
HAL Id: hal-03115681
https://hal.science/hal-03115681v2

Preprint submitted on 2 Feb 2021 (v2), last revised 12 Jan 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Joint Parameterizations of Linear and Nonlinear
Functionals in Neural Networks

Abdourrahmane Mahamane Atto, Sylvie Galichet, Dominique Pastor, Nicolas
Méger

To cite this version:
Abdourrahmane Mahamane Atto, Sylvie Galichet, Dominique Pastor, Nicolas Méger. On Joint Pa-
rameterizations of Linear and Nonlinear Functionals in Neural Networks. 2023. �hal-03115681v2�

https://hal.science/hal-03115681v2
https://hal.archives-ouvertes.fr

Parametric Rectified Power Sigmoid Units: Learning Nonlinear Neural Transfer
Analytical Forms

Abdourrahmane M. ATTO*†

Université Savoie Mont Blanc - France
Sylvie GALICHET

Université Savoie Mont Blanc - France

Dominique PASTOR
TLECOM Bretagne - France

Nicolas MÉGER
Université Savoie Mont Blanc - France

Abstract

The paper proposes representation functionals in a dual
paradigm where learning jointly concerns both linear con-
volutional weights and parametric forms of nonlinear ac-
tivation functions. The nonlinear forms proposed to per-
form the functional representation are associated with a
new class of parametric neural transfer functions called
rectified power sigmoid units. This class is constructed to
benefit from the advantages of both sigmoid and rectified
linear unit functions, while rejecting their respective draw-
backs. Moreover, the analytic form of this new neural class
involves scale, shift and shape parameters so as to obtain
a wide range of activation shapes, including the standard
rectified linear unit as a limit case. Parameters of this neu-
ral transfer class are considered as learnable for the sake of
discovering the complex shapes that can contribute to solv-
ing machine learning issues. Performance achieved by the
joint learning of convolutional and rectified power sigmoid
learnable parameters are shown outstanding in both shal-
low and deep learning frameworks. This class opens new
prospects with respect to machine learning in the sense that
learnable parameters are not only attached to linear trans-
formations, but also to suitable nonlinear operators.

Keywords – Sigmoid ; Rectified linear unit ; Convolu-
tional neural network ; Rectified sigmoid shrinkage unit.

1. Introduction
Standard neural transfer functions such as Rectified Lin-

ear Unit (ReLU) [1] and sigmoid hereafter, denoted respec-
tively U and S with

U(x) = x1lx>0 = max (0, x) (1)

*Email: Abdourrahmane.Atto@univ-smb.fr - Phone: +334
50 09 65 27 - Fax: +334 50 09 65 59

†The work was supported by DAR START DEEP APR-6177/5930
grant of the CNES - France.

S(x) =
1

1 + e−x
(2)

are non-parametric functions in the sense that their ana-
lytic expressions do not depend on unknown parameters or
weights. While the sigmoid function has been the leader of
the early stage neural transfer functions, it has been out-
classed by the ReLU in most recent deep Convolutional
Neural Networks (CNN), see [2, 3, 4, 5, 6, 7, 8] among oth-
ers.

In terms of machine learning, the first major difference
between ReLU and sigmoid is the fact that ReLU output
is expected to be a sparse sequence in general, while sig-
moid function simply penalizes its entries without forcing
non-zero values to zero. Thus, in terms of the compromise
between computational complexity and available working
memory, ReLU is naturally favored when very deep net-
works are under consideration.

The second major difference between ReLU and sigmoid
concerns their derivatives. The derivative U ′ of U is the
Heaviside unit step function: such a function is stable by
composition. However, it admits a singularity at 0 and has
the same constant output for both small and large positive
values, which may be counterintuitive since if we consider
for instance sparse transforms, small and large positives
does not carry the level of information. In addition, because
of the zero-forcing operated by ReLU derivative, then learn-
ing can be inhibited1 in a ReLU CNN when the processing
implies a large amount of negatives.

In contrast with ReLU, the derivative of a standard sig-
moid is smooth everywhere. However, it is always strictly
less than 1 and this can also lead to a fast decrease to 0 of
the sigmoid increments by composition and this, both for
positive and negative entries.

One can note that both ReLU and sigmoid admit para-

1Leaky ReLU: x 7→ x1lx>0+0.01x1lx60 can avoid such issues, how-
ever, it is less used in deep neural networks because it raises other issues
(such as the arbitrary penalization of negative values, the latter being far
from bio-inspired behaviors).

1

metric forms x 7→ x1lx>0 + αx1lx60 for parametric ReLU
[9] and x 7→ S(αx) for parametric sigmoid [10], [11].
These parametric forms can solve the limitations high-
lighted above for specific applications and when α is chosen
carefully. It is worth noticing that the use of these para-
metric forms is limited to specific datasets or specialized
networks and their generalization capabilities need to be
proven.

In terms of image processing, important properties are
invariances by rotation, translation and scaling. It is well
known that rotation invariance can be handled by a suitable
sequence of convolution filters. For the two remaining in-
variance properties: on the one hand, both ReLU and sig-
moid are translation-variant. On the other hand, only ReLU
is scale-invariant, but from a general perspective, transla-
tion and scaling invariances can also be obtained from other
components of the network such as pooling and convolu-
tion layers respectively for the translation and scaling in-
variances.

This paper provides in the Section 2, new neural trans-
fer functions that possess most of the desirable proper-
ties highlighted above, while limiting the undesirable ones.
Because biological neurons have non-uniform2 activation
functions, we will propose in Section 3, a convolutional
neural learning framework where learning includes the de-
termination of suitable transfer function with respect to the
depth of the layer. Despite the fact that this framework
leads to a higher computational complexity than using a
non-parametric ReLU transfer functions, we will show in
Section 3 that it is highly relevant for machine learning by
providing comparisons with respect to analog frameworks
based on non-learnable ReLU, MISH [12] or SWISH [13]
nonlinearities. Section 4 concludes the work and provides
outlooks raised by the joint linear-and-nonlinear learning
framework.

2. Rectified power sigmoid shrinking and
stretching units

Let sgn denotes the sign function and 1lE be the standard
indicator function of set E . We will use the notation:

1lλ(x) = 1l{x>λ} =
{

1 if x > λ
0 if x < λ

(3)

We define the Rectified Power Sigmoid shrinKage Units
(RePSKU) by the parameterized form:

fλ,σ,µ,β(x) =
(x− λ)1lλ(x)

1 + e− sgn(x−µ)(|x−µ|σ)
β (4)

2The activation functions depend on the specialization and the depth of
the neurons in the brain as diverse inhibition mechanisms in the brain can
influence information transfer.

Figure 1. Graphs y = Aλ,σ,µ,β,α(x) of RePSU for different pa-
rameters σ, β, α when λ = 0 and µ = 2. Intuition: large pos-
itives must be forwarded quasi-unchanged to the upstream part
of the neural network. Small positives can either be attenuated
(case of RePSKU) because they do not carry enough information
(noise), or be amplified (case corresponding to RePSHU) because
they are associated with weak signals carrying significant infor-
mation. Negative values (smaller than λ = 0) are forced to zero.
These behaviors are biologically plausible.

and the Rectified Power Sigmoid stretcHage Units
(RePSHU) as:

gλ,σ,µ,β(x) = 2x1lλ(x)− fλ,σ,µ,β(x) (5)

The main contribution provided by the paper is the so-

2

called Rectified Power Sigmoid Unit (RePSU) activation
class defined by the integration of RePSKU and RePSHU
in the following parametric form:

Aλ,σ,µ,β,α(x) = αgλ,σ,µ,β(x) + (1− α)fλ,σ,µ,β(x) (6)

REPSU threshold λ is inspired from the behavior of
ReLU functions (see by Eq. (1) in particular for λ = 0
which implies forcing negative inputs to 0). REPSU in-
volves in its exponential term, a shift parameter µ, a scale
parameter σ and a shape parameter β: these parameters are
inspired from the generalized Gaussian distribution, but in-
tegrated as in [14] (Smooth Sigmoid Based Shrinkage func-
tions, SSBS) by using a sigmoid form so that REPSU cor-
responds effectively to an activation class.

Examples of RePSU graphs are given by Figure 1 for dif-
ferent parameters (σ, β, α) considered hereafter as positive
real values. Graphs corresponding to RePSKU (respectively
RePSHU) are located under (respectively over) the diagonal
representing y = x.

Remark
If α = 0 and β = 1, then function uλ,ξ,µ = Aλ,1/ξ,µ,1,0

have the following form:

uλ,ξ,µ(x) =

{
x−λ

1+e−ξ(x−µ)
if x > λ

0 if x < λ
(7)

where we have assumed ξ = 1/σ. Function uλ,ξ,µ cor-
responds to the restriction on R+ of the SSBS activation
functions [14]. Furthermore, the restriction on R+ of the
SSBS class includes the SWISH [13] (when µ = 0) and
SiLU [15] (for µ = 0 and ξ = 1) activations3. More-
over, RePSU class includes standard ReLU since its sub-
class uλ→0,ξ→+∞,µ = U where U is the ReLU function
defined by Eq. (1). Thus Aλ,σ,µ,β,α can be seen as a gener-
alization of several standard transfer functions.

The following provides additional properties of ReSPU
class. We will focus on the shrinkage subclass with fixed
shape parameter uλ,ξ,µ defined by Eq. (7) and this, for the
sake of conciseness since all properties cannot be summa-
rized in a short size paper. Since uλ,ξ,µ does not involve the
power of the shape parameter β, then uλ,ξ,µ will be sim-
ply called the class of Rectified Sigmoid shrinKage Units
(ReSKU).

2.1. Intra-class translation invariance for ReSKU

The invariance highlighted below applies at ReSKU sub-
class level. Assumes x− τ is the input of the ReSKU class.
Then one can note that for ReSKU functions defined by Eq.
(7), we have:

uλ,ξ,µ(x− τ) = uτ+λ,ξ,τ+µ(x)

3The restriction of SWISH and SiLU on R− is composed by negligible
values that are not forced to zero: a limitation in terms of sparsity that is
avoided by the ReLU-like behavior of u0,ξ,µ(x) on R−.

This implies that the output of a shifted input can be de-
ducted directly from parameter shifts of the ReSKU. Thus,
translation invariance can be achieved by a series of ReSKU
functions associated with different parameters. In compari-
son with ReLU for which translation can induce forcing to
zero, ReSKU has the capability to either keep invariant or
force to zero a given value depending on the training objec-
tive.

2.2. Intra-class scaling conservatives for ReSKU

Scaling is present at different stages in image process-
ing. For instance, dividing an 8-bit coded image by a pos-
itive constant changes the scaling, but does not affect pixel
distribution shapes. For ReSKU functions given by Eq. (7),
we have the following property:

uλ,ξ,µ(αx) = αuλ/α,αξ,µ/α(x)

Thus, re-scaling a value can be inferred by re-scaling
ReSKU outputs thanks to scaled parameters set as
(λ′, ξ′, µ′) = (λ/α, αξ, µ/α).

2.3. Derivative properties for ReSKU

From Eq. (7), the derivatives of ReSKU are

u′λ,ξ,µ(x) =

{
1+ξuλ,ξ,µ(x)e

−ξ(x−µ)

1+e−ξ(x−µ)
if x > λ

0 if x < λ

=

{
ξuλ,ξ,µ(x) +

1−ξuλ,ξ,µ(x)
1+e−ξ(x−µ)

if x > λ

0 if x < λ

(8)
Examples of ReSKU functions are given in Figure 2 and
Figure 3 highlights smoothness of the derivatives associ-
ated with these functions: the general behavior is a “no-
jump” property4 which implies introducing less variability5

between close objective values. In contrast, at the limit cor-
responding to translated versions of ReLU (when ξ → +∞
and for fixed µ), the derivative shifts from 0 to 1 in pass-
ing from 0. The outstanding ReSKU property is that the
graph of the derivative can be flat if desired (case for the
convergence to a standard ReLU). In addition, all ReSKU
derivatives asymptotically tend to 1 at infinity: the ReSKU
behavior is very stable for very large input values.

The following addresses performance of CNN involving
ReSKU nonlinearities.

3. Learning both linearities and nonlinearities
The second main contribution provided by the paper is

the joint learning of standard convolutional linearities and

4The derivative has no-jump, expected for limit parameters.
5Discontinuities are known to generate a high variance in iterative pro-

cessing

3

ReSKU functions with respect to parameter variation

Figure 2. Examples of ReSKU uλ,ξ,µ shapes depending on parameters ξ and µ, with λ = 0. We recall that uλ,ξ,µ(x) = 0 for x < λ. Left:
µ = 2. Right: ξ = 3.

ReSKU derivatives with respect to parameter variation

Figure 3. Derivatives of the ReSKU functions given in Figure 2.

parameters of the non-linear ReSPU class: ReSPU param-
eters λ, σ, µ, β, α (see Eq. (6)) are assumed learnable here-
after. The issue addressed in this section is then measuring
the performance adduced in learning ReSPU nonlinearities
in a CNN, in comparison with the alternative used in stan-
dard ReLU-CNN approaches based on learning only linear
parameters. For the sake of limiting computational com-
plexity, only a single ReSPU layer will be considered in
the CNN whatever the deepness of the latter: additional
nonlinearities will be composed by ReLU in order to go
deeper without increasing significantly the computational
complexity of the framework.

We recall that the main goal of the paper is to prove
the interest in learning optimal nonlinear activations from
a family of functions including the standard ReLU (in con-
trast with using directly the standard non-learnable ReLU).
So, a good comparison should address a “learnable ReSKU
architecture” versus a “purely ReLU architecture”.

However, we extend (see Tables 1, 2, 3 and 4) the com-
parison by testing both fixed and parameterized forms of
some recent RELU’s alternatives being the so-called MISH
[12] and SWISH [13] (SWISH) activation functions. We re-
call that the tunable forms of these functions that are given

respectively for the Parametric MISH (PMISH) by [12]:

M(x) = x tanh(softplusξ(x))

= x tanh

(
1

ξ
log(1 + eξx)

)
(9)

and for the Parametric SWISH (PSWISH) used in [13] and
also called SiLU (Sigmoid Linear Unit) in [15]:

S(x) = xσ(ξx) =
x

1 + e−ξx
(10)

We will keep the terminologies of MISH and SWISH in
the standard cases corresponding to ξ = 1 in Eqs. (9) and
(10). We will also consider learning parameter ξ involved in
PMISH and PSWISH together with learning standard con-
volutional weights.

Tables 1 and 2 respectively provide two shallow (CNN-
1-ReSKU and CNN-1-ReLU) and two deep (CNN-2-
ReSKU and CNN-2-ReLU) networks to be used in the
experimental tests, in addition with their MISH, PMISH,
SWISH and PSWISH variants. Concerning the number
of learnable parameters: the ReSKU based CNNs in-
volve 3N2 additional nonlinear parameters whereas the

4

PMISH/PSWISH based CNNs involve N2 additional non-
linear parameters, in comparison with the ReLU, MISH and
SWISH based CNNs, where N2 is the number of convolu-
tion filters used at layer 2.

Table 1. Shallow CNN-1-X frameworks where X ∈ { ReLU,
ReSKU, MISH, PMISH, SWISH, PSWISH } corresponds to the
specific activation function used at layer 4. FC denotes a Fully
Connected layer. We have considered N2 = 32 for CNN-1.

Layer Content #N of Elements Element size Learnable

1
Inputs
Images N1 Mx

1 ×M
y
1 ×Mc

1 No

2 ‘Convolve’ N2 Mx
2 ×M

y
2 Yes

3 ‘Normalize’ Standard / Mini-batch

4

‘ReLU’
‘ReSKU’
‘MISH’

‘PMISH’
‘SWISH’

‘PSWISH’

N2

-
3
-
1
-
1

No
Yes
No
Yes
No
Yes

5 ‘FC’ [Output size L]
6 ‘Softmax’ Probabilities with respect to L outputs
7 ‘Classify’ Cross-entropy (Output: category)

3.1. Monte Carlo validation over a handwritten
digit recognition problem on shallow CNN

We consider a standard handwritten digit recognition
problem [16], when training and testing concern the shal-
low CNN described by Table 1. The issue addressed in this
section is the achievable learning rate when the number of
training epoch is fixed to either 1 or 2. A Monte Carlo simu-
lation framework is proposed to avoid a biased comparison
that can be due to sensitivity in random number generation.

100 Monte Carlo iterations have been used for any
recognition task associated with the following experimen-
tal setup:

• Split the handwritten digit database in training and
testing sets;

• Specify a number of epochs and perform iteratively,
the following Monte Carlo experiments:

– initialize RePSU, PMISH, PSWISH parameters
from positive random numbers,

– perform training6 with respect to the number of
epochs, then testing

– save testing score and reiterate;
6In RePSU case, the corresponding cross-entropy depends on RePSU

form and RePSU parameters: the latter, except β fixed to 1 because it is
a power term, are updated thanks to the behavior of the cross-entropy and
the RePSU derivatives by using the back-propagation algorithm with re-
spect to a gradient descent method, similarly as when updating convolution
weights.

Table 2. Deep CNN-2-Y frameworks where Y ∈ { ReLU,
ReSKU, MISH, PMISH, SWISH, PSWISH } corresponds to the
specific activation function used at layer 4. Only one learnable
ReSKU layer is used in order to limit computational complexity.
FC denotes a Fully Connected layer. We have consideredN2 = 96
for CNN-2.

Layer Content #N of Elements Element size Learnable

1
‘Inputs’
(images) N1 Mx

1 ×M
y
1 ×Mc

1 No

2 ‘Convolve-1’ N2 3× 3 Yes
3 ‘Normalize-1’ Standard / Mini-batch

4

‘ReLU’
‘ReSKU’
‘MISH’

‘PMISH’
‘SWISH’

‘PSWISH’

N2

-
3
-
1
-
1

No
Yes
No
Yes
No
Yes

5 ‘Convolve-2’ 128 5× 5 Yes
6 ‘Normalize-2’ Standard / Mini-batch
7 ‘ReLU’ 3 No

8 ‘Convolve-3’ 384 7× 7 Yes
9 ‘Normalize-3’ Standard / Mini-batch

10 ‘ReLU’ 3 No

11 ‘Convolve-4’ 192 5× 5 Yes
12 ‘Normalize-4’ Standard / Mini-batch
13 ‘ReLU’ 3 No

11 ‘Convolve-5’ 128 3× 3 Yes
12 ‘Normalize-5’ Standard / Mini-batch
13 ‘ReLU’ 3 No

5 ‘FC-1’ [Output size: 4096]
13 ‘ReLU’ 4096 3 No

5 ‘FC-2’ [Output size: L]
6 ‘Softmax’ Probability with respect to L outputs
7 ‘Classify’ Cross-entropy (Output: category)

• Compute average performance over the correspond
100 Monte Carlo trials.

Experimental results are given in Table 3 depending on the
number of epochs and the sizing7 of layer 2 (numbers and
sizes of convolution filters, which determine the number
of additional parameters used). It appears that the RePSU
CNN is systematically more performant than the ReLU,
MISH, PMISH, SWISH and PSWISH CNNs in terms of
the speed in learning a good classifier with respect to the
training database.

3.2. Performance validation on simulated texture
series and deep learning

The second experimental setup deployed is dedicated
to performance evaluation of learning both linearities and
RePSU nonlinearities in a deep CNN framework. We will
use a synthetic database where the concept of true class

7The number of RePSU functions used is N2 (number of convolution
filters used downstream): one RePSU function per convolution filter.

5

Table 3. Mean accuracies in percentages over 100 Monte Carlo trials of the handwritten digit recognition issue: impact of the number
of epochs, the Convolution Filter Size (CFS) and Number of Convolution Filters (NCF) with respect to shallow CNN-1-X frameworks
defined in Table 1 where X ∈ { ReLU, RePSU, MISH, PMISH, SWISH, PSWISH }.

Non-learnable activations Learnable activations
EPOCH = 1

C
N

N
-1

-R
eL

U NCF
CFS

2 3 4 5 6 7

10 72.67 72.70 72.23 72.35 72.40 72.25
20 77.08 77.57 77.45 77.10 77.40 77.47
30 78.27 78.18 78.34 78.07 78.28 77.85
40 77.96 77.97 77.79 77.93 77.72 77.55
50 77.62 77.76 77.62 77.36 77.62 77.29

NCF
CFS

2 3 4 5 6 7

10 78.07 76.92 78.07 77.48 76.99 77.03
20 84.99 85.84 83.92 85.48 84.91 84.21
30 86.75 87.91 88.42 88.49 88.69 85.83
40 89.73 88.91 87.09 88.81 88.99 88.16
50 89.74 87.55 89.71 89.74 90.62 90.55 C

N
N

-1
-R

eP
SU

C
N

N
-1

-M
IS

H NCF
CFS

2 3 4 5 6 7

10 75.14 75.13 75.64 74.98 75.03 74.83
20 81.69 81.83 81.85 81.51 81.80 81.44
30 84.24 84.19 84.13 84.12 83.93 84.07
40 84.88 85.02 84.62 84.83 85.00 84.75
50 84.89 84.96 84.80 84.69 85.01 84.93

NCF
CFS

2 3 4 5 6 7

10 66.38 66.60 66.71 66.98 66.68 66.77
20 68.68 68.42 68.84 68.29 68.46 68.59
30 68.55 69.00 68.72 68.47 68.46 68.52
40 68.27 68.02 67.96 68.02 68.00 68.07
50 67.28 67.57 67.22 66.89 67.11 67.55 C

N
N

-1
-P

M
IS

H

C
N

N
-1

-S
W

IS
H NCF

CFS
2 3 4 5 6 7

10 75.40 75.19 75.11 74.98 75.16 75.27
20 82.17 82.03 81.82 81.89 82.23 81.78
30 84.70 84.46 84.33 84.29 84.57 84.63
40 85.51 85.47 85.48 85.41 85.42 85.57
50 85.82 85.76 85.81 85.46 85.65 85.89

NCF
CFS

2 3 4 5 6 7

10 70.23 70.37 70.14 70.16 70.49 70.79
20 75.81 75.79 76.19 75.71 75.75 76.08
30 78.19 78.06 77.80 78.20 77.86 77.98
40 78.55 78.76 78.63 78.87 78.59 78.61
50 79.27 79.29 78.81 79.41 79.12 79.24 C

N
N

-1
-P

SW
IS

H

EPOCH = 2

C
N

N
-1

-R
eL

U NCF
CFS

2 3 4 5 6 7

10 84.37 84.07 84.11 84.34 84.48 84.58
20 89.10 89.09 89.23 88.94 89.15 89.58
30 90.56 90.46 90.79 90.47 90.65 90.54
40 90.93 90.99 90.86 91.22 90.95 91.11
50 91.12 91.18 91.15 91.15 91.07 91.03

NCF
CFS

2 3 4 5 6 7

10 88.15 88.11 88.12 88.91 88.03 88.79
20 93.35 91.42 89.45 91.29 94.11 90.40
30 94.73 93.82 90.96 90.94 93.84 91.95
40 94.49 88.68 91.55 88.59 92.46 94.54
50 92.87 91.81 90.84 91.83 94.49 95.64 C

N
N

-1
-R

eP
SU

C
N

N
-1

-M
IS

H NCF
CFS

2 3 4 5 6 7

10 86.74 86.54 86.76 86.28 86.51 86.43
20 91.96 92.11 91.99 92.20 92.00 91.95
30 93.44 93.43 93.62 93.66 93.51 93.51
40 94.14 94.07 94.07 94.15 94.12 94.10
50 94.09 94.30 94.44 94.34 94.40 94.29

NCF
CFS

2 3 4 5 6 7

10 73.67 74.18 73.47 74.28 74.52 74.37
20 76.85 77.06 77.37 76.92 77.03 77.07
30 77.90 77.28 77.61 77.40 77.53 77.64
40 77.70 77.61 77.25 77.59 77.04 77.37
50 76.80 76.63 77.11 76.95 76.59 76.82 C

N
N

-1
-P

M
IS

H

C
N

N
-1

-S
W

IS
H NCF

CFS
2 3 4 5 6 7

10 86.30 86.60 86.47 86.34 86.58 86.37
20 92.10 91.99 92.09 91.87 91.68 91.95
30 93.64 93.63 93.63 93.58 93.64 93.67
40 94.22 94.28 94.26 94.39 94.18 94.40
50 94.54 94.58 94.54 94.52 94.68 94.61

NCF
CFS

2 3 4 5 6 7

10 80.30 80.39 80.78 80.54 80.24 80.69
20 86.57 86.28 86.48 86.49 86.84 86.63
30 88.86 88.87 88.67 88.72 88.73 88.67
40 89.58 89.76 89.65 89.38 89.45 89.72
50 90.13 89.96 89.87 89.79 89.69 89.79 C

N
N

-1
-P

SW
IS

H

does not lead to any confusion8. This database is composed
8Expert based labeling is far from being perfect, excepted in certain

trivial contexts.

by Generalized Fractional Brownian Fields (GFBF, [17]).
GFBF is a model associated with an arbitrary number of

6

Table 4. Mean validation loss and mean validation accuracy every ten epochs for the GFBF class identification issue with respect to RePSU
and ReLU based deep CNN presented in Table 2.

Max Epochs 5 10 15 20 25 50 75 100
Time elapsed (training)

Validation accuracy (hh:mm:ss)
CNN-2-ReLU 53.75 59.90 60.94 64.58 63.75 58.13 58.13 58.96 06:17:10
CNN-2-MISH 54.06 58.33 60.42 62.92 69.38 71.25 66.15 66.25 06:35:30
CNN-2-PMISH 39.58 48.12 49.38 60.31 65.31 61.88 71.04 68.54 07:18:37
CNN-2-SWISH 44.17 52.40 60.31 61.35 62.60 62.81 64.17 60.73 06:25:57
CNN-2-PSWISH 46.25 56.98 62.81 63.75 67.81 60.42 69.58 69.58 06:30:53

RePSU and special cases: RePSKU (α = 0) and RePSHU (α = 1)
CNN-2-RePSU 48.54 62.19 58.96 69.79 71.77 73.54 73.65 74.27 08:59:29
CNN-2-RePSKU 50.10 52.60 67.08 68.02 74.69 70.83 71.77 72.40 07:25:43
CNN-2-RePSHU 45.31 60.94 59.38 62.50 71.88 72.29 70.83 71.56 07:54:28

interacting modulated fractional Brownian fields. Any of
the modulated fractional Brownian fields is a long spatial
memory process characterized by a given Hurst exponent
and a singular spectral point. These models make synthe-
sis of evolution fields with rich structural content possible
by using a series of spatial convolutions (linearities) and
shift/modulation operators (nonlinearities). GFBF are con-
sidered hereafter in an interaction framework where Q is
associated with the number of different modulated Brown-
ian fields in interaction. Examples of evolution factors and
synthesized fields are given by Figure 4 when the GFBF
involves respectively Q = 1, 2, 3 and 4 interactions.

The problem addressed is then the design of a system ca-
pable of learning the evolution factor Q, given an arbitrary
GFBF field X . In this respect, an experimental framework
has first been deployed to generate a database D that con-
tains 1200 images per specified value of Q ∈ {1, 2, 3, 4}
(larger values of Q lead to higher degrees of intricacy). A
total of 4800 GFBF images has thus been generated when
the number Q of interacting Brownian fields pertains to the
category labels {1, 2, 3, 4}, this parameter Q defining the
class property. For any class, poles and Hurst parameters
are generated randomly. An overview of the intricacy of
the concept of class associated with this database is shown
in Figure 4, where textures pertaining to the same column
pertain to the same class: this figure shows interclass depen-
dency, a scenario that limits learning capabilities as confu-
sion is possible between intra-class similarities (number of
interactions) and inter-class similarities (remaining depen-
dencies after field evolution). Such a challenging classifica-
tion problem justifies the use of a deep CNN framework.

When using 800 textures for learning and 400 for vali-
dation per class and when learning from RePSU and ReLU
based networks of Table 2, then the corresponding valida-
tion losses and accuracies by ten epochs are given in Ta-
ble 4. Similarly to the handwritten digit recognition results
of Section 3.1 and in comparison with the standard CNN

paradigm associated with non-learnable activations (ReLU,
MISH, SWISH), the learnable activation frameworks show
higher performance in general and RePSU based CNN out-
performs these CNNs in terms of faster convergence to a
desirable solution (increase of the validation accuracy) and
the decrease validation loss.

4. Discussion and conclusion
4.1. Conclusion

In this work, we have proposed a family of nonlinear
transfer functions, the RePSU functions. These functions
are constructed to inherit from best qualities of ReLU and
SSBS functions. RePSU based CNN involves learning non-
linear weights because parametric forms have been con-
sidered. The experimental results show that RePSU based
CNN achieves higher performance in terms of learning and
validation criteria, in comparison with ReLU, MISH and
SWISH based CNNs.

4.2. Discussion

We can reasonably expect to improve RePSU based
CNN performance by taking more RePSU layers into ac-
count. However, computational complexity then explodes
and the combination of RePSU in downstream layers and
ReLU in upstream layers seems the best strategy for obtain-
ing a good compromise for fast and efficient learning.

The main issue raised by PSWISH (defined in [13] for
the parametric form and in [15] for the non-parametric
form) is the fact that PSWISH output is not 0 even for very
large negative inputs. This implies well-known limitations
associated (similar to those of the sigmoid) in terms of very
small but non-null gradients. PMISH [12] suffers from the
same default as is it non-zero almost everywhere and more-
over, we have observed vanishing gradient issues during
learning when ξ tends to zero or is initialized close to zero.
It is worth noticing that the above references have not ad-

7

Increasing temporal interactions (inter-class dependencies)
Class 1∥∥EH1−•

∥∥

?⇒

Class 2∥∥EH2−•

∥∥

?⇒

Class 3∥∥EH3−•

∥∥

?⇒

Class 4∥∥EH4−•

∥∥

Figure 4. Sample elements of GFBF database D, where textures pertaining to any classQ of GFBF fields
(
EHQ−m

)
m

have been generated
by using a number Q of distinct interacting modulated Fractional Brownian fields . Fractional field evolution is governed by the temporal
interactions which create inter-class statistical similarities: the learning system has to made abstraction with respect to these inter-class
similarities and focus on intra-class ones.

8

dressed learning a series of PMISH/PSWISH ξ parameters
as we have done in the CNNs of Tables 1 and 2.

The RePSU-based peformance improvements reported
in this paper raise an open question that relates to replac-
ing ReLU-based deep CNN frameworks with RePSU-based
shallow CNN frameworks. Since non-linearities can be
handled by a single RePSU-based layer instead of using
several ReLU-based, it should be indeed possible to exper-
imentally show that few RePSU-based layers can outper-
form a significant amount of ReLU-based layers. By do-
ing so, the complexity burden could be controlled/avoided,
even if RePSU parameters also have to be learnt, leading
to a shallow architecture whose interpretability (e.g., model
size or monotonicity [18]) would be better than the one of
a deep framework. One can finally note that parameter β is
very sensitive and difficult to learn in practice: only this pa-
rameter has been set to 1 during the experiments. A specific
updating strategy requiring very small gradient increments
needs to be developed for learning an optimal estimate of
this parameter.

References
[1] V. Nair and G. E. Hinton, “Rectified linear units im-

prove restricted boltzmann machines,” in Proceed-
ings of the 27th International Conference on In-
ternational Conference on Machine Learning, ser.
ICML’10. Madison, WI, USA: Omnipress, 2010, pp.
807–814. 1

[2] Y.-G. Yoon, P. Dai, J. Wohlwend, J.-B. Chang, A. H.
Marblestone, and E. S. Boyden, “Bvlc alexnet model,”
https:// github.com/ BVLC/ caffe/ tree/ master/ models/
bvlc alexnet, 2015. 1

[3] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014. 1

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 1

[5] C. Szegedy, , , P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going
deeper with convolutions,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2015, pp. 1–9. 1

[6] J. Carreira and A. Zisserman, “Quo vadis, action
recognition? a new model and the kinetics dataset,”
in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 00, July 2017, pp.
4724–4733. 1

[7] W. Shi, Y. Gong, X. Tao, and N. Zheng, “Train-
ing dcnn by combining max-margin, max-correlation
objectives, and correntropy loss for multilabel im-
age classification,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 29, no. 7, pp. 2896–
2908, July 2018. 1

[8] S. Lin, R. Ji, Y. Li, C. Deng, and X. Li, “Toward com-
pact convnets via structure-sparsity regularized filter
pruning,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 2, pp. 574–588, Feb
2020. 1

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification,” in The IEEE International
Conference on Computer Vision (ICCV), December
2015. 2

[10] W. Little and G. L. Shaw, “Analytic study of the
memory storage capacity of a neural network,” Math-
ematical Biosciences, vol. 39, no. 3, pp. 281 – 290,
1978. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0025556478900585 2

[11] J. Han and C. Moraga, “The influence of the sigmoid
function parameters on the speed of backpropagation
learning,” in From Natural to Artificial Neural Com-
putation, J. Mira and F. Sandoval, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1995, pp. 195–
201. 2

[12] D. Misra, “Mish: A self regularized non-monotonic
activation function,” 2020. 2, 4, 7

[13] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching
for activation functions,” 2017. 2, 3, 4, 7

[14] A. M. Atto, D. Pastor, and G. Mercier, “Smooth sig-
moid wavelet shrinkage for non-parametric estima-
tion,” IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP, Las Vegas,
Nevada, USA, 30 march - 4 april, 2008. 3

[15] D. Hendrycks and K. Gimpel, “Gaussian error linear
units (gelus),” 2020. 3, 4, 7

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’16. Berkeley, CA,

9

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
http://www.sciencedirect.com/science/article/pii/0025556478900585
http://www.sciencedirect.com/science/article/pii/0025556478900585

USA: USENIX Association, 2016, pp. 265–283.
[Online]. Available: http://dl.acm.org/citation.cfm?
id=3026877.3026899 5

[17] A. M. Atto, Z. Tan, O. Alata, and M. Moreaud, “Non-
stationary texture synthesis from random field model-
ing,” in IEEE International Conference on Image Pro-
cessing (ICIP), Oct 2014, pp. 4266–4270. 6

[18] A. A. Freitas, “Comprehensible classification models:
A position paper,” SIGKDD Explor. Newsl., vol. 15,
no. 1, p. 1–10, Mar. 2014. [Online]. Available:
https://doi.org/10.1145/2594473.2594475 9

10

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/2594473.2594475

