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ABSTRACT
We leverage powerful mathematical tools stemming from optimal transport theory and transform them into an efficient algorithm
to reconstruct the fluctuations of the primordial density field, built on solving the Monge-Ampère-Kantorovich equation. Our
algorithm computes the optimal transport between an initial uniform continuous density field, partitioned into Laguerre cells,
and a final input set of discrete point masses, linking the early to the late Universe. While existing early universe reconstruction
algorithms based on fully discrete combinatorial methods are limited to a few hundred thousand points, our algorithm scales
up well beyond this limit, since it takes the form of a well-posed smooth convex optimization problem, solved using a Newton
method. We run our algorithm on cosmological N-body simulations, from the AbacusCosmos suite, and reconstruct the initial
positions of O(107) particles within a few hours with an off-the-shelf personal computer. We show that our method allows a
unique, fast, and precise recovery of subtle features of the initial power spectrum, such as the baryonic acoustic oscillations.

Key words: software: data analysis – software: development – early Universe – large scale structure of Universe .

1 IN T RO D U C T I O N

Optimal Transport theory has found spectacular applications in
diverse areas of science, from economics to biology, physics, data
science, and machine learning to name but a few. The emerging ap-
plications of the two-centuries-old theory is mainly due to advances
in mathematics and the developments of fast new algorithms. It is
indeed these fundamental advances that have paved the way for major
breakthroughs in artificial intelligence, since they made it possible to
compute a natural, Wasserstein, distance between entities of various
nature, essential for object recognition and classification.

The reason behind the success of optimal transport theory in
physics might be that it describes a universal foundation of Nature,
where most processes seem to be governed by the optimization of an
underlying, sometimes unknown, quantity. Light follows a path that,
roughly, minimizes time by Fermat’s principle, and freely moving test
particles follow time-like geodesics in general relativity. As perhaps
best phrased by Euler more than two centuries ago: ‘nothing arises in
the universe in which one cannot see the sense of some maximum or
minimum.’ The variational principle founded by Euler himself and
at the basis of classical mechanics and quantum field theory has now
become a subset of the vast field of variational calculus.

The Euler–Lagrange action optimization, often referred to as the
least action principle, found its application in cosmology, thanks
to the pioneering work of Peebles back in 1989. Peebles aimed at
reconstructing the past history of the Local Group by retracing the tra-
jectories of around 10 member-galaxies back in time (Peebles 1989).

� E-mail: Bruno.Levy@inria.fr (BL); mohayaee@iap.fr (RM); sebas-
tian.vonhausegger@physics.ox.ac.uk (SVH)

He showed that the recovery of the initial conditions (IC) without
prior knowledge of present velocities is possible by considering that,
at early times, the peculiar velocities of matter is negligible and their
spatial distribution uniform. He thus solved a mixed boundary-value
problem instead of the usual Cauchy problem (Peebles 1989). The
method not only provided valuable information on the orbits of the
members of the Local Group but also put constraints on cosmological
parameters. Indeed a low value of the matter density parameter was
favoured by Peebles’ action minimization at a time when the Cold
Dark Matter (CDM) model was the standard paradigm. Peebles’
algorithm was made more efficient for application to larger data
sets but lacked uniqueness: existence of mulitple minima, maxima,
and saddle points in the landscape of solutions lead to multiple
trajectories, all physically viable (Peebles 1994; Shaya, Peebles &
Tully 1995; Nusser & Branchini 2000; Branchini, Eldar & Nusser
2002). Most recently, the method’s excess complexity has been
reduced in new numerical schemes and also by smoothing out
strongly non-linear scales (Sarpa et al. 2019, 2020).

Most action optimizations involve finding minimum energy trajec-
tories for fixed end points. The added complexity of the cosmological
setting in Peebles’ formulation is that in addition to the trajectories,
the initial positions of galaxies are also unknown, which renders the
problem highly under-determined. Can we add suitable constraints
on the trajectories to achieve a unique solution? On large scales1–
roughly scales of tens of megaparsecs – the velocities of galaxies, as
tracers of the underlying dark matter fluid, remain a potential flow, as

1Unlike fluid mechanics, cosmology lacks a proper control parameter, e.g. a
Reynolds number, and we can only separate single from multistream regimes
in an empirical manner.
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has been shown numerically by N-body simulations and theoretically
at least up to the third-order in the Lagrangian perturbation theory
(e.g. see Catelan (1995)). In previous works, we showed that where
the trajectories of the fluid elements have not crossed or when their
velocity is the gradient of a convex potential, the cosmological
reconstruction problem is a well-posed instance of what is called
the optimal mass transportation problem and has a unique solution
(Frisch et al. 2002; Brenier et al. 2003).

The mass transportation problem2 was initially formulated by
Monge during the French revolution. Monge aimed at finding how to
transport soil from N number of excavated holes to the same number
of rubbles while minimizing the total product of the transported
mass and the travelled distance (Monge 1784). This problem has a
rich mathematical structure that was revealed later by a continuous
stream of advances both in fundamental mathematics (see review
by Villani (2009)) and in applied mathematics (see review by
Peyré & Cuturi (2017)). The most prominent ‘quantum leap’ was
made during WWII by Kantorovich, who invented the ‘mathematical
toolbox’ to study the existence and uniqueness (Kantorovich 1942).
Kantorovich studied a relaxation of the problem,3 and introduced the
dual formulation, with Lagrange multipliers. The relaxed problem
was subsequently referred to as the Monge–Kantorovich mass
transportation problem. From our cosmological perspective, these
Lagrange multipliers correspond to the initial and final gravitational
potentials, related to each other by the Legendre–Fenchel transform.

In the 90’s, another ‘quantum leap’ was made by Brenier with his
celebrated polar factorization theorem, which states that the optimal-
transport map corresponds to the gradient of a convex potential
(Brenier 1991). By injecting the gradient of the potential into the
mass conservation constraint of the Monge–Kantorovich problem,
one obtains a non-linear partial-differential equation (PDE) known
as the Monge-Ampère equation, which can be solved to find the
potential.4 After the polar factorization theorem was discovered,
Benamou & Brenier (2000) revealed that the minimized quantity,
the Wasserstein distance, corresponds to the action integral in an
incompressible Euler fluid.

In our cosmological setting, it also corresponds to the action
integral in a simple model of self-gravitating matter – that is the
integrated kinetic energy. These theorems give us a way of computing
the potential, and reconstructing the trajectories. For example, in
the Zel’dovich regime, each fluid element follows a rectilinear
motion with a constant speed that corresponds to the gradient of
the reconstructed primordial gravitational potential. In the language
of optimal transport, the gravitational potential can be deduced from
the Lagrange multiplier of the mass conservation constraint, through
the Legendre–Fenchel transform. This characterization implies that
the potential is a convex function. In terms of physics, it implies that
there is no multistreaming in the reconstructed dynamics.

To our knowledge, in the cosmological context, one of the first
methods of this kind was by Nusser et al., who studied and exploited
the same type of relation between the initial density and velocity
field (Nusser et al. 1991).5 Later, the Monge-Ampère-Kantorovich
(MAK) cosmological reconstruction method was developed based on

2Which historically preceeds the variational calculus of Euler and Lagrange
mentioned at the beginning of this introduction.
3Where the unknown is the ‘graph’ of the function in the product space,
referred to as the ‘transport plan’. More on this in Section 3.2.
4Interestingly, this very class of PDE was also first studied by Monge during
the French revolution and later generalized by Ampère at the beginning of
the 1800’s.
5even if they do not mention the Monge–Ampère equation explicitly.

advances in optimal transport theory and subsequently solved using
a fully discrete combinatoric algorithm (Frisch et al. 2002; Brenier
et al. 2003). The algorithm was tested on simulations (Mohayaee
et al. 2003, 2006; Lavaux et al. 2008; Mohayaee & Sobolevskiı̆
2008) and also applied to galaxy redshift surveys (Mohayaee & Tully
2005; Lavaux et al. 2010) and found applications in condensed-matter
physics (e.g. Aurell et al. (2012)). However, its cubic algorithmic
complexity rendered it impractical for applications to challenging
and forefront cosmological problems such as the reconstruction of
the sound horizon at decoupling, i.e. the scale of the baryon acoustic
oscillations (BAO; Eisenstein et al. 2005, 2007b).

In this article, we design a highly efficient new algorithm, which
yields a unique solution by construction and can be applied to com-
putationally demanding problems in cosmology. We demonstrate
the efficiency and accuracy of our algorithm through the example
of BAO reconstruction. In our case, the IC is a uniform density
field (continuous), and the final one corresponds to a set of galaxies,
represented by a (discrete) set of points, hence a semidiscrete optimal
transport problem. The theory of optimal transport is written in
a mathematical language (theory of probability measures) that is
general enough to encompass such irregular settings (with mass
concentrated on points). Not only this mathematical language is
exactly what we need to model our cosmological problem, but also
it can be directly translated into a computational algorithm that can
be efficiently implemented on a computer: solving the underlying
semidiscrete Monge–Ampère equation is equivalent to minimizing
a smooth and convex function that depends on the final gravitational
potential at each discrete point. It is much faster than solving a
discrete Monge–Ampère equation, as we did before, which required
exploring a huge combinatorial space (Frisch et al. 2002; Brenier
et al. 2003). The convergence between the three aspects of the
problem (cosmology, mathematics, and computer science) results in
a new algorithm that solves the assignment problem with an empirical
complexity of NlogN (as compared to N3), and that can be applied to
reconstruction problems of unprecedented sizes: O(106) particles in
minutes, to be compared with months, and O(108) particles in hours.
Using our semidiscrete algorithm on a set of N-body simulations
taken from the AbacusCosmos suite (Garrison et al. 2018; Garrison,
Eisenstein & Pinto 2019), we examine the complexity of our
algorithm and compare reconstructed and simulated initial density
fields, their power spectra and correlation functions, starting from two
different redshifts. We show that these quantities can be accurately
reconstructed above scales of a few Mpcs with competitive numerical
speed. In particular, we show that BAO can be reconstructed with high
accuracy and speed both in the power spectrum and the correlation
function.

Indeed, the BAO scale has much decisional power, by providing
a rather robust standard ruler of cosmology. As a powerful distance
indicator, BAO measurement can probe the acceleration phase in
the expansion history of the Universe and distinguish between the
theory of general relativity and those of modified gravity. It is also
a pleasantly obvious feature of the two-point correlation function
of the galaxy field. Non-linear gravitational evolution at late times
slightly softens this feature and therewith the statistical certainty with
which the BAO scale can be determined. Beyond general (but not less
important) questions about, e.g., statistical properties of the initial
density fluctuations, undoing the non-linear evolution to obtain the
linear density field from low-redshift measurements of the large-
scale structure give strong motivation for reconstruction techniques
(e.g. Eisenstein et al. (2005), Eisenstein et al. (2007b), Seo et al.
(2010), Padmanabhan et al. (2012)). Since the pioneering variational
method of Peebles, numerous reconstruction techniques, for different
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Semidiscrete optimal transport reconstruction 1167

tasks and not just the BAO retrieval, have been proposed. Here, we
can only mention a few. Many of these methods take a probabilistic
approach (e.g. Weinberg (1992), Kitaura & Enßlin (2008), Enßlin,
Frommert & Kitaura (2009), Neyrinck, Szapudi & Szalay (2011),
Jasche & Wandelt (2013), Cautun et al. (2014), Bos, Kitaura & van
de Weygaert (2019)), a few others are perturbative (e.g. Nusser &
Dekel (1992), Gramann (1993), Kashlinsky (1998), Eisenstein et al.
(2007b), Schmittfull, Baldauf & Zaldarriaga (2017)), and many are
variational (e.g. Croft & Gaztanaga (1997), Narayanan & Croft
(1999), Monaco & Efstathiou (1999), Wang et al. (2017), Shi,
Cautun & Li (2018)). We refer the reader to section 7 of Brenier et al.
(2003) for a detailed discussion of these categories of reconstruction
methods. Here, we present our algorithm that, by contrast to many
of the other methods, yields a unique solution by construction, is
deterministic, model-independent, and computationally efficient.

This article is structured as follows: we first provide a review
of the Lagrangian dynamics in a expanding Universe and show
the generality and limitations of our two hypothesis of gradient
flow and convexity (Section 2). Then we explain old methods and
our new algorithm to solve the underlying assignment problem
(Section 3), before giving the details of our numerical solution
mechanism (Section 4). Finally, we test the algorithm against the
ABACUSCOSMOS simulations in Section 5. In Section 6, we conclude
and comment on how galaxy biasing and redshift space distortion
can be incorporated.

2 MO N G E - A M PÈ R E - K A N TO ROV I C H (M A K )
R E C O N S T RU C T I O N

2.1 Problem setting

We consider the problem of reconstructing the fluctuations in the IC
of self-gravitating matter governed by the following equations, in
Eulerian form (see Peebles (1980), or Appendix A of Brenier et al.
(2003)):

∂τ v + (v · ∇x)v = − 3
2τ

(∇xφ + v) (1)

∂τρ + ∇x · (ρv) = 0 (2)

∇2
xxφ = ρ−1

τ
(3)

where ρ is the density field defined over V ⊂ R3, φ the gravitational
potential, τ is the growth rate of structures, used as a time variable,
and normalized in such a way that τ = τ I = 0 corresponds to the IC,
and τ = τF = 1 corresponds to present time, and x denotes the co-
moving coordinates. The peculiar velocity field v is also expressed
as a function of the co-moving coordinates x.

Equation (1) is the momentum (Euler) equation. Its right-hand side
has two terms that have opposite effects: the first term (− 3

2τ
∇xφ)

corresponds to the effect of gravity, which tends to collapse struc-
tures, and the second term (− 3

2τ
v), called the Hubble–Lcemaı̂tre

drag, corresponds to the effect of expansion, which slows down the
collapsing effect of gravity. Equation (2) enforces mass conservation
(continuity equation) and equation (3) is the Poisson equation that
governs the gravitational potential.

Given the density field ρF at time τF = 1 that corresponds to
the present distribution of mass, our goal is to reconstruct the initial
fluctuations of ρ(., τ I + ε) for a small ε. One can also consider
the problem of reconstructing the full dynamics of the system ρ(τ ,
x) and v(τ , x) for τ ∈ [τ I, τF] and x ∈ V. Clearly, the problem is
under-determined but, as we shall show later, under some reasonable

simplifying assumptions, it can be replaced by a well-posed convex
optimization problem.

2.2 Lagrangian perturbation theory

One can observe that at the IC τ I = 0, for the right-hand side of
the Poisson equation (3) to be defined, density needs to be uniform
ρI(.) = ρ(., τ I) = 1. The same consideration for the right-hand side
of the momentum equation (1) implies that at the IC, the velocity
coincides with the (negated) gradient of the potential vI(.) = v(.,
τ I) = −∇xφ(., τ I). This condition, which also equivalently arises
as a solution to the linearized set of equations (1–3), is sometimes
referred to as slaving6 Consider now the Lagrangian point of view,
and focus on the mass element that is at position q at time τ I. Denote
its trajectory by x(q, τ ). Its initial speed at time τ I is given by vI(q) =
−∇qφ(q, τ I) = −∇qφI(q). In 1D, one can prove that the speed of the
mass element remains constant at any time τ (see e.g. Brenier et al.
(2003) for the proof). In other words, integrating (1), (2), and (3) in
1D results in a uniform rectilinear motion for all mass elements:

Dτ x(q, τ ) = (1/τF )(xF (q) − q) = −∇q φI (q) ∀τ (4)

x(q, τ ) = (1 − τ/τF )q + (τ/τF )xF (q) (5)

where xF(q) = x(q, τF) and where Dτ denotes the Lagrangian
derivative w.r.t. time τ . It also means that in 1D, to determine the
entire motion, one only needs to know the initial potential φI(.) =
φ(., τ I) at time τ I = 0.

In 3D, for a small time τ , the speed of a mass element is still given
by (4), but it is no longer strictly the case at any time. However it is
considered to be a reasonable approximation (Zel’dovich 1970). This
approximation means that the r.h.s. of the momentum equation (1)
vanishes. Physically, it means that the Hubble–Lemaı̂tre drag exactly
counter-balances the effect of gravity, implying that each mass
element has a uniform rectilinear motion (5). In this setting, to
reconstruct the full dynamics, one just needs to determine the V
→ V map q �→xF(q). This map is in turn completely determined by
the potential φI(.) = φ(., 0), using the relation xF(q) = q + τFvI(q) =
q − τF∇q φI(q).

At this point, given the potential φI at the IC (we will see how
to compute it in Section 4), we can reconstruct the Zel’dovich
approximation. This gives us for the mass particle that was located
at q at time τ I its position xF(q) = q − τF∇q φI(q) at the present
time τF = 1. In other words, this gives us the assignment between
the IC and the present distribution of mass from which we can obtain
the particle positions at arbitrary times (τ ), up to the first-order
Lagrangian perturbation theory, as

x(τ, q) = q + τ

τF

(xF (q) − q) . (6)

Although the assignment between q and xF is valid for as long as the
convexity holds, we limit ourselves to the first order only for obtain-
ing the particle positions at intermediate times. The main reason is
that here we test our method with the goodness of reconstruction of

6Here, the IC is considered from a mathematical point of view. From a
physical point of view, clearly, there cannot be a non-uniform potential
associated with a uniform density. In fact, it is at τ I + ε that the potential
is non-uniform, but one can make this ε arbitrarily small. In a certain sense,
one can ‘push’ the non-uniform potential from τ I + ε towards τ I: the right-
hand side of the Poisson equation for the potential (equation 3) with τ in the
denominator results in a significant potential yielded by tiny fluctuations of
the density at theIC.
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1168 B. Levy, R. Mohayaee, and S. von Hausegger

BAO. It happens that often one adds additional, broad-band, fitting
terms to the power spectrum which takes care of the mode-coupling
as well as other effects such as the shot noise. The implementation
of the second- and higher order Lagrangian perturbation theory into
our algorithm shall be reported in the forthcoming works.

2.3 Least action principle and optimal transport

One can also obtain the momentum equation (1) by extremizing the
following action integral (Brenier et al. (2003); appendix D):

I = 1

2

∫ τF

τI

∫
V

(ρ|v|2 + 3

2
|∇xφ|2)τ 3/2 d3x dτ (7)

subject to mass conservation (2), to the Poisson equation for the
potential (3), and to the boundary conditions:

ρ(., τ I ) = ρI = 1 ; ρ(., τF ) = ρF (.) (8)

where ρI denotes the (uniform) density at the IC and ρF denotes the
density map at present time τ = τF. Using the method of Lagrange
multipliers and varying ρ, one obtains the momentum equation (1).

Consider now an approximation, where the second term of the
integrand and the τ 3/2 factor are removed (Giavalisco et al. 1993),
which may be thought of as replacing the 3/2 coefficient by 3α/2 and
making α tend to zero. The action integral (7) then becomes:

I = 1

2

∫ τF

τI

∫
V

ρ|v|2 d3x dτ. (9)

Note that the integrand has only the kinetic energy, and no longer
any potential energy. This again corresponds to the Zel’dovich
approximation. Given the boundary conditions (8), now we want
to find the motion that minimizes the kinetic energy. If we have
a single mass particle, it is easy to see that minimizing the action
results in a uniform rectilinear motion (Landau & Lifshitz 1975). It
can be proved (Benamou & Brenier 2000) that this is still the case
for any number of particles, or even for a continuous density field
ρ: extremizing the action (9) means that all mass particles (or all
elementary mass elements for a continuous ρ) move in a uniform
rectilinear manner. In other words, finding the motion x(q, τ ) that
minimizes the action I on V × [τ I, τF] is equivalent to finding the
map xF: V → V that gives the position at present time xF(q) = x(q,
τF) of the mass element that was at position q at the IC τ I = 0. The
map xF minimizes the following functional:

inf
xF

∫
V

ρ(q)|q − xF (q)|2 d3q (10)

subject to mass conservation (2) and to the boundary conditions
(8). Now, it may be more natural to write mass conservation in
Lagrangian coordinates. Using ρ(x(q, τ ), τ ) = ρ(q)/(det∇qx), the
mass conservation constraint writes:

ρF (xF (q)) det
(∇q xF (q)

) = ρI ∀q (11)

The minimization of expression (10) subject to (11) is referred to
as Monge’s optimal transport problem (Monge 1784).

2.4 The convex Kantorovich potential and the Monge–Ampère
equation

Consider Monge’s optimal transport problem (10). Introducing the
Lagrange multiplier 	: V �→V associated with the constraint (11),
and using the identity |xF(q) − q|2 = xF(q)2 − 2q · xF(q) + x2,
the optimal transport problem can be written as the following saddle

point problem:

sup
xF

inf
	

[
J (xF ) =

∫
V

ρIxF (q) · q d3q

−
∫

V

	(xF (q))ρ(q) d3q +
∫

V

	(x)ρF (x) d3x
]

. (12)

Formally, the first-order optimality condition w.r.t. xF writes:

∂J

∂xF

= 0 ⇒ ρI q = ρI∇	(xF (q))

⇒ q = ∇x	(xF (q)) (13)

The second-order optimality condition writes:

∂2J

∂x2
F

≥ 0 ⇒ D2	 ≥ 0

⇒ 	 is a convex function (14)

where D2	 denotes the determinant of the Hessian matrix of 	

(the derivations above (13), (14) just give an intuition, the reader is
referred to (Brenier 1991) for a rigorous proof).

From the first-order and second-order optimality conditions, we
learn that the function x�→q that maps a mass element x at present
time τF back to its initial position q at time τ I is the gradient of a
convex potential 	 (called the Kantorovich potential).

Next, we study the forward map q �→xF. It can be observed that
the variables q and xf play a symmetric role in the optimal transport
problem. By exchanging the roles of xF↔q, one can find a similar
relation for the forward map q �→xF(q):

xF (q) = ∇q
(q) ; 
 is a convex function. (15)

It can be shown that this symmetry implies a relation between 	 and

: they are the Legendre–Fenchel transform7 of each other, given
by:

∀q,
(q) = 	∗(q) where 	∗(q) = sup
x

[x · q − 	(x)] . (16)

Next, we recall that the map xF(.) is determined by the gravitational
potential φI(.) at the IC by xF(q) = q − ∇qφI(q). This gives us
the relation between the gravitational potential φI at time τ I and the
convex Kantorovich potential 
 associated with the map q �→xF(q):

xF (q) = q − ∇qφI (q)

= ∇q
(q)

⇒ 
(q) = 1/2q2 − φI (q) (17)

The insertion of xF(q) = ∇qφ(q) into the (Lagrangian) mass
conservation constraint (11) yields

ρF (∇x
(q)) D2
(q) = ρI, (18)

where D2
(.) denotes the determinant of the Hessian matrix of 
.
equation (18) is referred to as the Monge-Ampère equation (or MA
equation for short).

In our context, the convexity of the Kantorovich potential has an
interesting consequence: it implies that there is no multistreaming
in the reconstructed dynamics. It can be proven by contraction:
Consider two distinct points q1, q2 and their images xF(q1), xF(q2)
through the xF(.) map. They move along the following trajectories:

x1(τ ) = (1 − τ )q1 + τxF (q1)

x2(τ ) = (1 − τ )q2 + τxF (q2). (19)

7The Legendre–Fenchel transform plays an important role in mechanics and
thermodynamics, since it corresponds to the relation between Hamilton and
Lagrange equations, see for instance (Landau & Lifshitz 1975), chapter 7.
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Semidiscrete optimal transport reconstruction 1169

If there was multistreaming, then there would exist a time τ such that
x1(τ ) = x2(τ ), or:

(1 − τ )q1 + τxF (q1) = (1 − τ )q2 + τxF (q2)

(1 − τ )q1 + τ∇q
(q1) = (1 − τ )q2 + τ∇q
ϕ(q2)

(1 − τ )(q2 − q1) + τ
(∇q
(q2) − ∇q
(q1)

) = 0

(1 − τ )(q2 − q1) + τ
(∇q
(q2 − q1)

) = 0. (20)

The last line in (20) contradicts the convexity of 
, that implies that
(1 − λ)(q2 − q1) + λ∇q
(q2 − q1) is strictly greater than zero for
all q1 
= q2 ∈ V and λ ∈ [0, 1] �

2.5 An overall account of this section

To summarize, given the density at present time ρF and the density
at the IC ρI = 1, our goal is to find the assignment map q �→xF(q)
that determines the assignment between the points q at the IC and
the points x at the current time. It has the following properties:

(i) xF(.) is the minimizer of

inf
xF

[∫
V

|q − xF (q)|2ρI d2q
]

subject to mass conservation (11);
(ii) xF(.) is also the gradient of the (convex) Kantorovich potential


;
(iii) 
 is the solution of the Monge–Ampère equation (18);
(iv) the convexity of 
 implies that there is no multistreaming in

the reconstructed dynamics;
(v) 
 is related to the gravitational potential at the IC φI by:


(q) = 1/2q2 − φI (q).

From the assignment map xF(.), it is (optionally) possible to
reconstruct higher order dynamics using Lagrangian perturbation
theory (Buchert 1993; Catelan 1995) and at first order using the
expression we have given in (6).

3 SOLVIN G THE A SSIGNMENT PROBLEM

In this section, we describe numerical solution mechanisms to
compute the assignment map xF(.). We first review the existing
methods that are based on a discretization of the density ρI at the IC
and a discretization of the density ρF at current time (Sections 3.1
and 3.2). Then we present our method (based on semidiscrete optimal
transport), which uses a continuous representation of the initial
density ρI and a discrete representation of the density ρF, hence
a semidiscrete method (Section 3.3).

3.1 Discrete-discrete MAK reconstruction

We consider (for now) that the density at the IC ρI and the density
at present time ρF are both represented in discrete form, by a set of
N particles. We consider that each particle i has a mass μi = 1/N:

(i) At the IC τ I, the mass distribution ρI is represented by a set
of N points qi, i = 1. . . N. Since the initial distribution of mass is
uniform at τ I, the points qi are organized on a regular grid;

(ii) at present time τF, the distribution of mass ρF is represented
by a set of (the same number N) points xj, j = 1. . . N.

In this setting, the initial problem of finding the (continuous) map
xF(.): V → V is replaced with finding which point xj corresponds to

each point qi. The discrete version of Monge’s problem (10) writes:

inf
π

∑
j

|qj − xπ(j )|2 (21)

where π : [1. . . N] → [1. . . N] is a permutation of the indices.
Note that the discrete Monge problem (21) is purely combinatorial.

Conceptually, one can imagine solving it by systematically testing
the N! possible permutations π . Clearly, it is not feasible in practice.
However, there exists more efficient algorithms which guarantee
that the optimal assignment is found. Faster assignment algorithms
have been developed with polynomial complexity (Hénon 2002;
Bertsekas & Castanon 1989). The latest algorithm developed by M.
Hénon and used in our previous works (Brenier et al. 2003), which
is a cosmological adaptation of the auction algorithm of Bertsekas,
scales approximately as N3 (for relevant details see, e.g. (Bertsekas
1992)). Later improvements of the auction algorithm allowed to make
it faster (see Mérigot & Thibert (2020), Section 3). However, even
with these improvements, these combinatorial algorithms remain
slow for all practical purposes and this has been a major obstacle for
the progress of MAK reconstruction in the past few years and since
its first application to cosmology. Such algorithms have been proved
too slow for the cosmological analyses of large data sets, or those
that require repeated reconstructions. A notable example of such an
instance is the reconstruction of detailed features of the primordial
density fluctuation field or the primordial power-spectrum and in
particular the reconstruction of the baryonic acoustic oscillations.
For a proper reconstruction of acoustic peaks, one needs to treat
extremely large data sets and/or carry reconstruction on a very large
number of simulations for a proper handling of errors.

3.2 MAK duality

We now exhibit more structure in the discrete Monge problem (21),
and its relation with the gravitational potential φI, which we will use
to design a more efficient algorithm.

Instead of searching for the (combinatorial) assignment i�→j =
π (i), we consider now the following optimization problem, intro-
duced by Kantorovich (1942):

inf
γ

∑
i

∑
j

γij |xi − qj |2 subject to (22)

∑
i

γij = μi (23)

∑
j

γij = μj (24)

γij ≥ 0 ∀i, j . (25)

The objective function (22) depends on an [1, N ]2 → R+ array of
coefficients γ ij. Intuitively, each coefficient γ ij indicates how much
matter goes from qj to xi. In this setting, matter can split and merge
between different particles, for instance, a particle qj can send half of
its matter to particle xk and the other half to particle xl (using γ jk =
γ jl = 0.5). Clearly, the mass of all the matter that gathers at a particle
xi should sum as the mass μi of the particle (constraint (23)), and the
mass of all the matter originated from a particle qj should sum as the
mass μj of the particle (constraint (24)). Since no matter disappears,
all coefficients γ ij should be positive (constraint (25)). An array of
coefficients γ ij that satisfies the three constraints is called a transport
plan (and an optimal transport plan if it minimizes (22)).

At first sight, it may seem to be a rather convoluted re-formulation
of Monge’s problem, in particular, we now need to find N2 unknowns,
to be compared with the N → N permutation we had to find initially.
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1170 B. Levy, R. Mohayaee, and S. von Hausegger

However, it can be observed that (22) is a linear optimization
problem with linear constraints. Introduce ψ ∈ RN and φ ∈ RN

the Lagrange multipliers associated with constraints (23) and (24),
respectively (note that we use the same notation ψ for the Lagrange
multiplier of the constraint (24) and the gravitational potential, we
elaborate on that in the next subsection). The dual of the optimization
problem (22) writes (see the tutorials in Villani (2009), Santambrogio
(2015), Lévy & Schwindt (2018), Mérigot & Thibert (2020), and the
references herein):

sup
ψ,φ

⎡
⎣∑

i

ψiμi +
∑

j

φjμj

⎤
⎦

subject to ψi + φj ≤ 1/2|xi − qj |2 ∀i, j . (26)

In addition, given a pair ψ , φ that satisfies the constraint (26), it is
easy to check that replacing φ with ψc still satisfies the constraints
while always increasing the objective function (26), where ψc is
defined by:

ψc
j = inf

i

[
1/2|xi − qj |2 − ψi

]
. (27)

There exists several methods that exploit the structure of the problem
(22) and its dual (26), we refer the reader to Peyré & Cuturi (2017)
and Santambrogio (2015) for a survey. Among these methods, we
mention the entropic regularized method, which solves:

inf
γ

⎡
⎣∑

i

∑
j

γij |xi − qj |2 + ε
∑

i

∑
j

γij log(γij )

⎤
⎦

subject to (23) (24) (25) (28)

where ε is a (small) regularization parameter. If both the qj’s and xi’s
are supported by regular grids, it is possible to exploit the structure
of (28) to design a fast and efficient algorithm (Cuturi 2013). The
advantage of this algorithm is its speed and simplicity. The drawbacks
are the need for re-sampling everything on regular grids and the
difficulty of tuning the parameter ε (a too large value of ε results in a
blurry, imprecise transport plan, and a too small value of ε makes the
algorithm slow to converge). Various ways of leveraging its speed
while overcoming its drawbacks , and in particular those based on
entropic regularization (Benamou et al. 2015), are currently being
studied (Benamou 2018).

In the next subsection, we describe a different method and although
the algorithm that we eventually obtain is more complicated than
those based on entropic regularized schemes, it does not depend a
regularization parameter ε, and does not require ρF to be re-sampled
on a regular grid.

3.3 Semidiscrete MAK reconstruction

Consider the discrete assignment problem expressed by (21). The
density ρI is represented by a set of N particles (qj )Nj=1 located on
a regular grid (in blue in Fig. 1A). The distribution of mass ρF at
current time is a set of N particles (xi)Ni=1 (in red in the figure).
Suppose one wishes to increase the precision by using a finer grid
for the qj’s. For instance, in Fig. 1(B), four points qj are coupled
to each point xi. Up to now, we supposed that there was the same
number of points on both sides, but one may imagine that each xi

is replaced by four points located at the same position with 1/4 the
mass allocated to each of them. We can further refine the grid, as
shown in Fig. 1(C), where 16 points qj are coupled to each point xi.
Clearly, doing so will significantly increase computation time, but
consider now that the number of qj particles tends to infinity, while

Figure 1. From discrete-discrete to semidiscrete transport. (A): coupling
between the xi points (in red) and the qj points (in blue). (B): each red xi

point is coupled with 4 qj points, each of them with 1/4 the mass. (C): each
red xi point is coupled with 16 qj points. (D): at the limit, when the number
of qj points tends to infinity, it can be proved that the optimal assignment
couples each xi point with a polygonal area (called a Laguerre cell).

each particle’s mass tends to zero accordingly. At the limit, ρI tends
to the uniform density, while ρF is still supported by the set of points
(xi).

The above setting corresponds exactly to our early universe
reconstruction problem, where the initial density ρI is uniform, and
the density at present time ρF corresponds to a set of galaxies, each of
them represented by a single point xi. In this setting, as detailed below,
it can be proved that each point xi is coupled to a polyhedral region
(or polygonal in 2D, see Fig. 1D) that can be computed explicitly by
an algorithm. Not only the so-computed result is more precise, but
also the algorithm is much faster than the combinatorial one used in
Fig. 1(A–C).

Next, we give more details about these polyhedral regions by
first considering the dual problem in expression (26). The relation
between the primal and dual problem that we wrote in the discrete-
discrete setting remains valid in our continuous-discrete case (with
integrals instead of discrete sums), and the dual problem writes:

sup
φ,ψ

[∫
V

φ(q)ρI d3q +
∫

V

ψ(x)ρF (x) d3x
]

subject to φ(q) + ψ(x) ≤ 1/2|x − q|2 ∀x, q. (29)

We recall that ρF is discrete, supported by the xi’s. Then the Lagrange
multiplier ψ is determined by the vector ψ i = ψ(xi), and the dual
problem becomes:

sup
φ,ψ

[∫
V

φ(q)ρI d3q +
∑

i

ψiμi

]

subject to φ(q) + ψi ≤ 1/2|xi − q|2 ∀xi , q (30)

MNRAS 506, 1165–1185 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/1/1165/6300452 by C
N

R
S - ISTO

 user on 06 July 2023



Semidiscrete optimal transport reconstruction 1171

The optimization problem depends on a vector of N values (ψ i) and
a function φ : V → R. As we mentioned, replacement of φ by ψc

defined in (27) always increases the objective function, thus we can
now deduce φ = ψc from ψ and consider the following optimization
problem:

sup
ψ

[∫
V

inf
i

[
1/2|xi − q|2 − ψi

]
ρId3q +

∑
i

ψiμi

]

subject to ψcc = ψ (31)

that solely depends on a vector ψ of N components. The constraint
in (31) ensures that ψ is such that there can exist at least one pair φ,
ψ that satisfies (26). It also means that the associated Kantorovich
potentials 
, 	 (Section 2.4) are convex.

Consider now the integrand of (31). It is possible to partition V
into the set of N regions (V ψ

i ), defined according to the index i that
realizes the infimum in the integrand of (31). This lets rearrange the
integral as follows:

sup
ψ

[∑
i

∫
V

ψ
i

1/2
[|xi − q|2 − ψi

]
ρId3q +

∑
i

ψiμi

]

subject to V
ψ

i 
= ∅ ∀i (32)

where

V
ψ

i = {
q | 1/2|xi − q|2 − ψi < 1/2|xj − q|2 − ψj ∀j 
= i

}
.

(33)

The so-defined partition of V into the regions V
ψ
i is called a

Laguerre diagram (or power diagram in our specific case). An
individual region is called a Laguerre cell. Laguerre diagram is
a generalization of Voronoi diagram, parametrized by the vector
ψ ∈ RN . If ψ i = 0 for all i, then the Laguerre diagram is a Voronoi
diagram. The use of Voronoi diagrams in cosmology was pioneered
by van de Weygaert in the 90s to analyse the distribution of matter in
the Universe (van de Weygaert 1994). Another famous example of
Voronoi diagrams used in cosmology is the ALE8 code developped
by White & Springel (1999).

To summarize the derivations above, the Laguerre diagram appears
as the combinatorial structure arising from extremizing the simplified
action. This is the main reason for using this geometrical structure
for our algorithm. Besides that, one may ask why Voronoi diagrams
do not suffice in our case. We give some additional intuition here: a
Voronoi diagram can be composed of cells with arbitrary volumes,
depending on the position of the points. For instance, in zones where
points are clustered, Voronoi cells are smaller. In our setting, we want
to constrain the volumes of the cells: they should all be the same.
Cell volumes can be (indirectly) controlled through the additional
vector ψ , which corresponds to the gravitational potential and that
is obtained by solving the semidiscrete Monge–Ampère equation.
Besides the need of controlling the volumes, we need to overcome
another constraint Voronoi diagrams have in this context: a Voronoi
cell always contains the point it is associated with, whereas this
constraint does not exist with Laguerre diagrams. Physically, it means
that the matter that ended up at a given point may have come from
an arbitrary location in space that may be further away than the
immediate (Voronoi) neighbourhood of the point.

Examples of Laguerre diagrams in 2D and 3D are shown in Fig. 2.
The Laguerre diagram is completely defined by the points (xi)Ni=1 and
the vector ψ ∈ RN of coefficients. Note that in contrast to a Voronoi

8Arbitrary Lagrangian Eulerian.

Figure 2. (A): the Laguerre cell V
ψ
i associated with the point xi does not

necessarily contain xi. (B): a 2D Laguerre diagram with 1500 cells. (C and
D): a 3D Laguerre diagram with 1500 cells and a cross-section (cells are
slightly shrunk to ease visualization).

cell, depending on the vector ψ , the Laguerre cell V ψ
i associated with

a point xi does not necessarily contain xi (see Fig. 2A)). It is even
possible for a cell V

ψ

i to be empty. The examples shown in Fig. 2
are solutions of the optimal transport problem, thus all cells have the
same area/volume. They have different shapes though, this is because
the MA equation is non-linear, with potentially a highly anisotropic
solution. This anisotropy influences the shapes of the Laguerre cells.

In terms of the Laguerre diagram, the convexity constraint (31)
means that no Laguerre cell is empty (32). The notion of Laguerre
diagram is well known and well studied in computational geometry
(Aurenhammer 1987), this equips us with efficient computational
tools to solve the optimization problem (32), as explained in the next
section.

The solution to the optimization problem (32) results in a vector
ψ of N coefficients, from which one can subsequently deduce the
gravitational potential φI using the relation φI = ψc, or:

φI (q) = inf
i

[
1/2|q − xi |2 − ψi

]
= 1/2|q − xi(q)|2 − ψi(q) , (34)

where i(q) is the index of the Laguerre cell Vi that contains q. Note
that all the q’s located in the Laguerre cell V

ψ

i are mapped to xi

through xF(.):

xF (q) = q − ∇qφI (q)

= q − ∇q

(
1/2|q − xi(q)|2 − ψi(q)

)
= xi(q). (35)

To summarize, the solution of the optimization problem (32) gives a
vector (ψ i) of N coefficients. These coefficients define a partition of
V into N Laguerre cells (V ψ

i ). Each Laguerre cell V
ψ

i corresponds
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1172 B. Levy, R. Mohayaee, and S. von Hausegger

to the (continuous) set of points q at the IC that collapses into a
given point xi at current time. In other words, the Laguerre cell V

ψ

i

corresponds to the pre-image of xi through xF.

4 NUMER ICAL SOLUTION MECHANISM

Let us denote by K(ψ) : RN → R the objective function of the
optimization problem (32):

K(ψ) =
∑

i

∫
V

ψ
i

[
1/2|xi − q|2 − ψiρI

]
d3q +

∑
i

ψiμi (36)

It can be shown that K(.) is a concave C2 function, which suggests that
it can be efficiently maximized by a Newton algorithm (Aurenham-
mer, Hoffmann & Aronov 1992; Lévy 2015; Kitagawa, Mérigot &
Thibert 2016). The Newton algorithm iteratively maximizes second-
order approximations of K(.) until it converges to the (unique)
maximum. A 2D example of the Laguerre diagrams corresponding
to each iteration is shown in Fig. 3. The algorithm starts with ψ = 0,
then updates ψ by solving a series of linear system. In the end, the
algorithm finds the unique solution, and all the Laguerre cells have
the prescribed volumes.

The algorithm has two main components, a numerical component
that computes the second-order estimates of K (Section 4.1), and
a geometrical component that computes the associated series of
Laguerre diagram (Section 4.2). The output of the algorithm is a
Lagrangian representation. To ease inter-operability with classical
tools, such as NBODYKIT, we describe a method to convert the output
of our algorithm into Eulerian grids (Section 4.3).

4.1 Numerical aspects

Newton’s algorithm for semidiscrete optimal transport can be sum-
marized as follows:

Input: − the set of N points xi ∈ V = [0, 1]3

− the masses μi such that
∑

i μi = 1
(for instance, μi = 1/N )

Output: −the (unique) vector ψ ∈ RN that maximizes K(.)
−the Laguerre cells (V ψ

i )Ni=1 that give for each xi

the (continuous) set of q points mapped to xi .

(1) : ψ ← [0 . . . 0]
(2) : Loop
(3) : Compute the Laguerre diagram (V ψ

i )Ni=1

(4) : Compute the gradient ∇K(ψ)
(5) : If ‖∇K(ψ)‖∞ < ε then Exit loop
(6) : Compute the Hessian matrix ∇2K(ψ)
(7) : Solve for p ∈ Rn in ∇2K(ψ)p = −∇K(ψ)
(8) : Find the descent parameter α

(9) : ψ ← ψ + αp
(10) : End loop

Fig. 3 shows some iterations of the Newton algorithm: the vector
ψ is optimized until each Laguerre cell V

ψ
i has the prescribed area

μi = 1/N.
The algorithm above needs to compute multiple evaluations of the

gradient and Hessian matrix of K(.). The coefficients of the gradient
and Hessian matrix can be deduced from the Laguerre diagram
(V ψ

i )Ni=1 that is computed at step (3). The associated algorithm is
detailed later in the next subsection on the geometric aspects. Once
the Laguerre diagram is computed, the coefficients ∂K/∂ψ i of the
gradient ∇K(.) are given by the following expression (Kitagawa et al.

(2016), Lévy & Schwindt (2018)):

∂K

∂ψi

= μi −
∫

V
ψ
i

ρId3q. (37)

In other words, this corresponds to the mass μi associated with a point
xi at present time, minus the mass of the matter that was transported
there through the assignment map xF(.) (remember that the region
transported to xi corresponds to V

ψ

i ). For the vector ψ that maximizes
K(.), all components of the gradient vanish, which means that each
Laguerre cell V

ψ

i has exactly the prescribed mass μi. Since ρI(.) is
uniform, the integrated density over V

ψ

i simply corresponds to the
volume of V

ψ

i (but the formula above is valid for an arbitrary ρI(.)
density).

This expression of the gradient leads also to a natural stopping
criterion (line 5), the largest component of the gradient corresponds
to the maximum error of transported mass. We stop the algorithm as
soon as it is smaller than a prescribed ε (typically one per cent of μi

that is, ε = 0.01/N).
We now consider the Hessian matrix computed at step (6). Still

following (Kitagawa et al. 2016; Lévy & Schwindt 2018), its
coefficients are given by:

∂2K

∂ψi∂ψj

= 1

2‖xj − xi‖
∫

V
ψ
ij

ρId3q if i 
= j

∂2K

∂ψ2
i

= −
∑
j 
=i

∂2K

∂ψi∂ψj

(38)

where V
ψ

ij denotes the polygonal facet that is common to the Laguerre
cell Vi and Vj. Note that the Hessian matrix is sparse, and has a non-
zero entry at coefficient (i, j) if and only if the Laguerre cells V

ψ

i and
V

ψ

j touch each other along a common facet.
Remark: the Hessian matrix coincides with the Finite Element P1

Laplacian. It can be explained as follows: the MA equation can be
considered as a non-linear generalization of the Poisson equation,
and its second-order expansion in the Newton algorithm naturally
corresponds to the Laplacian.

Step (7) of the algorithm computes the Newton step vector
p, by solving a linear system. This linear system is typical of a
Poisson equation discretized with Finite Elements, and can be
solved using classical methods: we use the Conjugate Gradient
algorithm (Hestenes & Stiefel 1952) pre-conditioned by Jacobi.
The (sparse) Hessian matrix is stored using the Compressed Row
Storage format, constructed and assembled using a specialized and
highly optimized algorithm, interfaced with the Laguerre diagram.
To tune the stopping criterion of the Conjugate Gradient algorithm,
we used as a ‘ground truth’ a direct solver (SuperLU) on small point
sets (thousands of points). For solving the linear system Hp = −g,
we found that the stopping criterion |Hp − g|/|g| ≤ 10−3 results in
nearly the same step vector p as with the direct solver.

We implemented two versions of the linear solver, a multithreaded
CPU version and a GPU version. On a high-end GPU (NVidia
V100), the algorithm is typically 45 times faster (90 GFlops) than
the multithreaded CPU version (2 GFlops).

Once the step vector p is computed, we need to find a good descent
parameter α. The KMT algorithm (Kitagawa et al. 2016), provably
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Semidiscrete optimal transport reconstruction 1173

Figure 3. Newton’s algorithm applied to a 2D problem with 10 000 points. Iterations 0, 4, 8, and 12. At iteration 12, all cells have the same area (largest cell
area error is smaller than 1 per cent). The diagram is the unique optimal transport solution.

convergent, works as follows:

(1) : α ← 1
(2) : Loop
(3) : If infi |V ψ+αp

i | > a0

(4) : and |∇K(ψ + αp)| ≤ (1 − α/2)|∇K(ψ)|
(5) : then Exit loop
(6) : α ← α/2
(7) : Compute Laguerre diagram (V ψ+αp

i )Ni=1

(8) : End loop

where a0 = 1
2 min

(
infi |V 0

i |, infi(μi)
)

and where |V ψ

i | denotes the
volume of a Laguerre cell.

The KMT algorithm iteratively halves the descent parameter α

until two criteria are met: the volume of the smallest Laguerre cell
needs to be larger than a threshold a0 (line 3), and the norm of
the gradient needs to decrease sufficiently (line 4). The threshold
a0 for the minimum Laguerre cell volume corresponds to (half) the
minimum Laguerre cell volume for ψ = 0 (also called Voronoi
diagram) and minimum prescribed area μi (in our case 1/N).

Equipped with the KMT algorithm above, we can now compute
the descent parameter α, by plugging the algorithm above into line
(8) of the Newton algorithm at the beginning of this section.

The only thing we need to explain now is how to compute a
Laguerre diagram.

4.2 Geometrical aspects

To compute the Laguerre diagram, we use the classical algorithm
developed simultaneously by Bowyer and Watson (Bowyer 1981;

Figure 4. Internally, the Laguerre diagram is represented by its dual
structure, called the regular triangulation (in grey).

Watson 1981; initially for Voronoi diagrams). We do not completely
detail this algorithm, but give the general idea below. Then we
mention some specificities of our implementation.

4.2.1 Bowyer-Watson and the dual triangulation

While it would be possible to directly represent the poly-
gons/polyhedra of the Laguerre diagram, it would be costly, because
each polygon/polyhedron can have a different number of vertices.
The Bowyer–Watson algorithm uses the dual triangulation instead,
displayed in grey in Fig. 4: each Laguerre vertex is shared by three
Laguerre cells. Thus, what is represented in the computer is the set
of (i, j, k) indices triplets such that the Laguerre cells V

ψ

i , V
ψ

j , and

V
ψ

k have a common vertex. This forms a triangulation of the point set
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1174 B. Levy, R. Mohayaee, and S. von Hausegger

Figure 5. (A): the Hilbert curve. (B): a 2D Hilbert-ordered point set. (C): a
3D Hilbert-ordered point set. (D): adaptive Hilbert ordering using the median,
resulting in a balanced Hilbert curve, adapted to an heterogeneous point set.

(xi)Ni=1, known as the regular triangulation (Aurenhammer 1987). In
3D, each Laguerre vertex is shared by four Laguerre cells, and the
dual structure is made of (i, j, k, l) tetrahedra (instead of triangles in
2D).

This triangulation is constructed by inserting the points xi one by
one. Each time a point xi is inserted, the triangles/tetrahedra that
correspond to the Laguerre vertices that fall inside the cell V

ψ
i of

xi are discarded, and the triangles that correspond to the vertices of
V

ψ

i are created. The Boywer–Watson algorithm uses the fact that
the set of triangles to be discarded is connected, and comprises the
triangle that contains xi. This remark makes it possible to speed-up
the algorithm: starting from the triangle that contains xi, found by
navigating the triangulation, a greedy algorithm traverses the set of
triangles to be discarded. This dramatically reduces the number of
triangles to be tested.

4.2.2 Spatial sorting

At this point, the execution time is dominated by finding the
triangle/tetrahedron that contains each point xi. In 3D, starting from
a random tetrahedron, the algorithm needs to traverse an average of

3
√

N tetrahedra to find the one that contains xi.
The algorithm is made significantly faster by sorting the vertices

spatially (Amenta, Choi & Rote 2003; Alauzet & Loseille 2009),
along the Hilbert curve (see Fig. 5A). Sorting the vertices this way
ensures that two points near to each other in 3D are mapped to close
indices. Hilbert sorting is classical in high performance large-scale
cosmological simulation, for instance, it is a key component of the
code used in the DEUS project (Reverdy et al. 2015). Fig. 5B and C
shows what the computed order looks like for a homogeneous point
distribution. In our case, the distribution of points can be highly
heterogeneous, with a large number of points clustered in some

zones. As suggested in Delage & Devillers (2004), to make the
ordering well adapted to the point distribution, we use the median
of the points coordinates to hierarchically subdivide the domain, see
Fig. 5(D) for a 2D example.

Each time a new point is inserted, the tetrahedron that contains it is
searched by navigating the triangulation starting from a tetrahedron
incident to the previously inserted point. Since points with consecu-
tive indices are near to each other in 3D, this considerably reduces
the number of traversed tetrahedra (from 3

√
N to typically 10–20).

Spatial sorting not only accelerates the computation of the
Laguerre diagram, but also it speeds-up the iterative conjugate
gradient solver: since it maps neighbouring points to as-contiguous-
as-possible locations in memory, it significantly improves cache
locality. Without spatial sorting, on the GPU, we obtain 70 GFlops
without it and 90 GFlops with it. On the CPU, we obtain 1.5 GFlops
without it and 2 GFlops with it.

4.2.3 Numerical precision and geometric predicates

To determine which tetrahedron needs to be created or discarded, the
algorithm needs to take combinatorial decisions based on the relative
locations of some geometric elements. So the algorithm depends on a
limited number of functions, called geometric predicates. A predicate
is a function that takes as arguments a set of points xi, xj, xk. . . and
ψ i, ψ j, ψk. . . coefficients, and that returns a discrete value −1, 0,
or +1. For computing a Laguerre diagram, we need two geometric
predicates:

(i) orient , which indicates whether the three vectors (xj − xi, xk

− xi, and xl − xi) form a direct (+ 1), degenerate (0), or indirect (-1)
basis. It is used to navigate the triangulation and find the tetrahedron
that contains xi:

orient(xi , xj , xk, xl) = sign

∣∣∣∣∣∣
xj − xi yj − yi zj − zi

xk − xi yk − yi zk − zi

xl − xi yl − yi zl − zi

∣∣∣∣∣∣;
(ii) conf lict , which indicates whether the Laguerre vertex that

corresponds to the tetrahedron (j, k, l, and m) falls inside the Laguerre
cell V

ψ

i of xi (+ 1), on its boundary (0) or outside (-1). It is used to
determine which tetrahedra need to be discarded when inserting xi

in the diagram:

conf lict(xi , xj , xk, xl , xm, ψi, ψj , ψk, ψl, ψm) =

sign

∣∣∣∣∣∣∣∣
xj − xi yj − yi zj − zi hj − hi

xk − xi yk − yi zk − zi hk − hi

xl − xi yl − yi zl − zi hl − hi

xm − xi ym − yi zm − zi hm − hi

∣∣∣∣∣∣∣∣
,

where hi = x2
i + y2

i + z2
i − ψi (resp. j, k, l,m).

The two predicates orient and conf lict correspond to the sign
of polynomials of the points coordinates and coefficients of ψ . It
is of crucial importance that these signs are coherent: for instance,
if at one moment the algorithm considers that point xi is strictly
above point xj, the algorithm should not consider later that xj is
strictly above xi, else it will create a triangulation that is not coherent.
Since floating point numbers have a limited precision, avoiding this
type of inconsistencies requires special care. It is especially true
in our case, since we are computing a large number of Laguerre
diagrams (typically tenths) with a huge number of points (typically
tenths millions). In the 2000s, it was a major obstacle to the early
development of cosmological codes with the semidiscrete setting
in 3D. To ensure that the combinatorial decisions taken by the
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Semidiscrete optimal transport reconstruction 1175

algorithm are coherent, we developed the Predicate Construction Kit
programming language (Lévy 2016), which transforms the formula
of a predicate into a function that evaluates the exact sign. We used it
to implementorient,conflict, and other specialized predicates
(Yan et al. 2010) involved in the periodic boundary condition (next
paragraph). Internally, we use exact expansion-based arithmetic
(Shewchuk 1997) that represent each number by an array of double-
precision floating point numbers. To speed-up computations, we also
use arithmetic filters (Meyer & Pion 2008) that quickly determine
the signs in the easy cases and avoid costly expansion-arithmetic
computations in most cases. Finally, we use symbolic perturbation
(Edelsbrunner & Mücke 1990) to ensure that the decisions remain
coherent even in degenerate configurations.

4.2.4 Periodic boundary conditions

Remember that our computational domain V is the unit cube [0,
1]3 with periodic boundary conditions. With earlier discrete-discrete
methods, like the ‘auctions’ algorithm, it is easy to take this into
account: each time the squared distance |xi − xj|2 needs to be
computed, it is replaced with:

min27
k=1|xi − Tk(xj )|2,

where Tk denotes one of the 27 possible translations obtained using
−1,0,1 coordinates.

In our case, the situation is more complicated, because we need
to compute the (continuous) Laguerre diagram. A trivial solution
consists in copying the points 27 times (and keep only the centre part
with zero translation). Clearly this would dramatically increase the
computation time. What we do instead is first computing the Laguerre
diagram of the points, then determining which cell intersects the
boundary of the [0, 1]3 cube, and copy these points with the right
translations, depending on which face, edge, or vertex of the cube
was intersected (Yan et al. 2011). Note that the (back-translated)
neighbours of these translated points need to be inserted as well.
This typically concerns 5–10 per cent of the points (1.1 times, to
be compared with 27 times). Fig. 6(A) shows an example of a
2D periodic Laguerre diagram. The diagram paves the 2D space
(Fig. 6B). Fig. 6 shows a 3D example (that paves the 3D space).

For the sake of completeness, we also mention the alternative
approach in (Caroli & Teillaud 2009) for computing periodic La-
guerre diagrams that is more elegant theoretically. It iteratively inserts
the vertices, starting with 27 copies, then it switches to a periodic
triangulation where each vertex and tetrahedron is only represented
once, with combinatorics that represent the periodic space, as soon
as a criterion on the points location and ψ i’s is respected. However,
while their approach works well in practice for Voronoi diagrams
(with ψ = 0), their criterion is never met in our case, resulting in 27
copies, because the ψ i coefficients vary too much. Moreover, even
with a single copy, the memory consumption of the data structures
they use (CGAL library, pointer-based) makes it not practical for
large-scale cosmological simulations.

4.2.5 Multicore

The Bowyer–Watson algorithm is not well suited to multicore
parallelization, because it inserts the points one by one in a way
that globally updates the diagram under construction. However, still
using spatial sorting, it is possible to split the point set into batches
that are geometrically well separated and unlikely to interact. Each
batch is assigned to a different thread. Then all the threads insert

Figure 6. Laguerre diagrams with periodic boundary conditions in 2D and
in 3D.

their batches of points into the diagram simultaneously. We use light
weight synchronization primitives (spinlocks) to detect whenever
two threads try to modify the same tetrahedron. Such conflicts are
resolved by rolling back the involved modifications of the diagram,
and redoing them in sequential mode. In our computations, for a
80 million points diagram, typically a few tenth of conflicts are
encountered (performance penalty is negligible).

4.2.6 Performance of Laguerre diagram computation

We measured the time used by our algorithm to compute a single
Laguerre diagram. Statistics for point sets of different sizes are
reported in the table below (as computed on an Intel Xeon 5122
3.6 GHz CPU):

nb points 1M 2M 4M 8M 16M 85M

time 2.8 s 5.4 s 10 s 20 s 44 s 451 s

4.2.7 Performance of SDMAK reconstruction

As can be seen in Fig. 7, the computation time indeed scales
as O (N log N ), massively outperforming previous approaches. To
provide a realistic setting within which we aim to use this algorithm,
we employ snapshots from the cosmological N-body simulation
suite ABACUSCOSMOS (Garrison et al. 2018; see next section).
The convergence time of the reconstruction among others slightly
depends on the degree to which non-linear clustering has occurred in
the samples. We therefore run the complexity analysis on snapshots
of different redshifts, where per sample size N, the particles are kept
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1176 B. Levy, R. Mohayaee, and S. von Hausegger

Figure 7. Empirical computational complexity of the semidiscrete algo-
rithm, running on an Intel Xeon 5122 3.6 GHz with 128 Gb RAM and an
NVidia V100 GPU with 16 Gb RAM. Tests were done on ABACUSCOSMOS

simulations. The reconstructions were performed on particle samples of
different sizes at redshifts of zs = 0.3, 0.7, and 1.5, resulting in different
computation times (grey dots). Due to increase of non-linearities towards
lower redshifts, the reconstructions generally perform faster at higher red-
shifts. This is shown by the data points, and emphasized by analytical fits to
those points (red lines).

across redshifts, and find that the computation time increases with
decreasing redshift.

A timing breakdown for a run on a 2M point data set is reported
in the table below:

T otal Lag. LinSolve grad. Hess. Other

time 453 s 147 s 255 s 22 s 27 s 2 s
per cent 100 per cent 32.5 per cent 56 per cent 4.8 per cent 5.9 per cent 0.8 per cent

In this example, the algorithm converged in 16 iterations. Timing is
dominated by the linear solve phase (56 per cent of total time). The
other costly phase is computing Laguerre diagrams (32.5 per cent).
The rest of the timing is mostly spent in computing the gradient and
assembling the Hessian of the objective function (less than 10 per cent
for both).

We now report timings for the same numerical experiment, but
this time running the linear solver on the GPU (Quadro T2000):

T otal Lag. LinSolve grad. Hess. Other

time 261 s 140 s 73 s 21 s 25 s 2 s
per cent 100 per cent 53 per cent 28 per cent 8.2 per cent 10 per cent 0.8 per cent

Using our GPU version of the linear solver significantly reduces
execution time. It will be possible to further reduce execution time
by also computing the Laguerre diagram on the GPU (Ray et al.
2018). However, note that efficiently using the GPU is only possible
for problems that fit in GPU memory (typically up to a few tens of
millions of points).

4.3 Lagrangian to Eulerian conversion

The result of our algorithm is a Lagrangian representation, that is,
Laguerre cells linearly interpolated to the points xi by equation (6).
From this representation, it is possible to generate an Eulerian grid.
Intuitively, this Lagrangian-to-Eulerian conversion means ’painting’
the Laguerre cells into the regular grid (see Fig. 8), which can be
done at any redshift zs by moving the vertices of the Laguerre cell
using equation (39) page 30. All the cells of the Laguerre diagram
are subsequently ’painted’ on to the grid in parallel, by determining
the regular grid cells contained by each Laguerre cell. Along the
boundary of the shrunken Laguerre cell, we compute the intersection
volume between the Laguerre cell and the grid cells. Since both
objects (Laguerre cell and grid cell) are convex, their intersection can

Figure 8. Converting from Lagrangian (Laguerre cell) to Eulerian (density
grid) by measuring the area of the intersection between the Laguerre cell and
the grid cells, in 2D (top) and in 3D (bottom).

be easily computed using a dual representation, see Aurenhammer
(1987) and references herein for more details.

This Lagrangian-to-Eulerian conversion typically takes 30 minutes
for converting a 16 million cells Laguerre diagram into a 5123

Eulerian density grid.

5 TESTS OF THE SEMI DI SCRETE
A L G O R I T H M W I T H C O S M O L O G I C A L
SI MULATI ONS

Finally, we put our algorithm to the proof. We employ a set of
cosmological N-body simulations, in specific, 10 simulations from
the ABACUSCOSMOS suite (Garrison et al. 2018, 2019).9 We present
results of both qualitative and quantitative measures, which capture
the basic capability of our code, and further highlight its special
features.

The simulations: The main field of application for reconstruction
algorithms is the recovery of the linearly perturbed density field,
e.g. for improving the precision with which BAO can be measured.
At the same time, we aim to test our algorithm on smaller scales,
where high resolution simulations are required. We select ten ‘Aba-
cusCosmos 1100box planck’ simulations from the ABACUSCOSMOS

suite, which are highly resolved large-scale simulations for �CDM
cosmologies with parameters fixed to those of Ade et al. (2016).
Each of the ten simulations has a box size of (1100 h−1Mpc)3 and,
for most of what follows, we sample 2563 of the 14403 particles with

9https://lgarrison.github.io/AbacusCosmos/
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Semidiscrete optimal transport reconstruction 1177

which each simulation was run. For later visualization and for the
computation of power spectra, we paint the particle positions on to a
mesh of size 5123 by use of the PYTHON package NBODYKIT10 (Hand
et al. 2018b).

While snapshots of the simulations are provided at a range of
low redshifts, namely z =0.3, 0.5, 0.7, 1.0, and 1.5, we additionally
generate the density field corresponding to their ICs at z = 49.0 via
ZELDOVICHPLT11 (Garrison et al. 2016). Also the density field is cast
on to a mesh of size 5123.

The reconstructions: We begin by computing the Laguerre diagram
of a simulation’s snapshot at a given redshift, zs, as described in
Section 4. This assigns to each point xi the Laguerre cell V

ψ

i . Recall
that each Laguerre cell V

ψ
i represents the set of mass elements at

initial positions q in Lagrangian coordinates arriving at a given point
xi. The first-order Lagrangian approximation for the motion of each
mass element as a function of the redshift zf, i.e. the Zel’dovich
approximation, is given by equation (5), which we rephrase here for
convenience:

x(zf ) = q + D(zf )

D(zs)
(x(zs) − q), (39)

where D(z) are the linear growth factors at redshifts z, which in our
case are taken from the ABACUSCOSMOS simulations themselves.12

To this effect, each cell V
ψ

i at the IC is shrunk towards a single
point xi at the current time by interpolation, such that each mass
element q undergoes the motion governed by equation (39). In order
to analyse the reconstructed density field (e.g. by computing its
correlation function or power spectrum), we need to compute the
Fourier transform of the corresponding density field. While it is
possible to compute the Fourier transform of a Laguerre diagram
(Wuttke 2017), it is computationally very expensive. Hence, we
simply convert our Lagrangian representation (Laguerre cells) into
an Eulerian one (regular grid), as explained in Appendix 4.3. Once
the density is represented in Euler form, we can use standard tools
based on the Fast Fourier Transform (FFT).

In the following subsections we mainly focus on the computation
of the initial positions of 2563 particles from two of the available
redshifts – the lowest available redshift, zs = 0.3, and the highest
available, zs = 1.5 – that can be seen as representative for low-
and high-redshift samples of present galaxy surveys. We estimate
the algorithm’s accuracy by reconstructing the density at zf = 49 in
order to compare with the linear density corresponding to each of the
simulations. We present a non-exhaustive range of tests concerning
the accuracy of the reconstruction algorithm as well as the ability to
extract cosmological information from the obtained reconstructions.

5.1 Qualitative diagnostics

5.1.1 Density slices

First, we present a purely visual comparison between the recon-
structed and true density at zf = 49 by the example of a single
simulation. Fig. 9 shows the density contrast as computed on a 5123-
cell mesh averaged over a slice roughly of dimensions (500 × 500 ×
10)h−1Mpc, as well as a (150 × 150 × 10)h−1Mpc zoom-in to

10https://github.com/bccp/nbodykit/
11https://github.com/lgarrison/zeldovich-PLT
12In practice, when the exact growth factors are not known, it suffices to use
approximate values for a fiducial cosmology, for e.g. Lukic et al. (2007), and
to relate the resulting amplitudes of the reconstructed linear densities to the
correct amplitudes by a constant bias, cf. Section 5.2.

highlight details on comparably smaller scales. Each slice was further
smoothed with a S = 2 h−1Mpc Gaussian filter13 to remove noise on
the smallest scales. The left-hand panels show the slice in the original,
zs = 0.3, snapshot that exhibits strongly pronounced over-dense
regions. The centre panels show the same slices in the zf = 49 IC and
the reconstructed density contrast, respectively, and are nearly indis-
tinguishable. The right-hand panels highlight differences between
the initial and the reconstructed density contrast. All slices have
been scaled with the linear growth factor to match the amplitudes
at zf = 0.3. This rather qualitative comparison already anticipates
corresponding agreement between more quantitative measures that
are presented in the following paragraphs.

5.1.2 1-point distributions

As a second qualitative diagnostic, we show the one-point distribu-
tion function of the smoothed densities in all three, original, initial,
and reconstruction, see Fig. 10. Note that again the density contrasts
were scaled linearly to match the growth at zf = 0.3. The left-
hand panel, zs = 0.3, highlights the known skewed distribution
of the density contrast in the non-linearly evolved universe with
highly collapsed overdensities among a mostly underdense matter
distribution. This stands in contrast to the (by construction) Gaussian
distribution seen at zf = 49. As is intuitive, our reconstruction leads
to an almost Gaussian density contrast, which exhibits only weak
skewness due to residuals of the very non-linear structures at the input
re-shift. The idea to morph the skewed density contrast to become
more Gaussian has indeed inspired some of the first variants on recon-
struction methods, so-called Gaussianization techniques (Weinberg
1992). Comparisons of one-point distributions of true and recon-
structed density contrasts can also be found in e.g. Schmittfull et al.
(2017).

5.2 Cosmological quantities

We here characterize the power spectra and correlation functions of
our reconstructions by comparing them with their linear expectations,
both individually and after averaging. We account for various noise
contributions, such as sample variances, shot noise, and conventional
broad-band power contributions, and finally demonstrate the recon-
structions’ excellent agreement with their expectation.

5.2.1 Power spectra

Even though the ultimate goal is to obtain a good estimate of
the true power spectrum, which underlies any particle sample,
‘cosmic sample’ variance – arising from selecting a particular box
of the simulated universe – is an unyielding obstacle inherent to
any such endeavour. However, for the sake of inspecting only the
power induced (or deduced) by our reconstruction algorithm, we
here compare the power spectra of simulation and reconstruction
for each simulation, respectively, thereby artificially circumventing
cosmological sample variance. This approach might prove helpful in
future work, when biases potentially present in our reconstruction,
should be removed from reconstructions of real data. A second source
of sample variance – in the following referred-to as ‘subsample’
variance – appears when sampling the density field with a finite
number of particles. To avoid the false impression of not recovering
the expected power on large scales, we here create a set of five

13The smoothing filter used here is defined as WS(k) = exp [ − k2S2].
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1178 B. Levy, R. Mohayaee, and S. von Hausegger

Figure 9. Slices of snapshots and reconstruction of an ABACUSCOSMOS simulation. The panels show the same (500 × 500 × 10) h−3Mpc3 slice of the density
contrast (top panels) as well as a (150 × 150 × 10) h−3Mpc3 zoom-in (bottom panels, marked by white dashed lines), smoothed with a 2 h−1Mpc Gaussian
kernel to remove small-scale noise in the reconstruction. All slices have been scaled to match the linear growth amplitude at z = 0.3.

Figure 10. Histograms of the density contrast δ corresponding to the left three images depicted in Fig. 9.

subsamples per simulation, each with the same number of particles,
yet selected with different random seeds. For each simulation i and
subsample j, we compute the power spectrum P rec

ij (k) of the sample
reconstructed to redshift zf = 49 and compare it with the initial power
spectrum Pi(k) at the same redshift as follows.

δP rec
ij (k) := P rec

ij (k)

Pi(k)
− 1 (40)

This quantity is then averaged over all i and all j. We show this
average and its standard deviation in the bottom panels of Fig. 11
below the average power spectra for both ICs and reconstructions
from zs = 0.3 (left-hand panel) and zf = 1.5 (right-hand panel).14

We further attempted to correct the reconstructed power spectra for
shot noise. Even though, as also will be seen below, the influence
of shot noise is usually removed along with subtracting functions

14To provide better understanding, we isolate the effect of subsample variance,
by the example of one simulation only, in Appendix A2.

describing anomalous broad-band power (Seo et al. 2008) we chose
to isolate the computation of shot noise first, in order to disentangle
noise that scales with particle number from other effects intrinsic to
our method, see appendix A1. However, on the scales of our interest,
we observe an additional offset that we correct for by allowing a
constant, A0, to remove any difference between the reconstructed
and the initial power spectra,

Pi(k) = A0 + P rec
ij (k). (41)

We chose to fit A0 in the range of 0.01 hMpc−1 < k < 0.1 hMpc−1,
well in the linear regime, where we expect our method to deliver
satisfactory results.

Already at this stage, the averages and the standard errors of
the reconstructed power spectra agree with the linear expectation
at the ∼ 5 per cent-level at wavenumbers k � 0.15 hMpc−1 for both
starting redshifts. Furthermore, relative deviations of reconstructed
and initial power spectra seen in the bottom panels exhibit a smooth
dependency on k that indeed is known to arise from mode-coupling

MNRAS 506, 1165–1185 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/1/1165/6300452 by C
N

R
S - ISTO

 user on 06 July 2023



Semidiscrete optimal transport reconstruction 1179

Figure 11. Average power spectra of ten ABACUSCOSMOS simulations and their reconstructions at redshift z = 49. Reconstructions were performed beginning
with samples at redshift zs = 0.3 (left) and zs = 1.5 (right). Upper panels: Average power spectra and standard deviations for simulations and reconstructions,
respectively. Lower panels: Averaged relative differences of reconstructed and true power spectra, cf. equation (40). The reconstructed power spectra were
corrected for shot noise as described in the text. Shaded bands show 1σ deviation.

in the non-linear regime (Meiksin & White 1999; Scoccimarro,
Zaldarriaga & Hui 1999; Crocce & Scoccimarro 2008; Seo et al.
2008; Xu et al. 2012). Hence, and in line with other approaches for
initial density reconstruction (e.g. Xu et al. 2012), we introduce a
broad-band term to our reconstructed power spectra, that, after fitting
to the corresponding initial power spectrum, Pi(k), compensates for
this deviation:

Pi(k) = B(k) · P rec
ij (k), (42)

where we found B(k) = B0 + B1 · k + B2 · k2 to be sufficient in
accounting for the observed discrepancies when performing the fit
in the range shown in the figures. The data show no further evidence
for introducing additive corrections instead or in addition, and also
gives no support for higher-order terms in B(k). This supports our
understanding of shotnoise contributions as well as their sufficient
subtraction as above. While the linear growth factors in equation (39)
were chosen to match exactly those of the simulations, we expect
B0 to be close to 1. Indeed, we find this to be the case, and for
completeness list the fitted values in the table below.

zi = 0.3 zi = 1.5
B0 1.01 1.01
B1 −0.86 −0.43
B2 4.55 0.53

It should be noted that in practice the fitting is done by considering
templates of linear power spectra that are each generated with a set of
cosmological parameters, and are subsequently modified to include
effects of non-linear growth. Since the intention of this paper is
simply to show the accuracy of recovering the expected power of
linear fluctuations, instead of recovering cosmological parameters,
we chose to fit directly to the power spectrum Pi(k) of the zf = 49
density.

While the accounting of broad-band power is also necessitated
by a combination of effects, such as redshift-space distortions and
surveying effects, we must attribute the power discrepancy to the

reconstruction itself. In practice, however, such nuisance terms would
absorb any such unexpected power, regardless of its source.

Fig. 12 shows the relative differences after having included the
broad-band terms. The range of k over which the reconstructed
power matches that of the initial density is striking, reaching k ≈
0.4 hMpc−1 (0.5 hMpc−1) for zs = 0.3 (zs = 1.5) before deviating
past the 5 per cent-level.

5.2.2 Correlation functions

Visually more revealing of the BAO signal is the two-point corre-
lation function (the Hankel transform of the power spectrum). We
repeat previous exercise for the correlation functions computed from
simulations and reconstructions. Instead of the relative difference, as
above, we here compute the absolute difference for each pair ij of
simulation and reconstruction.

�ξij (r) := ξ rec
ij (r) − ξi(r) (43)

Correlation functions, their spread in simulations and reconstruc-
tions, and the absolute difference are shown in Fig. 13. The BAO peak
and its shape are recovered well and with uncertainties comparable to
the sample variance of the ICs themselves. As before, a discrepancy
growing towards low separations r is removed by fitting for broad-
band influences in the shown range. As opposed to broad-band
noise in the power spectrum, we here find no evidence for any
scale-dependencies and simply allow for a constant bias, again only
performing the fit in the shown range,

ξi(r) = B · ξ rec
ij (r). (44)

zi = 0.3 zi = 1.5
B 1.025 1.011

The corresponding average correlation functions are shown in
Fig. 14. A slight (∼1σ ) deviation around the BAO feature reveals
residual dampening of the peak for the zs = 0.3 reconstructions,
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1180 B. Levy, R. Mohayaee, and S. von Hausegger

Figure 12. Same as Fig. 11 but after accounting for broad-band noise, cf. equation (42).

Figure 13. Average correlation functions of ten ABACUSCOSMOS simulations and their reconstructions at redshift z = 49. Reconstructions were performed
beginning with samples at redshift zs = 0.3 (left) and zs = 1.5 (right). Upper panels: Average power spectra and standard deviations for simulations and
reconstructions, respectively. Lower panels: Averaged differences of reconstructed and true correlation functions, cf. equation (43). Shaded bands show 1σ

deviation.

which, however, is not significant for those reconstructions beginning
at the higher redshift, zs = 1.5.

To demonstrate the ability of our reconstruction algorithm on
individual cases of correlation functions, we show in Fig. 15 three
different examples, in which we compare the correlation functions
of the reconstructed densities with those of the initial densities, as
well as those of the samples with which the reconstruction algorithm
was fed. Due to cosmic sample variance in the simulated volume,
the BAO feature visible at zs = 0.3 or zs = 1.5 (dotted black) may be
more or less pronounced (left-hand to right-hand panels). However,
in all cases, the reconstruction is able to recover well the precise
shape of the BAO bump at the redshift of reconstruction, zf = 49,
as shown by the close agreement between simulation (solid black)
and reconstruction (red). In all cases, one can observe the well-

known sharpening of the peak (Eisenstein, Seo & White 2007a)
that reconstruction methods generally aim for. Especially the third
example of each panel exhibits this effect, wherein the peak is hardly
recognizable at zs = 0.3.

5.2.3 Accuracy of acoustic scale recovery

Finally, we provide a tentative quantification of the accuracy with
which the sound horizon at decoupling, i.e. the position of the BAO
peak, is recovered using the same simulations as above. To this effect,
we localize the peak of the correlation function in the vicinity of its
input value, rs(zdrag) = 99.09 h−1Mpc, after having interpolated the
function with a cubic spline to smooth out discreteness effects. This
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Semidiscrete optimal transport reconstruction 1181

Figure 14. Same as Fig. 13, but after accounting for broad-band noise, cf. equation (44).

Figure 15. Examples of correlation functions in three different simulations and their reconstructions. The correlation functions as measured in snapshots at
zs = 0.3 (dotted black) and zf = 49 (solid black) are compared with the reconstruction at zf = 49 (red). All curves have been scaled to match the linear growth
amplitude at z = 49 for visual comparison.

is done for both the initial correlation functions ξ i(r), leading to r IC
s ,

as well as the reconstructed correlation functions ξ rec
ij (r) from both

input redshifts, zs = 0.3 and zs = 0.5, resulting in r rec
s . This results

in 50 peak positions each. For both redshifts, we then compute the
mean and standard deviation of the fractional deviation

δrs = r rec
s,ij − r IC

s,i

r IC
s,i

, (45)

zi = 0.3 zi = 1.5
δrs ± σ [ per cent] 0.02 ± 0.37 0.08 ± 0.52

Even with this rough attempt, we are able to recover the BAO
scale with sub- per cent scatter. We will return to this point in future,
dedicated works containing more comprehensive methods for the
localization of the BAO peak that take into account the full shape
of the peak, cf. Schmittfull et al. (2017), and including comparisons
with existing reconstruction algorithms.

6 C O N C L U S I O N S

To extract information on the early Universe from the present
Universe requires the undoing of the non-linear growth of struc-

tures. This complex inverse problem, sometimes referred to as the
cosmological reconstruction problem, is often tackled in a forward
iterative manner: essentially an initial model with a set of parameters
is assumed and simulated and then compared to the data at the
present epoch within an iterative loop till the best match between
the model and the data is achieved statistically. In previous works,
we have shown that the cosmological reconstruction problem is a
subset of the general class of mass transportation problems that are
solved through optimal transport theory and as such can be tackled
deterministically to yield a unique solution. The problem is well-
formulated by the Monge–Ampère equation. Our previous solution to
the Monge–Ampère equation was obtained through a combinatorial
fully discrete algorithm, which explored a huge solution space to
find the optimal assignment. These algorithms have a complexity of
N3, for a data-set with N points, which renders them impractical
for applications to big data in cosmology. Although there have
been reports of faster variants of combinatoric algorithms with a
complexity of at best N2log (N) (see review in Mérigot & Thibert
(2020)), their performance however remains too slow for large-scale
cosmological problems.
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In this article, we have presented a new semidiscrete algorithm
which makes a direct use of the variational nature of the cosmological
reconstruction problem. It finds a quick path to the solution by fully
exploiting the first- and second-order derivatives of the objective
function (that is both smooth (C2) and convex). This is made
possible by a fortuitous yet elegant convergence between the phys-
ical, mathematical, and computational aspects of the problem: the
specific cosmological setting that we considered (continuous mass
transported to a point set) has nice mathematical properties – Monge–
Ampère equation translated into a smooth and convex optimization
problem, with an underlying geometric structure (Laguerre diagram)
that can be exactly computed by our algorithm. Our semidiscrete
algorithm has a complexity of Nlog (N) which makes it significantly
more efficient than any combinatoric algorithm.

As a concrete example of a practical consequence, our previous
combinatoric code could reconstruct a typical 1283 �CDM dark-
matter-only simulation in a month on a desktop computer station.
In contrast, with our new semidiscrete algorithm described in this
article, the same reconstruction can be done on a portable personal
computer in less than five minutes.

Subtle information in the matter power spectrum, such as BAO, can
only be retrieved through the analyses carried out on horizon scales
and on hundreds of millions of particles: a task completely unfeasible
through combinatorial algorithms. Our new semidiscrete algorithm
processes such massive datasets within hours, which makes it a
powerful tool to reconstruct BAO and consequently test the theory of
general relativity at cosmological scales. Here, we have chosen the
BAO measurement as a challenge to test the power of our algorithm,
however it is needless to say that other decisive features of the
primordial power spectrum, e.g. primordial non-Gaussianity can also
be detected by our algorithm and consequently we can also provide
constraints on inflationary models (Mohayaee et al. 2006).

Aside from the BAO and primordial non-Gaussianity, our deter-
ministic algorithm can also recover the velocity field, including the
relevant phase information. Hence it can provide priors for Bayesian
predictions of large-scale structure. The density and velocity field
information in the reconstructed ICs can be used to develop Bayesian
priors to probe CMB polarization and temperature anisotropy maps
for evidence of any phase anomalies. This potentially provides a
powerful new insight into the validity of the standard cosmological
model.

Our reconstruction method holds for as long as the convexity holds
which implies that the reconstructed map between initial and final
distribution remains valid into the non-linear regime and at least up
to the third order in the Lagrangian perturbation theory. However,
in extracting the density field from these maps, we have used the
Zel’dovich approximation for convenience as it gives us a simple
analytic expression (39). The reason why higher order terms have
not been implemented here is that for BAO reconstruction, a broad-
band fitting function is often used to account for mode-coupling as
well as other effects. We have shown that our BAO reconstruction
enjoys a high sub- per cent accuracy with the least number of fitting
polynomial parameters. In forthcoming work, we shall implement
higher orders which could reduce the need to fitting parameters and
render the BAO reconstruction model-independent.

In this work, our code ran on particle samples where all points have
the same mass and reside in real space within periodic boundary
conditions. In the forthcoming works, we shall generalize this
computational setting to other geometrical configurations, more
relevant for observational surveys. We shall account for non-linear
halo bias, adapt our code to redshift space and to more general
boundary conditions, and survey geometries and make it available

for applications to data expected from future telescopes, as outlined
below:

(i) In the case of haloes, one can use points of different masses.
Our algorithm can be generalized in such a setting, with points of
different masses (rather than 1/N). The same generalized algorithm
with points of different masses can be used to take into account
galaxy biasing.

(ii) In the case of a very diffuse matter distribution, one can
discretize a continuous density field using points of different masses.
A well adapted (optimal in the sense of approximation theory)
sampling can be generated using different techniques, see for instance
Liu et al. (2009) and the references therein;

(iii) General boundary conditions and survey geometries can be
taken into account by computing the intersection of the Laguerre
cells with the survey geometry Yan et al. (2013);

(iv) Redshift distortions can be taken into account by recasting
the redshift-space reconstruction as a physical-space reconstruction,
on which our method can be directly applied. Such a technique is
described in Brenier et al. (2003), equations (44) to (47);

(v) It is possible to reconstruct more precise dynamics using higher
order Lagrangian perturbation theory, by introducing in the trajec-
tories reconstructed by our algorithm some higher order polynomial
terms, and finding the associated coefficients by minimizing the
action (7), similarly to what is done in Branchini et al. (2002) and
Sarpa et al. (2020).
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Brenier Y., Frisch U., Hénon M., Loeper G., Matarrese S., Mohayaee R.,

Sobolevskii A., 2003, MNRAS, 346, 501
Buchert T., 1993, A&A, 267, L51
Caroli M., Teillaud M., 2009, Proceedings of Algorithms - ESA 2009, 17th

Annual European Symposium. Springer, Copenhagen, Denmark, p. 59
Catelan P., 1995, MNRAS, 276, 115
Cautun M., van de Weygaert R., Jones B. J. T., Frenk C. S., 2014, MNRAS,

441, 2923
Crocce M., Scoccimarro R., 2008, Phys. Rev. D, 77, 023533
Croft R. A. C., Gaztanaga E., 1997, MNRAS, 285, 793
Cuturi M., 2013, Advances in Neural Information Processing Systems 26:

27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013. ACM, Lake Tahoe,
Nevada, United States, p. 2292

Delage C., Devillers O., 2004, Spatial Sorting. Available at: http://doc.cgal.o
rg/latest/Spatial sorting/index.html
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APPENDI X A : D ETAI LS OF POWER SPECTRU M
P R E PA R AT I O N

A1 Shot noise

Shot noise generally refers to Poisson noise of a discretized contin-
uous density field and in most practical examples scales inversely
proportional to the number of discretizing sources N. The power
spectrum corresponding to the particle distribution in question is
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Figure A1. Upper panels: power spectra of reconstructions using particle samples of different size N, highlighting the N-dependent shot noise. Reconstructions
were done with an input redshift of z = 0.3 (left) and z = 1.5 (right). Lower panels: differences of each of the power spectra with that of the largest sample size,
N = 4 × 2563 = 67, 108, 864.

Figure A2. Illustration of subsample variance given our choice of N = 2563 particles. Shown are mean and standard deviation of the relative difference δP1(k),
equation (40), for simulation i = 1 averaged over all five subsamples j, at input redshifts of z = 0.3 (left) and z = 1.5 (right).

thus increased by the k-independent noise contribution as P(k, N) =
P(k) + Psn(N). The shot noise scales as

Psn(N ) = A · N−1, (A1)

where A = l3 is the volume of the box. However, the power
spectra shown in Fig. 11 were not computed from a discrete set of
point particles. Instead, the continuous density field was effectively
discretized by extended objects, the shrunken Laguerre cells, e.g.
Fig. 6. It is non-trivial to predict the resulting shot noise for these
structures. Empirically, however, equation (A1) seems to describe
the shot noise contribution of this arrangement rather well, simply
after promoting A to be a free parameter. The following paragraph
describes how the shot noise is computed and finally subtracted from
the corresponding power spectra in Fig. 11.

By definition of what should here be referred to as shot noise,
the scaling with particle number N allows an estimation of its
amplitude A from comparing reconstructed power spectra with
one another, without the knowledge of the desired, ‘true’ power
spectrum that provided the IC. This is especially promising for future
reconstructions using real data, where the true solution is obviously
unknown. We perform reconstructions of the initial density at z =
49 as in the main body, using particle samples of increasing size.
Their uncorrected power spectra are shown in the upper panels of
Fig. A1 along with the IC power spectrum, clearly demonstrating the

presence of shot noise. Without reference to the IC power spectrum,
the shot noise amplitude of equation (A1) is fit by comparing power
spectra of different particle number with that of one selected particle
number N∗:

P (k,N ) − P (k, N∗) = A · N∗ − N

NN∗
(A2)

These quantities are shown in the bottom panels of Fig. A1 with N∗ =
2 × 2563, the largest particle sample used here, and clearly show the
corresponding N-dependent contributions to the reconstructed power
spectra. It should be stated here that any discrepancies that remain
between the reconstructed power spectra after proper shot noise
subtraction and the IC power spectrum are therewith shown not to be
dependent on the size of the particle sample, and must be accounted
for by other means. In each of the same panels, indicated by dashed
lines, the relation A2 was fitted collectively to all curves within
the range 0.25 hMpc−1 < k < 0.5 hMpc−1. For the reconstructions
from z = 0.3 and 1.5 (left-hand and right-hand panels) we find:

zi = 0.3 zi = 1.5
A [h−3Mpc3] 660, 078.73 2, 327, 572.13

Finally, this allows for calculating the shot noise for a reconstruc-
tion from a given particle number via equation (A1). For the particle
sample of size N = 2563, as employed in the main body of this paper,
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we find

zi = 0.3 zi = 1.5
Psn(N = 2563) 0.0393 0.1387

Note that, both values are smaller than the shot noise expected for
a discrete particle sample, even after accounting for a scaling by the
linear growth factors, D2(z = 49)/D2(zi) · l3/N.

A2 Subsample variance

Subsample variance decreases with increasing particle number. Sam-
pling as many as 2563 particles therefore suppresses the influence
of these terms considerably. Nevertheless, we show in Fig. A2 the
relative difference of the power spectra of each of one simulations’
five subsamples and their average. The variance on average makes
up about 75 per cent of the total variance shown in Figs 11–12 in the
range shown.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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