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Abstract

The paper proposes representation functionals in a dual
paradigm where learning jointly concerns both linear con-
volutional weights and parametric forms of nonlinear ac-
tivation functions. The nonlinear forms proposed for per-
forming the functional representation are associated with
a new class of parametric neural transfer functions called
rectified power sigmoid units. This class is constructed to
integrate both advantages of sigmoid and rectified linear
unit functions, in addition with rejecting the drawbacks of
these functions. Moreover, the analytic form of this new
neural class involves scale, shift and shape parameters so
as to obtain a wide range of activation shapes, including
the standard rectified linear unit as a limit case. Param-
eters of this neural transfer class are considered as learn-
able for the sake of discovering the complex shapes that can
contribute in solving machine learning issues. Performance
achieved by the joint learning of convolutional and rectified
power sigmoid learnable parameters are shown outstand-
ing in both shallow and deep learning frameworks. This
class opens new prospects with respect to machine learning
in the sense that learnable parameters are not only attached
to linear transformations, but also to suitable nonlinear op-
erators.

Keywords – Sigmoid ; Rectified linear unit ; Convolu-
tional neural network ; Rectified sigmoid shrinkage unit.

1. Introduction

Standard neural transfer functions such as Rectified Lin-
ear Unit (ReLU) [1] and sigmoid, denoted respectively U

*Email: Abdourrahmane.Atto@univ-smb.fr - Phone: +334
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and S in what follows with

U(x) = x1lx>0 = max (0, x) (1)

S(x) =
1

1 + e−x
(2)

are non-parametric functions in the sense that their ana-
lytic expressions do not depend on unknown parameters or
weights. While the sigmoid function has been the leader of
the early stage neural transfer functions, it has been out-
classed by the ReLU in most recent deep Convolutional
Neural Networks (CNN), see [2] [3], [4], [5], [6], [7], [8]
among others.

In terms of machine learning, the first major difference
between ReLU and sigmoid is the fact that ReLU output
is expected to be a sparse sequence in general, while sig-
moid function simply penalizes its entries without forcing
non-zero values to zero. Thus, in terms of the compromise
between computational complexity and available working
memory, ReLU is naturally favored when very deep net-
works are under consideration.

The second major difference between ReLU and sigmoid
concerns their derivatives. The derivative U ′ of U is the
Heaviside unit step function: such a function is stable by
composition. However, it admits a singularity at 0 and has
the same constant output for both small and large positive
values, which may be counterintuitive since small positives
are expected to carry less information than large positives.
In addition, because of the zero-forcing operated by ReLU
derivative, then learning can be inhibited1 in a ReLU CNN
when the processing implies a large amount of negative val-
ues.

In contrast with ReLU, the derivative of a standard sig-
moid is smooth everywhere. However, it is always strictly
less than 1 and this can also lead to a fast decrease to 0 of

1Leaky ReLU: x 7→ x1lx>0+0.01x1lx60 can avoid such issues, how-
ever, it is less used in deep neural networks because it raises other issues
(such as the arbitrary penalization of negative values, the latter being far
from bio-inspired behaviors).
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the ReLU increments and this, both for positive and nega-
tive values.

One can note that both ReLU and sigmoid admit para-
metric forms x 7→ x1lx>0 + αx1lx60 for parametric ReLU
[9] and x 7→ S(αx) for parametric sigmoid [10], [11].
These parametric forms can solve the limitations high-
lighted above for specific applications and when the param-
eters are chosen conveniently. It is worth noticing that the
use of these parametric forms is limited to specific datasets
or specialized networks and their generalization capabilities
need to be proven.

In terms of image processing, important properties are
invariances by rotation, translation and scaling. It is well
known that rotation invariance can be handled by a suitable
sequence of convolution filters. For the two remaining in-
variance properties: on the one hand, both ReLU and sig-
moid are translation-variant. On the other hand, only ReLU
is scale-invariant, but from a general perspective, transla-
tion and scaling invariances can also be obtained from other
components of the network such as pooling and convolu-
tion layers respectively for the translation and scaling in-
variances.

This paper provides in Section 2, new neural transfer
functions that possesses most desirable properties high-
lighted above, while limiting the undesirable ones. Because
biological neurons have non-uniform2 activation functions,
we will propose in Section 3, a convolutional neural learn-
ing framework where learning includes the determination
of suitable transfer function with respect to the depth of
the layer. Despite the fact that this framework leads
to a higher computational complexity than using a non-
parametric ReLU transfer function, we will show in Section
3 that it is highly relevant for machine learning by providing
comparisons with respect to analog frameworks based on
non-learnable ReLU, MISH [12] or SWISH [13] nonlinear-
ities. Section 4 concludes the work and provides outlooks
raised by the joint linear-and-nonlinear learning framework.

2. Rectified power sigmoid shrinking and
stretching units

Let sgn denotes the sign function and 1lE be the standard
indicator function of set E . We will use the notation:

1lλ(x) = 1l{x>λ} =
{

1 if x > λ
0 if x < λ

(3)

We define the Rectified Power Sigmoid shrinKage Units
(RePSKU) by the parameterized form:

fλ,σ,µ,β(x) =
(x− λ)1lλ(x)

1 + e− sgn(x−µ)( |x−µ|σ )
β (4)

2The activation functions depend on the specialization and the depth of
the neurons in the brain.

Figure 1. Graphs of RePSU Aλ,σ,µ,β,α for different parameters
σ, β, α when λ = 0 and µ = 2. Intuition: large positives must
be forwarded quasi-unchanged to the upstream part of the neural
network. Small positives can either be attenuated (case of ReP-
SKU for instance) because they do not carry enough information
(noise), or be amplified (case corresponding to RePSHU) because
they are associated with weak signals carrying significant infor-
mation. Negative values (smaller than λ = 0) are forced to zero.
These behaviors are biologically consistent.

and the Rectified Power Sigmoid stretcHage Units
(RePSHU) as:

gλ,σ,µ,β(x) = 2x1lλ(x)− fλ,σ,µ,β(x) (5)

The main contribution provided by the paper is the so-
called Rectified Power Sigmoid Unit (RePSU) activation
class defined by the integration of RePSKU and RePSHU
in the following parametric form:

Aλ,σ,µ,β,α(x) = αgλ,σ,µ,β(x) + (1− α)fλ,σ,µ,β(x) (6)

REPSU threshold λ is inspired from the behavior of
ReLU functions (see by Eq. (1) in particular for λ = 0
which implies forcing negative inputs to 0). REPSU in-
volves in its exponential term, a shift parameter µ, a scale
parameter σ and a shape parameter β: these parameters are
inspired from the generalized Gaussian distribution, but in-
tegrated as in [14] (Smooth Sigmoid Based Shrinkage func-
tions, SSBS) by using a sigmoid form so that REPSU cor-
responds effectively to an activation class.

Examples of RePSU graphs are given by Figure 1 for dif-
ferent parameters (σ, β, α) considered hereafter as positive
real values. Graphs corresponding to RePSKU (respectively
RePSHU) are located under (respectively over) the diagonal
representing y = x.
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Remark
If α = 0 and β = 1, then function uλ,ξ,µ = Aλ,1/ξ,µ,1,0

have the following form:

uλ,ξ,µ(x) =

{
x−λ

1+e−ξ(x−µ)
if x > λ

0 if x < λ
(7)

where we have assumed ξ = 1/σ. Function uλ,ξ,µ cor-
responds to the restriction on R+ of the SSBS activation
functions [14]. Furthermore, since the restriction on R+ of
the SSBS class includes the SWISH [13] (when µ = 0)
and SiLU [15] (for µ = 0 and ξ = 1) activations3. More-
over, RePSU class includes standard ReLU since its sub-
class uλ→0,ξ→+∞,µ = U where U is the ReLU function
defined by Eq. (1). Thus Aλ,σ,µ,β,α can be seen as a gener-
alization of several standard transfer functions.

The following provides additional properties of ReSPU
class. We will focus on the shrinkage subclass with fixed
shape parameter uλ,ξ,µ defined by Eq. (7) and this, for the
sake of conciseness since all properties cannot be summa-
rized in a short size paper. Since uλ,ξ,µ does not involve the
power of the shape parameter β, then uλ,ξ,µ will be sim-
ply called the class of Rectified Sigmoid shrinKage Units
(ReSKU).

2.1. Intra-class translation invariance for ReSKU

The invariance highlighted below applies at ReSKU sub-
class level. Assumes x− τ is passed to ReSKU class. Then
one can note that for ReSKU functions defined by Eq. (7),
we have:

uλ,ξ,µ(x− τ) = uτ+λ,ξ,τ+µ(x)

This implies that the output of a shifted input can be de-
ducted directly from parameter shifts of the ReSKU. Thus,
translation invariance can be achieved by a series of ReSKU
functions associated with different parameters. In compari-
son with ReLU for which translation can induce forcing to
zero, ReSKU has the capability to either keep invariant or
force to zero a given value depending on the training objec-
tive.

2.2. Intra-class scaling conservatives for ReSKU

Scaling is present at different stages in image process-
ing. For instance, dividing an 8-bit coded image by a pos-
itive constant changes the scaling, but does not affect pixel
distribution shapes. For ReSKU functions given by Eq. (7),
we have the following property:

uλ,ξ,µ(αx) = αuλ/α,αξ,µ/α(x)

Thus, re-scaling a value can be inferred by re-
scaling ReSKU outputs thanks to scaled parameters set
(λ′, ξ′, µ′) = (λ/α, αξ, µ/α).

3The restriction of SWISH and SiLU on R− is composed by negligible
values that are not forced to zero: a limitation in terms of sparsity that is
avoided by the ReLU-like behavior of u0,ξ,µ(x) on R−.

2.3. Derivative properties for ReSKU

From Eq. (7), the derivatives of ReSKU are

u′λ,ξ,µ(x) =

{
1+ξuλ,ξ,µ(x)e

−ξ(x−µ)

1+e−ξ(x−µ)
if x > λ

0 if x < λ

=

{
ξuλ,ξ,µ(x) +

1−ξuλ,ξ,µ(x)
1+e−ξ(x−µ)

if x > λ

0 if x < λ

(8)
Examples of ReSKU functions are given in Figure 2 and
Figure 3 highlights smoothness of the derivatives associ-
ated with these functions: the general behavior is a “no-
jump” property4 which implies introducing less variability5

between close objective values. In contrast, at the limit cor-
responding to translated versions of ReLU (when ξ → +∞
and for fixed µ), the derivative shifts from 0 to 1 in pass-
ing from 0. The outstanding ReSKU property is that the
graph of the derivative can be flat if desired (case for the
convergence to a standard ReLU). In addition, all ReSKU
derivatives asymptotically tend to 1 at infinity: the ReSKU
behavior is very stable for very large input values.

The following addresses performance of CNN involving
ReSKU nonlinearities.

3. Learning both linearities and nonlinearities
The second main contribution provided by the paper

is the joint learning of standard convolutional linearities
and ReSPU non-linear parameters: ReSPU parameters
λ, σ, µ, β, α (see Eq. (6)) are assumed learnables hereafter.
The issue addressed in this section is then measuring the
performance adduced in learning ReSPU nonlinearities in
a CNN, in comparison with the alternative used in stan-
dard ReLU-CNN approaches based on learning only linear
parameters. For the sake of limiting computational com-
plexity, only a single ReSPU layer will be considered in
the CNN whatever the deepness of the latter: additionnal
nonlinearities will be composed by ReLU in order to go
deeper without increasing significantly the computational
complexity of the framework.

We recall that the main goal of the paper is to prove
the interest in learning optimal nonlinear activations from
a family of functions including the standard ReLU (in con-
trast with using directly the standard non-learnable ReLU).
So, a good comparison should address a “learnable ReSKU
architecture” versus a “purely ReLU architecture”.

However, we extend the comparison by testing both
fixed and parameterized forms of some recent RELU’s al-
ternatives being the so-called MISH [12] and SWISH [13]
(SWISH) activation functions. The parametric forms of

4The derivative has no-jump, expected for limit parameters.
5Discontinuities are known to generate a high variance in iterative pro-

cessing

3



ReSKU functions with respect to parameter variation

Figure 2. Examples of ReSKU uλ,ξ,µ shapes depending on parameters ξ and µ, with λ = 0. We recall that uλ,ξ,µ(x) = 0 for x < λ. Left:
µ = 2. Right: ξ = 3.

ReSKU derivatives with respect to parameter variation

Figure 3. Derivatives of the ReSKU functions given in Figure 2.

these functions that are given respectively for the Paramet-
ric MISH (PMISH) by [12]:

M(x) = x tanh(softplusξ(x))

= x tanh

(
1

ξ
log(1 + eξx)

)
(9)

and for the Parametric SWISH (PSWISH) used in [13] and
also called SiLU (Sigmoid Linear Unit) in [15]:

S(x) = xσ(ξx) =
x

1 + e−ξx
(10)

We will keep the terminologies of MISH and SWISH in
the standard cases corresponding to ξ = 1 in Eqs. (9) and

(10). We will also consider learning parameter ξ involved in
PMISH and PSWISH together with learning standard con-
volutional weights.

Tables 1 and 2 provide respectively two shallow (CNN-
1-ReSKU and CNN-1-ReLU) and two deep (CNN-2-
ReSKU and CNN-2-ReLU) networks to be used in the
experimental tests, in addition with their MISH, PMISH,
SWISH and PSWISH variants. Concerning the number
of learnable parameters: the ReSKU based CNNs in-
volve 3N2 additional nonlinear parameters whereas the
PMISH/PSWISH based CNNs involve N2 additional non-
linear parameters, in comparison with the ReLU, MISH and
SWISH based CNNs, where N2 is the number of convolu-
tion filters used at layer 2.
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Table 1. Shallow CNN-1-X frameworks where X ∈ { ReLU,
ReSKU, MISH, PMISH, SWISH, PSWISH } corresponds to the
specific activation function used at layer 4. FC denotes a Fully
Connected layer.

Layer Content #N of Elements Element size Learnable

1
Inputs
Images N1 Mx

1 ×My
1 ×Mc

1 No

2 ‘Convolve’ N2 Mx
2 ×My

2 Yes
3 ‘Normalize’ Standard / Mini-batch

4

‘ReLU’
‘ReSKU’
‘MISH’

‘PMISH’
‘SWISH’

‘PSWISH’

N2

-
3
-
1
-
1

No
Yes
No
Yes
No
Yes

5 ‘FC’ [Output size L ]
6 ‘Softmax’ Probabilities with respect to L outputs
7 ‘Classify’ Cross-entropy (Output: category)

Table 2. Deep CNN-2-Y frameworks where Y ∈ { ReLU,
ReSKU, MISH, PMISH, SWISH, PSWISH } corresponds to the
specific activation function used at layer 4. Only one learnable
ReSKU layer is used in order to limit computational complexity.
FC denotes a Fully Connected layer.

Layer Content #N of Elements Element size Learnable

1
‘Inputs’
(images) N1 Mx

1 ×My
1 ×Mc

1 No

2 ‘Convolve-1’ 96 3× 3 Yes
3 ‘Normalize-1’ Standard / Mini-batch

4

‘ReLU’
‘ReSKU’
‘MISH’

‘PMISH’
‘SWISH’

‘PSWISH’

N2

-
3
-
1
-
1

No
Yes
No
Yes
No
Yes

5 ‘Convolve-2’ 128 5× 5 Yes
6 ‘Normalize-2’ Standard / Mini-batch
7 ‘ReLU’ N2 3 No

8 ‘Convolve-3’ 384 7× 7 Yes
9 ‘Normalize-3’ Standard / Mini-batch

10 ‘ReLU’ N2 3 No

11 ‘Convolve-4’ 192 5× 5 Yes
12 ‘Normalize-4’ Standard / Mini-batch
13 ‘ReLU’ N2 3 No

11 ‘Convolve-5’ 128 3× 3 Yes
12 ‘Normalize-5’ Standard / Mini-batch
13 ‘ReLU’ N2 3 No

5 ‘FC-1’ [Output size: 4096 ]
13 ‘ReLU’ 4096 3 No

5 ‘FC-2’ [Output size: L ]
6 ‘Softmax’ Probability with respect to L outputs
7 ‘Classify’ Cross-entropy (Output: category)

3.1. Monte Carlo validation over a handwritten
digit recognition problem on shallow CNN

We consider a standard handwritten digit recognition
problem [16], when training and testing concern the shal-
low CNN described by Table 1. The issue addressed in this
section is the achievable learning rate when the number of
training epoch is fixed to either 1 or 2. A Monte Carlo simu-
lation framework is proposed to avoid a biased comparison
that can be due to sensitivity in random number generation.

Hundreds of Monte Carlo iterations have been used for
any recognition task associated with the following experi-
mental setup:

• Split the handwritten digit database in training and
testing sets;

• Specify a number of epochs and perform iteratively,
the following Monte Carlo experiments:

– initialized RePSU, PMISH, PSWISH parameters
from positive random numbers,

– perform training with respect to the number of
epochs, then testing,

– save testing score and reiterate;

• Compute average performance over the correspond
100 Monte Carlo trials.

Experimental results are given in Table 3 depending on the
number of epochs and the sizing of layer 2 (numbers and
sizes of convolution filters, which determine the number
of additional parameters used). It appears that the RePSU
CNN is systematically more performant than the ReLU,
MISH, PMISH, SWISH and PSWISH CNNs in terms of
the speed in learning a good classifier with respect to the
training database.

3.2. Performance validation on simulated texture
series and deep learning

The second experimental setup deployed is dedicated
to performance evaluation of learning both linearities and
RePSU nonlinearities in a deep CNN framework. We will
use a synthetic database [17] where the concept of true class
does not lead to any confusion6. This database is composed
by Generalized Fractional Brownian Fields (GFBF, [18]).
GFBF is a model associated with an arbitrary number of
interacting modulated fractional Brownian fields. Any of
the modulated fractional Brownian fields is a long spatial
memory process characterized by a given Hurst exponent
and a singular spectral point. These models make the syn-
thesis of evolution fields with rich structural content pos-
sible by using a series of spatial convolutions (linearities)

6Expert based labeling is far from being perfect, excepted in certain
trivial contexts.
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Table 3. Mean accuracies in percentages over 100 Monte Carlo trials of the handwritten digit recognition issue: impact of the number
of epochs, the Convolution Filter Size (CFS) and Number of Convolution Filters (NCF) with respect to shallow CNN-1-X frameworks
defined in Table 1 where X ∈ { ReLU, RePSU, MISH, PMISH, SWISH, PSWISH }.

Non-learnable activations Learnable activations
EPOCH = 1

C
N

N
-1

-R
eL

U NCE
CFS

2 3 4 5 6 7

10 72.67 72.70 72.23 72.35 72.40 72.25
20 77.08 77.57 77.45 77.10 77.40 77.47
30 78.27 78.18 78.34 78.07 78.28 77.85
40 77.96 77.97 77.79 77.93 77.72 77.55
50 77.62 77.76 77.62 77.36 77.62 77.29

NCE
CFS

2 3 4 5 6 7

10 78.07 76.92 78.07 77.48 76.99 77.03
20 84.99 85.84 83.92 85.48 84.91 84.21
30 86.75 87.91 88.42 88.49 88.69 85.83
40 89.73 88.91 87.09 88.81 88.99 88.16
50 89.74 87.55 89.71 89.74 90.62 90.55 C

N
N

-1
-R

eP
SU

C
N

N
-1

-M
IS

H NCE
CFS

2 3 4 5 6 7

10 75.14 75.13 75.64 74.98 75.03 74.83
20 81.69 81.83 81.85 81.51 81.80 81.44
30 84.24 84.19 84.13 84.12 83.93 84.07
40 84.88 85.02 84.62 84.83 85.00 84.75
50 84.89 84.96 84.80 84.69 85.01 84.93

NCE
CFS

2 3 4 5 6 7

10 66.38 66.60 66.71 66.98 66.68 66.77
20 68.68 68.42 68.84 68.29 68.46 68.59
30 68.55 69.00 68.72 68.47 68.46 68.52
40 68.27 68.02 67.96 68.02 68.00 68.07
50 67.28 67.57 67.22 66.89 67.11 67.55 C

N
N

-1
-P

M
IS

H

C
N

N
-1

-S
W

IS
H NCE

CFS
2 3 4 5 6 7

10 75.40 75.19 75.11 74.98 75.16 75.27
20 82.17 82.03 81.82 81.89 82.23 81.78
30 84.70 84.46 84.33 84.29 84.57 84.63
40 85.51 85.47 85.48 85.41 85.42 85.57
50 85.82 85.76 85.81 85.46 85.65 85.89

NCE
CFS

2 3 4 5 6 7

10 70.23 70.37 70.14 70.16 70.49 70.79
20 75.81 75.79 76.19 75.71 75.75 76.08
30 78.19 78.06 77.80 78.20 77.86 77.98
40 78.55 78.76 78.63 78.87 78.59 78.61
50 79.27 79.29 78.81 79.41 79.12 79.24 C

N
N

-1
-P

SW
IS

H

EPOCH = 2

C
N

N
-1

-R
eL

U NCE
CFS

2 3 4 5 6 7

10 84.37 84.07 84.11 84.34 84.48 84.58
20 89.10 89.09 89.23 88.94 89.15 89.58
30 90.56 90.46 90.79 90.47 90.65 90.54
40 90.93 90.99 90.86 91.22 90.95 91.11
50 91.12 91.18 91.15 91.15 91.07 91.03

NCE
CFS

2 3 4 5 6 7

10 88.15 88.11 88.12 88.91 88.03 88.79
20 93.35 91.42 89.45 91.29 94.11 90.40
30 94.73 93.82 90.96 90.94 93.84 91.95
40 94.49 88.68 91.55 88.59 92.46 94.54
50 92.87 91.81 90.84 91.83 94.49 95.64 C

N
N

-1
-R

eP
SU

C
N

N
-1

-M
IS

H NCE
CFS

2 3 4 5 6 7

10 86.74 86.54 86.76 86.28 86.51 86.43
20 91.96 92.11 91.99 92.20 92.00 91.95
30 93.44 93.43 93.62 93.66 93.51 93.51
40 94.14 94.07 94.07 94.15 94.12 94.10
50 94.09 94.30 94.44 94.34 94.40 94.29

NCE
CFS

2 3 4 5 6 7

10 73.67 74.18 73.47 74.28 74.52 74.37
20 76.85 77.06 77.37 76.92 77.03 77.07
30 77.90 77.28 77.61 77.40 77.53 77.64
40 77.70 77.61 77.25 77.59 77.04 77.37
50 76.80 76.63 77.11 76.95 76.59 76.82 C

N
N

-1
-P

M
IS

H

C
N

N
-1

-S
W

IS
H NCE

CFS
2 3 4 5 6 7

10 86.30 86.60 86.47 86.34 86.58 86.37
20 92.10 91.99 92.09 91.87 91.68 91.95
30 93.64 93.63 93.63 93.58 93.64 93.67
40 94.22 94.28 94.26 94.39 94.18 94.40
50 94.54 94.58 94.54 94.52 94.68 94.61

NCE
CFS

2 3 4 5 6 7

10 80.30 80.39 80.78 80.54 80.24 80.69
20 86.57 86.28 86.48 86.49 86.84 86.63
30 88.86 88.87 88.67 88.72 88.73 88.67
40 89.58 89.76 89.65 89.38 89.45 89.72
50 90.13 89.96 89.87 89.79 89.69 89.79 C

N
N

-1
-P

SW
IS

H

and shift/modulation operators (nonlinearities). GFBF are
considered hereafter in a temporal interaction framework

where Q is associated with the number of different mod-
ulated Brownian fields in interaction. Examples of evolu-
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Table 4. Mean validation loss and mean validation accuracy every ten epochs for the GFBF class identification issue with respect to RePSU
and ReLU based deep CNN presented in Table 2.

Validation accuracy Training time
Max Epochs 5 10 15 20 25 50 75 100 100
CNN-2-ReLU 53.75 59.90 60.94 64.58 63.75 58.13 58.13 58.96 06:17:10
CNN-2-RePSU 50.10 52.60 67.08 68.02 74.69 70.83 71.77 72.40 07:25:43
CNN-2-MISH 54.06 58.33 60.42 62.92 69.38 71.25 66.15 66.25 06:35:30
CNN-2-PMISH 39.58 48.12 49.38 60.31 65.31 61.88 71.04 68.54 07:18:37
CNN-2-SWISH 44.17 52.40 60.31 61.35 62.60 62.81 64.17 60.73 06:25:57
CNN-2-PSWISH 46.25 56.98 62.81 63.75 67.81 60.42 69.58 69.58 06:30:53

tion factors and the synthesized fields are given by Figure
4 when the GFBF involves respectively Q = 1, 2, 3 and 4
interactions.

The problem addressed is then designing a system ca-
pable of learning the evolution factor Q, given an arbitrary
GFBF field X . In this respect, an experimental framework
has first been deployed to generate a database D that con-
tains 1200 images per specified value of Q ∈ {1, 2, 3, 4}
(larger values of Q lead to higher degrees of intricacy). A
total of 4800 GFBF images has thus been generated when
the number Q of interacting Brownian fields pertains to the
category labels {1, 2, 3, 4}, this parameter Q defining the
class property. For any class, poles and Hurst parameters
are generated randomly. An overview of the intricacy of
the concept of class associated with this database is shown
in Figure 4, where textures pertaining to the same column
pertain to the same class: this figure shows interclass depen-
dency, a scenario that limits learning capabilities as confu-
sion is possible between intra-class similarities (number of
interactions) and inter-class similarities (remaining depen-
dencies after field evolution).

When using 800 textures for learning and 400 for vali-
dation per class and when learning from RePSU and ReLU
based networks of Table 3, then the corresponding valida-
tion losses and accuracies by ten epochs are given in Ta-
ble 4. Similarly to the handwritten digit recognition results
of Section 3.1 and in comparison with the standard CNN
paradigm associated with non-learnable activations (ReLU,
MISH, SWISH), the learnable activation frameworks show
higher performance in general and RePSU based CNN out-
performs these CNNs in terms of faster convergence to a
desirable solution (increase of the validation accuracy) and
the decrease validation loss.

4. Discussion and conclusion

4.1. Conclusion

In this work, we have proposed a family of nonlinear
transfer functions, the RePSU functions. These functions
are constructed to inherit from best qualities of ReLU and
SSBS functions. RePSU based CNN involves learning non-

linear weights because parametric forms have been con-
sidered. The experimental results show that RePSU based
CNN achieves higher performance in terms of learning and
validation criteria, in comparison with ReLU, MISH and
SWISH based CNNs.

4.2. Discussion

We can reasonably expect to improve RePSU based
CNN performance by taking more RePSU layers into ac-
count. However, computational complexity then explodes
and the combination of RePSU in downstream layers and
ReLU in upstream layers seems the best strategy for obtain-
ing a good compromise for fast and efficient learning.

The main issue raised by PSWISH (defined in [13] for
the parametric form and in [15] for the non-parametric
form) is the fact that PSWISH output is not 0 even for very
large negative entries. This implies well-known limitations
associated (similar to those of the sigmoid) in terms of very
small but non-null gradients. PMISH [12] suffers from the
same default as is it non-zero almost everywhere and more-
over, we have observed vanishing gradient issues during
learning when ξ tends to zero or is initialized close to zero.
It is worth noticing that the above references have not ad-
dressed learning a series of PMISH/PSWISH ξ parameters
as we have done in the CNNs of Tables 1 and 2.
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