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ABSTRACT
We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation
functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter S8 ≡ σ8

√
�m/0.3 =

0.766+0.033
−0.038 which, at 4.8 per cent precision, provides one of the tightest constraints on S8 from the DES-Y1 weak lensing data.

In our simulation-based method we determine the expected DES-Y1 peak-count signal for a range of cosmologies sampled in
four w cold dark matter parameters (�m, σ 8, h, w0). We also determine the joint covariance matrix with over 1000 realizations
at our fiducial cosmology. With mock DES-Y1 data we calibrate the impact of photometric redshift and shear calibration
uncertainty on the peak-count, marginalizing over these uncertainties in our cosmological analysis. Using dedicated training
samples we show that our measurements are unaffected by mass resolution limits in the simulation, and that our constraints
are robust against uncertainty in the effect of baryon feedback. Accurate modelling for the impact of intrinsic alignments on
the tomographic peak-count remains a challenge, currently limiting our exploitation of cross-correlated peak counts between
high and low redshift bins. We demonstrate that once calibrated, a fully tomographic joint peak-count and correlation functions
analysis has the potential to reach a 3 per cent precision on S8 for DES-Y1. Our methodology can be adopted to model any
statistic that is sensitive to the non-Gaussian information encoded in the shear field. In order to accelerate the development of
these beyond-two-point cosmic shear studies, our simulations are made available to the community upon request.

Key words: gravitational lensing: weak – methods: data analysis – methods: numerical – cosmological parameters – dark
energy – dark matter.

1 IN T RO D U C T I O N

Over the last decade, weak gravitational lensing has emerged as one
of the most promising techniques to investigate the properties of our
Universe on cosmic scales. Based on the analysis of small distortions
between the shapes of millions of galaxies, weak lensing by large
scale structures, or cosmic shear, can directly probe the total projected
mass distribution between the observer and the source galaxies, as
well as place tight constraints on a number of other cosmological
parameters (for recent reviews of weak lensing as a cosmic probe, see

� E-mail: jharno@roe.ac.uk

Kilbinger 2015). Following the success of the Canada-France-Hawaii
Telescope Lensing Survey (Heymans et al. 2012; Erben et al. 2013),
a series of dedicated Stage-III weak lensing experiments, namely
the Kilo Degree Survey,1 the Dark Energy Survey,2 and the Hyper
Suprime Camera Survey,3 were launched and aimed at constraining
properties of dark matter to within a few per cent. These are now
well advanced or have recently completed their data acquisition,
and the community is preparing for the next generation of Stage IV

1KiDS: kids.strw.leidenuniv.nl
2DES: www.darkenergysurvey.org
3HSC: www.naoj.org/Projects/HSC/
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experiments, notably the Rubin observatory,4 and the Euclid5 and
Nancy Grace Roman6 space telescopes.

The central approach adopted by these surveys for constraining
cosmology is based on two-point statistics – mostly either in the
form of correlation functions (e.g. Kilbinger et al. 2013; Troxel
et al. 2018; Hamana et al. 2020; Asgari et al. 2021) or its Fourier
equivalent, the power spectrum, estimated using pseudo-C� (Hikage
et al. 2019), band powers (Becker et al. 2016; van Uitert et al.
2018; Joachimi et al. 2021), and quadratic estimators (Köhlinger
et al. 2017). By definition, these two-point functions can potentially
capture all possible cosmological information contained in a linear,
Gaussian density field, and are thus highly efficient at analysing large
scale structure data. They have been thoroughly studied in terms of
signal modelling (Kilbinger et al. 2017), measurement (Schneider
et al. 2002; Jarvis, Bernstein & Jain 2004; Alonso et al. 2019) and
systematics (Mandelbaum 2018).

With the improved accuracy and precision provided by current and
upcoming surveys, it becomes increasingly appealing to probe small
angular scales, where the signal is the strongest. In doing so, the
measurements are intrinsically affected by the non-Gaussian nature
of the matter density field, and it is natural to seek analysis techniques
that can extract the additional cosmological information that two-
point functions fail to capture. A variety of alternative methods
have been applied to lensing data with this in mind, including
three-point functions (Fu et al. 2014), Minkowski functionals and
lensing moments (Petri et al. 2015), peak count statistics (Liu et al.
2015a,b; Kacprzak et al. 2016; Martinet et al. 2018; Shan et al. 2018),
density split statistics (Gruen et al. 2018), clipping of the shear field
(Giblin et al. 2018), convolutional neural networks (Fluri et al. 2019),
and neural data compression of lensing map summary statistics
(Jeffrey, Alsing & Lanusse 2021). Other promising techniques are
also being developed, notably the scattering transform (Cheng et al.
2020), persistent homology (Heydenreich, Brück & Harnois-Déraps
2021), lensing skew-spectrum (Munshi et al. 2020), lensing minimas
(Coulton et al. 2020), and moments of the lensing mass maps (van
Waerbeke et al. 2013; Gatti et al. 2020).

While existing non-Gaussian data analyses revealed a constraining
power comparable to that of the two-point functions, it is expected
that the gain will drastically increase with the statistical precision
of the data. For example, constraints on the sum of neutrino mass
(
∑

mν), on the matter density (�m), and on the amplitude of the
primordial power spectrum (As), in a tomographic peak count anal-
ysis of LSST, are forecasted to improve by 40 per cent, 39 per cent,
and 36 per cent respectively, compared to a power-spectrum analysis
of the same data (Li et al. 2019). Upcoming measurements of the
dark energy equation of state (w0) will also benefit from these
methods, with a forecasted factor of three improvement expected
on the precision when combining two-point functions with aperture
mass map statistics (Martinet et al. 2021a). Similar results are found
in the context of a final Stage-III lensing experiment such as the
(upcoming) DES-Y6 data release, where the combination of non-
Gaussian statistics with the power spectrum method reduces the error
on the parameter combination S8 ≡ σ8

√
�m/0.3 by about 25 per cent

compared to a two-point function (Zürcher et al. 2021), where σ 8 is
the normalization amplitude of the linear matter power spectrum.

In the absence of accurate theoretical predictions for the signal, the
covariance, and the impact of systematics, non-Gaussian statistics

4LSST: www.lsst.org
5Euclid: sci.esa.int/web/euclid
6WFIRST: roman.gsfc.nasa.gov

must be carefully calibrated on numerical simulations specifically
tailored to the data being analysed, which are generally expensive
to run. Faster approximate methods exist (e.g. Izard, Fosalba &
Crocce 2018); however, they typically suffer from small scale
inaccuracies exactly in the regime where the lensing signal is the
strongest, introducing significant biases in the inferred cosmological
parameters. Previous peak count analyses of the third KiDS data
release (KiDS-450; Martinet et al. 2018, M18 hereafter) and of the
DES Science Verification data (Kacprzak et al. 2016, K16 hereafter)
calibrated their signal on a suite of full N-body simulations spanning
the [�m−σ 8] plane described in Dietrich & Hartlap (2010). The
accuracy of this suite has however been later shown to be only
∼10 per cent (Giblin et al. 2018). Significant improvements on the
simulation side are therefore critical for the new generation of data
analyses based on non-Gaussian statistics.

This paper aims to address this issue: we present a cosmolog-
ical re-analysis of the DES-Y1 cosmic shear data (Abbott et al.
2018b), exploiting a novel simulation-based cosmology inference
pipeline calibrated on state-of-the-art suites of N-body runs that are
specifically designed to analyse current weak lensing data beyond
two-point statistics. In this work, the incarnation of our pipeline is
tailored for the peak count analysis of the DES-Y1 survey; however,
it is straightforward to extend it to alternative non-Gaussian probes.
Our pipeline first calibrates the cosmological dependence of arbi-
trary non-Gaussian measurements with the cosmo-SLICS (Harnois-
Déraps, Giblin & Joachimi 2019), a segment of the Scinet LIght-Cone
Simulations suite that samples �m, σ 8, w0, and h (the Hubble reduced
parameter). We next estimate the covariance from a suite of fully
independent N-body runs extracted from the main SLICS sample7

(Harnois-Déraps et al. 2018). We further use the cosmo-SLICS to
generate systematics-infused control samples that we use to model
the impact of photometric redshift and shear calibration uncertainty.
We study the impact of galaxy intrinsic alignment with dedicated
mock data in which the ellipticities of central galaxies are aligned
(or not) with the shape of their host dark matter haloes, following the
in-painting prescription of Heymans et al. (2006; see also Joachimi
et al. 2013b for a more recent application). We finally use a suite
of high-resolution simulations (SLICS-HR, presented in Harnois-
Déraps & van Waerbeke 2015) to investigate the impact of mass-
resolution on the non-Gaussian statistics, and full hydrodynamical
simulation light-cones from the Magneticum Pathfinder8 to assess
the effect of baryon feedback. All of the above are fully integrated
with the COSMOSIS cosmological inference pipeline (Zuntz et al.
2015) and therefore interfaces naturally with the two-point statistics
likelihood, enabling joint analyses with the fiducial DES-Y1 cosmic
shear correlation function measurements presented in Troxel et al.
(2018, T18 hereafter), with the 3 × 2 points analysis presented in
DES Collaboration (2018), or any other analysis implemented within
COSMOSIS.

The current document is structured as follow: In Section 2.1 we
present the data and the simulation suites on which our pipeline
is built; Section 3 describes the theoretical background, the weak
lensing observables, and the analysis methods. A detailed treatment
of our systematic uncertainties is presented in Section 4, the results
of our DES-Y1 data analysis are discussed in Section 5, and we
conclude afterwards. The appendices contain additional validation
tests of our simulations and further details on our cosmological
inference results.

7slics.roe.ac.uk
8www.magneticum.org
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Figure 1. Tiling strategy adopted to pave the full DES-Y1 data (black) with
flat-sky 10 × 10 deg2 simulations (red squares). The squares overlap owing
to the sky curvature, hence we separate the data at the mean declination in the
overlapping regions. In our pipeline, measurements are carried out in each
tile separately, then combined at the level of summary statistics.

2 DATA AND SIMULATIONS

We present in this section the data and simulations included in our
analysis. We exploit multiple state-of-the-art simulation suites in
order to conduct our cosmological analysis, including a Cosmology
training set to model the response of our measurement to variations
in cosmology, as well as a Covariance training set and multiple Sys-
tematics training sets. These DES-Y1-specific simulation products
are created from four suites of simulations, which we describe after
introducing the data.

The total computing cost of the SLICS, cosmo-SLICS, and SLICS-
HR are 12.3, 1.1 and 1.3 million CPU hours, respectively. They
were produced on a system of IBM iDataPlex DX360M2 machines
equipped with one or two Intel Xeon E5540 quad cores, running
at 2.53 GHz with 2 GB of RAM per core. Every simulation was
split into 64 MPI processes, each further parallelised with either four
or eight OPENMP threads. Modern compilers and CPUs would likely
bring the total computing cost down if similar simulations had to be
run again in the future.

2.1 DES-Y1 data

In this paper we present cosmological constraints obtained from a re-
analysis of the public lensing catalogues of the Year-1 data release9 of
the Dark Energy Survey (Abbott et al. 2018b). These catalogues were
obtained from the analysis of millions of galaxy images taken by the
570 megapixel DECam (Flaugher et al. 2015) on the Blanco telescope
at the Cerro Tololo Inter-American Observatory, observed in the
grizY bands. The specific selection criteria of the DES-Y1 cosmic
shear data used in this paper exactly match those of the cosmic shear
analysis presented in Troxel et al. (2018): they consist of 26 million
galaxies that pass the FLAGS SELECT, METACAL, and the REDMAGIC
filters (Zuntz et al. 2018), thereafter covering a total unmasked area of
1321 deg2, for an object density of 5.07 gal arcmin−2. The footprint
of the DES-Y1 data is presented in Fig. 1, which shows in black the
galaxy positions from the selected sample.

The galaxy shears in the DES-Y1 data are estimated by two
independent methods, METACALIBRATION (Sheldon & Huff 2017)
and IM3SHAPE (Zuntz et al. 2013) that were both fully implemented

9des.ncsa.illinois.edu/releases/dr1

(see Zuntz et al. 2018 for details). While they provide consistent
results, the former method has a larger acceptance rate of objects
with good shape measurements, and thereby results in measurements
with higher signal-to-noise. Following Troxel et al. (2018), we also
adopt the METACALIBRATION shear estimates in our analysis. This
method provides a shear response measurement per galaxy, Rγ ,
a 2 × 2 matrix that must be included to calibrate any measured
statistics (we refer to Zuntz et al. 2018 for more details on this
calibration technique in the context of shear two-point correlation
functions). Additionally, the galaxy selection itself can introduce a
selection bias, which can be captured by a second 2 × 2 matrix,
labelled RS in T18, which we choose not to include due to the
small relative contribution. We compute from these matrices the
shear response correction, defined as S = Tr(Rγ )/2. As explained
in T18, the method imposes a prior on an overall multiplicative shear
correction of m ± σ m = 0.012 ± 0.023, which calibrates the galaxy
ellipticities as ε → ε (1 + m), with ε ≡ ε1 + iε2.

The galaxy sample is further divided into four tomographic redshift
bins based on the photometric redshift posterior estimated from griz
flux measurements (Hoyle et al. 2018). The redshift distribution in
these bins, ni(z), must then be estimated, and a number of methods
are proposed to achieve this. The fiducial cosmic shear results
presented in T18 are based on the Bayesian photometric redshift
(BPZ) methodology described in Benı́tez (2000), which are consistent
with a n(z) estimated by resampling the COSMOS2015 field (Laigle
et al. 2016) with objects of matched flux and size (Hoyle et al. 2018).
However, the accuracy of these two methods has been questioned
in Joudaki et al. (2020, J20 hereafter), where it is argued that even
though both the BPZ and COSMOS resampling estimates account for
statistical uncertainty, residual systematics effects could significantly
affect the inferred n(z) distributions. In particular, the COSMOS
sample could be populated with outliers and/or an overall bias that
would affect the calibration (e.g. fig. 11 of Alarcon et al. 2021),
and J20 proposes instead to calibrate with redshifts from matched
spectroscopic catalogues.10 The direct reweighted estimation method
(Lima et al. 2008, DIR hereafter) was selected for the fiducial cosmic
shear analysis of the third KiDS data release (Hildebrandt et al. 2017,
2020), and for the DES-Y1 data re-analyses of J20 and Asgari et al.
(2020), where it is found that this calibration brings both DES-Y1 and
KV450 results in excellent agreement, affecting the constraints on S8

by only 0.8σ . It should be noted also that DIR has inherent systematic
uncertainties that are hard to quantify. In particular, incomplete
spectroscopy and colour pre-selection (Gruen & Brimioulle 2017)
can potentially bias the DIR n(z). Despite these issues that can in
principle be addressed by a pre-selection of sources via the self
organizing map technique (Wright et al. 2020), we choose to adopt
this DIR methodology for simplicity and to be able to easily relate
our findings to previous work. We use the same tomographic redshift
distribution ni(z) and uncertainty about the mean redshift 〈zi

DIR〉 as
in J20 here. In this method, the uncertainties on the mean redshifts,
σ i

z , are estimated from a bootstrap resampling of the spectroscopic
samples. The density, the mean redshifts, and the shape noise of the
galaxies in individual tomographic bins are presented in Table 1.

10Both the DIR and the COSMOS resampling methods have been shown to be
consistent with other n(z) estimation techniques such as the cross-correlation
between photometric and overlapping spectroscopic surveys (Morrison et al.
2017; Johnson et al. 2017; Hoyle et al. 2018; Gatti et al. 2020; Hildebrandt
et al. 2020). J20 also show that the DIR method is robust against the specific
choice of spectroscopic calibration sample, provided that the combination is
sufficiently wide and deep.
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Table 1. Survey properties. The effective number densities neff (in
gal arcmin−2) and shape noise σ ε listed here assume the definition of Chang
et al. (2013). The column ‘ZB range’ refers to the photometric selection that
defines the four DES-Y1 tomographic bins, while the mean redshift in each
bin is listed under 〈zDIR〉.

tomo ZB range No. of objects neff σ ε 〈zDIR〉
bin1 0.20–0.43 6993 471 1.45 0.26 0.403 ± 0.008
bin2 0.43–0.63 7141 911 1.43 0.29 0.560 ± 0.014
bin3 0.63–0.90 7514 933 1.47 0.26 0.773 ± 0.011
bin4 0.90–1.30 3839 717 0.70 0.27 0.984 ± 0.009

Table 2. Summary of key properties from the four simulations suites used in
our pipeline. Lbox is the box side (in h−1 Mpc), np is the number of particles
evolved, Nsim is the number of N-body runs, NLC is the number of light-cones
in the full training set, and Ncosmo is the number of cosmology samples.
The bottom section summarizes the range in cosmological parameters that is
covered by the cosmo-SLICS.

Sim. suite Lbox np Nsims NLC Ncosmo

cosmo-SLICS 505 15363 52 520 26
SLICS 505 15363 124 124 1
SLICS-HR 505 15363 5 50 1
Magneticum 2 352 2 × 15833 1 10 1
Magneticum 2b 640 2 × 28803 1 10 1
Parameter �m S8 h w0

Sampling [0.1, 0.55] [0.6, 0.9] [0.6, 0.82] [−2.0, −0.5]

2.2 Cosmology training set

The training set is constructed from the cosmo-SLICS (Harnois-
Déraps, Giblin & Joachimi 2019, HD19 hereafter), a suite of w cold
dark matter (CDM) N-body simulations specifically designed for
weak lensing data analysis targeting dark matter and dark energy.
These simulations cover a wide range of values in (�m, σ 8, h, w0).
They sample the parameter volume at 25 + 1 coordinates organized
in a Latin hypercube (25 wCDM plus one 	CDM point), and further
include a sample variance suppression technique, achieving a sub-
per cent to a few per cent accuracy depending on the scales involved.
This is comparable to the accuracy of many widely-used two-point
statistics models based on non-linear power spectra from HALOFIT

(Takahashi et al. 2012) or from HMCODE (Mead et al. 2015, 2021).
The full training range is detailed in Table 2, which also influences
our choice of priors when sampling the likelihood (see Section 3.6).

Each run evolved 15363 particles inside a 505 h−1 Mpc co-moving
volume with the public CUBEP3M N-body code (Harnois-Déraps et al.
2013), generating on-the-fly multiple two-dimensional projections
of the density field. These flat-sky mass planes were subsequently
arranged into past light-cones of 10 degrees on the side, from which
lensing maps were extracted at a number of redshift planes (see
Section 2.6.1). This process was repeated multiple times after the
mass planes were randomly selected from a pool of six different
projected sub-volumes, then their origins were randomly shifted. In
total, 50 pseudo-independent light-cones per cosmology are available
for the generation of galaxy lensing catalogues (see HD19 for a
complete description). In the end we include 10 light-cones per
cosmology out of 50, after verifying that our results do not change
when training on only five of them. Indeed, 1000 deg2 is enough
to reach convergence on our statistics, largely due to the sample
suppression technique implemented in HD19.

Two of these models (cosmology-fid and -00; see HD19) are
used to infuse photometric redshift and shear calibration uncertainty,
which we describe in Section 4.1 and 4.2, respectively.

2.3 Covariance training set

Our covariance matrix is estimated from the SLICS (Harnois-Déraps
et al. 2018, HD18 hereafter), a public simulation suite in which the
cosmology is fixed for every N-body run, but the random phases in the
initial conditions are varied, offering a unique opportunity to estimate
the uncertainty associated with sampling variance. The volume and
number of particles are the same as for the cosmo-SLICS, achieving a
particle mass of 2.88 h−1M	 (see the properties summary in Table 2).
The light-cones are constructed in the same way as the cosmo-
SLICS, except that in this case the mass sheets are sampled only once
per N-body run, generating 124 truly independent realizations. The
accuracy of the SLICS has been quantified in Harnois-Déraps & van
Waerbeke (2015) by comparing their matter power spectrum to that of
the Cosmic Emulator (Heitmann et al. 2014), which match to within
2 per cent up to k = 2.0 hMpc−1; smaller scales progressively depart
from the emulator. The cosmo-SLICS have a similar resolution.

2.4 Systematics training set: mass resolution

Numerical simulations are inevitably limited by their intrinsic mass
and force resolution, and it is critical to understand how these affect
any measurements carried out on the simulated data. We employ
for this purpose a series of ‘high-resolution’ runs, first introduced
in Harnois-Déraps & van Waerbeke (2015) and labelled ‘SLICS-
HR’ therein. These consist of five independent N-body simulations
similar to the main SLICS suite, but in which the force accuracy of
CUBEP3M has been increased significantly such as to resolve smaller
structures, even though the particle number is fixed. These have been
shown to reproduce the Cosmic Emulator power spectrum to within
2 per cent up to k = 10.0 h−1Mpc, indicating that even those small
scales are correctly captured by the simulations. The SLICS-HR are
post-processed with a strategy similar to that adopted for the cosmo-
SLICS, re-sampling the projected mass sheets in order to generate
10 pseudo-independent light-cones per run.

2.5 Systematics training set: baryon feedback

Another important systematic we investigate in this analysis is
the impact of strong baryonic physics that modifies the clustering
property of matter. As noted in multiple independent studies, active
galactic nucleus (AGN) feedback has a particularly important effect
on the matter power spectrum but is challenging to calibrate.
Simulations often struggle to reproduce the correct baryon fraction in
haloes of different masses, and these differences in turn cause major
discrepancies in the clustering properties (see Chisari et al. 2018
for example). In this paper, we examine one of these models and
inspect which parts of our peak count measurements are affected by
baryons.

We used for this exercise a series of light-cones ray-traced from
a subset of the Magneticum Pathfinder hydrodynamical simulations
that are designed to study the formation of cosmological structures
in presence of baryonic physics and that were recently described
in Castro et al. (2021). These are based on the smoothed particle
hydrodynamics code P-GADGET3 (Springel 2005), in which a number
of baryonic processes are implemented, including radiative cooling,
star formation, supernovae, AGN, and their associated feedback on
the matter density field. The Magneticum reproduce a number of
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key observations such as statistical properties of the large-scale,
intergalactic, and intercluster medium, but also central dark matter
fractions and stellar mass size relations (see Hirschmann et al. 2014;
Teklu et al. 2015; Castro et al. 2018, 2021 for more details). What is
especially important in our case is that the total baryonic feedback on
the matter field is comparable to that of the BAHAMAS cosmological
hydrodynamical simulations (McCarthy et al. 2017), in particular in
terms of the strength of the effect on the matter power spectrum. This
derives from the similar baryon fractions produced by Magneticum
and BAHAMAS that are in reasonable agreement with observations.
This validates the Magneticum as a good representation for the impact
of baryon feedback, given the current uncertainty on the exact impact
(see Section 4.3 for further discussion).

Among the various runs, we use a combination of the high-
resolution Run-2 (Hirschmann et al. 2014) and Run-2b (Ragagnin
et al. 2017), which both co-evolve dark matter particles of mass
6.9 × 108 h−1M	 and gas particles with mass 1.4 × 108 h−1M	 in
comoving volumes of side 352 and 640 h−1 Mpc, respectively; the
smaller (larger) box is used at lower (higher) redshift, and the
transition occurs at z = 0.31. The input cosmology is consistent
with the SLICS but slightly different, with �m = 0.272, h = 0.704,
�b = 0.0451, ns = 0.963, and σ 8 = 0.809. Both Run-2 and Run-2b
also exist in pure gravity mode (i.e. dark matter only) with otherwise
identical initial conditions, allowing us to isolate the impact of the
baryonic sector on our observables.

2.6 Simulation post-processing

2.6.1 Light-cones

The simulation suites used in this paper all work under the flat sky
approximation that assumes that the maps are far enough from the ob-
server so that Cartesian axes can be used instead of angles and radial
distances. At pre-selected redshifts z, the N-body/hydrodynamical
codes assign the particles on to a three-dimensional grid, select a sub-
volume to be projected with pre-determined co-moving thickness,
and collapse the mass density along one of the axis. This procedure
is repeated with different projection directions and sub-volumes,
creating a collection of mass sheets at every redshift. These are next
post-processed to generate a series of past light-cone mass maps,
δ2D(θ , z), each of 100 deg2, that are then used to generate convergence
κ(θ, zs) and shear γ (θ , zs) maps at multiple source redshift planes,
zs, (see HD18 and HD19 for full details), where γ = γ1 + iγ2, the
two components of the spin-2 shear field. From these, mock lensing
quantities (κ, γ ) can be computed for any galaxy position provided
its (RA, Dec) coordinates and a redshift.

2.6.2 Assembling the simulated surveys

As for many non-Gaussian statistics, peak counts are highly sensitive
to the noise properties of the data. As such the simulations need to
reproduce exactly the position and shape noise of the real data,
otherwise the calibration will be wrong. The solution, adopted in
Liu et al. (2015a), K16, and M18 is to overlay data and simulated
light-cones, and to construct mock surveys from the position and
intrinsic shape of the former, and the convergence and shear of the
latter.

Since the size of the full DES-Y1 footprint largely exceeds that
of our individual light-cones, we connect the data and simulations
with a ‘mosaic’ approach, where the DES-Y1 galaxy catalogues

are divided into smaller ‘tiles’11 that all fit inside 100 deg2 square
areas. Each of these tiles are then overlaid with simulated light-
cones from which lensing quantities are extracted. In total, 19
tiles are required to assemble the full footprint with our mosaic,
which is shown in Fig. 1. Every simulated light-cone from the
Cosmology, Covariance, or Systematics training sets is therefore
replicated 19 times and associated with a full realization of the
survey.

We emphasize that the simulated light-cones are discontinuous
across tile boundaries, whereas data are not. To avoid significant
calibration biases caused by this difference, no measurement what-
soever must extend over tile boundaries. Both data and mock data
are separated in tiles at the catalogue level; these are then analysed
individually, and the data vectors are combined at the end.12

Another subtle difference that needs to be taken into account is
that the position coordinates (RA, Dec) and the galaxy ellipticities
(ε) from the data are provided on the (southern) curved sky, whereas
all of our simulations assume a (X, Y) Cartesian coordinate system.
Since the physics are independent of our choice of coordinate system,
and since we analyse every tile individually, we apply a coordinate
transformation to centre every tile on to the equator, where both
coordinate frames converge.13 The weak lensing statistics of a given
tile are unaffected by this rotation, a fundamental fact that we verify
with two-point correlation functions in Section 3.1.

As easily noticed from looking at Fig. 1, some of the galaxies fall
outside the tiles, which slightly affects the total number of galaxies
in the sample. It is not ideal, but adding multiple simulated tiles for
such a small fraction (1.9 per cent) of the data is arguably not worth
the effort. The number of objects listed in Table 1 reflects this final
selection and amounts to a total of 25.5 million of galaxies.

2.6.3 Mock galaxy shapes and redshifts

As mentioned above, the position and the intrinsic ellipticities of
individual galaxies in the simulated catalogues are taken from the
observations. Redshifts are assigned to every object in a given
tomographic bin ‘i’ by sampling randomly the ni(z) described in
Section 2.1. Therefore, variations in survey depth are not included
in our training sets. This induces a systematic difference with the
data, but we expect that this has a minor effect on our cosmological
measurement. Indeed, it was shown in Heydenreich et al. (2020) that
the impact of survey depth variability is subdominant for Stage-III
surveys. At this stage, every galaxy has position and a redshift that
are used to extract the lensing quantities (κ, γ ) from the simulation
light-cones.

We finally include the intrinsic galaxy shapes and METACAL shear
response correction in the simulations by randomly rotating the

11These tiles are sometimes called ‘patches’ in the literature, e.g. in K16.
12Note that the tiles are identical for all simulations (SLICS, cosmo-SLICS,
SLICS-HR, and Magneticum) since their light-cones all have the same
opening angle.
13In this process, we rotate both the celestial coordinate and the ellipticities
of every galaxy in the tile to account for the modified distance to the South
pole in the new coordinate frame. The exact transformation uses the method
presented in the appendix B of Xia et al. (2020), which rotates pairs of galaxies
from any orientation on the sky on to the equator, placing one member at the
origin. In our case we instead map to the equator the straight line that bisects
every tile. Every tile has its unique rotation vector, which we also use to
displace the galaxies and to recompute their ellipticities (ε1/2) in this new
coordinate frame.
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observed galaxy shapes such as to undo the cosmological correlations
from the data, and we then combine the new ellipticity εint with the
simulated lensing signal as

ε = εint + g
1 + ε∗

int g
. (1)

Here g is the reduced shear, defined as g = γS/(1 + κ), and the bold-
font symbols g, γ , ε, and εint are again spin-2 complex quantities.

We investigate in Section 4.4 the impact of the intrinsic alignment
of galaxies where εint is no longer chosen at random and instead
correlates with the shape of dark matter haloes.

3 TH E O RY A N D M E T H O D S

Since we validate our simulation suites with cosmic shear correlation
functions and lensing power spectra, we begin this section with a
review of the theoretical modelling and the measurement strategies
related to these quantities. We next move to the primary focus of
this paper and describe our peak count statistics pipeline, detailing
our treatment of the data, our approach to modelling the signal,
and estimating the covariance matrix, and we finally describe our
cosmological inference methods.

3.1 ξ± statistics

Two-point correlation functions (2PCFs) are well studied and have a
key advantage over other measurement techniques: as for all lensing
two-point statistics, their modelling can be accurately related to
the matter power spectrum, P(k, z), whose accuracy is reaching
the per cent level far in the non-linear regime when calibrated with
N-body simulations at small scales, and in absence of baryonic
physics (Heitmann et al. 2014; Euclid Collaboration: Knabenhans
& the Euclid Collaboration 2019). From this P(k, z), the lensing
power spectrum between tomographic bins ‘i’ and ‘j’ is computed
in the Limber approximation as

C
ij

� =
∫ χH

0

qi(χ ) qj (χ )

χ2
P

(
� + 1/2

χ
, z(χ )

)
dχ, (2)

where χH is the co-moving distance to the horizon, and the lensing
kernels qi are computed from the redshift distributions n(z) as

qi(χ ) = 3

2
�m

(
H0

c

)2
χ

a(χ )

∫ χH

χ

ni(χ ′)
dz

dχ ′
χ ′ − χ

χ ′ dχ ′, (3)

where c and H0 are the speed of light and the Hubble parameter,
respectively. The cosmic shear correlation functions ξ

ij
± are

computed from the C
ij

� as

ξ
ij
± (ϑ) = 1

2π

∫ ∞

0
C

ij

� J0/4(�ϑ) � d�, (4)

with J0/4(x) being Bessel functions of the first kind. Following T18,
equation (4) is solved with the cosmological parameter estimation
code COSMOSIS14 (Zuntz et al. 2015), in which the matter power
spectrum is calculated by the HALOFIT model of Takahashi et al.
(2012). The ξ

ij
± predictions for the DES-Y1 measurements are

shown by the black lines in Fig. 2 for all pairs of tomographic bins,
at the SLICS input cosmology.

The measurements of ξ̂
ij
± from simulations and data are carried

out with TREECORR (Jarvis et al. 2004), a fast parallel tree-code

14bitbucket.org/joezuntz/cosmosis/wiki/Home

that computes shape correlations between pairs of galaxies ‘a, b’
separated by an angle ϑ as

ξ̂
ij
± (ϑ) =

∑
ab WaWb

[
εi
a,t(θa) ε

j

b,t(θb) ± εi
a,×(θa) ε

j

b,×(θb)
]
�ϑab∑

ab WaWb SaSb

.

(5)

In the above expression, the sums are over all galaxies ‘a’ in
tomographic bin i and galaxies ‘b’ in tomographic bin j; εi

a,t, and
εi
a,× are the tangential and cross components of the ellipticity of

galaxy a in the direction of galaxy b; Wa/b are weights attributed to
individual galaxies, which are set to unity in the METACALIBRATION

shear inference method; Sa/b are the ‘shear response correction’
per object mentioned in Section 2.1 and provided in the DES-Y1
catalogue; �ϑab is the binning operator, which is equal to unity if
the angular separation between the two galaxies falls within the ϑ-
bin, and zero otherwise. Our raw measurements are organized in 32
logarithmically spaced ϑ-bins, in the range [0.5–475.5] arcmin, but
not all angular scales are used in this work.15

We present in Fig. 2 our measurements of ξ̂
ij
± on the DES-Y1

data, showing with the black solid points the measurement on the
full footprint, and with the open blue triangles the measurements on
the 19 data tiles described in Section 2.6.2 that are combined with a
weighted mean using the TREECORR Npairs(ϑ) per tile as our weights.
We see that the two results are similar, with differences that are
everywhere at least twice as small as the statistical error measured
from the covariance mocks (see below) and evenly scattered about
the black points, validating our tiling method. We further verified
that the difference on the inferred cosmology is negligible (see
Section 5).

We also show, with the red squares in Fig. 2, the mean, and
expected 1σ error on the DES-Y1 data as estimated from the Covari-
ance training set. The agreement between theory and simulations is
excellent at all scales, and the slight differences are well under the
statistical precision of the data. We can observe a slight loss of power
at large angular scales in the ξ+ statistics, a finite box effect that we
forward model (see Appendix A1). For every simulated light-cone
we generate a total of 10 realizations of the shape noise by rotating,
as many times, every galaxy in the catalogue, and recomputing new
observed ellipticities (with equation 1) and the correlation functions
(equation 5). The red squares in Fig. 2, as well as their associated
error bars, correspond to one of these realizations; we observe no
significant change in the other nine realizations, and recover the
error bars reported by T18 to within 5–15 per cent over most angular
scales, further demonstrating the robustness of our training set. We
do not expect a perfect match due to the slightly different binning
scheme.

Our cosmological analyses exclude the same angular scales as in
T18, removing the elements of the data vector where T18 conclude
that the uncertainty on the baryonic feedback and in the non-linear
matter power spectrum is non-negligible. These scales are indicated
by the vertical lines in Fig. 2.

The variation of ξ± with cosmology are well captured by COS-
MOSIS, and so are the responses to photometric redshift and shear
calibration uncertainties (see Section 4). We therefore do not measure
this statistic in the Cosmology nor the Systematics training sets, and
use instead the public modules provided in the latest COSMOSIS
release to calculate these.

15Note that T18 used 20 logarithmic bins in the range 2.5–250 arcmin.
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Figure 2. Two-point correlation functions measured in the DES-Y1 data (filled circles and opened triangles present measurements on the full survey footprint
and from a weighted mean over the tiles presented in Fig. 1, respectively) and in the SLICS simulations (red squares, with error bars showing the statistical error
on the DES-Y1 data), compared to the analytical model computed at the input SLICS cosmology (solid lines). The left- and right-hand side ladder plots present
the ξ− and ξ+ statistics, respectively, and the sub-panels in each correspond to different combinations of tomographic bins. The vertical dotted lines indicate
the angular scales excluded in the cosmological analysis, which match those of T18.

3.2 Shear peak count statistics

As mentioned in the introduction, the peak count statistic is a
powerful alternative method to extract cosmological information
from weak lensing data. It consists of measuring the ‘peak function’,
i.e. the number of lensing peaks as a function of their signal-to-noise,
which is very sensitive to cosmology and robust to systematics [see
Zürcher et al. (2021) Martinet et al. (2021a) for recent comparisons
with other lensing probes].

Our measurement technique closely follows that described in K16
and M18, which we review here. Peaks are identified from local
maxima in the signal-to-noise maps of the mass within apertures
(Schneider 1996), Map(θ ), searching for pixels with values higher
than their eight neighbours. This is one of many ways to estimate
the projected mass map from galaxy lensing catalogues, and was
chosen primarily for its local response to data masking. This is to be
contrasted with e.g. the Fourier methods of Kaiser & Squires (1993)
in which masking introduces a complicated mode-mixing matrix
that can affect all scales. Other techniques such as Bayesian mass
reconstruction (Price et al. 2021) or wavelets transforms (Leistedt
et al. 2017) are also promising and merit to be explored in the future
(see as well Gatti et al. 2020, and references therein).

From a lensing catalogue containing the position, ellipticity εa and
shear response correction Sa per galaxy, we construct an aperture
mass map on a grid by summing16 over the tangential component of
the ellipticities from galaxies surrounding every pixel at coordinate
θ , weighted by an aperture filter Q. More precisely, we compute

Map(θ ) = 1

ngal(θ )
∑

a Sa

∑
a

εa,t(θ , θa)Q(|θ − θa |, θap, xc), (6)

16In practice, we use a link-list to loop only over nearby galaxies.

where ngal(θ) is the galaxies density in the filter centred at θ ,
and θa is the position of galaxy a. The tangential ellipticity
with respect to the aperture centre is computed as εa,t(θ , θa) =
−[ε1(θa) cos(2φ(θ, θa)) + ε2(θa) sin(2φ(θ, θa))], where φ(θ , θa) is
the angle between both coordinates. Our filter Q(θ , θ ap, xc), abridged
to Q(θ ) to shorten the notation, is identical to that in Schirmer et al.
(2007), which is optimal for detecting haloes following an NFW
profile (but faster than solving the actual numerical NFW equation),

Q(x) = tanh(x/xc)

x/xc

[
1 + exp(6 − 150x) + exp(−47 + 50x)

]−1
. (7)

In the above expression, x = θ /θ ap, where θ is the distance to the filter
centre, and we adopt xc = 0.15 as in previous works, a choice that
maximizes the sensitivity of the signal to the massive haloes, which
carry the majority of the cosmological information. The filter size of
θ ap = 12.5 arcmin is adopted as in M18; however, we also consider
9.0 and 15.0 arcmin, and report results for these where appropriate.
Hereafter, equation (6) defines the signal of our aperture mass map,
which we compute at every pixel location.

The variance about this map is calculated at every pixel location
from

σ 2
ap(θ) = 1

2n2
gal(θ )

[∑
a Sa

]2

∑
a

|εa |2Q2(|θ − θa |), (8)

where again the sum runs over all galaxies in the filter. Note that
the magnitude of the measured galaxy ellipticities that enters this
equation must also be calibrated by the shear response correction
(see the appendix A of Asgari et al. 2020), hence the term [

∑
aSa]2

in the denominator. The signal-to-noise map from which peaks are
identified, M(θ ) ≡ S/N, is computed by taking the ratio between
equation (6) and the square root of equation (8) at every pixel

MNRAS 506, 1623–1650 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/1623/6297283 by guest on 12 August 2022



1630 J. Harnois-Déraps et al.

Figure 3. Example of the Map mass-reconstruction pipeline over one of our
10 × 10 deg2 tiles. The larger panel on the bottom right presents the true κ

values at the position of the galaxies in this field, extracted from the cosmo-
SLICS model-00. The raw Map map is shown in the top left-hand panel in
the noise-free case. The number of galaxies in the filter (second panel) are
then used to construct a mask (third panel), which we apply on the raw Map

maps (bottom panel). The top right-hand panel shows a zoom-in of the top
left-hand panel, highlighting the effect of masking on the raw reconstructed
Map map.

location, e.g.

M(θ) ≡ Map(θ )/σap(θ ). (9)

Peaks catalogues are first constructed from the galaxy catalogues
separated in tomographic bins (which we label 1, 2, 3, and 4), and
then from every combination of pairs of tomographic catalogues
(which we label 1∪2, 1∪3, 1∪4 ... 3∪4). As detailed in Martinet
et al. (2021a), analysing these ‘cross-tomographic’ catalogues pro-
vides additional information that is not contained within the ‘auto-
tomographic’ case. They went further and also included triplets
(1∪2∪3, 1∪2∪4, 1∪3∪4...) and quadruplets (1∪2∪3∪4), showing
that these also contained additional information, but this gain is not
as significant in our case, where the noise levels are much higher.

3.2.1 Masking

Weak lensing data are taken inside a survey footprint, and parts of
the images are removed in order to mask out satellite tracks, bright
stars, saturated foreground galaxies, etc. The effect of data masking
on the aperture mass map can be significant: the signal and the noise
are coherently diluted in apertures that strongly overlap with masked
regions, generating regions whereM is overly smooth. Therefore the
survey mask must be included in the simulations and in the estimator
such as to avoid biasing the statistics.

If the masked pixels are known, this can be taken into account by
avoiding pixels for which e.g. more than half of the filter overlaps
with masked areas. Alternatively, one can examine the object density

in the aperture filter, ngal(θ), and require that it exceeds a fixed
threshold in order to down-weight or reject heavily masked apertures.
In this method, pixels with little or no galaxies are treated as masked.
We opted for the second method, setting the threshold to 1/π2

gal arcmin−2 after a few different trials, which directly identifies
regions with very low galaxy counts. We further augment the masking
selection with an apodization step that flags as ‘also masked’ any
pixel within a distance θ ap of a masked region found in the first step.

Fig. 3 illustrates this procedure for one of the tiled catalogues,
for an idealized noise-free case. For our fiducial choice of filter
θ ap = 12.5 arcmin, we show in the upper two left-hand panel the
‘raw’ Map(θ ) map (e.g. before masking, computed directly from
equation 6) as well as Ngal(θ). The masked regions are clearly visible
in the latter but not so much in the former. A close inspection (top
right-hand panel), however, reveals overly smooth features in Map(θ ),
in regions where there are no galaxies (i.e. in the blue regions of the
Ngal(θ) map). The third left-hand panel shows the masked regions
constructed from our pipeline that is finally applied on the raw
aperture map, resulting in the masked map shown on the bottom
panel. All choices of θ ap result in aperture maps that closely recover
the true convergence (shown in the bottom right-hand panel).

It is clear from Fig. 3 that the unmasked area of our final maps
is affected by the aperture filter size. Indeed, larger filters can be
blind to small features in the mask, while the survey edges are more
severly excluded. This does not bias our cosmological inference since
we apply the same filter to the data and the simulations, but it does
slightly affect the signal-to-noise of our measurement that increases
with the area of the survey. The net unmasked area in our final maps
are (1426, 1408, 1366, 1327, 1284) deg2 for θ ap = (6.0, 9.0, 12.5,
15.0, 18.0), respectively.

3.2.2 Peak function

Peaks found in the (masked) M maps are counted and binned as a
function of their pixel value, thereby measuring the peak function
Npeaks(S/N). We use 12 bins covering the range 0 < S/N ≤ 4 in
our main data vector, which was found in K16 and M18 to avoid
scales where multiple systematics uncertainties such as the effects of
baryon feedback and intrinsic alignments of galaxies become large
(we extend this range to higher S/N values in some of our systematics
investigations). 12 bins is also a good trade-off between our need
to capture most cosmological information from Npeaks(S/N), while
keeping a small data vector for which the covariance matrix will be
less noisy. A number of recent studies (M18; Davies, Cautun & Li
2019; Coulton et al. 2020; Davies et al. 2020; Martinet et al. 2021a;
Zürcher et al. 2021) have shown that cosmological information is
contained in peaks of negative S/N or in lensing voids; however, as
noted in appendix B of M18, the peaks with negative S/N strongly
correlate with those of positive S/N value, and only marginally
improve the constraints from peak statistics in the case of Stage-
III surveys. We therefore focus only on the positive peaks in this
DES-Y1 analysis.

We show in Fig. 4 the peak function measured from the Cosmology
training set with θ ap = 12.5 arcmin, for all pair combinations of
the four redshift bins and colour coded as a function of the input
S8. A pure noise case (Nnoise), obtained from the average peak
function after setting γ = 0 on 10 full survey realizations, has been
subtracted to highlight the cosmological variations. Off-diagonal
panels present the cross-tomographic measurements. The colour
gradient is clearly visible in all tomographic bins; more precisely, all
cosmologies present an excess of large S/N peaks and a depletion
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Figure 4. Peak function Npeaks(S/N) in the DES-Y1 data (black squares) and simulations (coloured histograms), from which the expectation from pure shape
noise Nnoise(S/N) has been subtracted. The panels show different tomographic bin combinations, as labelled in their lower-right corners. The predictions are
colour coded by their S8 value, with the red dashed line showing the best-fitting value. The DES-Y1 error bars are estimated from the Covariance training set.

of low S/N peaks compared to pure noise. This is caused by the
gravitational lensing signal that create peaks and troughs in the
Map map and smooths out the smallest peaks. Importantly, these
differences are accentuated for high-S8 cosmologies. Also shown
with black squares are the measurements from the DES-Y1 data,
with error bars estimated from the Covariance training set. These
demonstrate that most of the constraining power comes from the
auto-tomographic bins 3 and 4 and from the cross-tomographic bins.
Some additional information is contained in the highest S/N peaks
of the redshift bins 1 and 2, whereas the low S/N peaks of bin 2
mostly contribute noise.

3.3 Analysis pipeline

In this analysis we extend multiple aspects of the K16 and M18
methodologies. Here is a summary of these improvements:

(i) We include a tomographic decomposition of the data, including
the cross-redshift pairs inspired by the method presented in Martinet
et al. (2021a);

(ii) Our Cosmology training set (see Section 2.2) now includes
four parameters (�m, σ 8, h, and w0), and it would be straightforward
to increase that parameter list with additional training samples.
Additionally, the cosmo-SLICS simulations are more accurate than
those of Dietrich & Hartlap (2010), which were used in both K16
and M18: they resolve smaller scales, and suffer less from finite box
effects, having a volume almost eight times larger;

(iii) We deploy a fast emulator (see Section 3.5) that can model the
signal at arbitrary cosmologies within the parameter volume included
in the training. In contrast with a likelihood interpolator, emulating
the data vector directly allows us to combine the summary statistics
with other measurement methods such as the two-point correlation
functions, to better include systematic uncertainties, and to easily
interface with most likelihood samplers;

(iv) We generate a Covariance training set from a larger ensemble
of independent survey realizations (see Section 2.3), and feed it
into a novel hybrid internal resampling technique that improves the
accuracy and precision of lensing covariance matrices estimated from
the suite (see Section 3.4). Moreover, the covariance training set is
shown to closely reproduce the published DES-Y1 cosmological con-
straints of T18 when analysed with two-point correlation functions
(see Table 5), thereby validating both the simulations themselves and
the covariance estimation pipeline. Our method is also compatible
with joint-probe measurements;

(v) We construct a series of dedicated Systematics training sets
specifically tailored to our data, in which the most important cosmic
shear-related systematics are infused. Specifically, we investigate
the impact of photometric redshift uncertainty (Section 4.1), of
multiplicative shear calibration uncertainty (Section 4.2), of baryonic
feedback (Section 4.3), of possible intrinsic alignment of galaxies
(Section 4.4), and of limits in the accuracy of the non-linear
physics (Section 4.5). These tests allow us to flag the elements of
our data vector that are affected, and in some case to model the
impact. Following K16, we construct a linear response model to the
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photometric redshift and multiplicative shear calibration uncertain-
ties, but calibrate our models on a sample of 10 deviations from the
mean of the distribution (respectively �zi and �mi, with i = 1..10)
as opposed to one;

(vi) We implement the emulator, the covariance matrix and the
linear systematic models within the cosmology inference code
COSMOSIS (Zuntz et al. 2015), allowing us to carry out a joint
likelihood analysis based on peak statistics and shear two-point cor-
relation functions, while coherently marginalizing over the nuisance
parameters that affect both of these measurement methods.

With this new pipeline, we are fully equipped to investigate the
impact of different measurement and modelling methods, of different
systematics mitigation strategies, but also of analyses choices related
to the likelihood sampling, such as the prior ranges, the specific
combination of parameters to be sampled, or the manner in which
maximum likelihoods and confidence intervals are reported. Indeed,
it has been shown that these have a non-negligible impact on the
final cosmological constraints, specifically in the context of weak
lensing cosmic shear analyses (Joudaki et al. 2017; Chang et al. 2019;
Joudaki et al. 2020; Asgari et al. 2021; Joachimi et al. 2021).17 It
turns out that these approaches do not make too much of an impact for
current cosmic shear data. Moreover, it is not our primary goal here
to optimise these choices, as we are rather interested in establishing
our simulation-based inference method as being robust, accurate,
and flexible. We therefore opted for an overall analysis pipeline that
maximally resembles that of the fiducial DES-Y1 cosmic shear data,
and leave some additional tuning for future work.

Aside from a different choice of n(z) calibration (see Section 2.1),
the key differences between our current pipeline and that of T18
are the impossibility of ours to vary and marginalize over the other
cosmological parameters – the power spectrum tilt parameter ns,
the baryon density �b and the sum of neutrino mass

∑
mν . These

would require more light-cone simulations such as the Mira-Titan
(Heitmann et al. 2016) or the MassiveNuS (Liu et al. 2018) that are not
folded in our training set at the moment but form a natural extension
to this work. Also missing is a cosmology-dependent model for the
effect of intrinsic alignment, which could be necessary in future
analyses.

3.4 Covariance matrix

The covariance matrix is a central ingredient to our cosmological
inference as it describes the level of correlation between different
elements of our data vector, and its inverse directly enters in the
evaluation of the likelihood. In our analysis, it is estimated from the
Covariance training set, which is based on 124 independent light-
cones, each replicated on to the 19 survey tiles such as to fully cover
the DES-Y1 footprint. For each of these survey realizations, we
further generate 10 shape noise realizations by randomly rotating the
ellipticity measurements from the data, which increases the number
of pseudo-independent realizations to Nsim = 1240 and is largely
enough for the current analysis.

17In particular, Joachimi et al. (2021) demonstrates that reporting the
projected maximum likelihood value and the associated confidence interval
can introduce biases when collapsing a high-dimensional hyper-volume into
a one-dimensional space. Instead, it is argued therein that a more accurate 1D
inference is obtained by reporting the multivariate MAP distribution, along
with a credible interval calculated using the projected joint highest posterior
density (PJ-HPD) of the full likelihood.

The next step consists in combining the measurements ob-
tained in the 19 different tiles into a final measurement of the
[ξ ij

± (ϑ); Nij

peaks(S/N)] covariance. To achieve this, we mix the light-
cones at the survey construction stage, such that for each of the
124 full survey assembly, the 19 tiles are extracted from 19 different
light-cones selected at random. This mixing suppresses an unphysical
large-scale mode-coupling caused by the replication that otherwise
results in an overall variance on ξ± that is an order of magnitude too
large. (Note that the ξ± covariance block is identical to an alternative
estimation based on computing the matrix for individual tiles that
are subsequently combined with an area-weighted average, but the
N

ij

peaks(S/N) block in that latter case becomes inaccurate in this case
so we reject this approach.) We repeat this for each of the 10 noise
realizations and use the average matrix as our final estimate.

The net effect of averaging over multiple shape noise realizations is
to significantly lower the noise in the matrix, especially over the terms
where shape noise dominates. A similar technique is applied in M18,
who also find a negligible impact on the cosmological results from
KiDS-450 data whether they average over 5 or 20 noise realizations.
Fig. 5 shows the resulting matrix, normalized to unity of the diagonal,
e.g. r(x, y) = Cov(x, y)/

√
Cov(x, x) Cov(y, y). Whereas the ξ+

block shows the highest level of correlation, the off-diagonal blocks
are mostly uncorrelated, which is promising for the prospect of
learning additional information from the joint analysis.

3.5 Peak function emulator

The peak count statistics measured from the Cosmology training set
(shown in Fig. 4 with the coloured histograms) is computed at 26
points in a wide four-dimensional volume. From these we train a
Gaussian Process Regression (GPR) emulator that can model the
peak function given an input set of cosmological parameters [�m,
S8, h, w0] at any point within the training volume. Directly adapted
from the public cosmo-SLICS emulator18 described in appendix A
of HD19, we train our GPR emulator on the individual elements of
the Npeaks data vector, first optimizing the hyper-parameters from an
MCMC analysis that includes 200 training restarts, then ‘freezing’
the emulator once the best-fitting solution has been found. As de-
scribed in HD19, the training can also involve a PCA decomposition
and a measurement error; we include the former but find that the
modelling is more accurate without the latter.

We evaluate the accuracy of the emulator from a leave-one-out
cross-validation test: the emulator is trained on all but one of the
training nodes, then generates a prediction of the peak function at
the removed cosmology, which is finally compared with the actual
measurement. This test is performed for all nodes and provides
an upper bound on the interpolation error, since in this case the
distance between the evaluation point and all other training nodes
is significantly larger than if all points had been present. Moreover,
many of these points lie at the edge of the training volume, hence
removing them for this test requires the emulator to extrapolate
from the other points, which is significantly less accurate than the
interpolation that is normally performed. As discussed in HD19,
the node at the fiducial cosmology was added by hand close to the
centre of the wCDM Latin hypercube, hence the cross-validation test
performed at that single 	CDM point is more representative of the
actual emulator’s accuracy.

The results from this accuracy test are presented in Fig. 6,
again colour coded with S8. We achieve sub-per cent interpolation

18github.com/benjamingiblin/GPR Emulator/
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Figure 5. This cross-correlation matrix highlights the correlations between the different elements of the data vector. From left to right, the first 10 blocks show
the ξ+ tomographic measurements, followed by the 10 ξ− blocks, while the last 10 blocks show the tomographic peak count. Not all elements are used in the
analysis, see the main text for more details.

accuracy over data points with S/N < 3, and for all points when
testing the 	CDM model (shown in thick black). We observe in
some other models a scatter of up to a few per cent for peaks
with S/N > 3, but this scatter overestimates the true interpolation
error for reasons explained above. In term of accuracy target for
the model and other systematics effects, we generally aim for an
impact on the cosmological inference that is less than 0.5σ stat; all
dominant effects are documented in Sections 4 and 5.2. Generally
speaking, most systematic effects that have a < 5 per cent impact
on a small number of elements in the data vector will satisfy
this criteria. When compared to the statistical error on the DES-
Y1 measurement, the GPR emulator’s error is always subdominant
(see the thick dashed lines in Fig. 6). We conclude from this that
the accuracy of our model is high enough, given our current data,
and that it should introduce no noticeable bias in the cosmological
inference.

3.6 Likelihood

The GPR emulator is embedded within the COSMOSIS cosmological
inference package, which allows us to evaluate the likelihood
at any cosmology within the cosmo-SLICS training range, given
measurements of ξ

ij
± (ϑ) and N

ij

peaks(S/N) from the data, plus our joint
covariance matrix. At the moment we can only provide predictions
of the peak function for the θ ap values on which the GPR was trained,
but in the future this could also be treated as a free parameter to be

emulated, providing even more flexibility to the prediction code and
optimisation avenues.

The predictions x at cosmology π are then compared with the data
d using a multivariate t-distribution likelihood following Sellentin &
Heavens (2016),

L(π|d) ∝ Nsim

2
ln
[
1 + χ2/(Nsim − 1)

]
, with (10)

χ2 =
∑

[x(π) − d]TCov−1[x(π) − d]. (11)

This likelihood correctly takes into account the residual noise in the
covariance matrix that stems from its sampling with a finite number
of simulations, and reduces to the standard multivariate Gaussian
likelihood when Nsim → ∞. Since there are, at the very least,
hundreds of peaks in each of our bins, adopting this likelihood is
justified.

For our first pipeline validation exercise, our choice of priors
matches that of T18 in our two-point statistics-only analysis (see
Table 3), allowing us to investigate the effect of replacing the fiducial
(analytic) covariance matrix with our simulation-based matrix on the
parameter inference. At the same time this serves to validate our
simulations.

In our three fiducial analyses (2PCFs, peaks, and joint), the priors
reflect the parameter range probed by the cosmo-SLICS, and hence
we assign a flat prior on �m, σ 8, h, and w0 (summarized in Table 3).
All other parameters (i.e. the baryon density, the tilt in the primordial
power spectrum and the sum of neutrino masses) are kept fixed to
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Figure 6. Accuracy of the GPR emulator, computed with a leave-one-out
cross-validation test. The results are colour coded with the input S8 value of
the removed training point, and compared with the statistical uncertainty on
the measurement (shown with the black dashed lines). The black solid line
shows the accuracy at the 	CDM node, and the different panels show the 10
combinations of tomographic bins.

Table 3. Priors used in the likelihood sampling. The ranges for the four
cosmological parameters are determined by the cosmo-SLICS simulations,
the photometric redshift ranges, and priors are taken from the DIR errors
found in J20, while those of the shear calibration and intrinsic alignments are
taken from T18. Gaussian priors are characterized by a mean and a standard
deviation (μ, σ ).

Parameter Range Prior

Cosmology
�m [0.1, 0.55] Flat
σ 8 [0.53, 1.3] Flat
h [0.6, 0.82] Flat
w0 [−2.0, −0.5] Flat
Nuisance
�z1 × 102 [−10, 10] G(0, 0.8)
�z2 × 102 [−10, 10] G(0, 1.4)
�z3 × 102 [−10, 10] G(0, 1.1)
�z4 × 102 [−10, 10] G(0, 0.9)
�mi × 102 [−10, 10] G(1.2, 2.3)
IA
AIA [−5, 5] Flat
η [−5, 5] Flat

�b = 0.0473, ns = 0.969, and
∑

mν = 0.0eV, respectively. The
lensing constraints on these are very weak at the moment, hence we
do not expect that holding them fixed should significantly affect our
results.

We finally include the same 10 nuisance parameters as in T18: a
shear calibration �mi and a photometric redshift calibration �zi per
tomographic bin, plus two parameters associated with the modelling
of the intrinsic alignments (IA) in the non-linear alignment (NLA)
model (Bridle & King 2007). The latter two are not included in the

peak count case for which we conduct instead a simulation-based
assessment of the impact of IA. We sample the likelihood with the
MULTINEST sampler (Feroz, Hobson & Bridges 2009), set with a
tolerance parameter of 0.1 and an efficiency of 0.3. We refer the
interested reader to T18 and Krause et al. (2017) for more details
about the DES-Y1 cosmology inference pipeline.

We validate our implementation with a series of likelihood sam-
pling analyses where the ‘data’ is taken from the mean measurement
extracted from the Covariance training set, for which the cosmology
and the systematic biases are known. We detail these results in Ap-
pendix A, and compare the 2PCFs and the peaks wCDM performance
on these mocks as well. We further validate our 	CDM 2PCFs
segment both against the T18 and J20 results in Section 5.1. It is
worth mentioning here that Jeffrey & Abdalla (2019) have proposed
a correction to the likelihood calculation when the model is inferred
from noisy estimates, which we could have used the residual noise
in our training sample had been judged too large; however, this is not
the case, with 1000 deg2 of light-cone data per cosmology, times 10
noise realization.

4 SYSTEMATICS

The likelihood modules within COSMOSIS are equipped with an
infrastructure that allows us to define nuisance parameters and to
marginalize over them. In particular, for the two-point correlation
function sector, the photometric redshift errors �zi are included
by shifting the tomographic redshift distributions, e.g. ni(z) →
ni(z + �zi), after which new predictions for ξ

ij
± are computed from

equations (2–4). Errors on the shear calibration, �mi, are included
directly on the statistics as ξ

ij
± → ξ

ij
± (1 + �mi)(1 + �mj ). Finally,

we include the two-parameters model of intrinsic alignments of
galaxies that was used in T18. We keep the T18 priors on the IA
and shear calibration nuisance parameters, but use the J20 priors
for the redshift uncertainty in our fiducial analyses. These are all
summarized in Table 3. Inaccuracies at small scales due to uncertainty
in the non-linear physics and in the baryonic feedback are controlled
with the angular scale cuts applied on ξ±, rejecting elements of the
data vector that vary by more than 2 per cent in presence of these
systematics. As pointed out in T18 (see their table 3), even with these
stringent cuts, strong feedback mechanisms could shift the inferred
S8 value by more than 0.5σ .

We expand the existing COSMOSIS infrastructure to include
systematics models of the peak statistics based on our simulation
training sets. Specifically, we added modules to include the effect
of photometric and shear calibration errors, which we parameterized
by the same �zi and �mi nuisance parameters as for the 2PCFs,
allowing us to marginalize coherently over these in a joint [ξ±;
Npeaks] analysis. These two models are detailed in Sections 4.1 and
4.2. All other sources of uncertainty are identified and controlled by
removing S/N > 4 bins, which are identified from our Systematics
training set as being contaminated beyond an acceptance threshold,
or by verifying that they do not impact the best-fitting cosmological
parameters. The following sections detail our treatment of these
sources of systematic uncertainty for the peak count measurements;
the reader hungry for results can skip ahead to Section 5.

4.1 Photometric redshifts

As there is no analytic prescription to model the effect of photometric
redshift uncertainty on the peak function, we investigate its impact
directly from the simulations: we infuse different shifts �zi in the
galaxy distribution of the four tomographic bins (similar to the
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Figure 7. Derivative of the (log of the) peak function Npeaks with respect to shifts in the mean of the galaxy redshift distribution, �z (upper), and in the mean
shear calibration �m (lower). These derivatives are shown as a function of S/N bin, for every tomographic case and are computed from 10 deviation points
(see main text for details). The cosmo-SLICS model-FID is in red, model-00 in black, and the error bars are obtained from the scatter over 10 realizations of
the full survey. Other filter sizes yield slightly different derivatives, but exhibit a similar level of agreement between the two cosmological models. The FID
derivatives are used in the cosmology pipeline to marginalize over these two nuisance parameters.

treatment in the 2PCFs), generate new mock light-cones and galaxy
catalogues, and compute the peak statistics from these. Our approach
is similar to the linear model adopted by K16, which computes a
two-point numerical derivative from simulations produced with a
(single) shift in the mean n(z) by �z. Our model is slightly more
sophisticated: we sample 10 �zi values in every S/N bin, drawing
numbers randomly from Gaussian distributions with means of zero
and standard deviations σ z given by J20 priors on the nuisance
parameters (see Table 3). In the case of cross-tomographic bins,
we use the mean between the two σ z values.

For every shift, we generate five light-cones and use these to cover
the full survey (with the tiling strategy described in Section 2.6.2); we
next measure Npeaks(S/N) as a function of �zi, and fit a straight line
through these 10 points in order to extract the numerical derivative
(∂Npeaks/∂�z) for every S/N and tomographic bin. The linear fit
captures well the response to changes in �zi, reaching signal-to-noise
ratios between 5 and 40 depending on the bin, except for the sixth bin
where the peak function and the derivatives are consistent with pure
noise. We carry out this calculation for the different aperture filters
investigated in this paper, but also at two different cosmological
models19 (model-FID and -00) in order to assess the stability of the
derivative with respect to cosmology. The results are shown in the
upper panels of Fig. 7.

We note that the results for the two cosmological models are
in qualitative agreement, where the response of high (low) S/N
peaks to an increased survey depth is positive (negative). This
is caused by the fact that a greater depth increases the shear
signal that shifts the peak function towards higher S/N values.
Some differences are observed towards the large S/N values.
With model-00 being quite distant from model-FID – notably a
12 per cent lower value of S8 – we do not expect the derivatives
to be identical, but the impact of this difference is highly suppressed
by the tight priors on �zij. Given the current statistical uncertainty
of the measurements, however, we therefore ignore this cosmology
dependence, but this will need to be revisited in the future. Similarly
to K16, we choose to model the redshift uncertainty by scaling

19The cosmo-SLICS model-FID has �m = 0.2905, S8 = 0.8231, h = 0.6898,
and w0 = −1.0, while model-00 has �m = 0.3282, S8 = 0.6984, h = 0.6766,
and w0 = −1.2376.

the measurement in each of the S/N bins with this linear model
prior to marginalizing over �z in the likelihood inference. Namely,

we compute N
ij

peaks(�zij ) = N
ij

peaks(�z = 0) +
(
∂N

ij

peaks/∂�z
)

�zij

using the derivative extracted from the model-FID cosmology, where
�zij = (�zi + �zj)/2.

4.2 Shear calibration

The uncertainty in the shear calibration is forward-modelled with
a similar method, except that no additional ray-tracing is required.
Instead we include a uniform (1 + �mi) correction factor at the
catalogue level, which multiplies every observed ellipticities in
equations (6) and (8). We next de-bias the peaks measurement
with the original shear response Sa but deliberately ignore these
additional �mi factors, resulting in a net residual bias caused by
an incorrect shear calibration, which is exactly what we wish to
model. We repeat this process for 10 values of �mi sampled from
the priors on the shear calibration errors (a Gaussian with width
σ m = 0.023; see Table 3), we measure the peak function for
each of these samples on the full survey, average over five light-
cones, and fit a straight line to these points in every S/N bin
and tomographic bin, allowing us to compute derivatives and model

N
ij

peaks(�mij ) = N
ij

peaks(�m = 0) +
(
∂N

ij

peaks/∂�m
)

�mij .

The partial derivatives are calibrated this way for cosmological
models-FID and -00 and reported in the lower panels of Fig. 7. We
observe a global agreement between the two cosmologies, similar
in shape to the effect of increasing the survey depth, with the
amplitudes of the derivative being slightly larger towards the high
S/N bins for model-FID, which is linked to its higher S8 value.
We ignore these differences in this work due to the small size of σ m

relative to the statistical precision of the DES-Y1 data, and use solely
the model-FID derivatives in the likelihood sampling. However,
this could be easily addressed with our approach: the derivatives
(∂Npeaks/∂�z) and (∂Npeaks/∂�m) could be estimated at our 26
cosmological nodes, from which we could train a Gaussian process
emulator the same way we model our signal. This improved accuracy
treatment of the derivatives will likely need to be included in future
analyses.

We finally note that in contrast with the 2PCFs, where shifts in
�m affect all scales equally, the derivative presented above exhibit a
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Figure 8. Effect of baryon feedback on the convergence power spectrum
measured from the Magneticum simulations, assuming a fixed redshift for the
sources.

more complicated structure, caused by the fact that the m-calibration
affects both the shear estimate and the noise in a non-trivial manner
(see equations 6 and 8).

We present in Appendix A2 a comparison between a cosmological
inference in which �zi and �mi are allowed to vary, and one where
these two are held fixed at zero, and notice that while no biases on the
preferred parameters are observed, the uncertainty about S8 almost
doubles in the former case.

4.3 Baryon feedback

The uncertain impact of baryonic feedback on the peak count
statistics has received an increasing degree of attention over the
last few years (Osato, Shirasaki & Yoshida 2015; Weiss et al. 2019;
Coulton et al. 2020). The current interpretation can be summarized
as follows: radiative pressure from sustained stellar winds, combined
with supernovae explosions and AGN activity combine to expel
gas towards the outer regions of the haloes. These mechanisms are
maximally efficient on medium-size (e.g. 1014 M	) clusters (e.g.
McCarthy et al. 2017), since light haloes generally do not host
AGNs, while heavier haloes manage to keep the material inside
due to their deeper gravitational wells. This redistribution of matter
tends to reduce the number of high S/N peaks, and possibly augment
that of smaller S/N values; however, the exact size of this effect is
highly uncertain and depends on the feedback model adopted. Just
as for cosmic shear two-point correlation functions, its significance
depends on the noise level of the data. We note that for less massive
haloes, stellar feedback is also important; however, this occurs at
significantly smaller scales not probed by our filter. Also, radiative
cooling at high redshift should produce more concentrated haloes

and could enhance the lensing signal, acting in the opposite direction
of the AGN feedback.

The impact on the lensing power-spectrum computed on a single
redshift slice (taken to be zs = 0.97 here) of the Magneticum reaches
15 per cent at high-�, as seen in Fig. 8, an amplitude that is similar to
those of the BAHAMAS simulations mentioned in Section 2.5, and
which are consistent with the PCA constraints.

To investigate the relative impact of baryons on the peak function
specifically for our analysis, we tile the full DES-Y1 survey with the
Magneticum light-cones introduced in Section 2.5 either with the full
hydrodynamical simulations or with the gravity-only solution, then
evaluate and compare the peak functions. We repeat this process and
average the results over the 10 pseudo-independent light-cones, each
further sampled with 10 shape noise realizations. We also extend the
data vector to higher S/N values in order to verify where the baryons
start to play an important role. We additionally repeated the process
in a non-tomographic set-up, where the catalogues from the four
redshift bins are merged before producing the aperture mass map
and counting the peaks; this reduces the impact of the pure noise
peaks to highlight subtle effects that occur in the underlying matter
distribution.

The results are shown in Fig. 9 for all tomographic bins, as well
as for the case where no tomography is applied. We see that the
effect is generally under a per cent for S/N < 4, and in the no-
tomographic case reaches 5 per cent for 4 < S/N < 5. The statistical
precision is also reported on these plots, which shows that the impact
of baryons is everywhere sub-dominant compared to the uncertainty
on the GPR emulator. This reinforces our choice of selecting S/N ≤
4 to ensure a measurement mostly free of uncertainty related to
baryons, although this suggests that we could push the upper limit
to higher S/N in the tomographic case without much contamination,
and that modelling the effect could be relatively straightforward. This
follows a logic similar to Huang et al. (2021), where the impact of
baryonic feedback on the DES-Y1 2PCFs is modelled and captured
with a PCA decomposition, allowing them to include smaller angular
scales in the data vector and increase the constraints.

We use the ratios presented in Fig. 9 to construct a multiplicative
correction factor that is optionally applied to the data vector during
the cosmology inference pipeline, from which we can estimate the
impact of baryon feedback on the recovered best-fitting parameters,
as modelled with the Magneticum baryon model. We note that a
similar approach is adopted in the context of a Stage-IV survey in
Weiss et al. (2019) and in Martinet et al. (2021b), where the increased
galaxy density and overall statistical precision accentuates the bias
caused by the baryons.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0.9

0.95

1

1.05

1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 4 no-tomo

Figure 9. Ratio between the number of peaks measured in the Magneticum light-cones with and without including the baryonic physics. Results are shown
for different tomographic bins, and for an aperture filter size of θ ap = 12.5 arcmin; other filters show a similar relative effect. The dashed lines represent the
statistical precision, also plotted in Fig. 6.
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4.4 Galaxy intrinsic alignment

The intrinsic alignment of galaxies is an astrophysical systematic
signal that mimics weak lensing measurements, and arises from the
fact that the intrinsic orientation of galaxies is not exactly random [see
Kirk et al. (2015) and Kiessling et al. (2015) for a review]. Indeed,
it has been shown in multiple hydrodynamical simulations that the
formation of galaxies, and thus their final shape and alignment, is
affected by their environment, notably by the neighbouring large-
scale structures (Chisari et al. 2015; Codis et al. 2015) and tidal
fields (Catelan, Kamionkowski & Blandford 2001), and by a complex
relation with their host haloes (Chisari et al. 2017). The observed
galaxy shape is therefore a combination of the intrinsic (I) and the
shear (G) term, which both contribute to the measured weak lensing
signal.

Intrinsic alignments have been directly measured and constrained,
notably in the COSMOS galaxies by Joachimi et al. (2013a), who
detect the signal for early-type (e.g. red galaxies) but hardly any
signal for late-type galaxies. The WiggleZ blue galaxies were also
found to be consistent with no IA in Mandelbaum et al. (2011),
while a significant IA signal was found in the BOSS LOWZ sample
(Singh, Mandelbaum & More 2015). Johnston et al. (2019) found
similar results from the KiDS, SDSS, and GAMA surveys, with a
null detection from the blue galaxies and a 9σ detection for an IA
signal for red galaxies, consistent with a value of AIA = 3.18+0.47

−0.46

when interpreted in the NLA model.
The IA signal has also been indirectly inferred from cosmic shear

measurements, although with some dispersion in the results. For
example, T18 finds a 2.5σ detection of the signal from the DES-
Y1 data, with AIA = 1.3+0.5

−0.6, the KV450 analysis by Hildebrandt
et al. (2020) found an AIA value consistent both with unity and
with zero, while Hikage et al. (2019) and Hamana et al. (2020)
prefer a values of AIA = 0.38 ± 0.70 and 0.91+0.27

−0.32 from the power
spectrum and 2PCFs analyses of the HSC-Y1 data, respectively.
Similar variations of the best-fitting IA amplitudes are observed
in the KiDS-1000 cosmic shear analysis by Asgari et al. (2021),
who found AIA values between 0.26+0.42

−0.33 and 0.97+0.29
−0.38 depending

on the estimator. These AIA measurements are not expected to agree
perfectly given the differences in the modelling of the IA signal, but
also in the redshift, in the physical scales that are probed and in the
selection of galaxies in these surveys. It is also worth pointing out
that the IA nuisance parameter marginalization is degenerate with the
photo-z errors as well (see for example the discussion in appendix C
of Heymans et al. 2021; Wright et al. 2020). For our 2PCFs analyses,
we use the same two-parameters NLA model as in T18, with priors
on AIA and η listed in Table 3.

The impact of IA on peaks statistics has not been well studied
in the literature so far, and a per cent level calibration will require
a significant level of development beyond what has been done so
far. Nevertheless we present here a first step in this direction, with a
measurement of the effect based on in-painting galaxies with intrinsic
shapes determined by properties of the dark matter haloes contained
inside the lensing light-cones. Again, the amplitude of the IA signal
measured from peaks is not expected to be the same as for the two-
point shear correlation function, largely because the physical scales
and the number of galaxies involved in each estimator calculations
are different.

Within the NLA model of Bridle & King (2007) with AIA = 1.0
for example, intrinsic alignments can modify by up to 40 per cent
the ξ± signal in the DES-Y1 bin 1, 20 per cent in bin 2, but only
about 5 per cent in bins 3 and 4. Even if the effective AIA increases
with redshift (see the discussion in appendix A of Robertson et al.
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Figure 10. Effect of intrinsic alignment on the peak count statistic, measured
in the lowest two redshift bins of our dedicated IA training set. The error
bars show the error on the mean. Full details of this model are provided in
Appendix B.

2021), the lensing kernels of the GI and II terms are suppressed
compared with the GG signal. Considering the IA model of Fortuna
et al. (2021), we note that the IA effect is more significant at small
physical scales, which are only well resolved at low redshift. For
these reasons, we choose to only model the peaks IA signal in the
low redshift bins, more precisely on bins 1, 1∪2, and 2. This likely
leaves residual, unmodelled GI and II terms present in the bins 1∪3,
1∪4, 2∪3, and 2∪4. Within the NLA model the II term is completely
subdominant in the cross-tomographic bins and can be neglected. We
therefore estimate the impact of unmodelled GI contributions in an
analysis variation in which we remove all cross-tomographic bins.
As it will become clear in Section 5.2, this is currently a limiting
factor in our data analysis, which we will seek to improve with a
better IA model in the future.

Our IA model is inspired from the methods of Heymans et al.
(2006) and Joachimi et al. (2013b), which assign an intrinsic ellip-
ticity εint to the galaxies based on the shape of their host dark matter
halo (we summarize this method and detail our implementation
in Appendix B). The model requires both light-cone haloes and
in-pasted galaxies, two intensive post-processing steps that have
not yet been completed on the cosmo-SLICS. It is therefore not
possible at the moment to explore this in a cosmology-dependent
manner. Instead, we use 26 light-cones from the KiDS-HOD galaxy
sample described in HD18, which have these properties and have
been downsampled to closely match the N(z) in the four DES-Y1
tomographic bins. These also cover 100 deg2 each, and since we are
only interested in the relative effect, we do not tile the full footprint
and work instead directly on the light-cone galaxy samples. The
effect of masking is hence not included, but it should equally impact
the measurements with and without IA in these mocks.

For every galaxy, the model outputs εint; this quantity is then
inserted in equation (1) alongside a randomly rotated version, from
which we compute observed ellipticities with or without IA. We
finally run our peak finder on these catalogues, count the peaks
as for the other training sets, and compare the measurements in
Fig. 10. We observe an important (10–15 per cent) suppression
of the number of peaks with S/N > 3, which clearly exceeds the
statistical uncertainty in our measurement and therefore needs to be
accounted for. Moreover, in the top two panels, peaks at all S/N
values are suppressed by a few per cent. We note that the results
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from Fig. 10 align well with those found in K16 (see their fig. C3),
even though a direct comparison is impossible due to differences in
the source distribution of the samples. When examined with 2PCFs
measurements, we find that our IA prescription is bracketed by the
NLA model with AIA ∈ [1.0–2.0], providing a consistent but slightly
larger IA signal than that preferred by the data (see Appendix B).

We recognize that our simple IA model is unlikely to represent
accurately the real physical effect, and at the moment has no free
parameter, which means that we cannot yet marginalize over different
IA strengths like we do for 2PCFs. Further development on the IA
model will be required to achieve this in the future. However, we can
get a sense of the impact of IA by infusing the relative effect observed
in Fig. 10 in the model returned by the emulator, and record the
deviation from the no-IA case on the best-fitting parameters. It turns
out that this results in a ∼0.1σ shift on the cosmological parameters,
hence we do not include it in the fiducial peak count pipeline.

4.5 N-body force resolution

A large fraction of the weak lensing signal receives a contribution
from small scales, which are difficult to model accurately. Even in
simplified gravity-only scenarios, different methods and codes to
estimate the amount of small-scale structures vary significantly for
wave vectors larger than k = 1.0 h−1Mpc. Fitting functions such as
HALOFIT (Smith et al. 2003; Takahashi et al. 2012), simulation-
based emulators (Heitmann et al. 2014, 2016; Nishimichi et al.
2019), and halo model calculations (Mead et al. 2015, 2021) provide
fast predictions for two-point function statistics, but these disagree
sometimes at the 5–10 per cent level, depending on the scales,
redshifts, and cosmological parameters. Recent efforts approach
the 1 per cent accuracy on the matter power spectrum (Euclid
Collaboration: Knabenhans & the Euclid Collaboration 2019; Mead
et al. 2021), at least for a subset of the cosmological parameter space.

It is possible to protect the shear 2PCFs measurement against
residual non-linear uncertainty by rejecting angular scales in ξ±(ϑ)
where differences between these models affect the cosmological
inference beyond some threshold.20 This is one of the main drivers,
along with baryon feedback, for the choice of angular scales in the
T18 2PCFs analysis (and hence ours).

For weak lensing probes beyond two-point statistics that are
calibrated directly on simulations, however, one must additionally
understand the impact of small-scale smoothing caused by limits in
the mass/force resolution of the N-body code. Specifically, higher-
resolution simulations better resolve the highly non-linear small-
scale structures that describe the concentrated inner regions of
massive clusters that are responsible for the high SNR peaks.
Therefore, degrading the mass resolution directly affects both the
high-k limit of the matter P(k) and the number of large lensing peaks,
leading to a potential miscalibration.

To assess this, we rely on the SLICS-HR simulations introduced
in Section 2.4, in which the force resolution has been significantly
augmented, thereby resolving scales almost an order of magnitude
smaller. A comparison between the peak function of the SLICS-
HR measured on 10 realizations of the full DES-Y1 footprint and
that of our main Covariance training set is presented in Fig. 11; it
reveals slight differences for the S/N peaks we are probing, but strong
deviations are observed for peaks with S/N > 4. These objects are
rare, which explains the increased noise in the ratio towards S/N = 5,

20There is a caveat to this argument; see the discussion in Asgari et al. (2020)
about the small k-scale power leaking into ξ±(ϑ) to some level at all ϑ.
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Figure 11. Impact of the N-body force resolution on the peak statistics,
measured from the ratio in S/N between the SLICS-HR, and the covariance
training set. The dashed-lines show the statistical error of the measurement.
Deviations for S/N ≤ 4 peaks are generally under 0.2σ .

but the trend is clear: there is an overall shortcoming of large S/N
objects in the training set compared to the SLICS-HR that justifies
our choice of restricting the data vector to S/N ≤ 4. Upon closer
examination, the average size of the small deviations seen in that
range correspond to no more than 20 per cent of the statistical error,
and are never higher than 0.5σ stat. If we wanted to include these
peaks in a future analysis, we would possibly need a new generation
of training sets (for cosmology, and possibly covariance) with an
increased mass resolution.

Just as for IA and baryons, we investigate the impact of mass
resolution by extracting a correction factor from the black curves
shown in Fig. 11 that we consequently apply to the signal during the
cosmology inference.

4.6 Source-lens clustering

One of the key differences between the mock DES-Y1 simulations
from our Cosmology training set and the DES-Y1 data is the presence
of source-lens coupling. In real data, the source density is not
homogeneous and in fact increases around foreground clusters. As
explained in appendix C of K16, this introduces a coupling between
the peak positions and the amplitude of the measured shear relative
to the expected shear – the sources that are associated with the
cluster dilute the observed signal. Furthermore, these regions of
high galaxy densities will have a larger blending rate, meaning that
source galaxies behind clusters are more likely to be missed, while
residual errors in the photometric redshift can wrongly assign cluster
members to background sources. When combined, these effects can
result in a miscalibration between the data and the simulations, which
can be corrected with a ‘boost factor’ (Mandelbaum et al. 2005).

Boost factors for peak statistics can be evaluated in different ways.
K16 estimate the fractional overcrowding and overblending rates in
peaks of different S/N from the BALROG catalogue (Suchyta et al.
2016), a separate image simulation that matches the DES-SV n(z)
and blending properties. These rates are computed as a function of
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Figure 12. Profile of the excess galaxy clustering, as a function of angular
separation. The different columns show the profiles for three different S/N
bins, while the rows present the results for the four tomographic bins. These
profiles (red lines) are averaged over 10 independent survey realizations and
enter in the boost factor correction (equation 13, see main text).

distance to peaks centres, and a correction factor is used to correct the
peak function found in their cosmological training set as a function of
S/N. They found that by restricting their measurement to S/N < 4,
the impact is minimal (a shift in S8 of about 0.01) and could be
neglected.

Shan et al. (2018) instead use the Radovich et al. (2017) cluster
catalogue that overlaps with the KiDS-450 survey, and evaluated the
boost factor from the excess source density around these massive
objects. They found that the contamination to the peak function
reaches 27 per cent for peaks with S/N = 5; however, it caps at less
than 6 per cent for S/N < 4. In their analysis, this effect of source-
coupling is about twice the size of that of their baryonic feedback
model, and acting in the same direction, e.g. suppressing the number
of high S/N peaks. If overlooked, this miscalibration could lead to a
best-fitting inference with a S8 that is too low.

We account for source-lens coupling by estimating the effect in
the DES-Y1 data and recalibrating our measurements, leaving the
simulations unchanged. We first extract w

ij

data(ϑ, S/N), the clustering
of source galaxies along the line of sight of peaks identified in
the data, as a function of their peak height, for each combination
of auto- and cross-tomographic bins `ij

′
. These are next compared

with a similar measurement carried on 10 survey realizations sam-
pled from the Cosmology training set at the fiducial cosmology,
and the ratio of the two reveal clustering profiles in excess of
random

ρij (ϑ, S/N) ≡ w
ij

data(ϑ, S/N)

〈wij
sim(ϑ, S/N)〉 ×

(
〈N sim

peaks〉
Ndata

peaks

)
, (12)

which are shown in Fig. 12 for a sample of tomographic bins and
S/N bins. The brackets refer to the mean measurement in the above
expression, and the right term involving N

data/sim
peaks normalizes the

profiles. It is clear from this figure that the largest peaks are generally
more severely affected by this boost factor correction; however, the
size of effect varies across redshift in a non-trivial manner. For
example, the fourth tomographic bin is less affected than the second
or the third. In absence of source-lens coupling these profiles would
be flat. The excess of galaxies in these profiles are for the most
part cluster members; their shapes are therefore not sheared by the
foreground matter overdensity and only dilute the lensing signal. We
compensate for this by up-weighting the shear signal following the

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0.95

1

1.05

1 2 3 4

Figure 13. Impact of the boost factor on the peak statistics, measured from
the ratio in Npeaks between the boost-corrected and the original peak count.
The dashed lines show the statistical error of the measurement. Similar results
are obtained for the cross-tomographic bins.

profile, which is most efficiently done by modifying the filter Q(r) in
identified peaks as

Q(r) = Qorig(r) × ρij (r, S/N), (13)

and re-evaluate the peak height with equation (7). Fig. 13 shows
the ratio between the corrected and original peak function in the
four auto-tomographic bins (similar results are obtained with the
cross-bins). The effect if generally small; however, it approaches
the 1σ level in some isolated data elements. The boost factor
is included in our fiducial analysis, and has been applied to the
data points shown in Fig. 4, bypassing the need to forward-model
the source-lens coupling at all cosmological points. Following the
method used in the previous sections, we isolate its impact on
our cosmological inference by optionally removing this correction
factor.

Fig. 14 summarizes all the correction factors we can include in
our cosmology inference, from IA, mass resolution, baryons, and
no-boost. Our fiducial analysis includes none of them, since their
overall impact is relatively minor and many of these effects act in
opposite directions.

4.7 Cosmology inference

We test our cosmology inference pipelines on mock data vectors
taken to be the mean value from the Covariance training set,
providing a measurement that is almost noise-free. We present our
results in Appendix A, notably in Fig. A1. This exercise reveals a
high degree of similarity in the constraints between the two-point
functions, the peak statistics, and the fiducial T18 analyses, despite
major differences in our covariance matrix estimation techniques
and in the observation data vector (DES-Y1 data versus SLICS,
2PCFs versus peaks). The best-fitting cosmological parameters are
also consistent with the input at the 1σ level, with no noticeable shift
between the probes, and the sizes of all contours closely match that
of the DES-Y1 analysis, two properties that respectively validate our
cosmology calibration and our covariance matrix.

4.8 Others sources of uncertainty

Our method relies on a certain number of well-justified approx-
imations that could potentially contribute to the error budget in
addition to the systematic effects described above. In this section we
introduce these effects, and justify our choice to neglect them in this
study.

Our simulated light-cones are constructed with mass planes of
constant thickness set to 256.5 h−1 Mpc (see Section 2.6.1), a choice
that has an effect on the reconstructed lensing planes compared to a
construction made of hundreds of finer shells. This has been recently

MNRAS 506, 1623–1650 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/1623/6297283 by guest on 12 August 2022



1640 J. Harnois-Déraps et al.

Figure 14. Impact on the peak statistics of various sources of systematic uncertainty (IA, mass resolution, baryons, and boost), presented as a ratio between the
measurement on mocks with and without the effect. These are used as optional correction factor applied to the model in the cosmology inference, as described
in Section 5.2. Also shown is the scatter in the GPR cross-validation test, as well as the statistical precision on the measurements.

quantified in Zorrilla Matilla, Waterval & Haiman (2020), where
it is shown that the impact on peaks with S/N ≤ 4 is below the
one per cent level, regardless of the thickness and of the source
redshift.

Correlations between the mass planes in our light-cones are
explicitly suppressed by randomly shifting and rotating the mass
sheets that breaks the long line-of-sight correlations that exist in the
data. It was shown in Takahashi et al. (2017, see their appendix B)
that this affects the projected power-spectrum, reducing the power
at intermediate scales by a few per cent on the sheets; however, the
lensing kernels project an even larger volume and mixes these scales,
which makes our measurements relatively immune to this.

The lensing plane construction has been carried out under the
Born approximation (see HD18), whereby light bundles record the
convergence and shear along straight lines and ignore the deflection
angles in this calculation. It has been shown (Hilbert et al. 2020)
that the difference between these methods induces variations smaller
than 0.2 per cent on the lensing power spectrum up to scales of � =
2 × 104. It is therefore reasonable to expect that Born approximation
plays a minor role in the peak statistics as well; however, Castro et al.
(2018) find that the impact on the PDF of the lensing maps is of a
few per cent. We ignore this effect at the moment, but it will need to
be revisited in the future.

Finite box effects are also known to plague the estimation of 2PCFs
and of their covariance matrix (Harnois-Déraps & van Waerbeke
2015), being sensitive to Fourier modes larger than the simulation
box. This has an impact on the ξ± covariance matrix estimated from
our Covariance training set; however, it has a minor impact on the
cosmological contour, as shown by the good match between our
analysis on the mocks and that of T18. Furthermore, since the peak
statistics measure quantities in local apertures, it is not sensitive
to these large scales, and hence are protected against this. Similar
conclusions can be drawn regarding the incomplete account of the
super-sample covariance (Li, Hu & Takada 2014, SSC hereafter)
captured by our simulations: HD19 found that the SLICS light-
cones capture more than 75 per cent of this SSC term, yielding two-
dimensional constraints on (�m, σ 8, h, w0) that match to better
than 10 per cent those of an analytical covariance matrix. Given
the suppressed sensitivity of the peak statistics to these large-scale
modes, we expect the residual missing SSC contribution to play a
minor role on the full uncertainty, although this may need to be better
quantified in the future.

It has been recently shown that the depth variability across a lens-
ing survey can impact the cosmic signal and variance (Heydenreich
et al. 2020; Joachimi et al. 2021). This will need to be the subject
of future investigations. Given the findings of Joachimi et al. (2021),
we expect the impact of unmodelled variable depth to be negligible,
given the statistical power of DES-Y1.

Figure 15. Constraints on the 	CDM cosmological parameters inferred
from the 2PCFs, obtained from the DES-Y1 cosmology inference pipeline,
our simulation-based covariance matrix, and assuming the DIR n(z) (blue).
These results are compared to the 	CDM constraints from T18 (in red)
based on the same modelling and likelihood sampling strategy, and to those
of J20 (grey), which also use the DIR redshift distribution but adopt different
modelling, prior ranges, and likelihood sampling choices.

5 R ESULTS

We present in this section the results from our cosmological inference
analyses, beginning with the 2PCFs and the peak statistics pipelines.
We next discuss our tests on the importance of various systematic
effects, before introducing the results from our joint [ξ±; Npeaks]
analysis. All quoted parameters constraints correspond to the best-
fitting value ± the 1σ region of the marginalized posterior.

5.1 2PCFs

We first report in Fig. 15 the constraint on 	CDM parameters
obtained from our 2PCFs measurement, overplotted with those from
T1821 (red) and J20 (grey). Our constraints (in blue) assume the
DES-DIR n(z); it uses our simulation-based covariance matrix; we

21In this comparison, we used the values listed in their table 3 using a fixed
neutrino mass density, which better match our fiducial pipeline.
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Figure 16. Constraints on the wCDM cosmological parameters inferred
from the 2PCFs with our fiducial pipeline (grey), from the T18 wCDM
analysis (red) and from an intermediate pipeline, the DIR-wCDM, which
uses the T18 parameter sampling and prior ranges on our tiled data with
our simulation-based covariance matrix, assuming the DES-DIR n(z) (blue).
Note that priors on h and w0 are significantly tighter in our fiducial pipeline,
and that our fiducial 2PCFs analysis hits the priors (shown with the dashed
lines) on these two parameters.

marginalize over the 10 nuisance parameters listed in Table 3, but
the cosmological sampling follows that of T18. Another difference:
as described in Section 3.1, our ξ± measurements are obtained from
the weighted mean ξ± obtained over the 19 tiles. As demonstrated
in J20, the net effect of changing from the fiducial DES-Y1 n(z) to
the DIR n(z) is to shift the amplitude of the modelled 2PCFs signal
upwards, which translates into lower best-fitting S8 values. This can
be seen by comparing the one-dimensional posteriors shown with
the red and grey lines in the bottom right-hand panel. When analysed
this way, we obtain

S
2PCFs,	
8 = 0.761+0.027

−0.027.

The priors and the parameter sampling in J20 are significantly
different from T18 and are responsible for some of the differences
between the blue and grey curves, notably the sharp edges in the h
posterior, and the more elongated contour in the [σ 8−�m] plane. All
parameter constraints are summarized in Table 5. Replacing the ξ±
data extracted from the tiles with those measured on the full footprint
results in a negligible change, with S8 = 0.762 ± 0.026, thereby
validating our mosaic methodology. Additionally, the resemblance
between our confidence interval and those of T18 (the fractional
errors on S8 and �m agree to within 0.002 and 0.005, respectively)
demonstrates the accuracy of our simulation-based covariance ma-
trix. The constraints on the nuisance parameters are mostly prior-
dominated. We provide a more complete comparison between T18,
J20, and our 2PCFs 	CDM analyses in Appendix C.

We next compare in Fig. 16 the constraints on the four wCDM
parameters inferred from our 2PCFs measurement (in grey), to the
T18 wCDM results (in red). As explained previously, there are
multiple difference between these two pipelines that we can dissect
here. We show (in blue) an intermediate pipeline, labelled the DIR-

Table 4. Properties of the different pipelines discussed in this paper.

Prior on Cov. n(z)
Pipeline σ 8/As Matrix Method

This work σ 8 ∈ [0.53 − 1.3] SLICS DIR
DIR-wCDM As ∈ [0.5 − 5.0] × 10−9 SLICS DIR
T18 As ∈ [0.5 − 5.0] × 10−9 Analytic Stacked PDF
J20 ln(1010As) ∈ [1.5 − 5.0] Analytic DIR

Table 5. Cosmological pipeline comparison. The values used in the T18
comparison are taken from their table 3, using a fixed neutrino mass density.
Details on the different pipelines are summarized in Table 4. Most posteriors
on h and w0 are prior-limited, so no constraints are reported here. The
same applies to �m in many cases. Tests on the mock data are presented
in Appendix A.

Pipeline S8 �m

Fiducial Peaks 0.780+0.019
−0.056 -

2PCFs 0.753+0.043
−0.043 0.254+0.033

−0.056

Joint 0.766+0.033
−0.038 -

Variations 2PCFs (T18, wCDM) 0.791+0.031
−0.044 0.264+0.067

−0.049

2PCFs (DIR-wCDM) 0.752+0.042
−0.037 0.264+0.035

−0.054

2PCFs (	CDM) 0.761+0.027
−0.027 0.272+0.031

−0.056

2PCFs (T18, 	CDM) 0.789+0.031
−0.019 0.248+0.065

−0.036

2PCFs (J20, 	CDM) 0.765+0.036
−0.031 0.252+0.041

−0.086

Peaks (cross-tomo, with IA) 0.735+0.024
−0.032 -

Peaks (cross-tomo, with baryons) 0.750+0.026
−0.031 -

Peaks (cross-tomo, with SLICS-HR) 0.734+0.025
−0.032 -

Peaks (cross-tomo, no-boost) 0.736+0.025
−0.032 -

Peaks (cross-tomo) 0.737+0.027
−0.031 -

Joint (cross-tomo) 0.743+0.024
−0.024 -

Mocks Peaks (cross-tomo, no syst) 0.787+0.024
−0.024 0.325+0.054

−0.067

Peaks (cross-tomo) 0.776+0.045
−0.045 0.297+0.048

−0.066

2PCFs (FID) 0.772+0.042
−0.042 0.314+0.049

−0.070

wCDM that uses the T18 parameter sampling and prior ranges, but
assume the DIR n(z), and uses our measurement on the tiled data
and our simulation-based covariance matrix. Table 4 summarizes
the differences between these pipelines. By construction, differences
between the blue and the grey contours are caused exclusively by
the likelihood sampling strategy: the former uses the T18 priors and
samples As over a flat prior, whereas the latter uses those listed in
Table 3 and samples σ 8. In contrast, red and blue curves share the
signal modelling as well as the parameter sampling, but differ in the
n(z) (which shifts down the best S8 and �m values, clearly visible
in Fig. 16), and in the covariance matrix (which weights slightly
differently the various elements of the compressed statistics and
therefore affects the size and shape of the contours).

In our fiducial analysis the likelihood sampler hits the priors on
h and w0 that are limited by the range of values probed by our
Cosmology training set. We note, however, that this should have no
impact on our analysis due to the low sensitivity of lensing to these
particular parameters, and that we marginalize over these anyway.
Consequently, we are unable to report constraints on h and w0 in our
2PCFs pipeline with the current data.22 The best-fitting parameters
are reported in Table 5, notably,

22We expect this to change with the upcoming Stage-IV lensing surveys,
as Martinet et al. (2021a) has shown that peak statistics could provide a
6 per cent constraint on �m and a 13 per cent constraint on w0 from 100 deg2

of Euclid-like mocks built from the same SLICS and cosmo-SLICS suites.
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Figure 17. Impact of the different correction factors on the constraint from
the peaks statistics. In most cases the likelihood hits the upper prior edge
on �m within 2σ , as marked by the vertical line, which prevents us from
reporting constraints on that parameter.

S
2PCFs,w
8 = 0.753+0.043

−0.043,

which is consistent with, but has a larger uncertainty than S
T18,w
8 =

0.791+0.031
−0.044 reported in T18. The overall precision on the matter

density is similar to that of the 	CDM analysis (we measure �m =
0.254+0.033

−0.056), while the uncertainty on S8 increases significantly, as
expected from opening the parameter space. When adopting the DIR-
wCDM pipeline, we obtain

SDIR−wCDM
8 = 0.752+0.042

−0.037,

which best inferred value aligns with our 2PCFs analysis, with error
bars slightly tighter. The fact that the T18 constraints (4.7 per cent
on S8) are tighter than these (5.3 per cent), despite having larger
uncertainty in their redshift distributions indicates that the T18
priors and sampling strategy are informative about S8 to some level,
artificially decreasing the size of the reported error bars (see the
discussion on informative priors in Joachimi et al. 2021).

5.2 Peaks

We report in Fig. 17 the results of our peak count analyses for models
in which systematics are infused. All data presented from now on are
obtained from the 12.5 arcmin filter; we investigated other choices
of θ ap that yielded slightly less constraining results and hence we
dropped them from the analysis.

Before examining differences between the various cases, we first
note that, for all of them, the inferred matter density values are
unexpectedly high, with �m � 0.4 at the 1σ level. This is in tension
both with the 2PCFs measurements and with external probes such as
the Planck measurement of �m = 0.3153 ± 0.0073 (Planck Collab-
oration 2020; see also a quantitative assessment of these tensions in
Appendix A3). In the case where the cross-redshift bins are excluded,
however, the tension is significantly reduced. Interestingly, this is also
the only case where the GI part of the intrinsic alignment signal is
suppressed, which suggests that unmodelled IA systematics could
be artificially pushing the likelihood analysis towards high values of

the matter density. We therefore adopt a conservative approach and
remove the cross-redshift bins from our fiducial analysis. We still
include them in one of our analysis variations, with the caveat that
they might be contaminated by an unaccounted secondary signal.

In order to provide the most accurate account of the other system-
atic effects, we include the cross-redshift bins in their measurements,
shining light on their impact with the highest precision available.
Starting with the IA, and recalling that our alignment model applies
to tomographic bins 1, 1∪2, and 2 only with no free parameter,
we include the systematic effect as an optional correction to the
measured data vector (see Section 4.4 and Fig. 14). The cosmology
inference results, shown by the black dashed lines in Fig. 17, indicate
that our low-redshift IA model has a relatively mild impact, affecting
the best-fitting S8 value by less than 0.1σ . Notably, we have

S
peaks
8,IA = 0.735+0.024

−0.032,

which is almost unchanged compared to the baseline analysis

S
peaks
8,cross−tomo = 0.737+0.027

−0.031.

We note that the best-fitting �m increases by 0.02. This is consistent
with the expectation that IA overall suppresses the lensing signal;
therefore, given a measurement (2PCFs or peaks), the inferred S8

and/or �m values increase with stronger IA model.
As mentioned earlier, the GI term that we are currently unable to

model accurately is most likely to impact the cross-tomographic bin
measurements. The fact that the best-fitting S8 shifts up by as much
as 0.037 (and �m shifts down by 0.02) when removing the cross-
tomographic bins suggests that unmodelled systematics affect these
bins differently than the auto-tomographic bins. The GI contribution
does exactly this, and a similar 1σ effect is detected in T18 (see their
fig. 9). It is therefore plausible that unmodelled IA could be leading
to the observed preference for a high �m values when including
the cross-tomographic bins; however, we postpone a more robust
analysis of IA to future work.

Adopting a similar strategy, we apply the baryon correction factor
(see Section 4.3, and shown in Fig. 14), and re-run our cosmological
inference pipeline. The impact is stronger than the IA, yielding

S
peaks
8,baryons = 0.750+0.026

−0.031,

a 0.5σ shift in S8 visualized by the red dashed lines in Fig. 17.
When correcting the signal for a possible bias due to limits in mass
resolution of the Cosmology training sample, the values of S8 is
slightly reduced as expected, with

S
peaks
8,SLICS−HR = 0.734+0.025

−0.032. (14)

This demonstrates that our choice of S/N bins is unaffected by the
known small-scales inaccuracies inherent to the N-body runs.

Removing the boost factor correction can generally push the
inferred cosmology to models with lower clustering; however, in
our case, the effect is marginal. We find

S
peaks
8,no−boost = 0.736+0.025

−0.032, (15)

a negligible change with respect to the fiducial pipeline.
Overall, when including all redshift bins, we observe that the

baryons and IA cause the largest shifts. Excluding the cross-redshift
terms has the strongest impact, as it significantly offsets the
best-fitting value and degrades the constraining power. Nevertheless,
the contours are fully consistent with the fiducial case, and this
choice is necessary until an improved high-redshift IA model can
be incorporated.

The fiducial constraints from the peak statistics are presented by
the blue contours in Fig. 18 and compared to the 2PCFs (in grey,
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Figure 18. Constraints on the four wCDM cosmological parameters ob-
tained from 2PCFs (grey), peaks (blue), and from the joint analysis (red). The
dashed lines indicate the prior ranges on �m, h, and w0 that are in most cases
too narrow to provide meaningful constraints on these parameters (see main
text for exceptions).

same as in Fig. 16). The marginal constraints on S8 are

S
peaks
8,fid = 0.780+0.019

−0.056.

These values are in excellent agreement with those reported by J20,
T18, and with our 2PCFs method, with marginal constraints on S8

being consistent to within 1σ in all cases. More importantly, the
peak count analysis improves this fractional precision by 10 per cent
compared to our fiducial 2PCFs pipeline, providing a 4.8 per cent
measurement on S8. Including the cross-tomographic bins results
in S

peaks
8 = 0.737+0.027

−0.031, which improves the constraining power
and yield a ∼3.9 per cent measurement (see the pipeline ‘cross-
tomo’ in Table 5). Although these are excluded from the fiducial
analysis due to unaccounted for systematics, this demonstrates that
even with the current noise level and in presence of systematics,
some 20 per cent additional information on S8 can be recovered
by including these bins compared to the fiducial case, potentially
bringing the gain to 30 per cent over the 2PCFs analysis. This
aligns with the findings of Martinet et al. (2021a), which observe a
50 per cent gain in a systematics-free Stage-IV weak lensing survey
setup, using five tomographic bins and including cross-terms for all
possible combinations of slices (i.e. larger than pairs). We finally
note that the posterior on �m overlaps with the upper prior edge
within 2σ , while those on h and w0 are completely prior-dominated,
hence we do not report constraints on these parameters.

5.3 2PCFs + peaks

The fact that both 2PCFs and peaks count methods individually prefer
different values for the cosmological parameters is expected, given
that they both probe slightly different physical scales, and react to
the DES-Y1 shape noise in completely different ways. This is further
supported by our measurements on the mean of the SLICS mocks
presented in Appendix A that correspond to noise-free data and
show an excellent agreement in the best-fitting values. We note that

similar results have been observed in the literature already, notably
when comparing the inferred cosmology from the 2PCFs and power
spectra analyses of the HSC-Y1 data (Hikage et al. 2019; Hamana
et al. 2020) and of the KiDS-1000 data (Asgari et al. 2021), where
it was shown that some fluctuations are expected and statistically
consistent. We show with mock surveys in Appendix A3 that the
observed difference of ��m = 0.2 is frequent, and that the tension
between the two methods is low, enabling us to carry out a joint
2PCFs + peaks likelihood analysis. For consistency, our fiducial
case again excludes the cross-tomographic redshift bins in the peak
count data, and results in a best-fitting value of

S
joint
8 = 0.766+0.033

−0.038,

with contours presented in red in Fig. 18. The best-fitting value in this
case is consistent with both the 2PCFs and the peak statistics, with a
∼20 per cent smaller fractional uncertainty on S8. The joint analysis
achieves 4.6 per cent precision, fast approaching the 3.8 per cent
precision achieved by the DES-Y1 3 × 2 points analysis (Abbott
et al. 2018a). We note that the same 20 per cent increase in precision
is reported in M18 when comparing peaks and 2PCFs. However, their
treatment of the systematics is simpler in comparison to this study,
which likely affects their real precision gain. The analysis variant in
which the cross-tomographic terms are included yields a promising
3.2 per cent measurement, with

S
joint
8,cross−tomo = 0.743+0.024

−0.024,

however, a better modelling of systematics is required before we can
exploit this configuration.

We repeated the full cosmology joint-probe inference with two
other aperture filter sizes, and obtained similar constraints, which
leads us to the conclusion that given the current level of noise in
the data, the choice of aperture filter size does not make a large
difference, at least for the scales we tested. It is also clear that under
these conditions a multiscale analysis would bring no additional
information. M18 found a mild improvement when combining the
12.5 arcmin and the 15.0 arcmin filters, but that was in the absence
of tomography. In that case, the noise levels are suppressed at the
cost of losing the redshift information.

The dark energy equation of state can be constrained from the
joint analysis, which has sufficient constraining power to not be
prior-dominated.23 We obtain

w
joint
0 > −1.55

at 1σ , which is consistent with 	CDM cosmology but not yet
competitive with T18, who find wT18

0 = −0.92+0.35
−0.40. As shown in

Martinet et al. (2021a), the cross-tomographic data points will greatly
help with this measurement once properly calibrated.

The overall goodness-of-fit is evaluated with the p-value that can
be interpreted as the probability that the model is not consistent with
the data. This null hypothesis-rejection method depends notably on
νeff, the effective number of degrees of freedom. This quantity is
often estimated from the difference between the number of data
points and the number of free parameters in the model; however,
this does not exactly hold in the more accurate context where these

23We adopt the criteria described in appendix A of Asgari et al. (2021) to
decide whether we can report a constrain: if the value of posterior at any edge
of the prior is higher that 0.135 times its maximum value, the measurement is
prior-dominated and the constraints should not be reported. Our measurement
of w0 from the joint analysis marginally satisfies this criteria on the lower
end only, with posterior values of 0.134 at the lower prior edge.
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model parameters are not totally free but sampled from priors that
often restrict the search, and are highly degenerate. For example, the
KiDS-1000 cosmic shear analysis presented in Asgari et al. (2021)
samples 12 parameters in their cosmological inference pipeline, but
a careful study of the sampling reveals that the effective number of
free parameter is closer to 4.5 (Joachimi et al. 2021).

In the current analysis, the size of the data vector varies from 48
(peaks fiducial) to 305 (peaks + 2PCFs). The χ2 for the three fiducial
analysis pipelines, at their best-fitting cosmologies, are respectively
χ2

peaks = 71, χ2
2PCFs = 209 and χ2

joint = 463. If, following Joachimi
et al. (2021), we also use 4.5 free parameters, this leads to goodness-
of-fit p-values of 0.005, 0.978, and 0.084, respectively. The p-values
for the peak count analysis is low, indicating possible residual
tensions that we could not completely identify nor resolve. We noted,
however, from Fig. 4 that the data in first bin has a high level of scatter
compared to the size of the error bars, which is partly responsible
for dragging the p-value towards low values. When removing these
points from the analysis, we obtain a p-value of 0.105, which is
higher than our goodness threshold of 0.05. We decided to keep the
bin data in our fiducial analysis pipeline, even though it carries more
noise than signal.

6 C O N C L U S I O N S

We analyse the DES-Y1 cosmic shear data with a cosmology
inference pipeline exclusively calibrated on suites of wCDM weak
lensing numerical N-body simulations. Our method is general and
can be directly used with many non-Gaussian probes; however, we
opted for the tomographic lensing peak count statistics. Our pipeline
interfaces with the two-point functions via the public inference code
COSMOSIS that allows us to conduct a joint [ξ±; Npeaks] analysis.
We model the peak statistics signal with the cosmo-SLICS, the
covariance with the SLICS, and investigate the key cosmic shear
systematics either by infusing them in our training set, or by
extracting their impact from tailored external mock data. Notably, the
impact of baryons is assessed with the Magneticum hydrodynamical
simulations, the effect of finite particle mass is quantified from high-
resolution light-cones, while the impact of intrinsic alignment is
investigated by infusing intrinsic shapes to mock galaxies following
a physical model based on the shape of dark matter haloes. Source-
lens clustering is also studied by comparing galaxy excess in peaks
of different height, and found to have a negligible impact on our
results given our peak selection criteria.

We validate our method on mock data vectors and against the
DES-Y1 ξ± analyses of T18 and J20, which we reproduce well
given differences in our pipelines. We identify a residual unknown
systematic in the cross-tomographic redshift bins of the peaks data,
which appears to shift the inferred cosmological parameters towards
high �m values. We identified the intrinsic alignment GI term as one
possible and likely cause of this effect, and in absence of an accurate
IA modelling, we decided to remove these redshift bins from our
fiducial analysis.

We perform a joint likelihood analysis and set constraints on
S8, finding a ∼20 per cent gain in precision compared to the
correlation function analysis. The joint analysis yields a 4.6 per cent
measurement, with S

joint
8 = 0.766+0.033

−0.038, approaching the 3.8 per cent
measurement reported by the DES-Y1 3 × 2 points analysis
(Abbott et al. 2018a), and closely approaching the 2.9 per cent S8

measurement of Asgari et al. (2021) with the fourth KiDS data
release. We show that after an improved calibration of the cross-
tomographic terms, the peak count method can achieve 3.9 per cent
on S8, and the joint analysis could reach 3.2 per cent, one of the

tightest measurements of this parameter so far. One possible caveat
is that we include no IA modelling in our cross-tomographic analysis,
and that its inclusion could possibly degrade our constraining power.

Our analysis pipeline builds from the infrastructure presented in
M18, and is inspired by many aspects of the K16 data analysis. We
have significantly upgraded the underlying simulation support, we
include a better treatment of the photometric and shear calibration
uncertainties, we improve the inference method with a full integration
within a likelihood sampler, and we demonstrate the robustness of our
results to uncertainty on baryonic feedback, to intrinsic alignments,
to source-lens clustering, and to limitations from the finite mass
resolution of the N-body runs, which are lacking in previous analyses.
Additionally, this paper is the first tomographic peak counts data
analysis, and we confirm that including cross-redshift bins reinforces
the constraints, once secondary signals such as IA are properly
calibrated.

For the peaks statistics to remain competitive with the 2PCFs,
further development will be required in the modelling of baryon
feedback. For example, a 20 per cent improvement on S8 is ob-
tained from the DES-Y1 3 × 2 points data when modelling and
marginalizing over the impact of baryons, as it enables to include
additional small-scale elements in the ξ± data vector (Huang et al.
2021). A similar gain is observed in the cosmic shear-only DES-
Y1 re-analysis by Asgari et al. (2020), where clean small scales are
included via the COSEBIs estimators. Equivalent procedures with
peaks statistics must be investigated that would allow us to push
back the S/N ≤ 4 limit. The ‘baryonification’ method described in
Schneider et al. (2019) is one possible avenue to achieve this, as
well as the direct training on a variety of hydrodynamical light-
cones, although the latter is a more expensive task and introduces
several other uncertainties, e.g. how one changes the subgrid physics
for different cosmologies. The goal here would be to construct a
response model in order to include the effect as a nuisance parameter
in a cosmology inference analysis.

Intrinsic alignment of galaxies is the second topic where further
development is critical, and improving the IA modelling is mandatory
for future analyses. The model we adopt here is too simple, and we
demonstrate that IA likely impacts the inferred cosmology at the same
level as the baryons and potentially up to 1σ level, making it one of
the primary limiting factor in our analysis. A better approach would
involve a suite of dedicated training samples where the modelling
and the levels of IA can be adjusted, mimicking the varying (AIA, η)
parameters that control the amplitude of the secondary signal within
the NLA model. One could also relate the simulated intrinsic galaxy
shapes with the halo-model-based approach of Fortuna et al. (2021)
directly from the HOD prescription. Even better, these approaches
could be linked, allowing us to marginalize coherently over a unique
set of common astrophysical parameters.

All of the improvements presented here further close the gap
between analytical and simulation-based cosmological inference
techniques. While the former is preferred in cosmic shear analyses
performed by the large weak lensing collaborations, the latter is
required by most measurement methods based on non-Gaussian
statistics, for which a theoretical model of the signal and of the covari-
ance matrix is generally not available. Given that the performance
of non-Gaussian estimators is now clearly shown to significantly
exceed that of two-point correlation functions, and that this trend
will intensify in future surveys (Li et al. 2019; Martinet et al. 2021a;
Zürcher et al. 2021), we strongly advocate for a co-development of
both approaches.

Most of the work that has been put into the development of our
method can now be directly exploited with most of the alternative
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statistics mentioned in the introduction: one only needs to measure
the desired statistic on our training sets (Cosmology, Covariance, and
Systematics), re-train the GPR emulator, and adjust the linear models
that describe the photometric redshifts and the shear calibration. The
rest of the infrastructure is already in place, and we intend to explore
some of these alternative probes in the near future. For this reason
we will make the mocks available upon request. We also intend to
explore some extensions to the existing infrastructure, including for
instance a new Neutrino training set derived from the MassiveNuS
simulations (Liu et al. 2018) and designed to measure the sum of the
neutrino mass. Parallel pipelines tailored for the analysis of the KiDS-
1000 and/or the HSC surveys could also be constructed directly, and
we hope to see these novel methods take an important role in the
upcoming Stage-IV lensing analyses.

AC K N OW L E D G E M E N T S

We would like to thank Marika Asgari for useful discussions
and comments, Carlo Giocoli for his contribution to an earlier
version of the Magneticum light-cone extractor, as well as Shahab
Joudaki making public the MCMC chains described in J20, which
can be obtained from https://github.com/sjoudaki/kidsdes/. JHD
acknowledges support from an STFC Ernest Rutherford Fellowship
(project reference ST/S004858/1). NM acknowledges support from
a CNES Fellowship, TC is supported by the INFN INDARK PD51
grant and by the PRIN-MIUR 2015 W7KAWC grant, and KD
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2094–
390783311. BG acknowledges the support of the Royal Society
through an Enhancement Award (RGF/EA/181006). We also ac-
knowledge support from the European Research Council under
grant numbers 647112 (JHD, BG, CH, and QX) and 770935 (HH),
as well as the Deutsche Forschungsgemeinschaft (HH, Heisenberg
grant Hi 1495/5-1). CH further acknowledges support from the Max
Planck Society and the Alexander von Humboldt Foundation in the
framework of the Max Planck–Humboldt Research Award endowed
by the Federal Ministry of Education and Research. Computations
for the N-body simulations were enabled by Compute Ontario
(www.computeontario.ca), Westgrid (www.westgrid.ca), and Com-
pute Canada (www.computecanada.ca).

This project used public archival data from the Dark Energy
Survey (DES). Funding for the DES Projects has been provided
by the U.S. Department of Energy, the U.S. National Science
Foundation, the Ministry of Science and Education of Spain, the
Science and Technology Facilities Council of the United Kingdom,
the Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of Illinois
at Urbana-Champaign, the Kavli Institute of Cosmological Physics
at the University of Chicago, the Center for Cosmology and Astro-
Particle Physics at the Ohio State University, the Mitchell Institute for
Fundamental Physics and Astronomy at Texas A&M University, Fi-
nanciadora de Estudos e Projetos, Fundação Carlos Chagas Filho de
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A P P E N D I X A : VA L I DAT I O N O F T H E
COSMOLOGY I NFERENCE PI PELI NE

In this section we present a series of validation tests we performed
on our cosmology inference pipeline.

A1 Inference from 2PCFs

The ξ± measurements on the simulations, presented in Fig. 2, show
an excellent agreement with the input cosmology, well within the
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Figure A1. Two-dimensional constraints on the wCDM cosmological pa-
rameters (�m, w0, S8, h) from 2PCFs (blue) and peak count analyses (grey)
of the mock DES-Y1 data corresponding to the mean SLICS values. The red
contours show the fiducial T18 results wCDM for reference. The dashed lines
indicate the input SLICS cosmology. The inferred S8 value appears lower than
the input value, but this is a plotting artefact; maximum a posteriori (MAP)
value is SMAP

8 = 0.793 and 0.785 for 2PCFs and peaks, respectively, which
are very close to the input of 0.813 (see main text for more details).

statistical precision of the DES-Y1 data. There is a small loss
of power in the simulations compared to the data that can be
observed at large angular scales, a known finite-box effect that
is caused by the absence of density fluctuation modes larger than
the simulated volume. The ξ± statistics measured from the SLICS
are best modelled with a prediction that include a minimum k-
mode of kmin = 2π/505 hMpc−1 in the matter power spectrum,
which is readily implemented in COSMOSIS with the kmin option.
A correction scheme for the sample variance also exists (HD15);
however, the contribution to the total error budget from these missing
modes is negligible. We present in Fig. A1 the wCDM constraints
from our 2PCFs inference pipeline, when analysing the mean of the
Covariance training set. For the exercise presented in this section,
the priors on nuisance parameters have all been centred on zero, since
no systematic shifts are infused in the Covariance training set.

Our inference method produces contours that are highly similar
to those obtained by the wCDM analysis of T18 (blue versus red),
with a best-fitting value that is consistent with the input cosmology,
albeit with a slightly lower S8 value. This shift is caused by our
parameter sampling, more precisely by the upper limit on w0. A
closer look on the [w0 − S8] panel reveals that these two quantities are
degenerate, and that the w0 posterior is limited by the prior, especially
on the upper bound. Had we access to higher values, the contours
would extend further in the upper-right direction, bringing centroid
to higher S8 values. This is further supported by the fact that the MAP
value is located at SMAP

8 = 0.793, which is very close to the input
of 0.813.

We next present in Fig. A2 the two-dimensional marginal con-
straints on the wCDM parameters (�m, h, σ 8, S8, w0) and on the 10
nuisance parameters used in this analysis, which are associated with
photometric uncertainty (4 × �zi), shear calibration (4 × �mi), and
intrinsic alignments of galaxies (AIA and η). The blue contours are
obtained from our 2PCFs inference pipeline, executed on the mean

2PCFs extracted from the SLICS and using the SLICS covariance
matrix. We observe that the constraints on the four cosmological
parameters are well centred on the input cosmology, and the sizes of
the contours are fully consistent with those of T18.

We also note that our pipeline accurately recovers the input (null)
amplitude of the intrinsic alignment in the SLICS, which also shows
a degeneracy with S8, whereas the data prefers values closer to AI =
1, as reported in T18 and seen in the red contours. The fact that
the posterior of the η parameter is almost identical in the data and
in the IA-free simulation indicates that the evidence for a redshift
evolution in the data is not strong. In fact, it instead suggests that the
measurement of this parameter is sensitive to something else, present
in both simulations and data (see the discussion on degeneracies
between IA parameters and photometric redshift nuisance parameters
in appendix C of Heymans et al. 2021). All other nuisance parameters
are prior dominated, and we observe a clear difference between our
nuisance priors and those of T18, especially for the photometric bias;
the DIR method has a smaller error, which reflects here in smaller
contours for all �zi.

A2 Inference from peaks

We next run our peak statistics wCDM inference pipeline on the
same data vector as in Appendix A1, e.g. mean of the Covariance
training set measurements. The mean peak function is presented by
the black symbols in Fig. A3, showing the noise-free signal that lies
well within the range covered by the Cosmology training set. Again,
in this validation exercise, the priors on the nuisance parameters
are centred on zero, and we marginalize over the eight nuisance
parameters (4 × �zi, 4 × �mi, the two IA parameters are not
included in the peaks analysis). We next feed this data vector into our
COSMOSIS pipeline, and confirm in Fig. A1 that we recover the same
cosmology as the 2PCFs analysis. Once again, the S8 is slightly lower
than expected, which can be explained by the asymmetric sampling
of w0 that causes a bias in the inferred contour plots. The MAP
value is well within 1σ , with SMAP

8 = 0.785. We recover similar
contours on �m and S8 from peaks and 2PCFs. We finally repeated
the exercise for the case where �zi and �mi are set to zero, and
notice that the error on S8 is reduced by almost a factor of two,
which clearly indicates the importance of using accurate informative
priors on these nuisance parameters. Results are summarized in
Table 5.

A3 Towards a joint analysis

Peak statistics and 2PCFs are affected differently by the noise in
the data, and even though they converge in the noise-free limit (as
shown in Fig. A1), it is expected that a given noise realization will
scatter the best-fitting cosmological parameters inferred by the two
pipelines. We estimate the level of scatter by comparing the best-
fitting parameters obtained at the maximum likelihood returned by 50
survey realizations taken from the Covariance training set. Following
the recommendations of Joachimi et al. (2021), we improve the
accuracy of the solution by repeating the process multiple times by
varying the starting points in the [σ 8 − �m] plane and recording
only the solution with the lowest χ2. In this exercise all nuisance
parameters are held to zero, and we include the cross-redshift bins
in the peak count data to exacerbate the effect.

We report on Fig. A4 the best-fitting parameters for the 50 peaks
analyses (in blue, including the cross-tomographic terms) and 2PCFs
analyses (in orange), and further link the pairs associated with the
same simulations. The inset shows the distribution of the difference
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Figure A2. Pipeline validation: Two-dimensional constraints on the wCDM cosmological parameters (�m, h, σ 8, S8, w0) and on the 10 nuisance parameters
(4 × �zi, 4 × �mi, AIA, and η). Mean and covariance are obtained from the SLICS 2PCFs (blue) and peaks (grey), and compared to the T18 constraints (red).
The thin dashed lines indicate the input values in the simulations that are well recovered by the blue and grey contours. Note that the T18 priors differ, most
notably in h, �mi, and �zi.
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Figure A3. Same as Fig. 4, but the black points represent the mean over the full SLICS sample instead of the data. The error bars are showing the error on the
mean, and the red dashed line indicates the best-fitting cosmology.
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Figure A4. Scatter in the best-fitting parameters inferred from 50 simula-
tions. The thin black lines link the solutions from peaks statistics (blue) and
2PCFs (orange) analyses associated with the same survey realization. The
distribution of the length of these lines is shown in the inset.

in �m, which extends beyond 0.3. The value measured from the data
is ��m = 0.21, which is indicated by the vertical dotted line. In
this metric, the difference in matter density inferred by both probes
is common and likely, given the noise levels present in the DES-
Y1 data. Repeating the same exercise for S8 reveals a smaller scatter,
with �S8 ≤ 0.2; the difference of 0.2 observed in the data is therefore
a rare event. Excluding the cross-redshift bins significantly increases
the width and the contours, which making the observed �S8 = 0.3
more likely.

APPENDI X B: INFUSI ON O F INTRI NSI C
A L I G N M E N T

In this paper we estimate the impact of IA on peak count statistics by
infusing an alignment between mock galaxies and properties of their
host dark matter haloes, based on the method described in Heymans
et al. (2006) and Joachimi et al. (2013b). Since most of the simulated
light-cones used in this paper do not use dark matter haloes to assign
galaxy positions, we instead have to rely on a separate simulation
suite. We use for this task the KiDS-HOD mock data described
in Harnois-Déraps et al. (2018), in which dark matter haloes from
the light-cones are populated with an HOD based on a conditional
luminosity function, then sub-sampled to match the galaxy redshift
distribution of the KiDS-450 data up to z = 1.5. Since these mocks
are slightly denser than the DES-Y1 data, we further downsample
them such as to closely match the DES tomographic bins. These
DES-HOD mocks lack some of the very low redshift galaxies at z <

0.2 and all galaxies with z > 1.5, but these are all down-weighted
by the lensing kernel, leaving the expected lensing signal almost
unchanged. We match the mean redshift in each bins to within 0.04,
and the galaxy density to within 0.07 gal armin−2, which is sufficient
for this exercise.

A number of physical models are presented in Joachimi et al.
(2013b), and in this first study we opted for the simplest possible
case: we assume that all central galaxies are early-type red galaxies,
and that all satellites are late-type blue galaxy. This is of course
inaccurate, but provides a good staring point upon which we can
build and improve the model in future work.

The ellipticity of the central galaxies is known to correlate with
the shape of the host dark matter haloes, in a complicated way that
depends on galaxy type, redshift, and possibly merger history (for
a review see Kiessling et al. 2015). The galaxy catalogues that we
construct from the DES-HOD mocks contain the inertia matrix of the
host dark matter haloes, from which one can compute the eigenvalues
and eigenvectors (ωμ, sμ). The projected ellipses reconstructed from
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Figure B1. Effect of the intrinsic alignment of galaxy on ξ+. The upper and
lower thin black lines show the theoretical predictions based on the linear non-
linear model of Bridle & King (2007) with AIA = 1.0 and 2.0, respectively,
while the thick black line presents the predictions without IA. The solid red
and the dashed blue lines show the ‘II’ and ‘−GI’ contributions. The symbols
represent the measurements on the dedicated IA mocks. The thin red symbols
present the absolute value of the ‘II’ measurements, which becomes negative
at small scales. Three panels show the combinations between the two lowest
redshift bins, as indicated in the top right corner. Combinations involving
higher redshifts show a similar agreement between mocks and models, albeit
the effect is milder.

these are described by the symmetric tensor W (Joachimi et al.
2013a),

W−1 =
3∑

μ=1

s⊥,μ s⊥,μT

ωμ2
, (B1)

where s⊥,μ is the eigenvector projected along the line of sight, and
the semimajor axes are given by

√
1/ωμ. Halo ellipticities εh can be

obtained from

εh,1 = W1,1 − W2,2

W1,1 + W2,2 + 2
√

det(W )
(B2)

εh,2 = 2W1,2

W1,1 + W2,2 + 2
√

det(W )
. (B3)

Once these are determined, we opted for a 100 per cent alignment
between the halo and the central galaxy ellipticities. This is likely
to slightly overestimate the effect, a deliberate choice that we make
when developing a relatively conservative approach. The absence of
scatter between the two, combined with the approximation that all
centrals are early-type galaxies both act as to maximize the IA signal
in our model. We also find that this model does not work well at high

redshift, since the haloes are not fully relaxed, and their shapes are
less well modelled. We therefore concentrate on the lower redshift
bins only.

We make a second important approximation by treating all satellite
galaxies as blue, late-type, and assign them no intrinsic alignment,
consistent with recent findings (Mandelbaum et al. 2011; Johnston
et al. 2019; Samuroff et al. 2019). We could assign the halo
ellipticities to the centrals directly, but doing so strongly biases
the ellipticity distribution to lower values compared with the data.
Instead we keep the ellipticities drawn from the Gaussian distribution,
and rotate them until they align with εh. Once this is done, we use
equation (1) to shear these intrinsic ellipticities, and compute ξ 11

+ ,
ξ 12
+ , and ξ 22

+ with ε given either from the IA model described above
or from the no-IA case. We additionally compute the same 2PCFs
statistics from the pure intrinsic shapes εint, thereby estimating the
II term, as well as the combination 〈εintγ 〉 to compute the GI term.
Results are presented in Fig. B1, and compared with the theoretical
predictions with AIA = 1.0 and 2.0. We see in all three tomographic
bin combinations that the mocks reproduce reasonably well the
IA, no-IA, and GI models; however, the II terms remains very
noisy.

The IA model infused in these mocks is not accurate enough to be
used for signal calibration, but is adequate for diagnostic tests such
as those for which they are designed here. Future developments with
more flexible options regarding early-types/late-types separation,
inclusion of satellite alignment, and possibly different N-body runs,
will be the subject of future work.

APPENDI X C : C OMPA RI SON BETWEEN �C D M
ANALYSES

Differences in signal modelling and in the likelihood sampling
strategy are responsible for the broader range of accepted �m

and σ 8 values in J20, compared to T18. Notably, they replaced
the HALOFIT predictions of the non-linear matter spectrum by the
halo-based model HMCODE (Mead et al. 2015). Furthermore, the
sampling over the amplitude parameter As is replaced by a sampling
over ln

(
1010As

)
, the sum over the neutrino mass is fixed, and the

ranges of priors are changed to that of Hildebrandt et al. (2020).
These differences are responsible for a loss of precision on the
S8 constraints: while T18 finds S

T18,	
8 = 0.792+0.032

−0.021, J20 reports
SJ20

8 = 0.763+0.037
−0.031, e.g. a ∼1σ shift compared to the original DES-

Y1 results, and an error almost 30 per cent larger. As explained in J20,
the shift in S8 is largely driven by differences in the n(z) estimations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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