cn), and Λr(Bn) = Zn. The indices of
the canonical generators are defined however with regard to the inner product 2dx2. As a
subring of J(Cn), they need to be doubled.

In table 2 we summarize the reduction in the number of coefficients.
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Base Gauge algebra Naive number of coefficients Improved number of coefficients

F1

D4 902
B4 495 197
F4 197

F2

A2/G2 4 1
D4 295
B4 161 64
F4 64

F3

D4 310
B4 171 69
F4 69

F4

D4 287
F4 69 2
B4 163

D5/B5 1088 280
B6 7086

1950
D6 13248

Table 2. By looking carefully at the symmetries of the low energy theory and assuming they hold
for the full theory, we could reduce the number of coefficients for some models. The naive number is
the number of coefficients one would have to fix using an arbitrary ansatz in J(g̃) and the improved
number of coefficients is the number of coefficients one would have to fix if one refines the ansatz
to the subring of J(g̃) invariant under the previously mentioned symmetries.

4.5 A result at base wrapping 2

Several new features arise when we consider Zk at base wrapping k > 1. Most importantly,
the index of the numerator in the topological string coupling (2.32) is no longer 0, so
the numerator depends on gtop. This dependence is through the Jacobi forms φ0,1 and
φ−2,1. Expanding these in x =

(
2 sin

(gtop
2
))2 ∼ g2

top yields φ0,1(gtop) = 2 + o(x) and
φ−2,0 = x+ o(x2).

The universal part of the denominator (2.5) at base degree k scales as xk. Therefore, a
term of order xm in the numerator will contribute only to the Gopakumar-Vafa invariants
of curves of genus gm or higher, with

gm − 1 = m− k.

Consequently, expanding the numerator as

Nitop,iG,w =
itop∑
m=1
N (m)
iG,w+2mφ0,1(gtop)itop−mφ−2,1(gtop)m, (4.9)
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where N (m) is an element of J(g) and we have indicated weights and indices by subscripts,
the N (m) will contribute at genus gm and higher. For m < k − 1, N (m) is completely
fixed by requiring a cancellation of the contribution of order x1+m−k in the free energy
F = ∑

g Fgg
2g−2
top = logZtop. N (k−1) can be fixed by imposing genus 0 Gromov-Witten

invariants.
As the dimension of the space of Jacobi forms of which N is an element increases

rapidly with k, results beyond k > 1 are computationally expensive. We will here only
discuss one example, the F4 gauge theory over the base F4. For this model, invoking the
enhanced shift symmetry discussed in subsection 4.4.3 allows us to compute N (1) at k = 2.

From the expansions

F =
∑
g

g2g−2
top Fg = logZtop = logZ0 +QbẐ1 +Q2

b

(
Ẑ2 −

1
2 Ẑ

2
1

)
+ . . . ,

F0 = F
(0)
0 + F

(1)
0 Qb + F

(2)
0 Q2

b + o(Q3
b),

where we have denoted Ẑk = ck(Q)Zk, we conclude that

F
(2)
0
g2
s

= F
(2)
0
x

+ o(x0) = Ẑ2 −
1
2 Ẑ

2
1 . (4.10)

The universal contribution of the denominator for Z1, Z2 scale as x, x2 respectively. The
corresponding contributions must vanish in the linear combination appearing on the r.h.s.
of equation (4.10). This fixes N (0).

To fix N (1), we need to impose Gromov-Witten invariants obtained by mirror sym-
metry. The naive ansatz requires fixing 13189 coefficients. As explained in subsection 3.2,
we can impose the D4 denominator in the ansatz (2.3), i.e. we expect only divergences
corresponding to the long roots of F4. This reduces the number of coefficients to be fixed
to 8620. Imposing the enhanced shift symmetry of this theory finally reduces the number
of coefficients to be fixed to determine N (1) to 21.

We find that the ansatz with 21 coefficients is sufficient to match a large number
of genus Gromov-Witten invariants at base degree k = 1. We consider this strong evi-
dence that our considerations in this and the previous section are also valid at higher base
wrapping.
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A The numerator of the F4, B4, and D4 theory over F4

To give a flavor for the form of our results, we give one explicit example in this appendix.
Further explicit results are available upon request.
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The numerator N1 for the B4 and D4 theories over the base F4 is given by

N = 1
4φ

F4
−12,3φ

F4
−2,1 −

1
2φ

F4
−8,2φ

F4
−6,2 .

The numerator for the F4 theory can be obtained from this result by application of the
map (ι∗)−1.

To exemplify the power of imposing enhanced symmetries, we also give the result in
term of standard D4 forms:
E4φ

D4
−6,2φ

D4
−4,1φ

D4
0,1
(
φ
D4
−2,1

)
4

1492992 −E6φ
D4
−6,2φ

D4
−4,1

(
φ
D4
−2,1

)
5

6718464 − φ
D4
−6,2φ

D4
−4,1

(
φ
D4
0,1
)

3
(
φ
D4
−2,1

)
2

497664 + φ
D4
−6,2

(
φ
D4
−4,1

)
2
(
φ
D4
0,1
)

4

82944

−5E2
4φ
D4
−6,2

(
φ
D4
−4,1

)
2
(
φ
D4
−2,1

)
4

8957952 −E4φ
D4
−6,2

(
φ
D4
−4,1

)
2
(
φ
D4
0,1
)

2
(
φ
D4
−2,1

)
2

995328 − 7E4φ
D4
−6,2

(
φ
D4
−4,1

)
3
(
φ
D4
0,1
)

3

248832 + 7E6φ
D4
−6,2

(
φ
D4
−4,1

)
2φ
D4
0,1
(
φ
D4
−2,1

)
3

4478976

+23E2
4φ
D4
−6,2

(
φ
D4
0,1
)

2
(
φ
D4
−4,1

)
4

995328 +E2
4φ
D4
−6,2

(
φ
D4
−2,1

)
2φ
D4
0,1
(
φ
D4
−4,1

)
3

186624 −E4E6φ
D4
−6,2

(
φ
D4
−2,1

)
3
(
φ
D4
−4,1

)
3

839808 −E6φ
D4
−6,2φ

D4
−2,1

(
φ
D4
0,1
)

2
(
φ
D4
−4,1

)
3

248832

−35E3
4φ
D4
−6,2φ

D4
0,1
(
φ
D4
−4,1

)
5

4478976 − 35E3
4φ
D4
−6,2

(
φ
D4
−2,1

)
2
(
φ
D4
−4,1

)
4

13436928 +E4E6φ
D4
−6,2φ

D4
−2,1φ

D4
0,1
(
φ
D4
−4,1

)
4

165888 −E2
6φ
D4
−6,2

(
φ
D4
−2,1

)
2
(
φ
D4
−4,1

)
4

26873856

−5E2
4E6φ

D4
−6,2φ

D4
−2,1

(
φ
D4
−4,1

)
5

2239488 + 25E4
4φ
D4
−6,2

(
φ
D4
−4,1

)
6

26873856 − 5E4E2
6φ
D4
−6,2

(
φ
D4
−4,1

)
6

26873856 +E2
6φ
D4
−6,2φ

D4
0,1
(
φ
D4
−4,1

)
5

4478976

−E4
(
φ
D4
−6,2

)
2φ
D4
0,1
(
φ
D4
−2,1

)
3

165888 +E6
(
φ
D4
−6,2

)
2
(
φ
D4
−2,1

)
4

746496 −E6
(
φ
D4
−6,2

)
2φ
D4
−4,1φ

D4
0,1
(
φ
D4
−2,1

)
2

41472 +
(
φ
D4
−6,2

)
2
(
φ
D4
0,1
)

3φ
D4
−2,1

55296

+E2
4
(
φ
D4
−6,2

)
2φ
D4
−4,1

(
φ
D4
−2,1

)
3

124416 − 5E2
4
(
φ
D4
−6,2

)
2
(
φ
D4
−4,1

)
2φ
D4
0,1φ

D4
−2,1

82944 + 11E4E6
(
φ
D4
−6,2

)
2
(
φ
D4
−4,1

)
2
(
φ
D4
−2,1

)
2

497664 +E6
(
φ
D4
−6,2

)
2
(
φ
D4
−4,1

)
2
(
φ
D4
0,1
)

2

18432

+E2
4E6
(
φ
D4
−6,2

)
2
(
φ
D4
−4,1

)
4

41472 + 7E3
4
(
φ
D4
−6,2

)
2φ
D4
−2,1

(
φ
D4
−4,1

)
3

186624 −E4E6
(
φ
D4
−6,2

)
2φ
D4
0,1
(
φ
D4
−4,1

)
3

13824 −E2
6
(
φ
D4
−6,2

)
2φ
D4
−2,1

(
φ
D4
−4,1

)
3

373248

−E2
4
(
φ
D4
−2,1

)
2
(
φ
D4
−6,2

)
3

41472 +E2
4φ
D4
−4,1φ

D4
0,1
(
φ
D4
−6,2

)
3

3456 −E4
(
φ
D4
0,1
)

2
(
φ
D4
−6,2

)
3

4608 +E6φ
D4
−2,1φ

D4
0,1
(
φ
D4
−6,2

)
3

6912

−
(
φ
D4
−2,1

)
3
(
φ
D4
0,1
)

3
(
ω
D4
−4,1

)
2

5971968 −E3
4
(
φ
D4
−4,1

)
2
(
φ
D4
−6,2

)
3

6912 −E4E6φ
D4
−4,1φ

D4
−2,1

(
φ
D4
−6,2

)
3

10368 +E2
6
(
φ
D4
−4,1

)
2
(
φ
D4
−6,2

)
3

20736

+E4φ
D4
0,1
(
φ
D4
−2,1

)
5
(
ω
D4
−4,1

)
2

17915904 +E4φ
D4
−4,1

(
φ
D4
0,1
)

2
(
φ
D4
−2,1

)
3
(
ω
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B Tables of Gromov-Witten invariants and their specializations

In tables 3, 4, 5 we provide some data to check the relations in section 3.3.

C Root systems

Root systems, and consequently finite simple Lie algebras, enjoy a classification into four
infinite families, the A, B, C, and D series, and five exceptional cases G2, F4, E6, E7,
E8. In this section, we will summarize the properties of these root systems, following the
conventions of [65]. Note in particular that in these conventions, short roots are normalized
to have norm squared 2; roots of simply laced Lie algebras are considered as short.

It is natural to embed the root systems in a Euclidean space Rn. We will we denote
the standard basis of this space by ei, i = 1, . . . n and the coordinates in this basis by xi.
We refer to this coordinate system as the orthogonal basis. In most cases, n equals the
rank of the gauge group, i.e. the dimension of the root system. When it does not, the root
system lies in a subspace of Rn and the last n−r coordinates of this space can be expressed
in terms of the first r of them.

In tables 6, 7, and 8 we summarize the properties of all root systems.
As we explain in section 2.3, the elliptic genus of a gauge theory with gauge algebra

g is a meromorphic Jacobi forms whose elliptic parameters (aside from gtop) take values
in the complexified coroot lattice Λcr(g) ⊗ C. The Weyl invariant Jacobi forms defined
in the literature [28, 68, 71] have elliptic parameters taking values in Λr(g) ⊗ C (in the
conventions of [65]). Rather than redefine these forms, we use conventions in this paper in
which the root systems as defined by [65] are interpreted as the coroots of the dual algebra
g̃. In these conventions, short coroots have norm squared 2. The roots that enter in the
definition of the denominator of the elliptic genus (2.3) are obtained from these coroots,
hence are normalized such that all long roots have norm squared 2; with regard to these
normalization conventions, roots of simply laced algebras are considered long. The roots
of the Lie algebra G2 in our conventions are worked out as an example in section 2.3.

D The rings of Jacobi forms

To simplify notation, we set
e(z) = exp(2πiz).

We use the following conventions for the Jacobi θ functions,

Θ
[
a

b

]
(τ, z) =

∑
n∈Z

e2πibnq
1
2 (n+a)2

Zn+a, where q = e(τ), Z = e(z) , (D.1)

θ1 = iΘ
[

1/2
1/2

]
, θ2 = Θ

[
1/2
0

]
, θ3 = Θ

[
0
0

]
, θ4 = Θ

[
0

1/2

]
, (D.2)

for the Dedekind η function,

η(τ) = q1/24∏
n

(1− qn), where q = e(τ), (D.3)
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(a0, a
B4
3 , aB4

4 ) B4 and D4 invariants F4 invariants

(0,0,0)

a1

a2 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 0 1

2 1 3
2 2 5

2 3 7
2 4 9

2 5

0 −2 0 −2 0 −4 0 −6 0 −8 0 −10 −2 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −2 0 −6 0 −10 0 −14 0 −18 −2 0 −2 0 0 0 0 0 0 0 0
3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 −6 0 −12 0 −18 0 −24 −4 0 −6 0 −6 0 −4 0 −6 0 −8
5
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 −4 0 −12 0 −20 0 −28 −6 0 −10 0 −12 0 −12 0 −10 0 −14
7
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 −6 0 −10 0 −20 0 −30 −8 0 −14 0 −18 0 −20 0 −20 0 −18
9
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 −8 0 −14 0 −18 0 −30 −10 0 −18 0 −24 0 −28 0 −30 0 −30

(1, 1
2 , 0)

a1

a2 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 0 1

2 1 3
2 2 5

2 3 7
2 4 9

2 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 12 0 16 0 32 0 48 0 64 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0
3
2 0 0 0 0 16 0 48 0 80 0 112 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 16 0 0 0 0 0 0
5
2 0 0 0 0 0 0 48 0 96 0 144 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 48 0 48 0 32 0 48
7
2 0 0 0 0 0 0 32 0 96 0 160 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 80 0 96 0 96 0 80
9
2 0 0 0 0 0 0 48 0 80 0 160 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 112 0 144 0 160 0 160

(0, 1
2 , 1)

a1

a2 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5 0 1

2 1 3
2 2 5

2 3 7
2 4 9

2 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 4 0 12 0 20 0 28 0 36 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
3
2 0 0 0 0 16 0 32 0 48 0 64 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 16 0 12 0 20 0 28
5
2 0 0 0 0 12 0 36 0 60 0 84 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 32 0 36 0 32 0 48
7
2 0 0 0 0 20 0 32 0 64 0 96 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 48 0 60 0 64 0 60
9
2 0 0 0 0 28 0 48 0 60 0 100 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 64 0 84 0 96 0 100

Table 3. Some genus 0 Gromov-Witten invariants of the B4, D4 and F4 theories over F2. On
the left, we give the values of a0, a

B4
3 , aB4

4 , which determine the values of a3, a4 for F4 and D4 via
2aB4

3 , aB4
4 and aB4

3 −
a

B4
4
2 ,

a
B4
4
2 respectively. Inside each block, a1 (resp. a2) grows from 0 to 5 in steps

of 1/2 from top to bottom (resp. left to right); this growth in steps of 1/2 is artificial for F4, as all
the possible weights have integer indices, but it makes it simpler to visually compare the invariants.
In accordance with (3.34), this presentation allows us to record the values of the Gromov-Witten
invariants for the B4 and D4 geometries in a single table. Regarding the F4 geometry, we note that
if we reflect the B4 invariants through the diagonal and shift them horizontally by the value of a3,
we recover the F4 invariants, again in agreement with (3.34).
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(a0, a1, a3) B4 invariants B3 invariants

(0, 0, 0)

a2

a4 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 −2 0 0 0 0 0 0 0 0 0 0 −2
1
2 0 0 0 0 0 0 0 0 0 0 0 0

1 −2 0 0 0 0 0 0 0 0 0 0 −2
3
2 0 0 0 0 0 0 0 0 0 0 0 0

2 −4 0 0 0 0 0 0 0 0 0 0 −4
5
2 0 0 0 0 0 0 0 0 0 0 0 0

3 −6 0 0 0 0 0 0 0 0 0 0 −6
7
2 0 0 0 0 0 0 0 0 0 0 0 0

4 −8 0 0 0 0 0 0 0 0 0 0 −8
9
2 0 0 0 0 0 0 0 0 0 0 0 0

5 −10 0 0 0 0 0 0 0 0 0 0 −10

(0, 1, 1)

a2

a4 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0 0

1 −2 0 4 0 −2 0 0 0 0 0 0 0
3
2 0 0 0 0 0 0 0 0 0 0 0 0

2 −20 0 −16 0 −20 0 0 0 0 0 0 −56
5
2 0 0 0 0 0 0 0 0 0 0 0 0

3 −40 0 −32 0 −40 0 0 0 0 0 0 −112
7
2 0 0 0 0 0 0 0 0 0 0 0 0

4 −60 0 −48 0 −60 0 0 0 0 0 0 −168
9
2 0 0 0 0 0 0 0 0 0 0 0 0

5 −80 0 −64 0 −80 0 0 0 0 0 0 −224

(1, 1
2 ,

3
2 )

a2

a4 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 12 0 12 0 0 0 0 0 0 24
3
2 0 0 0 0 0 0 0 0 0 0 0 0

2 16 0 0 0 0 0 16 0 0 0 0 32
5
2 0 0 0 0 0 0 0 0 0 0 0 0

3 48 0 −36 0 −36 0 48 0 0 0 0 24
7
2 0 0 0 0 0 0 0 0 0 0 0 0

4 80 0 −60 0 −60 0 80 0 0 0 0 40
9
2 0 0 0 0 0 0 0 0 0 0 0 0

5 112 0 −84 0 −84 0 112 0 0 0 0 56

Table 4. Genus 0 Gromov-Witten invariants for B4 and B3 theories over F2. We see that adding
the rows of B4, we get the B3 invariants in agreement with equations (3.40) and (3.43).
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(a0, a2) B3 invariants G2 invariants

(0, 0)

a1

a3 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 −2 0 0 0 0 0 0 0 0 0 0 −2
1
2 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0
3
2 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0
5
2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0
7
2 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0
9
2 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2)

a1

a3 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 −6 0 0 0 −8 0 0 0 −6 0 0 −6
1
2 0 32 0 32 0 32 0 32 0 0 0 0

1 −8 0 −56 0 −160 0 −56 0 −8 0 0 24
3
2 0 32 0 32 0 32 0 32 0 0 0 0

2 −6 0 0 0 −8 0 0 0 −6 0 0 −6
5
2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 −96
7
2 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 −6
9
2 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 24

(1, 3)

a1

a3 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 −10 0 0 0 −6 0 0 0 −6 0 0 −10
1
2 0 64 0 24 0 32 0 32 0 24 0 0

1 −16 0 −168 0 −166 0 −112 0 −166 0 −168 48
3
2 0 96 0 256 0 392 0 392 0 256 0 0

2 −18 0 −224 0 −308 0 −224 0 −308 0 −224 −72
5
2 0 96 0 248 0 288 0 288 0 248 0 0

3 −16 0 −168 0 −432 0 −336 0 −432 0 −168 −22
7
2 0 64 0 448 0 512 0 512 0 448 0 0

4 −10 0 −280 0 −710 0 −560 0 −710 0 −280 132
9
2 0 96 0 672 0 768 0 768 0 672 0 0

5 −14 0 −392 0 −994 0 −784 0 −994 0 −392 132

Table 5. Genus 0 Gromov-Witten invariants of B3 and G2 over F2. Adding the entries in the
diagonals given by a1 + a3 constant gives the G2 invariant with aG2

1 = aB3
1 + aB3

3 , in accordance
with equation (3.29). For example, the sum of the B3 invariants in the blue box gives the G2
invariant in the blue circle.
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g An Bn Cn Dn

g̃ An Cn Bn Dn

Embedding
space

V = {
∑n+1

i=1 xi =
0} ⊂ Rn+1 Rn Rn Rn

Roots ei − ej , i 6= j
±ei

±ei ± ej , i 6= j

±2ei

±ei ± ej , i 6= j
±ei ± ej , i 6= j

Simple
roots

αi = ei − ei+1, i =
1, . . . , n

αi = ei − ei+1
i = 1, . . . , n− 1

αn = en

αi = ei − ei+1
i = 1, . . . , n− 1

αn = 2en

αi = ei − ei+1
i = 1, . . . , n− 1
αn = en−1 + en

Λr Zn+1 ∩ V Zn x ∈ Zn such that∑
xi ∈ 2Z

x ∈ Zn such that∑
xi ∈ 2Z

Fund.
Weights

ωi =
e1+· · ·+ei− i

n+1
∑
ei

ωi =
e1 + · · ·+ ei, i 6= n

ωn = 1
2
∑
ei

ωi = e1 + · · ·+ ei

ωi = e1 + · · ·+ ei, i 6=
n− 1, n
ωn−1 =

1
2 (e1 + · · ·+en−1−en)

ωn =
1
2 (e1 + · · ·+en−1 +en)

Λw

〈
Λr, e1 − 1

n+1
∑
ei

〉
Zn +

( 1
2
∑
ei

)
Z Zn Zn +

( 1
2
∑
ei

)
Z

ds2 dx2 2dx2 dx2 dx2

W Sn permuting the xi

Sn n Zn
2 permuting

xi and multiplying
each coordinate by

±1

Sn n Zn
2 permuting

xi and multiplying
each coordinate by

±1

Sn nZn−1
2 permuting

xi and multiplying
an even number of
coordinates by −1

Table 6. Description and properties of the A, B, C, and D type root systems.

and for the Eisenstein series,

En(τ) = 1 + 2
ζ(1− k)

∑
n∈N∗

nk−1qn

1− qn , where N∗ = {1, 2, . . . } and q = e(τ). (D.4)

A weak Jacobi modular form of weight w and index n of the Lie algebra g is a holo-
morphic function φw,n : H × h∗C → C, where H is the upper-half plane, and h∗C is the
complexified root system, satisfying the following conditions:

• Modularity:

φw,n

(
aτ+b
cτ+d,

z

cτ+d

)
= (cτ+d)we

[
nc

2(cτ+d)(z,z)
]
φw,n(τ,z), ∀

(
a b

c d

)
∈ SL(2,Z)

• Quasi-periodicity:

φw,n(τ, z + λτ + µ) = e

[
−n

((λ, λ)
2 + (λ, z)

)]
φw,n(τ, z), ∀λ, µ ∈ Λr

• Weyl Symmetry:
φw,n(τ, wz) = φw,n(τ, z), ∀w ∈W
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g G2 F4

g̃ G2 F4

Embedding
space V = {x1 + x2 + x3 = 0} ⊂ R3 R4

Roots ei − ej , i 6= j

±(2ei − ej − ek), i 6= j 6= k 6= i

±ei

±ei ± ej
1
2 (±e1 ± e2 ± e3 ± e4)

Simple
roots

α1 = e1 − e2
α2 = −2e1 + e2 + e3

α1 = e2 − e3
α2 = e3 − e4
α3 = e4

α4 = 1
2 (e1 − e2 − e3 − e4)

Λr Z3 ∩ V Z4 +
( 1

2
∑
ei

)
Z

Fund.
Weights

ω1 = −e2 + e3
ω2 = −e1 − e2 + 2e3

ω1 = e1 + e2
ω2 = 2e1 + e2 + e3

ω3 = 1
2 (3e1 + e2 + e3 + e4)

ω4 = e4

Λw Z3 ∩ V Z4 +
( 1

2
∑
ei

)
Z

ds2 dx2 2dx2

W
D4 = S2 n Z2 permuting x1, x2

and taking x→ −x

S3 n (S4 n Z3
2) where S4

permutes the coordinates Z3
2

changes the sign of an even
number of coordinates and S3 is

generated by the reflection
along 1

2
∑
ei

Table 7. Description and properties of the G2 and F4 root systems.

• Fourier expansion: φw,n can be expanded as

φw,n =
∑

l∈N,γ∈Λcw=(Λr)∗
c(l, γ)qlζγ , where ζγ = e[(z, γ)]

Note that no negative powers of q occur in the Fourier expansion. Other classes of Ja-
cobi forms can be defined upon dropping this requirement or imposing conditions on the
coefficients c(l, γ) [26]. For every finite simple Lie algebra, except E8, the space of Jacobi
modular forms is a freely generated algebra over C[E4, E6] (the space of holomorphic mod-
ular forms) [27, 72]. Below, we will give explicit expressions for the generators of the rings
of Jacobi forms we consider in the text. The forms are compactly written in terms of

α := φ−1,1/2 = i
θ1
η3 . (D.5)
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g E6 E7 E8

g̃ E6 E7 E8

Embedding
space

V = {x6 = x7 = −x8} ⊂
R8 V = {x7 = −x8} ⊂ R8 R8

Roots
{±ei ± ej |i < j ≤

5} ∪ { 1
2
∑8

i=1(−1)n(i)ei|∑8
i=1 n(i) ∈ 2Z}

{±ei ± ej |i < j ≤
6} ∪ {±(e7 − e8)} ∪
{ 1

2
∑8

i=1(−1)n(i)ei|∑8
i=1 n(i) ∈ 2Z}

{±ei ± ej |i <
j} ∪ { 1

2
∑8

i=1(−1)n(i)ei|∑8
i=1 n(i) ∈ 2Z}

Simple roots

α1 = 1
2 (e8 − e7 − e6 −

e5 − e4 − e3 − e2 + e1)
α2 = e2 + e1
α3 = e2 − e1
α4 = e3 − e2
α5 = e4 − e3
α6 = e5 − e4

α1 = 1
2 (e8 − e7 − e6 −

e5 − e4 − e3 − e2 + e1)
α2 = e2 + e1
α3 = e2 − e1
α4 = e3 − e2
α5 = e4 − e3
α6 = e5 − e4
α7 = e6 − e5

α1 = 1
2 (e8 − e7 − e6 −

e5 − e4 − e3 − e2 + e1)
α2 = e2 + e1
α3 = e2 − e1
α4 = e3 − e2
α5 = e4 − e3
α6 = e5 − e4
α7 = e6 − e5
α8 = e7 − e6

Λr Λr(E8) ∩ V Λr(E8) ∩ V x ∈ R8 such that 2xi ∈
Z, xi − xj ∈ Z,

∑
xi ∈ 2Z

Fund.
Weights

ω1 = 2
3 (−e6 − e7 + e8)

ω2 = 1
2 (e1 + e2 + e3 +

e4 + e5 − e6 − e7 + e8)
ω3 = 1

2 (−e1 + e2 + e3 +
e4 + e5) + 5

6 (−e6− e7 + e8)
ω4 =

e3 + e4 + e5 − e6 − e7 + e8
ω5 =

e4 + e5 + 2
3 (−e6 − e7 + e8)

ω6 = e5 + 1
3 (−e6−e7 +e8)

ω1 = −e7 + e8
ω2 = 1

2 (e1 + e2 + e3 +
e4 + e5 + e6 − 2e7 + 2e8)
ω3 = 1

2 (−e1 + e2 + e3 +
e4 + e5 + e6 − 3e7 + 3e8)
ω4 = e3 + e4 + e5 + e6 +

2(−e7 + e8)
ω5 =

e4 + e5 + e6 + 3
2 (−e7 + e8)

ω6 = e5 + e6 − e7 + e8
ω7 = e6 + 1

2 (−e7 + e8)

ω1 = 2e8
ω2 = 1

2 (e1 + e2 + e3 +
e4 + e5 + e6 + e7 + 5e8)
ω3 = 1

2 (−e1 + e2 + e3 +
e4 + e5 + e6 + e7 + 7e8)

ω4 =
e3 + e4 + e5 + e6 + e7 + 5e8
ω5 = e4 +e5 +e6 +e7 +4e8
ω6 = e5 + e6 + e7 + 3e8
ω7 = e6 + e7 + 2e8

ω8 = e7 + e8

Λw
< Λr,

1
3 (e1 + e2 + e3

+e4 − 2e5 − 2e6) >
< Λr,

1
4 (e1 + e2 + e3

+e4+e5+e6−3e7−3e8) > Z8

ds2 dx2 dx2 dx2

Table 8. Description and properties of the E type root systems.

D.1 An Jacobi forms

We can construct the Jacobi forms of the Lie algebras An by repeated use of the differential
operator [28]

Z = 1
2πi

(
n+1∑
i=1

∂

∂xi
+ π2

3 E2

n+1∑
i=1

xi

)
(D.6)
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on the lowest weight form. Let

ΦAn =
n+1∏
i=1

α(xi), (D.7)

then
φAn−k,1 =

(
Zn+1−kΦAn

)∣∣∣∑
xi=0

, k = 0, 2, 3, 4, . . . , n+ 1 (D.8)

where the ∑xi = 0 condition is imposed after acting by the operator Z.

D.2 Bn Jacobi forms

The Jacobi forms were given in [28]. We follow the conventions in [51].
In terms of the Weierstrass function

℘(z) = θ3(0)θ2(0)2

4
θ4(z)
θ1(z) −

1
12
(
θ3(0)4 + θ2(0)4

)
, (D.9)

we have

n∑
i=0

℘(2i−2)(v)φ−2i,1(x) = − 1
2n−2(n− 1)!

∣∣∣∣∣∣∣∣∣∣
1 ℘(v) · · · ℘(2n−2)(v)
1 ℘(x1) · · · ℘(2n−2)(x1)
...

...
...

1 ℘(xn) · · · ℘(2n−2)(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ℘(x1) · · · ℘(2n−4)(x1)
...

...
...

1 ℘(xn) · · · ℘(2n−4)(xn)

∣∣∣∣∣∣∣∣

n∏
i=1

α2(xi), (D.10)

where ℘(−2) is to be understood as 1.

D.3 Dn Jacobi forms

The Jacobi forms for Dn (n ≤ 8) were built in [68].
In Dn there is a form of weight −n and index 1 given by

ωDn−n,1 =
n∏
i=1

α(xi). (D.11)

The remaining forms of index 1 can be obtained from the lowest weight form by the repeated
use of Hecke operator. On forms of weight k and index m, the Hecke operator is given by

Hk = q∂q −
1

2m
(
Xi∂Xi +X2

i ∂
2
Xi

)
− 2k − 8

24 E2, Xi = e(xi). (D.12)

The forms of index 2 follow from the inclusion Dn(2) ≤ nA1.
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Explicitly, all the D8 forms are given by

ωD8
−8,1 =

8∏
i=1

α(xi), (D.13)

φD8
−4,1 = 1

η24

E4

4∑
j=1

8∏
i=1

θj(xi)−
4∑
j=2

θj(0)8
8∏
i=1

θj(xi)

− E4ω
D8
8,1 , (D.14)

φD8
−2,1 = 3H4φ

D8
4,1, (D.15)

φD8
0,1 = 1

32
(
2H2φ

D8
−2,1 − E4φ

D8
−4,1

)
, (D.16)

φD8
−2k,2 = 1

k!(n− k)!
∑
σ∈Sn

φA1
−2,1(τ, zσ(1)) · · ·φA1

−2,1(τ, zσ(k))φA1
0,1(τ, zσ(k+1)) · · ·φA1

0,1(τ, zσ(1))

(D.17)
k = 3, 4, 5, 6, 7. (D.18)

Besides ωDnn,1 , the Dn forms with n ≤ 8 can be obtained by setting xi = 0, for i > n.
For D4, to agree with previous conventions [25, 28], we use the forms ωD4

−4,1 and

φD4
−4,1 = − 1

16φ
D8
−4,1

∣∣∣∣
xi>4=0

, (D.19)

φD4
−2,1 = −1

8φ
D8
−2,1

∣∣∣∣
xi>4=0

, (D.20)

φD4
0,1 = 2φD8

0,1

∣∣∣
xi>4=0

, (D.21)

φD4
−6,2 = 1

32φ
D8
−6,2

∣∣∣∣
xi>4=0

. (D.22)

D.4 Cn Jacobi forms

For n ≥ 4, we have
Weyl(Cn) = Weyl(Dn) n Z2. (D.23)

From the basis of Dn Jacobi forms, the only one that is not invariant under the extra
involution is ωDnn,1 which switches sign. We thus get a basis of Cn Jacobi forms by squaring
this last form

φCn−k,1 = φDn−k,1, k = 0, 2, 4

φCn−k,2 = φDn−k,2, k = 6, 8, . . . , 2n− 2

φCn−2n,2 = (ωDn−n,1)2.

For C3, we can get a basis of the forms by going down from D4 as sketched in figure 5
but, we decided to use the convention from [28] that uses the fact that the C3 and A3 root
lattices are isomorphic and the Weyl group of C3 compared to the one of A3 just has an
extra involution [28].
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Consider the map

j :



C3 → A3 x1
x2
x3

 7→


x1−x2−x3
2

−x1+x2−x3
2

−x1−x2+x3
2

x1+x2+x3
2

 (D.24)

we then set

φC3
−k,1 = φA3

−k,1 ◦ j, k = 0, 2, 4 (D.25)

φC3
−6,2 = (φA3

−3,1)2 ◦ j (D.26)

D.5 F4 Jacobi forms

The generators of the ring J(F4) can be built from the results in [27, 28] and were already
given explicitly in [71].

The F4 and D4 lattices are isomorphic.15 An explicit isomorphism is given by16

i :



F4 → D4
x1
x2
x3
x4

 7→


x3 − x4
−x3 − x4
x1 + x2
x1 − x2

 . (D.27)

The Weyl groups of the two lattices are different, however. The F4 Weyl group is the
full orthogonal group of the lattice which is given by the semi-direct product of the D4
Weyl group and the D4 Dynkin diagram symmetry, S3:

W (F4) = O(F4) = W (D4) nDynkinSym(D4) = W (D4) n S3.

The generators of the ring J(F4) can then be obtained from the D4 forms by imposing the
extra S3 symmetry.

In terms of Weyl invariant polynomials, see appendix F, this symmetry is straightfor-
ward to impose. As S3 permutes the three external legs of theD4 Dynkin diagram, this sym-
metry simply permutes the Weyl invariant polynomials p1, p3, p4. Hence, J(F4) ⊂ J(D4)
is the sub-ring of Jacobi forms invariant under permutations of p1, p3, p4.

15If one takes the Euclidean norm, the exact statement is that F4(2), the F4 lattice with norm scaled by
2 ((·, ·)F4(2) = 2(·, ·)), is isomorphic to D4. In the present paper, we fix the norm by imposing the condition
that short coroots have norm squared 2.

16We choose this particular isomorphism as it maps the vector ρL =
∑

α∈∆+
L
α of F4 to the corresponding

vector of D4. This is only relevant for the considerations of section 3.3.
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By looking directly at the expansion in terms of Weyl invariant polynomials, the fol-
lowing are the generators of J(F4):

φF4
0,1 =

(
φD4

0,1 −
2
3E4φ

D4
−4,1

)
◦ i (D.28)

φF4
−2,1 = φD4

−2,1 ◦ i (D.29)

φF4
−6,2 =

(
φD4
−6,2 −

1
18φ

D4
−2,1φ

D4
−4,1

)
◦ i (D.30)

φF4
−8,2 =

((
φD4
−4,1

)2
+ 3

(
ωD4
−4,1

)2
)
◦ i (D.31)

φF4
−12,3 =

(
φD4
−4,1

(
ωD4
−4,1

)2
− 1

9
(
φD4
−4,1

)3
)
◦ i (D.32)

D.6 G2 Jacobi forms

The G2 and A2 root lattices are the same and the Weyl groups differ only by the involution
x 7→ −x which is in W (G2) but not in W (A2). The only generator of J(A2) not invariant
under this transformation is φ−3,1 which gets maps to minus itself. Therefore we can get
a set of generators of J(G2) by squaring this form.

φG2
0,1 = φA2

0,1 (D.33)
φG2
−2,1 = φA2

−2,1 (D.34)
φG2
−6,2 = (φA2

−3,2)2. (D.35)

E Specialization formulas

E.1 A series

The derivative of a modular form is only quasi-modular form. The term proportional to
E2 in (D.6) is precisely what is needed to cancel the anomalous modular transformation
of the other term. This second term is important because if it weren’t there, the action
of Z in a Jacobi modular form wouldn’t give another Jacobi modular form. However, at
this point, we only want to find the proportionality constant between the different forms
in figure 4, therefore it is enough to focus on the first term.

Consider then, the form φAn−k,1 with k = 0, 2, . . . , n restricted to the subspace xn+1 = 0

φAn−k,1|xn+1=0 = 1
(2πi)n+1−k

(
n+1∑
i=1

∂

∂xi

)n+1−k n+1∏
i=1

α(xi)

∣∣∣∣∣∣
xn+1=0

+ . . .

= (n+ 1− k) 1
(2πi)n+1−kα

′(0)
(

n∑
i=1

∂

∂xi

)(n−1)+1−k n+1∏
i=1

α(xi) + . . .

= −(n+ 1− k)φAn−1
−k,1 ,

where . . . means a term proportional to E2 and we used α(0) = 0 and α′(0) = −2πi.
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We repeat the formula for reference

φAn−k,1|xn+1=0 =
{

0 k = n+ 1
−(n+ 1− k)φAn−1

−k,1 k = 0, 2, 3, . . . , n
(E.1)

E.2 B series

The Weierstrass function is divergent at the origin. Then one has to be careful when going
to xn = 0. The series expansion of the Weierstrass function is given by

℘(xn) = −x−2
n + o(x2

n), (E.2)

then
x2k
n ℘

(2k−2)(xn)|xn=0 = −(2k − 1)!.

Using this, and α2(xn)
x2
n

∣∣∣
xn=0

= 1 in equation (D.10) we find that

φBn−2i,1|xn=0 =
{

0 i = n

(2n− 1)φBn−1
−2i,1 i = 0, . . . , n− 1

Because the denominator for theories with Cn gauge algebra goes to 0 after Higgsing,
we give the reduction of the lowest weight form of Bn to the smallest order in xn

φBn−2n,1 = 1
2(n− 1)α

2(xn)φBn−1
−2(n−1) = x2

n

2(n− 1)φ
Bn−1
−2(n−1) + o(x3

n)

E.3 C/D series

For n ≥ 4, by definition of the forms there is no extra factor and the results in figure 5 are
exact. For n = 3, the last line in the figure, our bases for D4 and C3 forms are different.
A calculation shows:

φD4
0,1|x4=0 = 4

3E4φ
C3
−4,1 + 2φC3

0,1

φD4
−2,1|x4=0 = −6φC3

0,1|x4=0

φD4
−4,1|x4=0 = 2φC3

−4,1|x4=0

φD4
−6,2|x4=0 = −φC3

−6,2|x4=0

ωD4
−4,1|x4=0 = 0

E.4 F4, C4 and D4

The root lattices for F4, C4 and D4 are isomorphic; the Weyl groups on the other hand
decrease in order from F4 via C4 to D4,

O(D4) = Weyl(F4) ⊃Weyl(B4) ⊃Weyl(D4) .
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The formulas going from F4 toD4 and B4 were already given, but we repeat them explicitly:

φF4
0,1 =

(
φC4

0,1 −
2
3E4φ

C4
−4,1

)
◦ i =

(
φD4

0,1 −
2
3E4φ

D4
−4,1

)
◦ i

φF4
−2,1 = φB4

−2,1 ◦ i = φD4
−2,1 ◦ i

φF4
−6,2 =

(
φC4
−6,2 −

1
18φ

C4
−2,1φ

C4
−4,1

)
◦ i =

(
φD4
−6,2 −

1
18φ

D4
−2,1φ

D4
−4,1

)
◦ i

φF4
−8,2 =

((
φC4
−4,1

)2
+ 3φC4

−8,2

)
◦ i =

((
φD4
−4,1

)2
+ 3

(
ωD4
−4,1

)2
)
◦ i

φF4
−12,3 =

(
φD4
−4,1φ

C4
−8,2 −

1
9
(
φC4
−4,1

)3
)
◦ i =

(
φD4
−4,1

(
ωD4
−4,1

)2
− 1

9
(
φD4
−4,1

)3
)
◦ i.

E.5 C3 to G2

We just have some coefficients in the relations in figure 2. An explicit calculation gives

φC3
0,1|∑x=0 = −4φG2

0,1

φC3
−2,1|∑x=0 = −2φG2

−2,1

φC3
−4,1|∑x=0 = 0

φC3
−6,2|∑x=0 = φG2

−6,2

F Weyl invariant polynomials

The most straightforward path towards determining the coefficients in the expansion of
the numerator N of Zk in the ansatz (2.3) is to expand Zk in the exponentiated Kähler
parameters and compare coefficients to the corresponding expansion of the topological
string partition function. We have found it computationally advantageous to first express
all quantities at a given order in q and gtop in terms of Weyl invariant polynomials.

A Weyl invariant polynomial for the algebra g is a function p : h∗ → C such that

p(x+ α∨) = p(x), ∀α∨ ∈ Λcr(g)

and
p(wx) = p(x), ∀w ∈W (g).

It is shown in [65, 73] that a set of generators for the ring of W (g) invariant polynomials
is given by

pi(x) =
∑

ω∈W (g){ωi}
exp[2πi(ω, x)], ωi a fundamental weight.

The Weyl invariant polynomials are also useful in imposing Dynkin diagram symmetry.
This symmetry permutes simple roots of the gauge algebra or, equivalently, fundamental
weights. It hence acts by permutation on the pi, rendering the construction of invariant
polynomials straightforward. For instance, Weyl and Dynkin diagram symmetric polyno-
mials for the Lie algebra D4, consist of all polynomials in the corresponding pi which are in-
variant under permutations of p1, p3 and p4 (the index 2 being assigned to the central node).
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G Rank 1 Higgsing trees

The manifolds underlying rank 1 6d theories are elliptic fibrations

E // X

π
��
B

We assume that the fibration contains a global section, so that X can be described by a
Weierstrass model. Defining X as the zero set of an anti-canonical section of the weighted
projective space

P2,3,1(2KB ⊕ 3KB ⊕O) , (G.1)

where O and KB denote the trivial and the canonical line bundle respectively of the base
B respectively, guarantees that it is both Calabi-Yau and an elliptic fibration. With x, y,
z denoting sections of the vector bundle being projectivized, a generic such section can be
written as

y2 = x3 + fxz4 + gz6 , (G.2)

with f and g sections of O(−4KB) and O(−6KB) respectively. The zero set of the sec-
tion (G.2) is generically singular. The singular locus lies along the zero set of the discrim-
inant of the fibration, given by ∆ = 4f3 + 27g3 ∈ O(−12KB). Along the locus ∆ = 0,
the elliptic fiber degenerates. In F-theory parlance, this signals the presence of D7-branes.
The singularities can be resolved by successive blow-ups. For this process to preserve the
Calabi-Yau condition, the vanishing order of (f, g,∆) along any divisor in the base must
be strictly smaller than (4, 6, 12). As a result, the possible singularities along a divisor in
B must be of Kodaira type. The resolution of the singularity can be worked out explicitly
using Tate’s algorithm [15, 74].

For rank 1 models, the base can be chosen as the total space of the line bundle O(−n)→
P1 (which coincides with the normal bundle of the base curve of the Hirzebruch surface Fn).
The bases that lead to good F-theory models have 0 ≤ n ≤ 8 or n = 12 [75]. The zero set of
the generic section of the anti-canonical bundle of the projective bundle (G.1) is singular for
n > 2. The generic singularity leads to the maximally Higgsed or non-Higgsable model, in
the terminology of [75]. Upon specializing to a subset of sections (this is the process of spe-
cialization of complex structure referred to in the body of this paper), the singularity can be
enhanced, leading to gauge theories with higher rank gauge symmetry and charged matter.

We give a few examples of the resulting Higgsing trees in figure 7, 8 and 9, follow-
ing [15, 76]. The base of the trees corresponds to the maximally Higgsed models, and
each successive node corresponds to a further specialization of the complex structure and
resolution of the ensuing singularity. The nodes are labelled by the gauge group and mat-
ter content of the corresponding F-theory compactification. We denote, following [76], the
fundamental representation of AN−1 by Λ stands for; V and S (S±) denote the vector
and spinor (Weyl spinors) representation of BN (DN ) respectively. For exceptional Lie
algebras, we label the irreducible representation by its dimension.
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D6 ⊕ V ⊕5 ⊕ 1
2S±

B5 ⊕ V ⊕4 ⊕ 1
2S E7 ⊕ (1

256)⊕5

D5 ⊕ V ⊕3 ⊕ S+ E6 ⊕ 27⊕3

B4 ⊕ V ⊕2 ⊕ S F4 ⊕ 26⊕2

D4 ⊕ V ⊕ S+ ⊕ S−

B3 ⊕ S⊕2

G2 ⊕ 7

A2

Figure 7. Finite length Higgsing tree over the base O(−3) → P1, with the maximally Higgsed
gauge group A2 at its root.

...

DN+1 ⊕ V ⊕(2N−6)

BN ⊕ V ⊕(2N−7)

... E7 ⊕ 1
256⊕4

D5 ⊕ V ⊕2 E6 ⊕ 27⊕2

B4 ⊕ V F4 ⊕ 26

D4

Figure 8. Infinite length Higgsing tree over the base O(−4) → P1, with the maximally Higgsed
gauge group D4 at its root.
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B6 ⊕ V ⊕7 ⊕ 1
2S

D6 ⊕ V ⊕6 ⊕ 1
2S+ ⊕ 1

2S− D6 ⊕ V ⊕6 ⊕ 1
2S
⊕2
±

B5 ⊕ V ⊕5 ⊕ 1
2S
⊕2 E7 ⊕ 1

256⊕6

D5 ⊕ V ⊕4 ⊕ S⊕2
+ E6 ⊕ 27⊕4

... B4 ⊕ V ⊕3 ⊕ S⊕2 F4 ⊕ 26⊕3

AN−1 ⊕ Λ⊕2N D4 ⊕ V ⊕2 ⊕ S⊕2
+ ⊕ S⊕2

−

... B3 ⊕ V ⊕ S⊕4

A3 ⊕ Λ⊕8 G2 ⊕ 7⊕4

A2 ⊕ Λ⊕6

A1 ⊕ Λ⊕4

(2, 0) A1 type

Figure 9. Infinite length Higgsing tree over the base O(−2) → P1, with the M-string theory at
its root.

– 52 –



J
H
E
P
0
4
(
2
0
2
1
)
2
2
4

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and
confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19
[Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[2] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and
E. Zaslow, Mirror symmetry, vol. 1 of Clay mathematics monographs, AMS, Providence,
U.S.A. (2003) [INSPIRE].

[3] V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017)
440301 [arXiv:1608.02952] [INSPIRE].

[4] C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].

[5] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing
Corner, PoS TASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].

[6] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 (2019) 1900037
[arXiv:1903.06239] [INSPIRE].

[7] P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single
Gauge Node, arXiv:1705.05836 [INSPIRE].

[8] M. Del Zotto, J.J. Heckman and D.R. Morrison, 6D SCFTs and Phases of 5D Theories,
JHEP 09 (2017) 147 [arXiv:1703.02981] [INSPIRE].

[9] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Rank one, JHEP 07
(2019) 178 [Addendum ibid. 01 (2020) 153] [arXiv:1809.01650] [INSPIRE].

[10] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Arbitrary rank, JHEP
10 (2019) 282 [arXiv:1811.10616] [INSPIRE].

[11] L. Bhardwaj, P. Jefferson, H.-C. Kim, H.-C. Tarazi and C. Vafa, Twisted Circle
Compactifications of 6d SCFTs, JHEP 12 (2020) 151 [arXiv:1909.11666] [INSPIRE].

[12] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl.
Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

[13] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl.
Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

[14] P. Candelas and A. Font, Duality between the webs of heterotic and type-II vacua, Nucl.
Phys. B 511 (1998) 295 [hep-th/9603170] [INSPIRE].

[15] M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa,
Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215
[hep-th/9605200] [INSPIRE].

[16] E. Perevalov and H. Skarke, Enhanced gauged symmetry in type-II and F theory
compactifications: Dynkin diagrams from polyhedra, Nucl. Phys. B 505 (1997) 679
[hep-th/9704129] [INSPIRE].

[17] R. Gopakumar and C. Vafa, M theory and topological strings. 1., hep-th/9809187 [INSPIRE].

– 53 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9407087
http://inspirehep.net/record/640298
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02952
https://arxiv.org/abs/hep-th/0509212
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0509212
https://doi.org/10.22323/1.305.0015
https://arxiv.org/abs/1711.00864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.00864
https://doi.org/10.1002/prop.201900037
https://arxiv.org/abs/1903.06239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06239
https://arxiv.org/abs/1705.05836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05836
https://doi.org/10.1007/JHEP09(2017)147
https://arxiv.org/abs/1703.02981
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.02981
https://doi.org/10.1007/JHEP07(2019)178
https://doi.org/10.1007/JHEP07(2019)178
https://arxiv.org/abs/1809.01650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.01650
https://doi.org/10.1007/JHEP10(2019)282
https://doi.org/10.1007/JHEP10(2019)282
https://arxiv.org/abs/1811.10616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10616
https://doi.org/10.1007/JHEP12(2020)151
https://arxiv.org/abs/1909.11666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11666
https://doi.org/10.1016/0550-3213(96)00242-8
https://doi.org/10.1016/0550-3213(96)00242-8
https://arxiv.org/abs/hep-th/9602114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602114
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603161
https://doi.org/10.1016/S0550-3213(96)00410-5
https://doi.org/10.1016/S0550-3213(96)00410-5
https://arxiv.org/abs/hep-th/9603170
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603170
https://doi.org/10.1016/S0550-3213(96)90131-5
https://arxiv.org/abs/hep-th/9605200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605200
https://doi.org/10.1016/S0550-3213(97)00477-X
https://arxiv.org/abs/hep-th/9704129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9704129
https://arxiv.org/abs/hep-th/9809187
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9809187


J
H
E
P
0
4
(
2
0
2
1
)
2
2
4

[18] R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].

[19] A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions,
Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].

[20] P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for
two parameter models. 1, Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].

[21] S.H. Katz, D.R. Morrison and M.R. Plesser, Enhanced gauge symmetry in type-II string
theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].

[22] M.-x. Huang, S. Katz and A. Klemm, Topological String on elliptic CY 3-folds and the ring
of Jacobi forms, JHEP 10 (2015) 125 [arXiv:1501.04891] [INSPIRE].

[23] J. Gu, M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, Refined BPS invariants of 6d
SCFTs from anomalies and modularity, JHEP 05 (2017) 130 [arXiv:1701.00764] [INSPIRE].

[24] M. Del Zotto and G. Lockhart, On Exceptional Instanton Strings, JHEP 09 (2017) 081
[arXiv:1609.00310] [INSPIRE].

[25] M. Del Zotto, J. Gu, M.-X. Huang, A.-K. Kashani-Poor, A. Klemm and G. Lockhart,
Topological Strings on Singular Elliptic Calabi-Yau 3-folds and Minimal 6d SCFTs, JHEP
03 (2018) 156 [arXiv:1712.07017] [INSPIRE].

[26] M. Eichler and D. Zagier, The theory of Jacobi forms, vol. 55 of Prog. Math., Birkhäuser
Boston, Inc., Boston, MA (1985) [DOI].

[27] K. Wirthmüller, Root systems and Jacobi forms, Compos. Math. 82 (1992) 293
[http://www.numdam.org/item?id=CM_1992__82_3_293_0].

[28] M. Bertola, Jacobi groups, Jacobi forms and their applications, in Isomonodromic
deformations and applications in physics (Montréal, QC, 2000), vol. 31 of CRM Proc.
Lecture Notes, pp. 99–111, Amer. Math. Soc., Providence, RI (2002).

[29] H.-C. Kim, J. Kim, S. Kim, K.-H. Lee and J. Park, 6d strings and exceptional instantons,
Phys. Rev. D 103 (2021) 025012 [arXiv:1801.03579] [INSPIRE].

[30] J. Gu, B. Haghighat, A. Klemm, K. Sun and X. Wang, Elliptic Blowup Equations for 6d
SCFTs. IV: Matters, arXiv:2006.03030 [INSPIRE].

[31] E. Witten, Mirror manifolds and topological field theory, AMS/IP Stud. Adv. Math. 9 (1998)
121 [hep-th/9112056] [INSPIRE].

[32] A.-K. Kashani-Poor, Determining F-theory matter via Gromov-Witten invariants,
arXiv:1912.10009 [INSPIRE].

[33] S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture,
Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].

[34] S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture,
JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].

[35] S.-J. Lee, W. Lerche and T. Weigand, Modular Fluxes, Elliptic Genera, and Weak Gravity
Conjectures in Four Dimensions, JHEP 08 (2019) 104 [arXiv:1901.08065] [INSPIRE].

[36] S.-J. Lee, W. Lerche, G. Lockhart and T. Weigand, Holomorphic Anomalies, Fourfolds and
Fluxes, arXiv:2012.00766 [INSPIRE].

[37] S.-J. Lee, W. Lerche, G. Lockhart and T. Weigand, Quasi-Jacobi forms, elliptic genera and
strings in four dimensions, JHEP 01 (2021) 162 [arXiv:2005.10837] [INSPIRE].

– 54 –

https://arxiv.org/abs/hep-th/9812127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812127
https://doi.org/10.1103/PhysRevD.90.105031
https://arxiv.org/abs/1210.3605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.3605
https://doi.org/10.1016/0550-3213(94)90322-0
https://arxiv.org/abs/hep-th/9308083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9308083
https://doi.org/10.1016/0550-3213(96)00331-8
https://arxiv.org/abs/hep-th/9601108
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9601108
https://doi.org/10.1007/JHEP10(2015)125
https://arxiv.org/abs/1501.04891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.04891
https://doi.org/10.1007/JHEP05(2017)130
https://arxiv.org/abs/1701.00764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.00764
https://doi.org/10.1007/JHEP09(2017)081
https://arxiv.org/abs/1609.00310
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00310
https://doi.org/10.1007/JHEP03(2018)156
https://doi.org/10.1007/JHEP03(2018)156
https://arxiv.org/abs/1712.07017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07017
https://doi.org/10.1007/978-1-4684-9162-3
http://www.numdam.org/item?id=CM_1992__82_3_293_0
https://doi.org/10.1103/PhysRevD.103.025012
https://arxiv.org/abs/1801.03579
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03579
https://arxiv.org/abs/2006.03030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03030
https://arxiv.org/abs/hep-th/9112056
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9112056
https://arxiv.org/abs/1912.10009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.10009
https://doi.org/10.1016/j.nuclphysb.2018.11.001
https://arxiv.org/abs/1810.05169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05169
https://doi.org/10.1007/JHEP10(2018)164
https://arxiv.org/abs/1808.05958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.05958
https://doi.org/10.1007/JHEP08(2019)104
https://arxiv.org/abs/1901.08065
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.08065
https://arxiv.org/abs/2012.00766
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.00766
https://doi.org/10.1007/JHEP01(2021)162
https://arxiv.org/abs/2005.10837
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.10837


J
H
E
P
0
4
(
2
0
2
1
)
2
2
4

[38] C.F. Cota, A. Klemm and T. Schimannek, State counting on fibered CY-3 folds and the
non-Abelian Weak Gravity Conjecture, arXiv:2012.09836 [INSPIRE].

[39] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and
exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311
[hep-th/9309140] [INSPIRE].

[40] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[41] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological
field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].

[42] S. Hosono, M.H. Saito and A. Takahashi, Holomorphic anomaly equation and BPS state
counting of rational elliptic surface, Adv. Theor. Math. Phys. 3 (1999) 177 [hep-th/9901151]
[INSPIRE].

[43] A. Klemm, J. Manschot and T. Wotschke, Quantum geometry of elliptic Calabi-Yau
manifolds, arXiv:1205.1795 [INSPIRE].

[44] C.F. Cota, A. Klemm and T. Schimannek, Topological strings on genus one fibered
Calabi-Yau 3-folds and string dualities, JHEP 11 (2019) 170 [arXiv:1910.01988] [INSPIRE].

[45] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2
gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465
[arXiv:1305.0533] [INSPIRE].

[46] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d N = 2 Gauge
Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].

[47] B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, Strings of Minimal 6d SCFTs, Fortsch.
Phys. 63 (2015) 294 [arXiv:1412.3152] [INSPIRE].

[48] B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-Theory, Spinning Black Holes and
Multi-string Branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].

[49] L. Bhardwaj, Flavor Symmetry of 5d SCFTs, Part 1: General Setup, arXiv:2010.13230
[INSPIRE].

[50] L. Bhardwaj, Flavor Symmetry of 5d SCFTs, Part 2: Applications, arXiv:2010.13235
[INSPIRE].

[51] J. Kim, K. Lee and J. Park, On elliptic genera of 6d string theories, JHEP 10 (2018) 100
[arXiv:1801.01631] [INSPIRE].

[52] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.
Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[53] T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic
genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].

[54] C.W. Bernard, N.H. Christ, A.H. Guth and E.J. Weinberg, Instanton Parameters for
Arbitrary Gauge Groups, Phys. Rev. D 16 (1977) 2967 [INSPIRE].

[55] A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle Solutions of
the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].

[56] H. Shimizu and Y. Tachikawa, Anomaly of strings of 6d N = (1, 0) theories, JHEP 11
(2016) 165 [arXiv:1608.05894] [INSPIRE].

– 55 –

https://arxiv.org/abs/2012.09836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.09836
https://doi.org/10.1007/BF02099774
https://arxiv.org/abs/hep-th/9309140
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9309140
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602022
https://doi.org/10.1016/0550-3213(93)90548-4
https://arxiv.org/abs/hep-th/9302103
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9302103
https://doi.org/10.4310/ATMP.1999.v3.n1.a7
https://arxiv.org/abs/hep-th/9901151
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901151
https://arxiv.org/abs/1205.1795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.1795
https://doi.org/10.1007/JHEP11(2019)170
https://arxiv.org/abs/1910.01988
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.01988
https://doi.org/10.1007/s11005-013-0673-y
https://arxiv.org/abs/1305.0533
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.0533
https://doi.org/10.1007/s00220-014-2210-y
https://arxiv.org/abs/1308.4896
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.4896
https://doi.org/10.1002/prop.201500014
https://doi.org/10.1002/prop.201500014
https://arxiv.org/abs/1412.3152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3152
https://doi.org/10.1007/JHEP01(2016)009
https://arxiv.org/abs/1509.00455
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00455
https://arxiv.org/abs/2010.13230
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.13230
https://arxiv.org/abs/2010.13235
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.13235
https://doi.org/10.1007/JHEP10(2018)100
https://arxiv.org/abs/1801.01631
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.01631
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206161
https://doi.org/10.1088/1126-6708/2008/03/069
https://arxiv.org/abs/hep-th/0310272
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0310272
https://doi.org/10.1103/PhysRevD.16.2967
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C2967%22
https://doi.org/10.1016/0370-2693(75)90163-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB59%2C85%22
https://doi.org/10.1007/JHEP11(2016)165
https://doi.org/10.1007/JHEP11(2016)165
https://arxiv.org/abs/1608.05894
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05894


J
H
E
P
0
4
(
2
0
2
1
)
2
2
4

[57] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d
SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

[58] Z. Duan and J. Nahmgoong, Bootstrapping ADE M-strings, JHEP 02 (2021) 057
[arXiv:2009.03626] [INSPIRE].

[59] J. Gu, B. Haghighat, K. Sun and X. Wang, Blowup Equations for 6d SCFTs. I, JHEP 03
(2019) 002 [arXiv:1811.02577] [INSPIRE].

[60] J. Gu, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d SCFTs. Part II.
Exceptional cases, JHEP 12 (2019) 039 [arXiv:1905.00864] [INSPIRE].

[61] J. Gu, B. Haghighat, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d
SCFTs. Part III. E-strings, M-strings and chains, JHEP 07 (2020) 135 [arXiv:1911.11724]
[INSPIRE].

[62] Z. Duan, J. Gu and A.-K. Kashani-Poor, Computing the elliptic genus of higher rank
E-strings from genus 0 GW invariants, JHEP 03 (2019) 078 [arXiv:1810.01280] [INSPIRE].

[63] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as
an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].

[64] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and
applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301
[hep-th/9308122] [INSPIRE].

[65] N. Bourbaki, Groupes de Lie et algèbres de Lie, in Éléments de mathématique, Masson, Paris
(1981).

[66] J. Kim, S. Kim and K. Lee, Higgsing towards E-strings, JHEP 01 (2021) 110
[arXiv:1510.03128] [INSPIRE].

[67] H.-C. Kim, S.-S. Kim and K. Lee, Higgsing and twisting of 6d DN gauge theories, JHEP 10
(2020) 014 [arXiv:1908.04704] [INSPIRE].

[68] D. Adler and V. Gritsenko, The d8-tower of weak jacobi forms and applications, J. Geom.
Phys. 150 (2020) 103616.

[69] H. Wang, Weyl invariant E8 Jacobi forms, arXiv:1801.08462 [INSPIRE].

[70] D.R. Morrison, S. Schäfer-Nameki and B. Willett, Higher-Form Symmetries in 5d, JHEP 09
(2020) 024 [arXiv:2005.12296] [INSPIRE].

[71] D. Adler, The structure of the algebra of weak jacobi forms for the root system f4,
arXiv:2007.07116.

[72] H. Wang, Weyl invariant Jacobi forms: a new approach, arXiv:2007.16033 [INSPIRE].

[73] M. Lorenz, Multiplicative Invariant Theory, Encyclopaedia of Mathematical Sciences,
Springer Berlin Heidelberg (2006) [DOI].

[74] S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory,
JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].

[75] D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012)
1187 [arXiv:1204.0283] [INSPIRE].

[76] M. Del Zotto and G. Lockhart, Universal Features of BPS Strings in Six-dimensional
SCFTs, JHEP 08 (2018) 173 [arXiv:1804.09694] [INSPIRE].

– 56 –

https://doi.org/10.1093/ptep/ptu140
https://arxiv.org/abs/1408.5572
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.5572
https://doi.org/10.1007/JHEP02(2021)057
https://arxiv.org/abs/2009.03626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.03626
https://doi.org/10.1007/JHEP03(2019)002
https://doi.org/10.1007/JHEP03(2019)002
https://arxiv.org/abs/1811.02577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02577
https://doi.org/10.1007/JHEP12(2019)039
https://arxiv.org/abs/1905.00864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.00864
https://doi.org/10.1007/JHEP07(2020)135
https://arxiv.org/abs/1911.11724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11724
https://doi.org/10.1007/JHEP03(2019)078
https://arxiv.org/abs/1810.01280
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.01280
https://doi.org/10.1016/0550-3213(91)90292-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB359%2C21%22
https://doi.org/10.1007/BF02100589
https://arxiv.org/abs/hep-th/9308122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9308122
https://doi.org/10.1007/JHEP01(2021)110
https://arxiv.org/abs/1510.03128
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.03128
https://doi.org/10.1007/JHEP10(2020)014
https://doi.org/10.1007/JHEP10(2020)014
https://arxiv.org/abs/1908.04704
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04704
https://doi.org/10.1016/j.geomphys.2020.103616
https://doi.org/10.1016/j.geomphys.2020.103616
https://arxiv.org/abs/1801.08462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.08462
https://doi.org/10.1007/JHEP09(2020)024
https://doi.org/10.1007/JHEP09(2020)024
https://arxiv.org/abs/2005.12296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12296
https://arxiv.org/abs/2007.07116
https://arxiv.org/abs/2007.16033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.16033
https://doi.org/10.1007/b138961
https://doi.org/10.1007/JHEP08(2011)094
https://arxiv.org/abs/1106.3854
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.3854
https://doi.org/10.1002/prop.201200086
https://doi.org/10.1002/prop.201200086
https://arxiv.org/abs/1204.0283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0283
https://doi.org/10.1007/JHEP08(2018)173
https://arxiv.org/abs/1804.09694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09694

	Introduction
	How to capture BPS degeneracies via Weyl invariant Jacobi forms
	The topological string and BPS states of the 5d theory
	The topological string and Jacobi forms
	The map between the Kähler cone and elliptic parameters
	Determining weight and index
	Imposing boundary conditions

	Specializing along Higgsing trees
	Restriction maps between rings of Jacobi forms
	G(2) to A(2)
	B(3) to G(2)
	F(4) to D(4)
	A-series
	...–> D(n + 1) –> B(n) –> D(n) –>...
	C-series

	Specialization of the elliptic genus
	G(2) to A(2)
	B(3) to G(2)
	F(4) and B(4) to D(4)
	A-series
	...–> D(n + 1) –> B(n) –> D(n) –>...
	C-series
	E(6), E(7), E(8)

	Specializing Gromov-Witten invariants
	G(2) to A(2)
	B(3) to G(2)
	F(4) and B(4) to D(4)
	A-series
	...–> D(n + 1) –> B(n) –> D(n) –>...


	Enhanced symmetries
	Enhancement of the shift symmetry by elements of the coweight lattice and center symmetry
	Enhancement of the Weyl group by Dynkin diagram symmetries
	Further symmetry enhancements
	Examples
	A(2) and G(2) over mathbb F(3)
	The B(4) and F(4) to D(4) branch
	D(4), B(4) and F(4) over F(4)
	D(n) and B(n) over F(4)

	A result at base wrapping 2

	The numerator of the F(4), B(4), and D(4) theory over F(4)
	Tables of Gromov-Witten invariants and their specializations
	Root systems
	The rings of Jacobi forms
	A(n) Jacobi forms
	B(n) Jacobi forms
	D(n) Jacobi forms
	C(n) Jacobi forms
	F(4) Jacobi forms
	G(2) Jacobi forms

	Specialization formulas
	A series
	B series
	C/D series
	F(4), C(4) and D(4)
	C(3) to G(2)

	Weyl invariant polynomials
	Rank 1 Higgsing trees

