
HAL Id: hal-03115681
https://hal.science/hal-03115681v3

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Joint Parameterizations of Linear and Nonlinear
Functionals in Neural Networks

Abdourrahmane Mahamane Atto, Sylvie Galichet, Dominique Pastor, Nicolas
Méger

To cite this version:
Abdourrahmane Mahamane Atto, Sylvie Galichet, Dominique Pastor, Nicolas Méger. On Joint Pa-
rameterizations of Linear and Nonlinear Functionals in Neural Networks. Neural Networks, 2023, 160,
pp.12-21. �10.1016/j.neunet.2022.12.019�. �hal-03115681v3�

https://hal.science/hal-03115681v3
https://hal.archives-ouvertes.fr


On Joint Parameterizations of Linear and Nonlinear
Functionals in Neural Networks

Abdourrahmane Mahamane ATTOa,∗, Sylvie GALICHETa, Dominique PASTORb,
Nicolas MÉGERa
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Abstract

The paper proposes a new class of nonlinear operators and a dual learning paradigm
where optimization jointly concerns both linear convolutional weights and the param-
eters of these nonlinear operators. The nonlinear class proposed to perform a rich
functional representation is composed by functions called rectified parametric sigmoid
units. This class is constructed to benefit from the advantages of both sigmoid and
rectified linear unit functions, while rejecting their respective drawbacks. Moreover,
the analytic form of this new neural class involves scale, shift and shape parameters to
obtain a wide range of activation shapes, including the standard rectified linear unit as
a limit case. Parameters of this neural transfer class are considered as learnable for the
sake of discovering the complex shapes that can contribute to solving machine learning
issues. Performance achieved by the joint learning of convolutional and rectified para-
metric sigmoid learnable parameters are shown to be outstanding in both shallow and
deep learning frameworks. This class opens new prospects with respect to machine
learning in the sense that main learnable parameters are attached not only to linear
transformations, but also to a wide range of nonlinear operators.

Keywords – Deep learning ; Ensemble learning ; Sigmoid shrinkage ; Rectified linear
unit ; Rectified sigmoid ; Parametric activation ; Convolutional neural network.

1. Introduction

Standard neural transfer functions such as Rectified Linear Unit (ReLU) [1] and
sigmoid hereafter, denoted respectively U and S with

U(x) = x1lx>0 = max (0, x) (1)
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S(x) =
1

1 + e−x
(2)

are non-parametric functions in the sense that their analytic expressions do not depend
on unknown parameters or weights. While the sigmoid function has been the leader of
the early-stage neural transfer functions, it has been outclassed by the ReLU in most
recent deep Convolutional Neural Networks (CNN), see [2, 3, 4, 5, 6, 7, 8] among
others.

In terms of machine learning, the first major difference between ReLU and sig-
moid is the fact that ReLU output is expected to be a sparse sequence in general, while
sigmoid function simply penalizes its entries without forcing non-zero values to zero.
Thus, in terms of the compromise between computational complexity and available
working memory, ReLU is naturally favored when very deep networks are under con-
sideration.

The second major difference between ReLU and sigmoid concerns their derivatives.
The derivative U ′ of U is the Heaviside unit step function: such a function is stable by
composition. However, it admits a singularity at 0 and has the same constant output for
both small and large positive values, which may be counterintuitive since if we consider
for instance sparse transforms, small and large positives do not carry the same level of
information. In addition, because of the zero-forcing operated by ReLU derivative,
then learning can be inhibited1 in a ReLU CNN when the processing implies a large
number of negatives.

In contrast with ReLU, the derivative of a standard sigmoid is smooth everywhere.
However, it is always strictly less than 1 and this can also lead to a fast decrease to 0 of
the sigmoid increments by composition and this, both for positive and negative entries.

One can note that both ReLU and sigmoid admit parametric forms x 7→ x1lx>0 +
αx1lx⩽0 for parametric ReLU [9] and x 7→ S(αx) for parametric sigmoid [10], [11].
These parametric forms can solve the limitations highlighted above for specific ap-
plications and when α is chosen carefully. It is worth noticing that the use of these
parametric forms is limited to specific datasets or specialized networks and their gen-
eralization capabilities need to be proven.

In terms of image processing, important properties are invariances by rotation,
translation and scaling. It is well known that rotation invariance can be handled by
a suitable sequence of convolution filters. For the two remaining invariance properties:
on the one hand, both ReLU and sigmoid are translation-variant. On the other hand,
only ReLU is scale-invariant, but from a general perspective, translation and scaling in-
variances can also be obtained from other components of the network such as pooling
and convolution layers respectively for the translation and scaling invariances.

This paper provides in the Section 2, new neural transfer functions that possess
most of the desirable properties highlighted above, while limiting the undesirable ones.
Because biological neurons have non-uniform2 activation functions, we will propose

1Leaky ReLU: x 7→ x1lx>0 + 0.01x1lx⩽0 can avoid such issues, however, it is less used in deep neural
networks because it raises other issues (such as the arbitrary penalization of negative values, the latter being
far from bio-inspired behaviors).

2The activation functions depend on the specialization and the depth of the neurons in the brain as diverse
inhibition mechanisms in the brain can influence information transfer.
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convolutional neural learning frameworks where learning includes the determination of
suitable activation functions. Even though this framework leads to a higher computa-
tional complexity than using a non-parametric ReLU transfer functions, we will show
in Section 3 and 4 that it is highly relevant for shallow and deep learning by providing
comparisons with respect to frameworks based on both parametric and non-parametric
variants of MISH [12] or SWISH [13] activation functions. Section 5 provides outlooks
raised by the joint linear-and-nonlinear parametric learning framework and Section 6
concludes the work.

2. Rectified parametric sigmoid shrinking and stretching units

2.1. Definitions
Let sgn denotes the sign function given by:

sgn(x) =

 −1 for x < 0
0 for x = 0
1 for x > 0

(3)

and 1lE be the indicator of set E associated with the notation:

1lλ(x) = 1l{x⩾λ} =

{
1 if x ⩾ λ
0 if x < λ

(4)

The contributions provided by the paper start from the definitions of 3 transfer
functions given below. We first define the Rectified Parametric Sigmoid shrinKage
Units (RePSKU or RePSU▽) by the form:

fλ,µ,σ,β(x) =
(x− λ)1lλ(x)

1 + e− sgn(x−µ)( |x−µ|
σ )

β (5)

RePSU▽ threshold λ is inspired from the behavior of ReLU functions (see by Eq. (1)
in particular for λ = 0 which implies forcing negative inputs to 0). RePSU▽ involves in
its exponential term, a shift parameter µ, a scale parameter σ and a shape parameter β:
these parameters are inspired from the generalized Gaussian distribution, but integrated
as in [14] (Smooth Sigmoid Based Shrinkage functions, SSBS) by using a sigmoid
form.

Secondly, the Rectified Parametric Sigmoid stretcHage Units (RePSHU or RePSU△)
are defined as the RePSU▽ dependent functions given by:

gλ,µ,σ,β(x) = 2x1lλ(x)− fλ,µ,σ,β(x) (6)

RePSU△ can be considered as a complement to RePSU▽ in the following specific sense:
the average of RePSU▽ and RePSU△ activations is [fλ,µ,σ,β(x) + gλ,µ,σ,β(x)]/2 = x
for all x ⩾ λ.

Finally, both RePSU▽ and RePSU△ are encapsulated to form a larger parametric
transfer class called Rectified Parametric Sigmoid Unit (RePSU) and given by:

Aλ,µ,σ,β,α(x) = αgλ,µ,σ,β(x) + (1− α)fλ,µ,σ,β(x) (7)
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Examples of RePSU graphs are given in Figure 1 for a given input shape and different
parameters (σ, β, α), the latter being considered as positive real values hereafter. The
RePSU outputs displayed in this figure correspond to RePSU▽ (respectively RePSU△)
when the graphs are located under (respectively over) the input data transformed (yel-
low curve represents the identity).

Remark
If α = 0 and β = 1, then function uλ,µ,ξ = Aλ,µ,1/ξ,1,0 has the following form:

uλ,µ,ξ(x) =

{
x−λ

1+e−ξ(x−µ) if x ⩾ λ

0 if x < λ
(8)

where we have assumed ξ = 1/σ. Thus, RePSU▽
λ,µ,σ,1,0 corresponds to the restriction

on R+ of the SSBS activation functions [14]. Furthermore, the restriction on R+ of
the SSBS class includes the SWISH [13] (when µ = 0) and SiLU [15] (for µ =
0 and ξ = 1) activations3. Moreover, RePSU class includes standard ReLU since
uλ→0,µ,ξ→+∞ = U where U is the ReLU function defined by Eq. (1). Thus Aλ,µ,σ,β,α

can be seen as a generalization of several standard transfer functions.

2.2. RePSU: penalized attention mechanisms
Attention mechanisms consist in constraining an optimization problem by speci-

fying some relevant property to reach desirable solutions (that are generally different
from those of the unconstrained problem). For instance, if we consider the following
unconstrained least squares minimization problem:

min
y

||y − d||2ℓ2

where d is a vector corresponding to the data observed, then its standard attention based
variant is the so-called penalized least squares problem given by [16]:

min
y

||y − d||2ℓ2 + P (y)

In this problem, the choice P (y) = λ||y||ℓ1 is known as a regularized least squares
penalization problem (sparsity driven attention).

Consider now the transformation induced by RePSU▽ in Eq. (5) and let:

Pλ,µ,σ,β(x) = 2

∫ x

0

(
f−1
λ,µ,σ,β(z)− z

)
dz (9)

for x ⩾ 0, where f−1 is the inverse4 of f . Then, for d ⩾ 0, fλ,µ,σ,β(d) is the solution
of the minimization problem

min
y⩾0

(y − d)2 + Pλ,µ,σ,β(y)

3The restriction of SWISH and SiLU on R− is composed by negligible values that are not forced to zero:
a limitation in terms of sparsity that is avoided by the ReLU-like behavior of u0,µ,ξ(x) on R−.

4Either the natural inverse or the generalized (principal sub-solution) respectively if λ = 0 or if λ > 0.
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Figure 1: Transform y = Aλ=0,µ,σ,β,α(x) operated by RePSU when x =Input is given at the top.

Indeed, the derivative of (y−d)2+Pλ,µ,σ,β(y) with respect to y is 2(y−d)+P ′
λ,µ,σ,β(y)

and this derivative is reduced to 2f−1
λ,µ,σ,β(y) − 2d since from Eq. (9), we have:

P ′
λ,µ,σ,β(y) = 2f−1

λ,µ,σ,β(y) − 2y. Thus, the above derivative is 0 (necessary condi-
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Original RePSU▽ activations RePSU△ activations

Figure 2: Original: Landsat 8 OLI image at Antarctica’s Marie Bird Land. RePSU▽: shrink small signals
and highlight medial variations. RePSU△: amplify small signals and highlight medial variations. These
behaviors can be seen as attention mechanisms. Note that for both RePSU▽ and RePSU△, very small and
very large values are left almost unchanged.

tion for optimality) iff f−1
λ,µ,σ,β(y) = d, that is if y = fλ,µ,σ,β(d). Note that we have

considered non-negative values in the elements of attention evidence given above. This
is because neural activations are considered to be positive in this paper. For a general-
ization to negative outputs, antisymmetric extension of RePSU can be considered.

Concerning the practical interpretation of the RePSU attention focus, note that from
Eq. (5) (see also Figure 1), it follows that parameter µ controls the inflection location
from which differentiated penalties are applied to the input. The penalty intuition is
the following: activations larger than µ remain quasi-unchanged whereas those smaller
than µ can be either attenuated (case of RePSU▽, because they do not carry significant
information) or amplified (case corresponding to RePSU△, because they are associ-
ated with weak signals carrying some information of interest) before transfer to the
upstream part of the neural network. Figure 2 highlights this behavior when RePSU▽

and RePSU△ are applied to transform a satellite image.

2.3. Derivatives of RePSU

When assuming learnable parameters for RePSU in a gradient descent based mini-
mization problem, we need to compute RePSU partial derivatives with respect to vari-
ables λ, µ, σ, β, α. Note that from (7), we have:

∂Aλ,µ,σ,β,α(x)

∂α
= gλ,µ,σ,β(x)− fλ,µ,σ,β(x) (10)

Figure 3 shows the behaviors of the above partial derivatives when the input data are
those given in Figure 1: the derivatives are almost zeros for large values of x, except
in the neighborhood of the penalization regions associated with the value µ, where the
differentiate penalization shapes involved are governed by σ and β.

Regarding the partial derivatives with respect to λ, µ, σ, β and due to the simple
dependencies of A and g with respect to f (see Equations (7) and (6) respectively), we
will focus on derivatives of f hereafter. From Eq. (5) and after some steps of calculus,
we have:
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Figure 3: Graphs ∂/∂α
(
Aλ,µ,σ,β,α(x)

)
= Aλ,µ,σ,β,1(x)−Aλ,µ,σ,β,0(x) when x is given at the top of

Figure 1.

(i) Derivative with respect to the activation threshold λ:

∂fλ,µ,σ,β(x)

∂λ
=

−1lλ(x)

1 + e− sgn(x−µ)( |x−µ|
σ )

β (11)

(ii) Derivative with respect to the location parameter µ (inflection point for penaliza-
tion):

∂fλ,µ,σ,β(x)

∂µ
= − 1

4σβ
(x− λ)1lλ(x)×(

2δ(x− µ)|x− µ|β + β(x− µ) sgn(x− µ)|x− µ|β−2
)

×sech2
(
1

2
sgn(x− µ)

(
|x− µ|

σ

)β
)

(12)

where sech is the hyperbolic secant function sech(x) = 2
/
(ex + e−x),

(iii) Derivative with respect to the scale parameter σ (penalization weight):

∂fλ,µ,σ,β(x)

∂σ
=

−β

2σ

(x− λ)1lλ(x) sgn(x− µ)
(

|x−µ|
σ

)β
1 + cosh

(
sgn(x− µ)

(
|x−µ|

σ

)β) (13)

where cosh is the hyperbolic cosine function cosh(x) = (ex + e−x)
/
2 and

(iv) Derivative with respect to the shape parameter σ (penalization form):

∂fλ,µ,σ,β(x)

∂β
=

1

4σβ
(x− λ)1lλ(x)(

sgn(x− µ)|x− µ|β log
(
|x− µ|

σ

))
sech2

(
1

2
sgn(x− µ)

(
|x− µ|

σ

)β
)

(14)
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In some situations, one may want to fix parameters λ, µ, σ, β, α (set them as non-
learnable for the sake of transfer learning for example) and in this case, the requirement
for the global gradient descent updating is the derivative:

f ′
λ,µ,σ,β(x) =

∂fλ,µ,σ,β(x)

∂x
=

β

4σ
(x− λ)1lλ(x)

×

(
sgn(x− µ)

(
|x− µ|

σ

)β−1
)
×

sech2
(
1

2
sgn(x− µ)

(
|x− µ|

σ

)β
)

(15)

+
1lλ(x)

1 + e− sgn(x−µ)( |x−µ|
σ )

β (16)

RePSU derivatives are smooth: the general behavior is a “no-jump” property5 which
implies introducing only small variabilities6 between close objective values. In con-
trast, at the RePSU limits corresponding to translated versions of ReLU (when ξ →
+∞ and for fixed µ), the derivatives shift rapidly from 0 to 1 similarly to ReLU.
Thus to summarize, the outstanding RePSU derivative property is that the graph of
the derivative is flat for large activations (the derivatives tend to 1 at infinity): this
yields a stable composition for the few very large activations received by the activation
function.

Some useful additional invariance properties inherited from RePSU▽ are given be-
low.

2.4. Intra-class translation invariance for RePSU▽

The invariance highlighted below applies at RePSU▽ subclass level. Assumes x−τ
is the input of the RePSU▽ class. Then one can note that for RePSU▽ functions defined
by Eq. (8), we have:

uλ,µ,ξ(x− τ) = uτ+λ,τ+µ,ξ(x)

This implies that the output of a shifted input can be deducted directly from parameter
shifts of the RePSU▽. Thus, translation invariance can be achieved by a series of
RePSU▽ functions associated with different parameters. In comparison with ReLU for
which translation can induce forcing to zero, RePSU▽ has the capability to either keep
invariant or force to zero a given value depending on the training objective.

2.5. Intra-class scaling conservatives for RePSU▽

Scaling is present at different stages in image processing. For instance, dividing an
8-bit coded image by a positive constant changes the scaling, but does not affect pixel
distribution shapes. For RePSU▽ functions given by Eq. (8), we have the following
property:

uλ,µ,ξ(αx) = αuλ/α,µ/α,αξ(x)

5The derivative has no-jump, expected for parameter limits.
6Discontinuities are known to generate a high variance in iterative processing.
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Thus, re-scaling a value can be inferred by re-scaling RePSU▽ outputs thanks to scaled
parameters set as (λ′, µ′, ξ′) = (λ/α, µ/α, αξ).

The following addresses performance of CNN involving RePSU nonlinearities. We
will use β = 1 for all experimental results so that learning concerns:

• parameters (λ, µ, σ) for the shrinkage activation RePSU▽ (given by Eq. (5)) and
the stretchage activation RePSU△ (given by Eq. (6));

• parameters (λ, µ, σ, α) for the more general RePSU form defined by Eq. (7).

3. Learning activation function parameters: shallow networks

The second main contribution provided by the paper is the joint learning of stan-
dard convolutional linearities and parameters of the nonlinear ReSPU class: ReSPU
parameters λ, µ, σ, β, α (see Eq. (7)) are assumed learnable hereafter. The issue ad-
dressed in this section is then measuring the performance provided by the learning of
ReSPU nonlinearities, when the latter are considered to activate convolution outputs of
a shallow CNN.

We recall that the main goal of the paper is to prove the interest in learning optimal
nonlinear activations from a parametric family generalizing/including the ReLU, in
contrast with using only (non-learnable) ReLU activations. Thus, a good comparison
could be limited to an opposition between a “learnable RePSU” and a “purely ReLU”
CNNs. However, we extend the comparison by testing both fixed and parameterized
forms of some recent RELU’s alternatives: the Parametric MISH (PMISH) by [12]:

M(x) = x tanh(softplusξ(x))

= x tanh

(
1

ξ
log(1 + eξx)

)
(17)

and for the Parametric SWISH (PSWISH) used in [13] and also called SiLU (Sig-
moid Linear Unit) in [15]:

S(x) = xσ(ξx) =
x

1 + e−ξx
(18)

In this respect, we will also consider learning the activation parameter ξ involved in
PMISH and PSWISH. We will keep the terminologies of MISH and SWISH in the
standard (non-learnable) cases corresponding to ξ = 1 in Eqs. (17) and (18).

3.1. Fast and efficient learning from scratch with respect to shallow CNNs

We consider a standard, so-called MNIST, handwritten digit recognition problem
described in [17]. CNN architectures are known to be efficient for solving such a
problem and therefore, what we propose here is to test the learning speed on different
CNN structures and several hyperparameter settings. Thereby, the number of training
epochs is fixed respectively to either 1 or 2 and a Monte Carlo simulation framework
is applied to avoid a biased comparison that can be due to parameter initialization.
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Table 1: Shallow CNN-1-X frameworks where X ∈ {ReLU, RePSU▽, MISH, PMISH, SWISH, PSWISH}
corresponds to the specific activation function used at layer 4. FC denotes a Fully Connected layer. We have
considered N2 = 32 for CNN-1. The number of parametric activation functions used is N2 (number of
convolution filters used downstream), that is one function per convolution filter.

Layer Content #N of Elements Element size Learnable

1
Inputs
Images N1 Mx

1 ×My
1 ×Mc

1 No

2 ‘Convolve’ N2 Mx
2 ×My

2 Yes
3 ‘Normalize’ Standard / Mini-batch

4

ReLU

RePSU▽

MISH
PMISH
SWISH

PSWISH

N2

-
3
-
1
-
1

No
Yes
No
Yes
No
Yes

5 ‘FC’ [Output size L ]
6 ‘Softmax’ Probabilities with respect to L outputs
7 ‘Classify’ Cross-entropy (Output: category)

More precisely, training and testing concern the shallow CNN described by Table
1 and the Monte Carlo trials apply on the number of training epochs and the sizing7 of
layer 2 in by Table 1. The recognition tasks are associated with the following experi-
mental setup:

• Split the handwritten digit database in training and testing sets;

• Specify a number of epochs and perform iteratively, the following:

– initialize convolution parameters from real random numbers,

– initialize RePSU▽, PMISH, PSWISH parameters from positive real ran-
dom numbers,

– perform training8 with respect to the number of epochs, then testing

– save testing score and reiterate;

• Compute average performance over the correspond 100 Monte Carlo trials.

Experimental results are given in Table 2. It appears that RePSU▽ based CNNs deliver
high performance faster than the ReLU, MISH, PMISH, SWISH and PSWISH based
CNNs. We recall that finding a favorable initialization to any of the given CNNs is
often just a matter of trials in intensive simulation environments: it is not the problem
addressed in this section. The motivation is testing the behavior of any CNN in generic

7Numbers and sizes of convolution filters, which determine the number of additional parameters used.
8In RePSU case, the corresponding cross-entropy depends on RePSU parameters: the latter (except β,

fixed to β = 1 because β is at the power of an exponential term), are updated thanks to the behavior of the
cross-entropy and the RePSU derivatives by using the back-propagation algorithm with respect to a gradient
descent method, similarly as when updating convolution weights.
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Table 2: Mean accuracies in percentages over 100 Monte Carlo trials of the handwritten digit recognition
issue: impact of the number of epochs, the Convolution Filter Size (CFS) and Number of Convolution Filters
(NCF) with respect to shallow CNN-1-X frameworks defined in Table 1 where X ∈ { ReLU, RePSU,
MISH, PMISH, SWISH, PSWISH }.

Non-learnable activations Learnable activations
CFS (columns) ∈ {2, 3, 4, 5, 6, 7}

EPOCH = 1

C
N

N
-1

-R
eL

U

2 3 4 5 6 7
72.67 72.70 72.23 72.35 72.40 72.25
77.08 77.57 77.45 77.10 77.40 77.47
78.27 78.18 78.34 78.07 78.28 77.85
77.96 77.97 77.79 77.93 77.72 77.55
77.62 77.76 77.62 77.36 77.62 77.29

NCF
10
20
30
40
50

2 3 4 5 6 7
78.07 76.92 78.07 77.48 76.99 77.03
84.99 85.84 83.92 85.48 84.91 84.21
86.75 87.91 88.42 88.49 88.69 85.83
89.73 88.91 87.09 88.81 88.99 88.16
89.74 87.55 89.71 89.74 90.62 90.55 C

N
N

-1
-R

eP
SU

C
N

N
-1

-M
IS

H

2 3 4 5 6 7
75.14 75.13 75.64 74.98 75.03 74.83
81.69 81.83 81.85 81.51 81.80 81.44
84.24 84.19 84.13 84.12 83.93 84.07
84.88 85.02 84.62 84.83 85.00 84.75
84.89 84.96 84.80 84.69 85.01 84.93

NCF
10
20
30
40
50

2 3 4 5 6 7
66.38 66.60 66.71 66.98 66.68 66.77
68.68 68.42 68.84 68.29 68.46 68.59
68.55 69.00 68.72 68.47 68.46 68.52
68.27 68.02 67.96 68.02 68.00 68.07
67.28 67.57 67.22 66.89 67.11 67.55 C

N
N

-1
-P

M
IS

H

C
N

N
-1

-S
W

IS
H

2 3 4 5 6 7
75.40 75.19 75.11 74.98 75.16 75.27
82.17 82.03 81.82 81.89 82.23 81.78
84.70 84.46 84.33 84.29 84.57 84.63
85.51 85.47 85.48 85.41 85.42 85.57
85.82 85.76 85.81 85.46 85.65 85.89

NCF
10
20
30
40
50

2 3 4 5 6 7
70.23 70.37 70.14 70.16 70.49 70.79
75.81 75.79 76.19 75.71 75.75 76.08
78.19 78.06 77.80 78.20 77.86 77.98
78.55 78.76 78.63 78.87 78.59 78.61
79.27 79.29 78.81 79.41 79.12 79.24

C
N

N
-1

-P
SW

IS
H

EPOCH = 2

C
N

N
-1

-R
eL

U

2 3 4 5 6 7
84.37 84.07 84.11 84.34 84.48 84.58

2089.10 89.09 89.23 88.94 89.15 89.58
3090.56 90.46 90.79 90.47 90.65 90.54
4090.93 90.99 90.86 91.22 90.95 91.11
5091.12 91.18 91.15 91.15 91.07 91.03

NCF
10
20
30
40
50

2 3 4 5 6 7
88.15 88.11 88.12 88.91 88.03 88.79
93.35 91.42 89.45 91.29 94.11 90.40
94.73 93.82 90.96 90.94 93.84 91.95
94.49 88.68 91.55 88.59 92.46 94.54
92.87 91.81 90.84 91.83 94.49 95.64 C

N
N

-1
-R

eP
SU

C
N

N
-1

-M
IS

H

2 3 4 5 6 7
86.74 86.54 86.76 86.28 86.51 86.43
91.96 92.11 91.99 92.20 92.00 91.95
93.44 93.43 93.62 93.66 93.51 93.51
94.14 94.07 94.07 94.15 94.12 94.10
94.09 94.30 94.44 94.34 94.40 94.29

NCF
10
20
30
40
50

2 3 4 5 6 7
73.67 74.18 73.47 74.28 74.52 74.37
76.85 77.06 77.37 76.92 77.03 77.07
77.90 77.28 77.61 77.40 77.53 77.64
77.70 77.61 77.25 77.59 77.04 77.37
76.80 76.63 77.11 76.95 76.59 76.82 C

N
N

-1
-P

M
IS

H

C
N

N
-1

-S
W

IS
H

2 3 4 5 6 7
86.30 86.60 86.47 86.34 86.58 86.37
92.10 91.99 92.09 91.87 91.68 91.95
93.64 93.63 93.63 93.58 93.64 93.67
94.22 94.28 94.26 94.39 94.18 94.40
94.54 94.58 94.54 94.52 94.68 94.61

NCF
10
20
30
40
50

2 3 4 5 6 7
80.30 80.39 80.78 80.54 80.24 80.69
86.57 86.28 86.48 86.49 86.84 86.63
88.86 88.87 88.67 88.72 88.73 88.67
89.58 89.76 89.65 89.38 89.45 89.72
90.13 89.96 89.87 89.79 89.69 89.79

C
N

N
-1

-P
SW

IS
H
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Monte Carlo setups with respect to the sizing of a convolutional layer and the adjoined
activation functions. Table 2 clearly shows that RePSU▽ learns very quickly (it reaches
95% on MNIST in 2 epochs), an advantage that can be exploited to help complex
networks in faster discovery of satisfactory solutions.

Findings: it is well known that convolution filters can tend to reduce/blur informa-
tions and this has implied putting a lot of convolution filters per layer in modern CNNs
for creating diversity. We see from Table 2 that unreasonably increasing the number of
convolution filters of a layer is not a necessity: an alternative is to design a parametric
activation functions that can penalize or amplify relevant informations.

3.2. Fast transfer learning as shallow parametric decision heads for deep CNNs
From Subsection 3.1, we have seen, on a relatively simple classification task, that

shallow RePSU▽ CNNs learn quickly, without the need of seeing the same example
a hundred times. We now consider a more complex classification task to assess the
relevance of learning parametric activation forms including the ReLU function as a
special case: object recognition setup related to the CIFAR-10 challenge [18].

The CIFAR-10 dataset contains 60000 tiny images (size 32 × 32 × 3) associated
with 10 classes being: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck. The dataset involves 6000 images per class, 50000 training images and 10000
test images. Additional information on the dataset can be found in the aforementioned
reference.

It is worth noticing that CIFAR-10 challenge is running since a decade and several
networks have been specifically designed to reach the highest reasonable performance
on the associated classification task. We have now reached fewer than 6 classification
errors over 1000 tested samples and this, from several transformer networks (see for
instance [19] for a survey of classification networks and performance results on CIFAR-
10).

Our goal is to compare learnable and non-learnable activation functions, without
searching for a best-specific architecture. In this respect, we will not care on finding or
reusing the best network for CIFAR-10. Instead, we aim to evaluate the CIFAR-10 per-
formance of user-friendly state-of-the-art deep learning networks endowed with either
non-parametric or parametric nonlinear activation heads. More precisely, we consider
a shallow feature-based ensemble learning framework summarized in Table 3, where
the input features are computed by using three base networks being EfficientNetB0
[20], NasNetMobile [21], and Xception [22], all being pre-trained on ImageNet [23].
These networks are very deep and consequently, we omit here their descriptions (the

reader is asked to refer to the corresponding literature for more information). We only
mention the feature layers feeding into the head of the ensemble model:

• EfficientNet-B0: layer called ‘efficientnet-b0|model|head|MulLayer’, located at
operating position 286 and performing element-wise multiplication;

• NasNetMobile: depth concatenation layer called ‘normal concat 12’ and located
at operating position 908;

• Xception: layer called ‘add 12’, located at operating position 158 and perform-
ing element-wise addition.
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Table 3: Shallow Ensemble Learning SEL-Z frameworks where Z ∈ {ReLU, PMISH, PSWISH, RePSU▽}
and the output sizes are given in parentheses. This framework we used implies that any parametric activation
learner has 311680×N parameters, where N is the number of parameters of the corresponding activation
function. Specifically, nc is the number of output classes.

Property Processing

Image input layer (32, 32, 3)
Image resizing layer (299, 299, 3)

Non-learnable EfficientNet-B0 NasNetMobile Xception
(base models) ‘efficientnet-b0|model|head| ‘normal concat 12’ ‘add 12’

. . . MulLayer’ (9, 9, 1280) (10, 10, 1056) (10, 10, 1024)
Fusion Concatenation (total: 311680 feature values)

Nonlinear learnable ReLU or [RePSU▽ or PMISH or PSWISH layer (311680)]
Linear learnable Fully connected layer (nc)

Softmax, Cross entropy

where operating position refers to an enumeration of the distinct operators encapsu-
lated per layer in a network. In this enumeration, we proceed from top to bottom and,
from left to right when there exist parallel branches. The aim of the model concatena-
tion described in Table 3 is providing a diversity of features (311680 activation values)
to the nonlinear transfer forms. This amounts to using approximately a 558x558 image
as input of the head models, which is reasonable.

Table 4 provides performance results on CIFAR-10 for a:

• one-pass ensemble learning (only one epoch for training), where the ensemble
framework is that of Table 3;

• hyperparameter variation over:

– minibatch sizes varying from 32 to 256 and

– Monte Carlo trials with respect to initializations of the nonlinear activation
parameters and the fully connected layer neurons.

Table 4: Accuracies in percentages for one CIFAR-10 pass training with respect to shallow SEL-Z frame-
works defined in Table 3 where Z ∈ { ReLU, PMISH, PSWISH, RePSU▽}.

Network: SEL-ReLU SEL-PMISH SEL-PSWISH SEL-RePSU▽

Accuracy (%): 86.78 85.48 83.31 94.80
Time elapsed (mm:ss): 06:48 06:58 06:50 07:08

The mean time elapsed per epoch (on an NVIDIA RTX A6000 card) is given in
this table for information only: to avoid computation bottlenecks that can be due to
the massive feature extraction step at any iteration, it has been necessary to write an
optimized code by converting the CIFAR-10 dataset into “EfficientNet-NasNetMobile-
Xception” feature vectors which are stored in separate files. The consequence is a huge
gain in loading time on the GPU and a reduction in communications between GPU and
CPU.
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As it can be seen in Table 4, the penalized learning of activation parameters per-
formed by RePSU▽ guaranty a straightforward learning in the sense of reaching 95%
accuracy despite the fact that the examples are only seen once. It is worth noticing that
the experimental computation time depends on many external parameters (tiny mini-
batch load, server load, . . . ). Thus, time elapsed is provided for information only, to
emphasize that the bottlenecks in computational complexity are not necessarily related
to the nonlinearities adjoined.

The relevance of attenuating strong signals or amplifying weak signals (motivation
of RePSU parameterization) can also be measured in a context where it is necessary to
disregard class heterogeneity. For testing this, we have merged the CIFAR-10 classes
to form 2 heterogeneous classes:

• Artificial creatures = {airplane, automobile, ship, truck};

• Natural creatures = {bird, cat, deer, dog, frog, horse}.

This dataset will be called CIFAR-10-BIN and the retrieval of man-made creatures
from CIFAR-10-BIN leads to the performance results summarized in Table 5. This

Table 5: Accuracies in percentages for CIFAR-10’s two-pass training with respect to shallow SEL-Z frame-
works defined in Table 3 where Z ∈ { ReLU, PMISH, PSWISH, RePSU▽}.

Network: SEL-ReLU SEL-PMISH SEL-PSWISH SEL-RePSU▽

Accuracy: 93.97 97.53 97.54 98.46

table confirms that for a given network configuration, inserting learnable activations
increases transfer learning performance. Thus, it avoids going deeper in network ar-
chitectures to achieve a desirable performance, knowing that the deeper the network,
the less explicable this network is.

4. Learning activation parameters: deep CNNs

The first set of experiments presented in Section 3 has highlighted the contribu-
tion of RePSU in boosting performance through shallow learning. The second set of
experiments presented in this section concerns the study of a potential RePSU con-
tributions in deep learning from networks admitting millions of learnable parameters.
It is obvious that in a very deep network, a rule of simplicity consists in alternating
convolutional linearities with simple non-learnable activation functions. We will not
question this rule here: the goal is not replacing convolutional parameters by RePSU
ones, but presenting parametric forms which, when placed in a surgical way, will create
the diversity that can boost learning or even improve the performance of classification.
Therefore, only a single RePSU▽, RePSU△ or RePSU layer will be considered here-
after in CNNs, whatever the deepness of the CNN: additional nonlinearities will be
composed by ReLU in order to limit the computational complexity of the framework.
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4.1. Efficient parametric decision heads for learning from scratch in deep CNNs
The first experimental setup concerns a training from scratch to classify CIFAR-10

objects, when using the Deep Ensemble Learning (DEL) model described in Table 6.
In contrast with the SEL transfer networks of Table 3, the base models imported in

Table 6: Deep Ensemble Learning DEL-Z frameworks for Z ∈ {ReLU, PMISH, PSWISH, RePSU▽}, any
DEL-Z having 1370 layers (operator-specific counting) and approximately 30 million learnable parameters.
The abbreviations GAP and eb0 are used to denote “Global Average Pooling” and “efficientnet-b0”.

Property Processing

Image input layer (32, 32, 3)
Image resizing layer (299, 299, 3)

Connection Split: one input node, 3 output nodes
Structure EfficientNet-B0 NasNetMobile Xception
Root node ‘eb0|model|stem|conv2d’ ‘stem conv1’ ‘block1 conv1’

Terminal node ‘eb0|model|head|MulLayer’ ‘normal concat 12’ ‘block14 sepconv2 bn’
Output size (9, 9, 1280) (10, 10, 1056) (10, 10, 2048)

Layers 286 908 165
Learnables 4.0 million 4.2 million 20.8 million
Activations Z (1280) Z (1056) Z (2048)
Output sizes (9, 9, 1280) (10, 10, 1056) Z (10, 10, 2048)

Pooling 2D GAP 2D GAP 2D GAP
Output size (1, 1, 1280) (1, 1, 1056) (1, 1, 2048)

Fusion FC (200, 1280) FC (200, 1056) FC (200, 2048)
Concatenation, total: (4384, 1) feature vector)

Fusion FC (10, 4384)
Softmax, Cross entropy, 10 output classes

Table 6 from EfficientNetB0, NasNetMobile and Xception are no longer in inference
mode: they now involve learnable parameters. Experimental results are presented in
Table 7.

Table 7: Accuracies in percentages for CIFAR-10 with respect to DEL-Z frameworks defined in Table 6
where Z ∈ { ReLU, PMISH, PSWISH, RePSU▽}.

Max Epochs DEL-ReLU DEL-PMISH DEL-PSWISH DEL-RePSU▽

10 62,10 62,77 55.00 71.42
100 92,67 93,28 90.32 94.95

As it can be seen from Table 7, learning both linearities and RePSU▽ nonlinear-
ities in the deep CNN framework is, again, more efficient than using only a ReLU
activation. Furthermore, a performance gain similar9 to that of Table 7 is obtained
in a two-pass training, when native parameters of the base DEL used in Table 6 are
imported (transfer), instead of using random initializations.

4.2. Efficient parametric base activations in learning from scratch for deep CNNs
The second experimental setup deployed to analyze the contribution of RePSU

for promoting performance in deep CNNs concerns texture analysis. We will use

9Performance: test accuracy of 94.59% for DEL-RePSU▽ when using 2 training epochs.

15



GFBF spatio-temporal interactive states (inter-class dependencies)
Class 1∥∥Et1−•

∥∥

⋆M2⇒

Class 2∥∥Et2−•

∥∥

⋆M3⇒

Class 3∥∥Et3−•

∥∥

⋆M4⇒

Class 4∥∥Et4−•

∥∥

Figure 4: Sample elements of GFBF database D. Fractional field evolution is governed by the temporal
interactions which create inter-class statistical similarities: the learning system has to make abstraction with
respect to these inter-class similarities and focus on intra-class ones.

a synthetic database [24] available at Mendeley data hyperlink where the concept of
true class does not lead to any confusion10.

This database is composed by Generalized Fractional Brownian Fields (GFBF,
[25]). GFBF is a nonstationary random field EtQ associated with convolutions of in-
teracting modulated fractional Brownian fields (Mq)q=1,2,...,Q. Any of the modulated
fractional Brownian fields is a long spatial memory process characterized by a given
Hurst exponent and a singular spectral point. These models make synthesis of evolu-
tion fields with rich structural content possible by using a series of spatial convolutions
(linearities) and shift/modulation operators (nonlinearities). GFBF are considered here-
after in an interaction framework where Q is associated with the number of different
modulated Brownian fields in interaction. Examples of evolution factors and synthe-
sized fields are given in Figure 4 when the GFBF involves respectively Q = 1, 2, 3 and
4 interactions.

10Expert based labeling is far from being perfect, except in certain trivial contexts.
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The problem addressed is then the design of a system capable of learning the evo-
lution factor Q, given an arbitrary GFBF field E . A total of 4800 GFBF images (1200
images per class) is considered hereafter, when the number Q of interacting modu-
lated Brownian fields pertains to the class labels {1, 2, 3, 4}, this parameter Q defining
the class property. For any class, poles and Hurst parameters have been generated
randomly. An overview of the intricacy of the concept of class associated with this
database is shown in Figure 4, where textures pertaining to the same column pertain to
the same class: this figure shows interclass dependency, a scenario that limits learning
capabilities as confusion is possible between intra-class similarities (number of interac-
tions) and inter-class similarities (remaining dependencies after field evolution). Such
a challenging classification problem justifies the use of a deep CNN framework.

Table 8: Deep CNN-2-Y frameworks where Y ∈ { ReLU, RePSU, MISH, PMISH, SWISH, PSWISH }
corresponds to the specific activation function used in layer 4. FC denotes a Fully Connected layer. We have
considered N2 = 96 for CNN-2.

Layer Content #N of Elements Element size Learnable

1
‘Inputs’
(images) N1 Mx

1 ×My
1 ×Mc

1 No

2 ‘Convolve-1’ N2 3× 3 Yes
3 ‘Normalize-1’ Standard / Mini-batch

4

ReLU

RePSU▽/RePSU△/RePSU
MISH

PMISH
SWISH

PSWISH

N2

-
3 / 3 / 4

-
1
-
1

No
Yes
No
Yes
No
Yes

5 ‘Convolve-2’ 128 5× 5 Yes
6 ‘Normalize-2’ Standard / Mini-batch
7 ‘ReLU’ 3 No

8 ‘Convolve-3’ 384 7× 7 Yes
9 ‘Normalize-3’ Standard / Mini-batch

10 ‘ReLU’ 3 No

11 ‘Convolve-4’ 192 5× 5 Yes
12 ‘Normalize-4’ Standard / Mini-batch
13 ‘ReLU’ 3 No

14 ‘Convolve-5’ 128 3× 3 Yes
15 ‘Normalize-5’ Standard / Mini-batch
16 ‘ReLU’ 3 No

17 ‘FC-1’ [Output size: 4096 ]
18 ‘ReLU’ 4096 3 No

19 ‘FC-2’ [Output size: L ]
20 ‘Softmax’ Probability with respect to L outputs
21 ‘Classify’ Cross-entropy (Output: category)

When using 800 textures for learning and 400 for validation per class and when
learning from RePSU and ReLU based networks of Table 8, then the corresponding
validation losses and accuracies are given in Table 9. Similarly to the handwritten digit
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recognition results of Section 3.1 and in comparison with the standard CNN paradigm
associated with non-learnable activations (ReLU, MISH, SWISH), the learnable acti-
vation frameworks show higher performance in general and RePSU based CNN out-
performs these CNNs in terms of faster convergence to a desirable solution (increase
of the validation accuracy) and the decrease validation loss.

Table 9: Mean validation loss and mean validation accuracy every ten epochs for the GFBF class identifica-
tion issue with respect to RePSU and ReLU based deep CNN presented in Table 8.

Max Epochs 5 10 15 20 25 50 75 100

Time elapsed
Validation accuracy (hh:mm:ss)

CNN-2-ReLU 53.75 59.90 60.94 64.58 63.75 58.13 58.13 58.96 06:17:10
CNN-2-MISH 54.06 58.33 60.42 62.92 69.38 71.25 66.15 66.25 06:35:30
CNN-2-PMISH 39.58 48.12 49.38 60.31 65.31 61.88 71.04 68.54 07:18:37
CNN-2-SWISH 44.17 52.40 60.31 61.35 62.60 62.81 64.17 60.73 06:25:57
CNN-2-PSWISH 46.25 56.98 62.81 63.75 67.81 60.42 69.58 69.58 06:30:53

RePSU (general), RePSU▽ (α = 0) and RePSU△ (α = 1)
CNN-2-RePSU▽ 50.10 52.60 67.08 68.02 74.69 70.83 71.77 72.40 07:25:43
CNN-2-RePSU△ 45.31 60.94 59.38 62.50 71.88 72.29 70.83 71.56 07:54:28
CNN-2-RePSU 48.54 62.19 58.96 69.79 71.77 73.54 73.65 74.27 08:59:29

5. Discussion: limitations and open issues

5.1. RePSU

We can reasonably expect to improve RePSU based CNN performance by taking
more RePSU layers into account. However, computational complexity then explodes
and the best strategy has been a combination of RePSU and ReLU: such a combina-
tion creates sufficient activation diversity while limiting both the computational time
and feature space exploration. One can finally note that RePSU’s parameter β is very
sensitive and difficult to optimize in practice: only this parameter has been set to 1
during the experiments. A specific updating strategy, requiring very small gradient
increments, needs to be developed for learning an optimal estimate of this parameter.

5.2. PSWISH and PMISH

The main issue raised by PSWISH (defined in [13] for the parametric form and
in [15] for the non-parametric form) is the fact that PSWISH output is not 0 even for
very large negative inputs. This implies well-known limitations associated (similar to
those of the sigmoid) in terms of very small but non-null gradients. PMISH [12] suffers
from the same default as is it non-zero almost everywhere. Open prospect regarding
learnable PSWISH and PMISH imply not only adding a few more parameters, but also
rectifying the output so as to focus on significant values. This can solve vanishing
gradient issues for PSWISH and PMISH when ξ tends to zero or is initialized close to
zero.
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6. Conclusion

In this work, we have proposed a family of nonlinear transfer functions, the RePSU
functions. These functions are constructed to inherit from best qualities of ReLU and
SSBS functions. RePSU based CNN involves learning nonlinear activation weights be-
cause parametric transfer forms have been considered. The experimental results show
that RePSU functions can be used to create a diversity of activations in a CNN or to
achieve a higher learning performance for a classification task.
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