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The general goal of this work is to obtain upper and lower bounds for the L 2 -norm of biorthogonal families to complex exponential functions associated to sequences {Λ k } k≥1 ⊂ C which satisfy appropriate assumptions but without imposing a gap condition on the elements of the sequence. As a consequence, we also present new results on the cost of the boundary null controllability of two parabolic systems at time T > 0: a phase-field system and a parabolic system whose generator has eigenvalues that accumulate. In the latter case, the behavior of the control cost when T goes to zero depends strongly on the accumulation parameter of the eigenvalue sequence.

1. Introduction and main results. In the last years, an increasing number of authors have addressed the problem of the null controllability of coupled parabolic systems with less controls than equations (see [START_REF] Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems[END_REF], [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF], [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF], [START_REF] Lissy | Internal observability for coupled systems of linear partial differential equations[END_REF],...). One of the most important problems in this framework is obtaining necessary and sufficient conditions that allow the system to be controlled with a reduced number of distributed or boundary controls.

Another important problem is the study of the dependence of the so-called control cost with respect to the final observation time T > 0, when T is small enough and the corresponding null controllability result holds at any time T > 0. Regarding this latter problem, we highlight the works [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF], [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF], [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF], [START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF], [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF], [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF], [START_REF] Tenenbaum | On the null-controllability of diffusion equations[END_REF], [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF], [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF], [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF], [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF], [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF], [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF], etc., where the authors study an estimate of the control cost K(T ) (for the definition, see [START_REF] Benabdallah | The cost of the control in the case of parabolic systems with a positive minimal time coming from the condensation index of the spectrum[END_REF]) in the case of scalar parabolic problems (problems that, under general assumptions, are null controllable for any T > 0). Most of the previous works use the moment method to obtain an estimate of the control cost.

In order to solve both problems, a classical tool in Control Theory is the use of biorthogonal families to appropriate sequences of exponentials in L 2 (0, T ; C) and, to be precise, sharp estimates on the L 2 -norm of the elements of the biorthogonal family. We will provide more details in what follows.

Given {Λ k } k≥1 ⊂ C, a complex sequence of pairwise distinct elements, we will use the following notation:

e k (t) = e -Λ k t , ∀t ∈ (0, T ), (1) 
where T > 0 is fixed. With this notation, we define Definition 1.1. Let Λ = {Λ k } k≥1 ⊂ C be a complex sequence and T > 0. We say that the family of functions {q k } k≥1 ⊂ L 2 (0, T ; C) is a biorthogonal family to the sequence of complex exponentials {e k } k≥1 in L 2 (0, T ; C), if for every k, n ∈ N, one has

T 0 e k (t) q n (t) dt = δ kn ,
where the function e k is given in [START_REF] Allonsius | Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries[END_REF].

State of the art.

In what follows we will give a non-exhaustive state of the art on conditions of the sequence Λ that ensure the existence of biorthogonal families to the corresponding complex exponential sequence.

1.1.1. Existence of biorthogonal families and bounds without explicit dependence on T . The existence of biorthogonal families {q k } k≥1 to sequences of exponentials {e k } k≥1 (e k is the function given in (1)) strongly depends on the properties of the sequence Λ = {Λ k } k≥1 . When Λ = {Λ k } k≥1 is a positive real sequence, it is well known (see [START_REF] Schwartz | Étude des Sommes d'Exponentielles Réelles[END_REF]) that the existence of a biorthogonal family to the exponentials {e k } k≥1 in L 2 (0, T ) is equivalent to the condition

k≥1 1 Λ k < ∞.
Let us provide some general properties for real or complex sequences Λ appearing in the literature which imply the existence of sequences {q k } k≥1 biorthogonal to {e k } k≥1 in L 2 (0, T ; C) (T > 0) satisfying appropriate estimates.

The first results on existence and estimates of families {q k } k≥1 biorthogonal to sequences of exponentials {e k } k≥1 was proved in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] and [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] (see also [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF], [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF], [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF], [START_REF] Tenenbaum | New blow-up rates for fast controls of Schrödinger and heat equations[END_REF], [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF] and [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF]) for increasing real sequences that satisfy

Λ k ∈ (0, ∞), Λ k = A(k + ω) 2 + o(k), ∀k ≥ 1, (2) 
with A > 0 and ω ∈ R.

The previous results has been extended to the complex case in [START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF], [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF], [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]. In [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF], the authors prove the existence of biorthogonal sequences {q k } k≥1 under general assumptions on the sequence Λ and prove appropriate estimates of q k L 2 (0,T ;C) . Assume that the sequence Λ = {Λ k } k≥1 ⊂ C satisfies

     Λ i = Λ k , ∀i, k ∈ N with i = k, (Λ k ) ≥ δ |Λ k | > 0, ∀k ≥ 1, and k≥1 1 |Λ k | < ∞, (3) 
for a positive constant δ. Then, the family of exponentials {e k } k≥1 is minimal 1 in L 2 (0, T ; C) for any T > 0 and, therefore, there exists a biorthogonal family { q k } k≥1 to {e k } k≥1 in L 2 (0, T ; C) (see for instance [START_REF] Schwartz | Étude des Sommes d'Exponentielles Réelles[END_REF], [START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF], [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF], Theorem 4.1 in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF],...). In addition, in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF], the authors prove that there exist two positive constant C 1 and C 2 (only depending on Λ and T ) such that

C 1 |1 + Λ k | 2 |Λ k | W k ≤ q k L 2 (0,T ;C) ≤ C 2 |1 + Λ k | 2 |Λ k | W k , (4) 
where C 1 and C 2 are positive constants depending on T and W k is the infinite Blaschke product given by

W k = 1 2 (λ k ) n≥1 n =k Λ n + Λ k Λ n -Λ k .
Nevertheless, the authors do not provide an explicit dependence of the constants C 1 and C 2 in (4) with respect to the final time T > 0. This is due to the method used by the authors to prove (4): these inequalities are first obtained in L 2 (0, ∞; C) (T = ∞) and, then, proved in L 2 (0, T ; C) (T ∈ (0, ∞)) after a contradiction argument (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] for the details).

Observe that, in general, a sequence Λ satisfying [START_REF] Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems[END_REF] does not fulfill the so-called gap condition: inf

k,n≥1:k =n |Λ k -Λ n | > 0, (5) 
and, therefore, the elements of Λ could condensate.

From inequality (4), among other properties, in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF], the authors prove a general result of null controllability for abstract parabolic problems that develop a minimal time T 0 ∈ [0, ∞] of controllability: the system is null-controllable at any time T > T 0 and not null-controllable for T < T 0 . This minimal time is related to the Bernstein's condensation index of the sequence of eigenvalues Λ = {Λ k } k≥1 of the generator of the semigroup (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF] for further details).

1.1.2. Existence of biorthogonal families and bounds with explicit dependence on T . In [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] the authors provide an approach that allows to construct biorthogonal families {q k } k≥1 to the sequence {e k } k≥1 in L 2 (0, T ) (T > 0) with explicit bounds of the L 2 -norm of q k with respect to the final time T . To be precise, for increasing sequences Λ = {Λ k } k≥1 ⊂ R satisfying (2), with A > 0 and ω ∈ R, there exist C 0 , τ 0 ∈ (0, ∞) and a family {q k } k≥1 biorthogonal to {e k } k≥1 in L 2 (0, T ) such that

q k L 2 (0,T ) ≤ C 0 e C0( √ Λ k + 1 T ) , ∀T ∈ (0, τ 0 ), ∀k ≥ 1, (6) 
(see for instance [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF]). Estimate ( 6) is known to be optimal with respect the factor exp (C/T ) thanks to the work [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]: under assumption (2), there exists a positive constant C 1 such that for any sequence {q k } k≥1 ⊂ L 2 (0, T ) biorthogonal to {e k } k≥1 in L 2 (0, T ), one has

q k L 2 (0,T ) ≥ M (k) √ T e C 1 T , ∀T > 0, ∀k ≥ 1, (7) 
where M (k) is a positive constant only depending on k and L. 1 A sequence {x k } k≥1 in a Hilbert space H is said to be minimal if it satisfies xn ∈ span {x k : k = n} for any n ≥ 1.

The existence of biorthogonal families to real exponentials that satisfy ( 6) and ( 7) has been also treated by some authors with assumptions on the sequence Λ different from [START_REF] Allonsius | Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method[END_REF] but always under assumptions on Λ that imply the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] (see [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF], [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF] and [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF]). We will analyse these assumptions in Subsection 2. [START_REF] Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems[END_REF].

It is also interesting to remark that in [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] the authors also obtain an upper bound of the L 2 -norm of biorthogonal families to real exponentials with explicit time dependence when the corresponding real sequence does not satisfy the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. In [START_REF] Allonsius | Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method[END_REF], the authors prove similar results when the sequence does not satisfy [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] but without proving an explicit dependence of the constants on T .

Inequality [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF] has also been generalized to the case of complex sequences. Let us describe the result on existence and estimates of biorthogonal families to complex exponentials proved in [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]. One has: Theorem 1.2 ( [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]). Let Λ = {Λ k } k≥1 ⊂ C be a sequence satisfying assumptions (H1)-(H5), in Definition 1.3, the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and

p √ r -N (r) ≤ α, ∀r > 0,
(N is the counting function associated with the sequence Λ, defined in [START_REF] González-Burgos | Sharp estimates of the one-dimensional boundary control cost for parabolic systems[END_REF]), for some parameters β ∈ [0, ∞), ρ, p, α ∈ (0, ∞) and q ∈ N. Then, there exists T 0 > 0 such that for every T ∈ (0, T 0 ), there exists a sequence of C-valued functions

{q k } k≥1 ⊂ L 2 (0, T ; C)
biorthogonal to the exponentials {e k } k≥1 in L 2 (0, T ; C), e k given in [START_REF] Allonsius | Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries[END_REF], which, in addition, satisfies [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF] for a positive constant C 0 independent of k and T .

To the best of our knowledge, Theorem 1.2 is the most general result that provides existence of biorthogonal families {q k } k≥1 to complex exponentials with explicit estimates of q k L 2 (0,T ;C) with respect to k and T . It is interesting to note that the sequences under the hypotheses of Theorem 1.2 fulfill assumptions in [START_REF] Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems[END_REF] (see [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]) and, of course, the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. 1.1.3. The cost of fast controls. Biorthogonal families play a crucial role in the moment method. This method was developed by Fattorini and Russell (see [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF]) to study the boundary null controllability of one-dimensional scalar parabolic problems with second order elliptic self adjoint generator. This method uses in a key way the existence and estimates of biorthogonal families to {e k } k≥1 . As a consequence of inequality [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF], in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], the authors prove that the one-dimensional heat equation

     ∂ t y -∂ xx y = 0 in (0, T ) × (0, L), y(•, 0) = v, y(•, L) = 0 on (0, T ), y(0, •) = y 0 in (0, L), (8) 
(L > 0) is null controllable in H -1 (0, L) at any time T > 0 with controls v ∈ L 2 (0, T ). In fact, they prove the existence of a constant C 0 (only depending on L) such that for any y 0 ∈ H -1 (0, L) there exists a control v ∈ L 2 (0, T ) satisfying

v L 2 (0,T ) ≤ C 0 e C 0 T y 0 H -1 (0,L) ,
and such that the solution to [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF] satisfies y(T, •) = 0 in (0, L). Thus, the set C T (y 0 ) := v ∈ L 2 (0, T ) : y(T, •) = 0 in (0, L), y solution of [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF] ,

is non empty and we can define the so-called control cost of system (8) at time T :

K(T ) := sup y0 H -1 =1 inf v∈C T (y0) v L 2 (0,T ) . (9) 
Therefore, for system [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF], one has

K(T ) ≤ C 0 e C 0
T , ∀T > 0, [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] for a positive constant C 0 only depending on L.

Again, estimate [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] is optimal with respect to the factor exp(C/T ) thanks to the work [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]: inequality [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF] implies the existence of new positive constants C 1 and τ 1 (only depending on L) such that the control cost for system [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF] satisfies

K(T ) ≥ C 1 e C 1
T , ∀T ∈ (0, τ 1 ). [START_REF] Boyer | Analysis of non scalar control problems for parabolic systems by the block moment method[END_REF] Observe that the assumptions on the sequence Λ in Theorem 1.2 are more general than condition [START_REF] Allonsius | Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method[END_REF]. Therefore, Theorem 1.2 can be applied to a large range of scalar and coupled parabolic problems. In particular, it assures that the system under consideration is null controllable at any time T > 0 (thanks to the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]). In addition, Theorem 1.2 provides the inequality [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] for the control cost K(T ) as in the case of scalar parabolic problems (C 0 is a positive constant).

In the framework of N -dimensional scalar parabolic problems, [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] and [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF] give an estimate of the cost K(T ) similar to [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] using different approaches: In [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] the authors use the exact controllability of the wave equation to prove inequality [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] for the null-controllability of the heat equation. In [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF], inequality [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] is deduced from appropriate global Carleman inequalities for general parabolic operators.

The work [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF] is of special relevance because in it, the author studies the cost of the controllability of the one-dimensional heat equation with a pointwise control at point x 0 and, in this framework, there might exist a positive minimal time of null-controllability T 0 ∈ [0, ∞] (which depends on x 0 and could take any arbitrary value in [0, ∞], see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]). In this work the eigenvalues satisfy [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and the minimal time comes from the action of the control. In particular, the author proves that, if T 0 > 0, the cost of the controllability at time T > T 0 when T is close to T 0 , may explode in any arbitrary way.

Three examples of sequences of eigenvalues without gap condition.

In the framework of the controllability of non-scalar parabolic problems, new phenomena associated with the vectorial nature of the problem arise (hyperbolic phenomena): minimal time of null controllability and dependence of the controllability result on the position of the control domain (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF], [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF], [START_REF] El | Internal null-controllability of the N-dimensional heat equation in cylindrical domains[END_REF], [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF],...). This minimal time may come from the control action itself (as in [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF] and [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF]) or from the condensation index of the sequence of eigenvalues of the generator of the semigroup associated to the system (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]). In this latter case, the sequence Λ, in general, does not satisfy the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. Let us provide more details in the case of systems with a minimal time which comes from the condensation index of the sequence.

We consider a boundary controllability problem for the generic 2 × 2 system

     ∂ t y + Ly = 0 in (0, T ) × (0, π), y(•, 0) = Bv, y(•, π) = 0 on (0, T ), y(0, •) = y 0 in (0, π), (12) 
where L is a second order elliptic operator, with domain

D(L) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ), y 0 ∈ H -1 0, π; R 2 is the initial datum, B ∈ R 2 is the control vector and v ∈ L 2 (0, T ) is a scalar control.
The null controllability properties of the first example has been analyzed in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. We consider system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with

L = L 1 = -(D 1 ∂ xx + A 1 ), with domain D(L 1 ) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ), and 
D 1 := diag (1, d), d > 0, d = 1
, and A 1 := 0 1 0 0 , (see system (48)). Observe that the sequence of eigenvalues associated to the operator

L 1 is Λ (1) = k 2 k≥1 ∪ dk 2 k≥1 . If √ d ∈ Q (and
this condition is necessary for the approximate controllability at time T > 0 of the system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with the previous data, i.e., system (48)), the sequence Λ (1) can be rearranged as an increasing sequence Λ (1) = Λ ⊂ R that fulfills property (3). It is clear that Λ (1) does not satisfy, in general, the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. As a consequence, system (48) has a minimal time T 0 = T 0 (d) ∈ [0, ∞] which, for some d, with √ d ∈ Q, is positive. Therefore, the system is not null controllable at time T when T < T 0 (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] for the details).

The controllability properties of our second example has been analyzed in [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]. Let us consider system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with

L = L 2 := -∂ xx 0 0 -∂ xx + Q , D(L 2 ) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ), ( 13 
)
with Q ∈ L 2 (0, π). In this case, the sequence of eigenvalues of the vectorial operator

L 2 is given by Λ (2) = k 2 k≥1 ∪ λ (2) k k≥1 ⊂ R, where λ (2) k k≥1
is the sequence of eigenvalues of the operator

-∂ xx + Q with domain H 2 (0, π) ∩ H 1 0 (0, π). When Q ∈ L 2 (0, π) satisfies π 0 Q(x) dx = 0, (14) then λ (2) 
k = k 2 + ε k , ∀k ≥ 1, with {ε k } k≥1 ∈ 2 .
In particular, lim ε k = 0 and Λ (2) does not fulfill the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. Assume that λ

(2) k = n 2 for any k, n ≥ 1 (that, in fact, is a necessary condition for the approximate controllability of system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 2 , see [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF] and Section 5). In this case, the sequence Λ (2) satisfies property [START_REF] Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems[END_REF]. Again, system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] has a minimal time T 0 = T 0 (Q) ∈ [0, ∞] and there exists coefficients Q ∈ L 2 (0, π) such that T 0 (Q) > 0. Thus, the system is not null controllable at time T when T < T 0 (see [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF] and Section 5 for the details).

Let us consider a third example of non-scalar parabolic system. In [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] the authors study the boundary null controllability of a phase field system of Caginalp type which is a model describing the transition between the solid and liquid phases in solidification/melting processes of a material occupying the interval (0, π). For that purpose, they consider the nonlinear system

               θ t -ξθ xx + 1 2 ρξφ xx + ρ τ θ = f (φ) in (0, T ) × (0, π), φ t -ξφ xx - 2 τ θ = - 2 ρ f (φ) in (0, T ) × (0, π), θ(•, 0) = v, φ(•, 0) = c, θ(•, π) = 0, φ(•, π) = c on (0, T ), θ(0, •) = θ 0 , φ(0, •) = φ 0 in (0, π), (15) 
where: θ = θ(t, x) is the temperature of the material; φ = φ(t, x) is the phase-field function used to identify the solidification level of the material; c ∈ {-1, 0, 1}; f is the nonlinear term which comes from the derivative of the classical regular doublewell potential W :

f (φ) = - ρ 4τ φ -φ 3 .
On the other hand, ρ > 0, τ > 0 and ξ > 0 are, resp., the latent heat, a relaxation time and the thermal diffusivity. Finally, v ∈ L 2 (0, T ) is the control function, and θ 0 , φ 0 are the initial data.

The null controllability property of the nonlinear system (15) depends on the coefficients ρ, τ and ξ. This property is obtained from the corresponding one of the linear version of (15) around the constant trajectory (0, c) (see [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] for more details). This linear system is as system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with y = (θ, φ) and L = L 3 given by

         L = L 3 := -D 2 ∂ xx + A 2 , with D = D 2 :=   ξ - 1 2 ρξ 0 ξ   , A = A 2 :=    ρ τ - ρ 2τ - 2 τ 1 τ    , B = 1 0 .
(16) In this case the sequence of eigenvalues of the operator L 3 , with domain

D(L 3 ) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ), is given by Λ (3) = λ (3,1) k , λ (3,2) k k≥1 with λ (3,1) k = ξk 2 + ρ + 1 2τ -r k , λ (3,2) k = ξk 2 + ρ + 1 2τ + r k , ∀k ≥ 1, (17) 
where r k is given by

r k := ξρ τ k 2 + ρ + 1 2τ 2 , ∀k ≥ 1. ( 18 
) If λ (3,1) k = λ (3,2) n
for any k, n ≥ 1 (which in fact is a condition equivalent to the approximate controllability of the linear system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 ), the sequence Λ (3) can be rearranged in such a way that Λ (3) 

= Λ (3) k k≥1
is an increasing sequence that satisfies (3) for δ = 1. However, if for some integer j ≥ 1 one has

ξ = 1 j 2 ρ τ , (19) 
then, the eigenvalues of L 3 concentrate and one has inf

k≥1 Λ (3) k+1 -Λ (3) k = 0,
and condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] does not hold (see [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] and Section 5 for the details). Therefore, we have another system where the associated sequence of eigenvalues does not satisfy the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF].

Remark 1. The objective of the work [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] is to study the exact boundary controllability to constant trajectories at time T , T > 0 arbitrary, of the nonlinear system [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF]. To this end, the authors follow a technique developed in [START_REF] Liu | Single input controllability of a simplified fluidstructure interaction model[END_REF]. This methodology consists of obtaining a null controllability result at time T for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF], with L = L 3 , and an estimate of the cost of fast controls like [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]. In order to obtain inequality [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] for the linear version of system [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF], the authors assume the condition

ξ = 1 j 2 ρ τ , ∀j ∈ N.
This condition is crucial in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] because it assures that the sequence Λ (3) satisfies ( 5) and the conditions in Theorem 1.2. Thus, system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF], with L = L 3 , is null controllable at time T for any T > 0 and the control cost K(T ) satisfies [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] for a positive constant C 0 only depending on ρ, τ and ξ.

1.3. Objective. We have seen three examples of sequences of eigenvalues satisfying (3) and for which the gap condition (5) fails. The corresponding parabolic systems could have a positive minimal time of null controllability T 0 and the system would not be null controllable at time T when T ∈ (0, T 0 ). Even if T 0 = 0, it is not clear that the control cost of the associated system fulfills inequality [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] or inequality [START_REF] Boyer | Analysis of non scalar control problems for parabolic systems by the block moment method[END_REF] and this is an open problem.

In order to obtain sharp estimates of the control cost K(T ) associated to nonscalar parabolic systems, it is very important to prove sharp estimates for biorthogonal families to the exponentials associated to the corresponding sequence of eigenvalues of the generator when this sequence does not satisfy a gap condition. This is the objective of this work: Given a complex sequence Λ = {Λ k } k≥1 satisfying appropriate assumptions and such that inequality [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] does not hold, is there a biorthogonal family {q k } k≥0 to {e k } k≥1 in L 2 (0, T ; C) (e k is given in (1)) satisfying an appropriate estimate for q k L 2 (0,T ;C) which, in particular, provides an estimate of the control cost K(T )? Understanding the behavior of the control cost K(T ) for general systems as [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] would allow us to extend the null controllability result in the one-dimensional case to some parabolic systems in any dimension (see for instance [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF][START_REF] Allonsius | Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries[END_REF]) and to some nonlinear parabolic equations using the method of Liu, Takahashi and Tucsnak introduced in [START_REF] Liu | Single input controllability of a simplified fluidstructure interaction model[END_REF] (see for instance, [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] and [START_REF] Ouaili | Contrôlabilité de Quelques Systèmes Paraboliques[END_REF]).

Summarizing, in this paper we will consider a class of complex sequences Λ = {Λ k } k≥1 ⊂ C that satisfy (3) and for which condition (5) fails. To this class of sequences we have as our main objective to prove the existence of families {q k } k≥1 biorthogonal to {e k } k≥1 in L 2 (0, T ; C) that satisfy sharp and explicit estimates of q k L 2 (0,T ;C) with respect to T , Λ k and some appropriate parameters associated to the class of sequences under consideration. As a second objective, we will apply the previous results to system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] when L = L 2 (see [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF]) and L = L 3 (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]) in order to obtain new results on the cost of the boundary null controllability of these systems at time T > 0. In this sense, we will see that the accumulation of the eigenvalues of the operator L 2 implies that the corresponding control cost K(T ) has a more explosive behavior when T → 0 than in the scalar parabolic case.

Main results.

Let us now present the main results of this work. To this aim, let us first introduce the class of complex sequences we will work with throughout this work: Definition 1.3. Let Λ = {Λ k } k≥1 be a complex sequence and let us fix constants

β ∈ [0, ∞), ρ, p 0 , p 1 , p 2 , α ∈ (0, ∞) and q ∈ N. ( 20 
)
We say that the sequence Λ is in the class L(β, ρ, q, p 0 , p 1 , p 2 , α), if the following properties hold:

(H1) Λ k = Λ n for all n, k ∈ N * with n = k; (H2) (Λ n ) > 0 for every n ≥ 1; (H3) | (Λ n )| ≤ β (Λ n ), for any n ≥ 1; (H4) {Λ n } n≥1 is nondecreasing in modulus, i.e., |Λ n | ≤ |Λ n+1 |, for any n ≥ 1; (H5) ρ k 2 -n 2 ≤ |Λ k -Λ n | for any n, k ≥ 1 : |k -n| ≥ q; (H6) p 1 , p 2 ≥ p 0 and one has -α + p 1 √ r ≤ N (r) ≤ α + p 2 √ r, ∀r > 0,
where N is the counting function associated with the sequence Λ, defined by

N (r) = # {k : |Λ k | ≤ r} , ∀r > 0. ( 21 
)
Remark 2. Observe that from the definition of the counting function N (see ( 21)) associated with the sequence Λ = {Λ k } k≥ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) (the parameters are given and satisfy ( 20)), we deduce the following properties: 1. For any r > 0, one has

N (r) = k ⇐⇒ |Λ k | ≤ r and |Λ k+1 | > r. 2. If for some k 1 , k 2 ≥ 1 and r 1 , r 2 > 0 one has |Λ k1 | ≤ r 1 and |Λ k2 | > r 2 , then k 1 ≤ N (r 1 ) and k 2 ≥ N (r 2 ) + 1.
We will use these properties throughout this work.

Remark 3. The parameter q ∈ N in Definition 1.3 plays an important role in this paper. Observe that in this work we are dealing with sequences Λ that, in general, do not satisfy condition (5) and whose terms could condense. With condition (H5) and the parameter q we "mesure" the maximal cardinal of the condensation groupings of the sequence Λ, that is to say, the maximal number of elements in Λ around the term Λ k that do not satisfy (H5) and could condense. In fact, the parameter q plays an important role even in the case of increasing real sequences that satisfy [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. At the end of Section 2 we will see an example of real sequence Λ that satisfies the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and for which the parameters p 1 and p 2 increasingly depend on q.

Sequences not satisfying the gap condition (5) have also been considered in [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF] in the real case. Motivated by extending previous results to sequences satisfying (H5), the authors introduce the so-called block-moment method. In particular this method introduces block-biorthogonal families using a similar approach as in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. As a consequence, the authors do not obtain the explicit dependence with respect to T of the L 2 -norm of the elements of the biorthogonal sequence.

We will see in Section 2 that the class L(β, ρ, q, p 0 , p 1 , p 2 , α) includes sequences Λ = {Λ k } k≥1 satisfying (5) (e.g., sequences satisfying condition (2)), and also sequences where the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] 

fails (for instance, Λ = k 2 k≥1 ∪ dk 2 k≥1 , with √ d ∈ Q, or Λ = k 2 ∪ k 2 + ε k , with {ε k } k≥1 ∈ 2
, or the sequence considered in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF], see Remark 1).

We are now in a position to establish the first main result of this work. It reads as follows:

Theorem 1.4. Let Λ = {Λ k } k≥ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) be a complex sequence with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. Then, given T > 0, there exists a family of complex functions {q k } k≥1 ⊂ L 2 (0, T ; C), biorthogonal to {e k } k≥1 in L 2 (0, T ; C) (e k is given in (1)) which, in addition, satisfies

q k L 2 (0,T ;C) ≤ H 1 exp C 1 + H 2 |Λ k | + (1 + p 2 ) 2 T P k , (22) 
for every k ≥ 1. In [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF], C is a positive constant only depending on |Λ 1 |, β, p 0 and α (increasing with respect to α), and P k , H 1 = H 1 (ρ, q, p 1 , p 2 ) and H 2 = H 2 (ρ, q, p 1 , p 2 , T ) are respectively given by

P k := {n≥1: 1≤|k-n|<q} |Λ k -Λ n | -1 , ∀k ≥ 1, if q ≥ 2, ( 23 
)
P k := 1, for every k ≥ 1, if q = 1,          H 1 (ρ, q, p 1 , p 2 ) = 1 + ρp 2 2 + q 2 ρ 2 p 4 1 2q-2 , H 1 (ρ, q, p 1 , p 2 ) = 1 + ρp 2 2 ρ 2 p 4 1 2q-2
, when Λ is real

and

       H 2 (ρ, q, p 1 , p 2 , T ) = 1 + q + √ T + 1 + q ρ 2 p 2 1 + p 2 , H 2 (ρ, q, p 1 , p 2 , T ) = 1 + q + √ T + 1 ρ 2 p 2 1 + p 2 , when Λ is real. (25)
Remark 4. It is clear that if Λ = {Λ k } k≥1 is a sequence satisfying the assumptions in Theorem 1.2 for some parameters β ∈ [0, ∞), ρ, p, α ∈ (0, ∞) and q ∈ N, then Λ belongs to L(β, ρ, q, p, p, p, α), and satisfies

|Λ k -Λ n | ≥ γ > 0, ∀k, n ≥ 1 : k = n,
for a positive constant γ. As a consequence, we can apply Theorem 1.4 and deduce the existence of {q k } k≥1 ⊂ L 2 (0, T ; C), a biorthogonal family to {e k } k≥1 in L 2 (0, T ; C), satisfying [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]. Thanks to the previous gap condition, we get P k = 1, if q = 1, or

P k ≤ γ 2-2q , ∀k ≥ 1, if q ≥ 2.
Combining this inequality and ( 22) we deduce (6) for a positive constant C 0 independent of k and T . Therefore, Theorem 1.4 is a generalization of Theorem 1.2 to the case of complex sequences that do not satisfy the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF].

We will also see in Section 2 that Theorem 1.4 generalizes the results on bounds of biorthogonal families to exponentials proved in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF], [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF], [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] and [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF].

The quantity P k in Theorem 1.4 provides a mesure of the condensation of the sequence Λ. When condition (5) holds, then, there exists a constant C > 0 such that |P k | ≤ C for any positive integer k. But in general, P k could have any explosive behavior with respect to k (see for instance Remark 22).

In the next result we will prove that inequality ( 22) is optimal with respect to P k . This is our second main result:

Theorem 1.5. Let Λ = {Λ k } k≥ ⊂ C be a complex sequence satisfying |Λ k -Λ n | ≤ ν k 2 -n 2 , ∀k, n ≥ 1, (26) 
for ν > 0, and Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α), for parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. Then, for any sequence {q k } k≥1 ⊂ L 2 (0, T ; C) biorthogonal to {e k } k≥1 in L 2 (0, T ; C) (e k is given in (1)), one has

q k L 2 (0,T ;C) ≥ max 6 π 2 B k e 1 T ν δ |Λ 1 | + 1 2T , E k P k , ∀k ≥ 3, ( 27 
)
where P k is given in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF],

B k =          ν k+q-2 (q -1)! (q + 3)! (k + q)! (νT ) k+1 (1 + νT ) 2k+q+1 (2k + q -1)! (2k + q + 1)! , if k < q, ν 2(q-1) [(q -1)!] 2 (q + 3)! (k + q)!k (2k -q)! (νT ) k+1 (1 + νT ) 2k+q+1 (2k + q -1)! (2k + q + 1)! , if k ≥ q, (28) 
E k =          (k + q -2)! T k+q-2 2(k + q) -3 2T + δ |Λ 1 | 1/2 , if 1 ≤ k < q, (2q -2)! T 2(q-1) 4q -3 2T + δ |Λ k+1-q | 1/2 , if k ≥ q, ( 29 
)
and δ is a positive constant only depending on β (δ = 1 when β = 0).

Remark 5. It is important to note that the main estimates of q k L 2 (0,T ;C) in Theorems 1.4 and 1.5 are a combination of two phenomena. The first one comes from the fact of having an infinite family of exponential functions associated to the sequence Λ. This introduces the terms in inequality [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF] of Theorem 1.5. This kind of terms also appears in the case of sequences satisfying the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. The second phenomenon is new. It is the contribution of the condensation of a finite number of elements of the sequence Λ. This condensation introduces the factor P k in inequalities [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] and [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF]. Of course, this new term does not appear when the sequence Λ satisfies the gap condition (5) (see Remark 4). Observe that even if this term involves a finite number of elements of Λ, its contribution to the corresponding control cost K(T ) of the associated parabolic control problem could be more explosive than the contribution of the first one (see Remark 22). To our knowledge, this is the first time where this fact has been highlighted. Remark 6. Theorem 1.5 generalizes the results proved in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF], [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] and [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF] to general complex sequences that might not satisfy the gap condition (5).

H 1 (ρ, q, p 1 , p 2 ) exp C 1 + H 2 (ρ, q, p 1 , p 2 , T ) |Λ k | + (1 + p 2 )
Remark 7. In [START_REF] Boyer | Analysis of non scalar control problems for parabolic systems by the block moment method[END_REF], the authors revisit the block moment method and obtain similar results to those of Theorem 1.4 under similar conditions on the sequence Λ using a different approach. To be precise, the authors use the Laplace transform and an explicit estimate of the norm of the restriction operator between the space generated by the exponentials in L 2 (0, ∞; C) and the space generated in L 2 (0, T ; C).

As an application of Theorems 1.4 and 1.5, we will study the cost of fast controls K(T ) for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] in two situations in which condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] does not hold:

1. First, we will analyze system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] when the operator L = L 2 is given by [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] with Q ∈ L 2 (0, π) such that the sequence of eigenvalues of L 2 is given by and γ ∈ (0, 1). In this example the minimal time associated to system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 2 is T 0 (Q) = 0. Observe that the sequence Λ (2) does not satisfy [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and, therefore, Theorem 1.2 cannot be applied. We will see that the sequence Λ (2) fulfills the assumptions in Theorems 1.4 and 1.5 and, as a consequence, we will obtain new estimates from above and from below for the control cost K(T ) associated to system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] for L = L 2 (see Theorems 5.3 and 5.4). These estimates show that the fast controls for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 2 are more violent than those of the heat equation. This violent behavior comes from the condensation of the eigenvalues of the elliptic operator L 2 . 2. We will also study system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 (see ( 16)), and ρ, τ and ξ positive constant satisfying [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF] for an integer j ≥ 1. In this case we will check that system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] is null controllable for any T > 0 and the corresponding control cost K(T ) satisfies [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] for a constant C 0 = C 0 (ρ, τ, ξ) > 0. With this example we generalize the null controllability result obtained in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] for the linear version of [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF].

Λ (2) = k 2 , k 2 + e -k 2γ
In a forthcoming paper (see [START_REF] Benabdallah | The cost of the control in the case of parabolic systems with a positive minimal time coming from the condensation index of the spectrum[END_REF]) we will carry out a more in-depth analysis of the cost of fast controls K(T ) of parabolic systems with a positive minimal time T 0 which comes from the condensation index associated to the sequence of eigenvalues of the generator of the corresponding C 0 -semigroup. 1.5. Plan of the paper. The plan of the paper is the following: In Section 2, we will study some general properties of the sequences Λ in L(β, ρ, q, p 0 , p 1 , p 2 , α), with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. We will also provide in this section some examples of sequences Λ in the literature that satisfy the conditions in Definition 1.3. Sections 3 and 4 will be respectively devoted to the proofs of the main results of this work, namely, Theorem 1.4 and Theorem 1.5. Finally, in Section 5 we will apply the results on general bounds of biorthogonal families to complex sequences that do not satisfy the gap condition (5) to system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] when L = L 2 (see [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF]) and

σ(L 2 ) = k 2 , k 2 + e -k 2γ k≥1
with γ ∈ (0, 1), and when L = L 3 (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]) is such that ρ, τ, ξ ∈ (0, ∞) satisfy [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF] for an integer j ≥ 1. Some results presented in this fifth section have been announced in [START_REF] González-Burgos | Sharp estimates of the one-dimensional boundary control cost for parabolic systems[END_REF].

2. Some general properties of sequences under the assumptions of Definition 1.3. Some examples. We will devote this section to prove some general properties of sequences Λ in the class of Definition 1.3. These properties will be used in the proof of Theorems 1.4 and 1.5. We also complete this section with some examples of sequences Λ that fulfill assumptions in Definition 1.3.

2.1. Some relations between the conditions in Definition 1.3. Real sequences. Let us first analyze the conditions which appear in Definition 1.3 and condition [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] because in some particular cases they are redundant. To be precise, let us first check that the properties (H1)-(H5) and [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] imply property (H6) for some p 0 , p 1 , p 2 and α. One has: Proposition 1. Let Λ = {Λ k } k≥1 ⊂ C be a complex sequence. Then, 1. If Λ satisfies properties (H1), (H4), (H5) and (26) for some ρ, ν > 0 and q ≥ 1, then, (H6) holds, with

p 0 = 1 √ ν , p 1 = 1 √ ν , p 2 = 1 √ ρ , α = max q - |Λ 1 | ρ , |Λ 1 | ρ + 1, |Λ 1 | ν + 1 .
2. Assume now that Λ fulfills (H1), (H4) and (H6) for some positive constants p 0 , p 1 , p 2 . Then, (a) If Λ satisfies property (H5), then

p 1 ≤ 1 √ ρ . ( 30 
) (b) If (26) holds, then 1 √ ν ≤ p 2 .
Proof. Let us first assume that Λ = {Λ k } k≥1 ⊂ C satisfies the assumption in item 1 of the proposition, and let us prove that (H6) holds for appropriate parameters p 0 , p 1 , p 2 and α. From (H5) and (26), we have

ρ k 2 -n 2 ≤ |Λ k | + |Λ n |, for any k, n : k ≥ n + q, and |Λ k | -|Λ n | ≤ ν k 2 -n 2 , for any k, n : k ≥ n. In particular, |Λ k | ≥ ρ k 2 -1 -|Λ 1 | , ∀k ≥ q + 1, |Λ k | ≤ ν k 2 -1 + |Λ 1 | , ∀k ≥ 1. ( 31 
)
Let us consider r ≥ |Λ q+1 |. Taking into account the first item in Remark 2, if

N (r) = k, then k ≥ q + 1, |Λ k | ≤ r and |Λ k+1 | > r. The first inequality in (31) gives r ≥ ρ k 2 -1 -|Λ 1 |, i.e., N (r) = k ≤ 1 ρ r + |Λ 1 | ρ + 1 ≤ 1 √ ρ √ r + |Λ 1 | ρ + 1, ∀r ≥ |Λ q+1 | . (32) 
On the other hand, the second inequality in (31) also provides r < ν (k + 1)

2 -1 + |Λ 1 | and N (r) = k > -1 + 1 ν r - |Λ 1 | ν + 1 > 1 ν r - |Λ 1 | ν -1 ≥ 1 √ ν √ r - |Λ 1 | ν -1. ( 33 
)
Observe that this inequality is also valid when 0 < r < |Λ q+1 |. In the previous reasoning we have used the inequalities

√ a + b ≤ √ a + √ b, ∀a, b ∈ [0, ∞), √ a -b ≥ √ a - √ b, ∀a, b ∈ [0, ∞), a ≥ b. (34) 
Let us now take r such that |Λ 1 | ≤ r < |Λ q+1 |. In this case,

N (r) ≤ q ≤ 1 √ ρ √ r + q - 1 √ ρ |Λ 1 |.
Finally, when r is such that 0 < r < |Λ 1 |, N (r) = 0 ≤ √ r/ √ ρ. We deduce then that Λ satisfies (H6) with p 0 , p 1 , p 2 and α given in the statement. This proves the first item.

The second item in the statement can be deduced from [START_REF] Liu | Single input controllability of a simplified fluidstructure interaction model[END_REF] and [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF]. Indeed, if Λ satisfies (H5) and (H6), one has (32) and p 1 √ r -α ≤ N (r), for any r > 0. This clearly implies [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF]. On the other hand, if the sequence Λ satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF], then [START_REF] Miller | Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time[END_REF] holds. Combining this inequality with the second inequality in (H6), we get the second point in item. This proves the result.

Remark 8. Property (H5) does not imply, in general, (H6), even for increasing positive real sequences. Indeed, Λ = k 3 k≥1 is an increasing positive real sequence that satisfies (H5), with ρ = 1 and q = 1, and does not satisfy (H6).

Something similar can be said for property [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]: Λ = {k} k≥1 is an increasing positive real sequence that satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] with ν = 1 and does not satisfy (H6).

On the other hand, sequences Λ satisfying (H1)-(H5) and ( 26) for β ≥ 0, ρ, ν > 0 and q ≥ 1, also satisfy condition (H6) with parameters p 0 , p 1 , p 2 and α given in the statement of Proposition 1. In conclusion, Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α).

Remark 9. Observe that, if Λ is a sequence under the conditions of item 2 in Proposition 1, from inequality [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF] we also deduce

0 < ρ ≤ 1 p 2 0 , ρp 2 1 ≤ 1, and ρp 1 ≤ √ ρ ≤ 1 p 0 . (35) 
These estimates will be used later.

Let us now analyze the case of increasing positive real sequences Λ = {Λ k } k≥1 ⊂ (0, ∞). This case is specially interesting because some assumptions in Definition 1.3 are direct. For instance, Λ satisfies (H1)-(H4) for β = 0. In addition, one has: Proposition 2. Let Λ = {Λ k } k≥1 be a positive real sequence satisfying (H1), (H4) and (H6) for some p 0 , α ∈ (0, ∞), with p 1 = p 2 = p ≥ p 0 . Then, Λ ∈ L(0, ρ, q, p 0 , p, p, α) and (26) holds, with

q = 3α, ρ = 1 3p 2 and ν = 1 3 2 + α p 2 . ( 36 
)
Proof. Let us take Λ = {Λ k } k≥1 ⊂ (0, ∞), a sequence satisfying (H1), (H4) and (H6) for some p 0 , α ∈ (0, ∞), with p 1 = p 2 = p ≥ p 0 . It is clear that Λ satisfies (H2) and (H3) for β = 0. Let us see that Λ also satisfies (H5) for appropriate constants ρ and q. Indeed, using (H1) and (H4) we infer that Λ is an increasing positive real sequence. Thus, N (Λ k ) = k, for any k ≥ 1, (see [START_REF] González-Burgos | Sharp estimates of the one-dimensional boundary control cost for parabolic systems[END_REF]) and, from (H6) (p 1 = p 2 = p), we deduce

k -α ≤ p Λ k ≤ k + α, ∀k ≥ 1. ( 37 
)
If k, n ∈ N are such that k -n ≥ 3α, then, k ≥ α and inequality (37) provides

p 2 (Λ k -Λ n ) k 2 -n 2 ≥ (k -α) 2 -(n + α) 2 k 2 -n 2 = k -n -2α k -n = 1 - 2α k -n ≥ 1 3 .
Therefore, sequence Λ satisfies assumption (H5) for q and ρ as in the statement of the proposition.

Let us now check property [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]. To this end, we will again use [START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF]. Without loss of generality, we can assume that α ≥ 1. Thus, if α < n < k, one has

p 2 (Λ k -Λ n ) k 2 -n 2 ≤ (k + α) 2 -(n -α) 2 k 2 -n 2 = 1 + 2α k -n ≤ 1 + 2α ≤ 1 3 (2 + α) 2 .
On the other hand, if n ≤ α < k, i.e., if n ≤ α < α + 1 ≤ k ( • is the floor function: given x ∈ R, x is the greatest integer less than or equal to x), we also deduce

p 2 (Λ k -Λ n ) k 2 -n 2 ≤ (k + α) 2 k 2 -α 2 ≤ ( α + α + 1) 2 2 α + 1 ≤ 1 3 (2 + α) 2 .
In the previous inequality we have used that α ≥ 1.

Finally, let us assume that α ≥ 2 and take n < k ≤ α. We can write

p 2 (Λ k -Λ n ) k 2 -n 2 ≤ (k + α) 2 2k -1 ≤ 1 3 (2 + α) 2 .
Summarizing, property (H5) holds for ν given in [START_REF] Pöschel | Inverse Spectral Theory[END_REF]. This ends the proof.

Remark 10. Let us consider Λ = {Λ k } k≥1 , an increasing positive sequence, satisfying property (H6) with p 1 = p 2 = p > 0. In this case, this condition can be written under the equivalent form

Λ k = 1 p 2 k 2 + O(k), ∀k ≥ 1. (38) 
Indeed, from (H6) with p 1 = p 2 = p, we infer (37), i.e., p [START_REF] El | Internal null-controllability of the N-dimensional heat equation in cylindrical domains[END_REF] holds. On the other hand, from (38) we deduce

√ Λ k = k + O(1) for any k ≥ 1. So,
1 p 2 k 2 -α 1 k ≤ Λ k ≤ 1 p 2 k 2 + α 1 k, ∀k ≥ 1,
with α 1 ≥ 0. Thus, given r > 0, if N (r) = k, then, (see Remark 2) we also have

1 p 2 k 2 -α 1 k ≤ Λ k ≤ r and r < Λ k+1 ≤ 1 p 2 (k + 1) 2 + α 1 (k + 1) , i.e.,        N (r) = k ≤ 1 2 p 2 α 1 + p p 2 α 2 1 + 4r ≤ p √ r + p 2 α 1 , N (r) + 1 = k + 1 > 1 2 -p 2 α 1 + p p 2 α 2 1 + 4r > p √ r - 1 2 p 2 α 1 .
Therefore, (H6) holds with p 0 = p 1 = p 2 = p and

α = max p 2 α 1 , 1 2 p 2 α 1 + 1 .
Observe that, in particular, if Λ = {Λ k } k≥1 is an increasing real sequence such that (2) holds, then Λ also satisfies (H6) with A = 1/p 2 . Proposition 2 implies that Λ = {Λ k } k≥1 ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) and ( 26) holds for β = 0, p 0 = p 1 = p 2 = p = 1/ √ A, α ∈ (0, ∞) and q, ρ and ν as in [START_REF] Pöschel | Inverse Spectral Theory[END_REF]. Therefore, Theorems 1.4 and 1.5 generalize the results on estimates of biorthogonal families established in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF].

Some additional properties of sequences in the class L. Let us continue

showing some properties for sequences Λ in the class L(β, ρ, q, p 0 , p 1 , p 2 , α). One has: Lemma 2.1. Let Λ = {Λ k } k≥ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) be a complex sequence with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. Then,

k≥1 1 |Λ k | < ∞ and |Λ k | ≤ (Λ k ) + β (Λ k ), ∀k ≥ 1. ( 39 
)
On the other hand, there exists a positive constant C, only depending on |Λ 1 |, β, p 0 and α (increasing with respect to α), such that

1 p 2 (k -α) ≤ |Λ k | ≤ 1 p 1 k + C(1 + q) ρp 2 1 , ∀k ≥ 1. ( 40 
)
Proof. Let us take a sequence Λ = {Λ k } k≥1 under assumptions of the lemma. From items (H4) and (H6) of Definition 1.3, we have that:

k≥1 1 |Λ k | = ∞ |Λ1| 1 r dN (r) = ∞ |Λ1| 1 r 2 N (r) dr ≤ ∞ |Λ1| α + p 2 √ r r 2 dr = α |Λ 1 | + 2p 2 |Λ 1 | < ∞.
On the other hand, using assumption (H3), we deduce that

|Λ k | 2 = (Λ k ) 2 + (Λ k ) 2 ≤ (Λ k ) 2 + β 2 (Λ k ) ≤ (Λ k ) + β (Λ k ) 2 .
Therefore, we have the proof of [START_REF] Schwartz | Étude des Sommes d'Exponentielles Réelles[END_REF].

Let us now prove property [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF]. Let us first assume that Λ is a positive real sequence in L(β, ρ, q, p 0 , p 1 , p 2 , α) (β = 0). We have that N (Λ k ) = k, for any k ≥ 1. In particular, taking r = Λ k in assumption (H6), we deduce

k -α p 2 ≤ Λ k ≤ k + α p 1 = k p 1 + α p 1 ≤ k p 1 + α p 0 1 ρp 2 1 ρp 2 1 ≤ k p 1 + α p 0 1 ρp 2 1 , ∀k ≥ 1.
In the previous inequality we have used [START_REF] Ouaili | Contrôlabilité de Quelques Systèmes Paraboliques[END_REF]. This shows inequality [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] in the real case.

Let us now assume that the sequence Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) is complex, i.e., β > 0. As before, we are going to work with property (H6) with r = |Λ k | (k ≥ 1). From Remark 2, (H4) and (H6) (see Definition 1.3), we can write that, if

n = N (|Λ k |), then k ≤ n, |Λ k | = |Λ n | and -α + n p 2 = -α + N (|Λ k |) p 2 ≤ |Λ k | ≤ α + N (|Λ k |) p 1 = α + n p 1 , ∀k ≥ 1. (41) 
In particular, k ≤ n and

-α + k ≤ -α + n ≤ p 2 |Λ k |, ∀k ≥ 1.
This proves the first inequality in (40) in the complex case.

In order to show the second inequality in [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF], let us estimate

n = N (|Λ k |). As |Λ k | = |Λ n |, using property (H3), we infer (Λ n ) 2 -(Λ k ) 2 = (Λ n ) 2 -(Λ k ) 2 ≤ β 2 ( (Λ k ) + (Λ n )), that is to say, | (Λ k ) -(Λ n )| ≤ β 2 .
Again, assumption (H3) also provides the inequality

|Λ k -Λ n | ≤ | (Λ k ) -(Λ n )| + | (Λ k ) -(Λ n )| ≤ β 2 + 2β |Λ k |.
If |k -n| ≥ q, combining the previous inequality and assumption (H5) we obtain

ρ |k -n| (k + n) = ρ k 2 -n 2 ≤ |Λ k -Λ n | ≤ β 2 + 2β |Λ k |.
Thus,

n -k = |k -n| ≤ max q, β 2 + 2β |Λ k | ρ (k + n) , i.e., n ≤ k + max q, β 2 + 2β |Λ k | ρ (k + N (|Λ k |)) ,
and, from ( 41)

p 1 |Λ k | ≤ α + k + max q, β 2 + 2β |Λ k | ρ (k + N (|Λ k |)) . ( 42 
)
If the maximum in ( 42) is q, in particular,

p 1 |Λ k | ≤ k + α + q.
Taking into account inequalities ( 30) and ( 35), we also deduce

p 1 |Λ k | ≤ k + α + q ρp 1 ρp 1 ≤ k + (α + q) /p 0 ρp 1 .
Thus, we get the second inequality in [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] for a positive constant C only depending on α and p 0 and increasing with respect to α.

Let us now assume that the maximum in ( 42) is given by the second term. Using again (H6) and [START_REF] Ouaili | Contrôlabilité de Quelques Systèmes Paraboliques[END_REF], for k ≥ α, we can write

p 1 |Λ k | ≤ k + α + β 2 + 2β |Λ k | ρ (k + N (|Λ k |)) ≤ k + α + β 2 + 2β |Λ k | ρ k -α + p 1 |Λ k | ≤ k + α ρp 1 1 p 0 + β 2 + 2β |Λ k | ρp 1 |Λ k | .
This inequality provides the second inequality in [START_REF] Seidman | Two results on exact boundary control of parabolic equations[END_REF] when k ≥ α for a positive constant C only depending on |Λ 1 |, β, p 0 and α (of course, increasing with respect to α).

Finally, let us consider the case k < α. Thus, there exists a positive constant C (only depending on α and increasing with respect to α) such that

|Λ k | ≤ C ≤ k p 1 + C ρp 2 1 .
In the previous inequality we have used [START_REF] Ouaili | Contrôlabilité de Quelques Systèmes Paraboliques[END_REF]. This ends the proof.

Remark 11. Analyzing the proof of Lemma 2.1 we deduce that, in fact, if the sequence Λ is real, then the second inequality in (40) can be written as follows: there exists a positive constant C, only depending on p 0 and α (increasing with respect to α) such that 1

p 2 (k -α) ≤ |Λ k | ≤ 1 p 1 k + C ρp 2 1 , ∀k ≥ 1. (43) 
In particular the previous inequalities are independent of q. We will use this property for real sequences Λ throughout the paper.

Remark 12. From Lemma 2.1 we deduce that, if the sequence Λ = {Λ k } k≥1 is in the class L(β, ρ, q, p 0 , p 1 , p 2 , α), then one also has (3) for some δ > 0, only depending on β (δ = 1 when β = 0). As said before, property (3) implies that the family of exponentials {e k } k≥1 , e k is given in [START_REF] Allonsius | Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries[END_REF], is minimal in L 2 (0, T ; C) for any T > 0.

Thus, there exists a biorthogonal family { q k } k≥1 to {e k } k≥1 in L 2 (0, T ; C) (see for instance [START_REF] Schwartz | Étude des Sommes d'Exponentielles Réelles[END_REF], [START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF], [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF], Theorem 4.1 in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF],...).

2.3

. Some examples of sequences in L(β, ρ, q, p 0 , p 1 , p 2 , α). Let us complete this section providing some examples of sequences Λ = {Λ k } k≥1 such that Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) for some parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. In order to have a clearer exposition, we will present the results and we will include the corresponding proofs in an appendix, at the end of this paper.

In [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] and [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF], the authors consider increasing real positive sequences Λ = {Λ k } k≥1 ⊂ R satisfying a "global gap condition":

γ 0 ≤ Λ k+1 -Λ k ≤ γ 1 , ∀k ≥ 1, (44) 
and an "asymptotic gap condition":

γ 0 ≤ Λ k+1 -Λ k ≤ γ 1 , ∀k ≥ N,
where N ≥ 1 and γ 0 , γ 1 , γ 0 , γ 1 ∈ (0, ∞) are such that 0 < γ 1 -γ 0 < γ 1 -γ 0 . Under these assumptions on Λ the authors obtain general and precise upper and lower bounds for biorthogonal families as ( 6) or [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF], paying attention to the dependence of the constant C 0 and C 1 with respect to the parameters γ 0 , γ 1 , γ 0 and γ 1 . One has:

Proposition 3. Let Λ = {Λ k } k≥1 ⊂ (0, ∞)
be a real sequence satisfying [START_REF] Young | An Introduction to Nonharmonic Fourier Series[END_REF] for two constants γ 0 , γ 1 > 0. Then, Λ ∈ L(0, ρ, q, p 0 , p 1 , p 2 , α) and (26) holds with

       p 0 = p 1 = 1 γ 1 , p 2 = 1 γ 0 , α = max 1 - √ Λ 1 γ 0 , √ Λ 1 γ 1 , q = 1, ρ = min γ 2 0 , 1 3 γ 2 0 + 2 3 γ 0 Λ 1 and ν = max γ 2 1 , 1 3 γ 2 1 + 2 3 γ 1 Λ 1 .
In particular, the gap condition (5) holds.

For the proof, see A.1.

Remark 13. Sequences Λ = {Λ k } k≥1 ⊂ (0, ∞) under the assumptions of Proposition 3 satisfy the general assumptions in Theorem 1.4 and Theorem 1.5 with parameters given in the statement of the proposition. Observe, in particular, that q = 1 and P k = 1. Thus, Theorems 1.4 and 1.5 cover the results in [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] and [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF].

We continue our analysis of real sequences that fulfill general assumptions previously discussed in the literature. In [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF], the authors consider a real increasing sequence Λ = {Λ k } k≥1 that is given as

Λ = λ (1) k k≥1 ∪ λ (2) k k≥1 , with λ (1) k k≥1
and λ

(2) k k≥1

two increasing sequences of positive real numbers satisfying

       λ (1) k - 1 π 2 1 k 2 ≤ c 1 k, λ (2) 
k -

1 π 2 2 k 2 ≤ c 1 k, ∀k ≥ 1, inf n≥1 λ (2) k -λ (1) n ≥ r k , ∀k ≥ 1, (45) 
and the strong gap condition

λ (1) k+1 -λ (1) k ≥ c 2 , λ (2) 
k+1 -λ (2) k ≥ c 2 , ∀k ≥ 1, (46) 
for some positive constants π 1 , π 2 , c 1 , c 2 and r. For this class of sequences, the authors prove the existence of a sequence

{q k } k≥1 ⊂ L 2 (0, T ) (T > 0 is given) biorthogonal to {e k } k≥1 (e k given in (1)
) in L 2 (0, T ) which satisfies ( 6) for a positive constant C 0 independent of k and T and uniform for the class of sequences Λ satisfying the previous assumptions. One has:

Proposition 4. Let us consider two increasing sequences of positive real numbers

Λ 1 = λ (1) k k≥1
and

Λ 2 = λ (2) k k≥1 satisfying (45) and λ (1) k+1 -λ (1) 
k ≥ c 0 and λ

k ≥ c 0 , ∀k ≥ 1, (2) k+1 -λ (2) 
for some positive constants π 1 , π 2 , c 0 , c 1 and r. Then, the sequence Λ = Λ 1 ∪ Λ 2 can be rearranged as an increasing sequence Λ = {Λ k } k≥1 satisfying the gap condition (5), Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) and (26), with β = 0, p 0 = min{π 1 , π 2 },

p 1 = p 2 = p = π 1 + π 2 , α = max 2 + 1 2 c 1 π 2 1 + π 2 2 , c 1 π 2 1 + π 2 2
and q, ρ and ν given in [START_REF] Pöschel | Inverse Spectral Theory[END_REF].

The proof of this result can be seen in A.2.

Remark 14. Observe that the sequences λ

(1) k k≥1
and λ

(2) k k≥1

satisfying (45), for some positive constants π 1 , π 2 , c 1 and r, and the strong gap condition (46), with c 2 a positive constant, in particular, fulfill assumptions (45) and (47) in Proposition 4 (and, therefore, the general hypotheses imposed to general complex sequences {Λ k } k≥1 in [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]; see Theorem 1.2). Thus, the results on existence and sharp estimates of biorthogonal families established in [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF] can be deduced from the corresponding results proved in [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]. Of course, Theorem 1.4 generalizes the results in [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF] and [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF] to complex sequences that do not satisfy the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF].

In [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] the authors prove the existence of a minimal time of controllability for some parabolic problems. This minimal time is related to the condensation index of the sequence of eigenvalues of the corresponding operator. In order to illustrate the existence of this minimal time, the authors consider the system

     ∂ t y -(D 1 ∂ xx + A 1 )y = 0 in (0, T ) × (0, π), y(•, 0) = Bv, y(•, π) = 0 on (0, T ), y(0, •) = y 0 in (0, π), (48) 
where

B ∈ R 2 , v ∈ L 2 (0, T ) is the control, D 1 := diag (1, d), d > 0, d = 1, and A 1 := 0 1 0 0 .
The sequence of eigenvalues associated to the operator

L 1 = -(D 1 ∂ xx + A 1 ), with domain D(L 1 ) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ), is given by Λ = k 2 k≥1 ∪ dk 2 k≥1 . Recall that the condition √ d ∈ Q is necessary
for the approximate controllability of the system (48) at time T > 0. On the other hand, under this assumption, there exists a minimal time T 0 = T 0 (d) ∈ [0, ∞] such that the system is not null controllable at time T when T < T 0 (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] for the details). In our second example we will consider the sequence of eigenvalues associated to this system:

Proposition 5. Let us consider d ∈ (0, ∞) such that √ d ∈ Q. Then, the sequence Λ = k 2
k≥1 ∪ dk 2 k≥1 can be rearranged as an increasing sequence Λ = {Λ k } k≥1 satisfying Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) and condition [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] with β = 0, p 0 = 1,

p 1 = p 2 = p = 1 + 1 √ d , α = 2, q = 2, ρ = 5 8 1 p 2 and ν = 8 3 1 p 2 . ( 49 
)
The proof of Proposition 5 can be found in A.3.

Let us now analyze a fourth example of sequence Λ which satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] and the general conditions appearing in Definition 1.3. With this example we cover the kind of sequences associated to some parabolic problems studied in [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]: Proposition 6. Let us consider two real positive sequences

Λ 1 = λ (1) k k≥1
and

Λ 2 = λ (2) k k≥1 = λ (1) k + ε k k≥1
where {ε k } k≥1 is a real bounded sequence. As-

sume that Λ 1 satisfies Λ 1 ∈ L(0, ρ 1 , 1, π 0 , π 1 , π 2 , α 1 ), for ρ 1 , π 0 , π 1 , π 2 , α 1 ∈ (0, ∞), and (26) 
, for ν = ν 1 ∈ (0, ∞). On the other hand, assume

λ (2) k = λ (2) n , ∀k, n ≥ 1, with k = n, and λ (1) 
k = λ (2) n , ∀k, n ≥ 1. Let us take ε 0 = sup k≥1 |ε k |. Then, the sequence λ (1) k k≥1 ∪ λ (2) k k≥1
can be rearranged as a positive increasing sequence Λ = {Λ k } k≥1 satisfying Λ ∈ L(0, ρ, q, π 0 , p 1 , p 2 , α) and (26), with β = 0,

p 1 = 2π 1 , p 2 = 2π 2 , α = π 2 √ ε 0 + 2α 1 ,
q = 2 and ρ and ν positive constants only depending, resp., on ρ 1 and ε 0 and on ρ 1 , ν 1 and ε 0 .

For the proof, see A.4.

Remark 15. Proposition 6 covers the sequence of eigenvalues of operator L in system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] when L = L 2 (see [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF]). We will use this proposition in Section 5.

Remark 16. Under assumptions of Proposition 6, observe that the sequence Λ satisfies the gap condition (5) if and only if

lim inf |ε k | > 0.
On the other hand, analyzing the proof of Proposition 6, it is possible to provide some additional information about parameters ρ and α in Proposition 6 when the sequence {ε k } k≥1 satisfies appropriate properties. Indeed, when the bounded sequence {ε k } k≥1 is such that

ε 0 = sup k≥1 |ε k | satisfies |ε k | ≤ ε 0 ≤ ρ 1 4 , ∀k ≥ 1,
then, the sequence Λ can be explicitly defined by (see ( 133)):

Λ k =      min λ (1) , λ (1) + ε , if k = 2 -1, max λ (1) , λ (1) + ε , if k = 2 , (50) 
for any k ≥ 1. In addition, from the proof of Proposition 6, we can deduce

   Λ k -Λ n ≥ ρ 1 16 k 2 -n 2 , ∀k, n ∈ N : k ≥ n + 2, Λ k -Λ n ≤ ν 1 + ε 0 2 k 2 -n 2 , ∀k, n ∈ N,
i.e., we can take ρ = ρ 1 /16 and ν = (ν 1 + ε 0 ) /2 in Proposition 6. We will use this observation in the proof of Proposition 10.

As said in Remark 3, let us finalize this section with an academic example of a positive sequence Λ in the class L(0, ρ, q, p 0 , p 1 , p 2 , α) with a parameter q which can be chosen as large as we want. With this example will see that the parameters p 1 and p 2 are increasing with respect to q. To this end, let us fix a positive integer m ≥ 2 and define

Λ = k 2 + -1 m : k ≥ 1, 1 ≤ ≤ m . (51) 
It is clear that the set Λ can be written as an increasing positive sequence Λ = {Λ k } k≥1 that satisfies the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. Let us see that it also satisfies Λ ∈ L(0, ρ, q, p 0 , p 1 , p 2 , α), for appropriate parameters, and condition [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF], for ν > 0.

One has:

Proposition 7. Let us take a positive integer m ≥ 2 and consider the sequence Λ defined in (51). Then,

1. Λ ∈ L(0, ρ, q, p 0 , p 1 , p 2 , α), with q = m, p 0 = 2, p 1 = p 2 = m, α = m and ρ = 2 (2m -1)(2m + 1)
.

In fact, property (H5) does not hold if q ≤ m -1. 2. The sequence Λ satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] 

with ν = 4m -1 m (2m + 1)
.

Proof. If m ≥ 2, it is clear that the sequence Λ is an increasing sequence that satisfies items (H1)-(H4), with β = 0. Let us check (H5), (H6) and condition ( 26):

(a) Let us prove item (H6) for the sequence Λ. To be precise, let us see

-m + m √ r < N (r) ≤ m √ r, ∀r > 0, ( 52 
)
where N (r) is defined in [START_REF] González-Burgos | Sharp estimates of the one-dimensional boundary control cost for parabolic systems[END_REF]. First, if r ∈ (0, 1), N (r) = 0 and it is clear that (52) holds.

When r ≥ 1 the function N (r) is given by

N (r) = m =1 # k : k 2 + -1 m ≤ r = m =1 r - -1 m ≤ m =1 √ r = m √ r.
On the other hand, we can explicitly calculate N (r): Given r ≥ 1, there exists an integer k ≥ 1 such that r ∈ k 2 , (k + 1) 2 . In this case,

N (r) =      mk -m + , if r ∈ k 2 + -1 m , k 2 + m , with 1 ≤ ≤ m, mk, if r ∈ k 2 + 1, (k + 1) 2 .
(53)

Indeed, if r ∈ k 2 + -1 m , k 2 + m , with ∈ N : ≤ m, then, for any : 1 ≤ ≤ , r - -1 m ∈ k 2 + - m , k 2 + -+ 1 m ⊂ k 2 , (k + 1) 2 , and r --1 m = k = √ r . Also, if : + 1 ≤ ≤ m, one has r - -1 m ∈ k 2 - - m , k 2 - --1 m ⊂ (k -1) 2 , k 2 , and r --1 m = k -1.
We deduce in this case

N (r) = m =1 r - -1 m = mk -m + = m √ r -m + ,
and the first equality in (53). Now, if r ∈ k 2 + 1, (k + 1) 2 , we can apply the same reasoning as before and deduce the second equality of (53).

Let us now prove the first inequality in (52) for r ≥ 1 (the second one is a direct consequence of (53)). As before, assume r ∈ k 2 , (k + 1)

2 with k ≥ 1 an appropriate integer. Thus, if r ∈ k 2 + -1 m , k 2 + m , with ∈ N : ≤ m, then                N (r) + m -m √ r = mk + -m √ r > mk -m k 2 + m + = mk + 2 -m 2 k 2 + m mk + + m k 2 + m = 2 + m (2k -1) mk + + m k 2 + m > 0.
Finally, if r ∈ k 2 + 1, (k + 1) 2 , we can write

N (r) = mk > m √ r -1 .
This proves (52) and property (H6) for the sequence Λ with p 0 = 2, p 1 = p 2 = m and α = m. (b) Let us now see that property (H5) holds for q = m (and an appropriate parameter ρ > 0) and is not valid if q < m. To this end, let us first provide the expression of the terms of the sequence Λ. It is not difficult to see that, given an integer k ≥ 1, this can be written as k = m k + , with k ≥ 0 and ∈ N with 1 ≤ ≤ m. Thus,

Λ k = k + 1 2 + -1 m .
Negative part: Fix q ∈ N, with 1 ≤ q ≤ m -1, and take n = m k + 1 and k = m k + q + 1, with k ≥ 0, an arbitrary integer. It is clear that k -n = q ≤ m -1 and

Λ k -Λ n k 2 -n 2 = k + 1 2 + q m -k + 1 2 m k + q + 1 2 -m k + 1 2 = 1 m 2m k + 2 + q → 0, when k → ∞.
We deduce that property (H5) is not valid when q ≤ m -1.

Positive part: Let us take q = m and n, k ≥ 1 with k -n ≥ q. In this case,

k = m k + 2 , n = m n + 1 , with n, 1 , k, 2 ∈ Z, 1 ≤ 1 , 2 ≤ m and k, n ≥ 0.
Observe that, using k

-n ≥ q = m, we can conclude k -n ≥ 1. So, Λ k -Λ n k 2 -n 2 = k -n k + n + 1 + k -n + 2-1 m m k + 2 2 -(m n + 1 ) 2 ≥ k -n k + n + 1 + k -n -1 + 1 m m k + m 2 -(m n + 1) 2 > k -n m k -n + m -1 • k + n + 1 m k + n + 1 + 1 ≥ 1 2m -1 • 2 2m + 1 .
This shows property (H5) for the sequence Λ with q = m and ρ given in the statement.

(c) In order to finish the proof of this result, let us show property [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]. Again, let us take k, n

∈ N with k > n. As before, k = m k + 2 and n = m n + 1 , with n, 1 , k, 2 ∈ Z, 1 ≤ 1 , 2 ≤ m, and k, n ≥ 0 with k ≥ n ≥ 0. Let us first analyze the case k = n = k ≥ 0 and, of course, 1 ≤ 1 < 2 ≤ m. We deduce, Λ k -Λ n k 2 -n 2 = k + 1 2 + 2-1 m -k + 1 2 -1-1 m m k + 2 2 -m k + 1 2 = 1 m 1 2m k + 2 + 1 ≤ 1 3m . Now, if k > n and 1 ≤ 1 , 2 ≤ m, one gets Λ k -Λ n k 2 -n 2 = k -n k + n + 2 + 2-1 m m k + 2 2 -(m n + 1 ) 2 ≤ k -n k + n + 2 + 1 -1 m m k + 1 2 -(m n + m) 2 = k -n m k -n + 1 -m • k + n + 2 m k + n + 1 + 1 + 1 -1 m m k + 1 2 -(m n + m) 2 ≤ 3 2m + 1 + m -1 m (2m + 1) = 4m -1 m (2m + 1)
.

Taking into account that m ≥ 2, we can infer that

1 3m ≤ 4m -1 m (2m + 1)
and, therefore, the sequence Λ fulfills inequality [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] with ν given in the statement. This ends the proof of the proposition.

Remark 17. It is interesting to point out that, thanks to Proposition 2, once property (H6) is proved for the sequence Λ with p 0 = 2, p 1 = p 2 = m and α = m, we can conclude that Λ ∈ L(0, ρ, q, 2, m, m, m) and ( 26) holds, with (see [START_REF] Pöschel | Inverse Spectral Theory[END_REF])

q = 3m, ρ = 1 3m 2 and ν = 1 3 2 + m m 2 .
The parameters provided by Proposition 7 are better than the previous values. Indeed, taking into account that m ≥ 2, it is clear that q = m < q = 3m,

ρ = 2 (2m -1)(2m + 1) > ρ = 1 3m 2 and ν = 4m -1 m (2m + 1) < ν = 1 3 2 + m m 2 .
Remark 18. We can apply Theorems 1.4 and 1.5 to the sequence Λ given by ( 51) and conclude the existence of a sequence

{q k } k≥1 ⊂ L 2 (0, T ), biorthogonal to {e k } k≥1 in L 2 (0, T ; C) (e k is given in (1)
), which satisfies ( 22) and ( 27). If we make use of Proposition 7, these two inequalities can be written under the form

A (1) k (m) P k ≤ q k L 2 (0,T ) ≤ A (2) 
k (m) P k , ∀k ≥ 3, (54) 
where A

k (m) := E k (see [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF]) and

A (2) k (m) := H 1 (ρ, q, p 1 , p 2 ) exp C 1 + H 2 (ρ, q, p 1 , p 2 , T ) |Λ k | + (1 + p 2 ) 2 T ,
(see [START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF] and [START_REF] Hille | Analytic Function Theory[END_REF] in the real case) with ρ, q, p 1 , p 2 and ν given in Proposition 7 (recall that the parameter m is the maximal cardinal of the condensation groupings of the sequence Λ, that is to say the maximal number of elements in Λ that do not satisfy (H5)).

Observe that, taking into account Remark 10, the elements of the sequence Λ satisfy

Λ k = 1 m 2 k 2 + O(k), ∀k ≥ 1 and, therefore, one has lim m→∞ S(m) = ∞ where S(m) = k≥1 1 Λ k , ∀m ≥ 2.
In some sense, the family of exponentials {e k } k≥1 (e k given in (1)) "loses" its property of minimality in L 2 (0, T ) when m tends to infinity. Thus, it is natural that the constants A

k (m) and A

(2)

k (m) in (54) satisfy lim m→∞ A (1) k (m) = lim m→∞ A (2) k (m) = ∞, ∀k ≥ 1. ( 55 
)
Let us see that (55) holds. To this end, we will analyze the asymptotic behavior of A

(1)

k (m) and A (2) k (m) when m → ∞.
In what follows, we will provide an explicit expression of these constants when 3 ≤ k ≤ m.

Let us first analyze A

(1) k (m). From the expression of E k for 3 ≤ k ≤ m (see [START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF]) and Proposition 7, we can write

A (1) k (m) := E k = (m + k -2)! T m+k-2 2(m + k) -3 2T + 1 1/2
.

Observe that Stirling's formula implies the existence of a positive constant

c 0 > 0 such that n! ≥ c 0 √ 2πn n e n , ∀n ∈ N.
In particular, for a new positive constant c (independent of m), we deduce

A (1) k (m) ≥ c (m + k -2) 2(m + k) -3 2T + 1 m + k -2 eT m+k-2
, which is valid for any m ≥ 2 and any k : 3 ≤ k ≤ m. One has the first equality in (55). 2. We continue with the analysis of A

(2) k (m). Let us start with H 1 (ρ, q, p 1 , p 2 ) (see [START_REF] Hansen | Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems[END_REF] in the real case). From Proposition 7, this constant only depends on m and has the expression:

H 1 (ρ, q, p 1 , p 2 ) ≡ H 1 (m) = 6m 2 -1 4m 2 -1 4m 4 2(m-1) 
, ∀m ≥ 2.

It is not difficult to see that lim m→∞ H 1 (m) 6 2(m-1) = 1, and, then

c 1 6 2(m-1) ≤ H 1 (m) ≤ c 2 6 2(m-1) , ∀m ≥ 2.
for two positive constants c 1 and c 2 , independent of m.

On the other hand, from the expression of H 2 (ρ, q, p 1 , p 2 ) (see [START_REF] Hille | Analytic Function Theory[END_REF] in the real case), we can write

H 2 (ρ, q, p 1 , p 2 , T ) ≡ H 2 (m, T ) = 4m 2 + 2m -1 + 1 4m 2 + √ T .
Observe that in our case α = m. We can conclude that A

k (m) is given by

A (2) k (m) := H 1 (m) exp C(m) 1 + H 2 (m, T ) Λ k + (1 + m) 2 T , m ≥ 2,
with C(m) a positive constant only depending on m and increasing with respect to m (see Theorem 1.4 with α = m). Clearly, A

k (m) has an exponential behavior with respect to m and we can write

A (2) k (m) ≥ exp C 1 + m 2 Λ k + 1 T + T Λ k , ∀m ≥ 2, ∀k : 3 ≤ k ≤ m.
We can conclude that A

k (m) has an exponential behavior with respect to m and saisfies the second equality in (55).

3. Proof of the first main result. This section is devoted to prove Theorem 1.4. To this end, we have to take into account the lack of the gap condition (5) for the sequence Λ and the fact that we cannot assume that T is small (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]). As we will see, this introduces new difficulties.

We will use the Fourier transform together with the Paley-Wiener Theorem:

Theorem 3.1. Let f be an entire function such that

|f (z)| ≤ Be A|z| , ∀z ∈ C,
for two positive constants A, B, and

f L 2 (R) < ∞. Then, there exists a function φ ∈ L 2 (-A, A; C) such that f (z) = 1 √ 2π A -A φ(t)e izt dt.
Moreover, the Plancherel theorem gives

φ L 2 (-A,A;C) = f L 2 (R) .
For the proof of Theorem 3.1 we refer to [44, Theorem 18. p. 101].

Remark 19.

In what follows, C will denote a positive constant independent of T , k ∈ N, ρ, q, p 1 and p 2 , which may change from one line to another (C may depend on |Λ 1 |, β, p 0 and α, and is increasing with respect to α). In this work, the dependence of the constants with respect to the parameters ρ, q, p 1 and p 2 (see assumptions (H5) and (H6)) will be explicitly given.

Let us begin with a result of existence of entire functions satisfying appropriate properties. Our first main result will be a consequence of this theorem. One has: Theorem 3.2. Let Λ = {Λ k } k≥1 ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) be a complex sequence with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. Then, for all T > 0, there exists a sequence of entire functions {G k } k≥1 , with the following properties:

1. For any k ≥ 1 and ε > 0, there exists a positive constant C T,k,ε such that

e -iz T 2 G k (z) ≤ C T,k,ε e ( T 2 +ε)|z| , ∀z ∈ C; (56) 2. G k (iΛ n ) = 1 √ 2π δ kn , for all k, n ≥ 1;
3. G k belongs to L 2 (R), for any k ≥ 1, and there exists a positive constant C > 0, only depending on |Λ 1 |, β, p 0 and α (increasing with respect to α), such that

G k L 2 (R) ≤ H 1 exp C 1 + H 2 |Λ k | + (1 + p 2 ) 2 T P k , (57) 
for any k ≥ 1, where P k , H 1 = H 1 (ρ, q, p 1 , p 2 ) and H 2 = H 2 (ρ, q, p 1 , p 2 , T ) are respectively given in (23), ( 24) and (25).

Theorem 1.4 is a direct consequence of Theorem 3.2. Therefore, before providing the proof of the technical result established in Theorem 3.2, we will complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Let us consider Λ = {Λ k } k≥ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. On the other hand, let us fix T > 0. With the previous data, let us consider the function

F k (z) := G k (z)e -iz T 2 , z ∈ C, k ≥ 1,
where {G k } k≥1 is the sequence provided by Theorem 3.2. Let us see some properties of the function F k . First, F k is, for any k ≥ 1, an entire function over C. In fact,

F k ∈ L 2 (R) with F k L 2 (R) = G k L 2 (R) for any k ≥ 1.
Secondly, for any ε > 0 and k ≥ 1, F k is an entire function of exponential type T /2 + ε (see (56)). So, we can apply Payley-Wiener Theorem (see Theorem 3.1) and deduce that there exists

ψ k ∈ L 2 (-T /2 -ε, T /2 + ε; C) such that F k (z) = e -iz T 2 G k (z) = 1 √ 2π ∞ -∞ ψ k (t) e izt dt, ∀z ∈ C, ∀k ≥ 1.
Observe that the support of the function

ψ k is contained in [-T /2 -ε, T /2 + ε],
for any k ≥ 1 and ε > 0. We conclude that, in fact, ψ k ∈ L 2 (-T /2, T /2; C) and

F k (z) = e -iz T 2 G k (z) = 1 √ 2π T 2 -T 2 ψ k (t) e izt dt, ∀z ∈ C, ∀k ≥ 1. ( 58 
)
Let us now consider the function

q k (t) := ψ k t - T 2 , t ∈ [0, T ], k ≥ 1. ( 59 
)
It is clear that q k is well defined and q k ∈ L 2 (0, T ; C) for any k ≥ 1. The objective now is to prove that the sequence {q k } k≥1 ⊂ L 2 (0, T ; C) satisfies Theorem 1.4. Let us first see that {q k } k≥1 is biorthogonal to {e -Λ k t } k≥1 in L 2 (0, T ; C). Indeed, for any k, n ≥ 1 and thanks to (58) and item 2 in Theorem 3.2, we can write,

T 0 q k (t)e -Λnt dt = T 0 ψ k t - T 2 e -Λnt dt = e -Λn T 2 T 2 -T 2 ψ k (t) e -Λnt dt = e -Λn T 2 √ 2πe Λn T 2 G(iΛ n ) = δ kn .
Let us now estimate q k L 2 (0,T ) . To this aim, we will use Plancherel Theorem and estimate (57). From the expression of q k (see (59)), one has

q k L 2 (0,T ;C) = ψ k L 2 (-T 2 , T 2 ;C) = F k L 2 (R) = G k L 2 (R) .
Combining the previous inequality and inequality (57) we deduce [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]. This completes the proof of Theorem 1.4.

Once Theorem 1.4 is proved, our next objective will be to show Theorem 3.2. The proof of this result is very technical. In order to make it clearer, we will divide it in two subsections:

1. In the first subsection (see Subsection 3.1) we will introduce an entire function

f k (z) (k ≥ 1)
with simple zeros at Λ n with n ≥ 1 and n = k. To this end, we will use the natural infinite product that satisfies the condition f k (Λ n ) = 0 for any n = k. We will show some properties of this function that, in particular, will imply item 2 in Theorem 3.2. 2. In the second subsection (see Subsection 3.2) we will introduce a "mollifier" function that we will use in the definition of the entire function G k (k ≥ 1) in Theorem 3.2. We will prove some properties of this function (which, in particular, will provide the property of item 3 in Theorem 3.2) and we will complete the proof of Theorem 3.2.

Remark 20. Let us remark that, if Λ = {Λ k } k≥1 ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α), with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF] (see Definition 1.3), then Λ := {Λ k } k≥1 ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α).

We will prove Theorem 3.2 for the sequence Λ instead of Λ.

3.1. An infinite product. In this section we will consider again a complex sequence Λ = {Λ k } k≥1 in Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) (the parameters satisfy [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]). Thus, for each k ≥ 1 and z ∈ C, we define

f k (z) := n≥1 n =k 1 - z Λ n , z ∈ C. ( 60 
)
The objective of this section is to prove some interesting properties satisfied by the function f k . First, observe that, by property [START_REF] Schwartz | Étude des Sommes d'Exponentielles Réelles[END_REF], the previous product is uniformly convergent on compact sets of C. Therefore, f k is, for any k ≥ 1, an entire function over C (see for instance [25, p. 457]). Moreover, f k (Λ n ) = 0, for any n = k. In fact, the zeros of f k are exactly the elements of the sequence {Λ n } n≥1, n =k and they are zeros of multiplicity 1.

We have the following property of function f k :

Lemma 3.3 ([7]
). Let Λ = {Λ k } k≥ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) be a complex sequence, with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. Then, for every z ∈ C and k ≥ 1, we have

log |f k (z)| ≤ (p 2 π + 1) |z| + C, (61) 
where p 2 is given in assumption (H6) and C is a positive constant only depending on α and |Λ 1 | and increasing with respect to α.

The proof of this result can be found in [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF].

Recall that our objective is to construct a sequence {G k } k≥1 of entire functions over C satisfying items 1-3 in Theorem 3.2. This construction will use the function f k (z) and an estimate from below of the non-zero quantity |f k (Λ k )|. This is one of the key points of this work and is established in the next Lemma 3.4. Let Λ = {Λ k } k≥ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) be a complex sequence, with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. Then,

|f k (Λ k )| ≥ H 1 (ρ, q, p 1 , p 2 ) -1 e -C H3(ρ,q,p1,p2) √ |Λ k | P -1 k , ∀k ≥ 1, ( 62 
)
where C is a positive constant, only depending on |Λ 1 |, β, p 0 and α (increasing with respect to α), H 1 (ρ, q, p 1 , p 2 ), f k and P k are respectively given in (24), ( 60) and [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF], and H 3 is defined by

       H 3 (ρ, q, p 1 , p 2 ) = 1 + q + 1 + q ρ 2 p 2 1 + p 2 , H 3 (ρ, q, p 1 , p 2 ) = 1 + q + 1 ρ 2 p 2 1 + p 2 , when Λ is real. Proof. As said before, if Λ = {Λ k } k≥ ∈ Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α), then f k (see (60))
is an entire function over C with simple zeros at the points {Λ n } n≥1,n =k . Moreover, from assumption (H1), we have

|f k (Λ k )| = n≥1 n =k Λ n -Λ k Λ n = 0.
In order to obtain lower estimates of |f k (Λ k )| let us decompose the set {n ≥ 1 : n = k} into the following sets:

     S 1 (k) := {n ≥ 1 : 1 ≤ |n -k| < q} , S 2 (k) := {n ≥ 1 : |n -k| ≥ q, |Λ n | ≤ 2|Λ k |} , S 3 (k) := {n ≥ 1 : |n -k| ≥ q, |Λ n | > 2|Λ k |} . Then, |f k (Λ k )| = n∈S1(k) 1 - Λ k Λ n n∈S2(k) 1 - Λ k Λ n n∈S3(k) 1 - Λ k Λ n := 3 i=1 P (k) i . ( 63 
)
Let us estimate each term in (63) and, to this aim, let us take n ∈ S 1 (k). In particular, n < k + q and, from (H4) and (40) (or [START_REF] Tenenbaum | On the null-controllability of diffusion equations[END_REF] in the real case), we deduce

|Λ n | ≤ |Λ k+q | ≤ 2 p 2 1 |k + q| 2 + 2C(1 + q) 2 ρ 2 p 4 1 ≤ 2 p 2 1 p 2 |Λ k | + α + q 2 + 2C(1 + q) 2 ρ 2 p 4 1 ≤ 4 p 2 2 p 2 1 |Λ k | + 2C(1 + q) 2 p 2 1 + 2C(1 + q) 2 ρ 2 p 4 1 := 4 p 2 2 p 2 1 |Λ k | + A, ∀n ∈ S 1 (k), ( or 
|Λ n | ≤ 4 p 2 2 p 2 1 |Λ k | + 2C p 2 1 + 2C ρ 2 p 4 1 := 4 p 2 2 p 2 1 |Λ k | + A, ∀n ∈ S 1 (k),
when Λ is a real sequence). In the previous inequalities, C is a positive constant independent of ρ, q, p 1 and p 2 .

If x ≥ |Λ 1 |, one has log 4 p 2 2 p 2 1 x + A = log(x) + log 4 p 2 2 p 2 1 + A x ≤ √ x + log 4 p 2 2 p 2 1 + A |Λ 1 | .
On the other hand, thanks to [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF] and [START_REF] Ouaili | Contrôlabilité de Quelques Systèmes Paraboliques[END_REF], we also deduce

4 p 2 2 p 2 1 + A |Λ 1 | = 4 p 2 2 p 2 1 + C(1 + q 2 ) |Λ 1 | 1 p 2 1 + 1 ρ 2 p 4 1 = 4 |Λ 1 | ρ 2 p 2 1 p 2 2 + C(1 + q 2 ) ρ 2 p 2 1 + 1 |Λ 1 | ρ 2 p 4 1 ≤ C 1 + ρp 2 2 + q 2 ρ 2 p 4 1 , (or 4 p 2 2 p 2 1 + A |Λ1| ≤ C(1+ρp 2 
2 )

ρ 2 p 4 1
when Λ is real). Thus,

P (k) 1 = n∈S1(k) |Λ n -Λ k | |Λ n | ≥ n∈S1(k) |Λ n -Λ k | 4p 2 2 p 2 1 |Λ k | + A = P -1 k 4p 2 2 p 2 1 |Λ k | + A 2q-2 ≥ e -(2q-2) √ |Λ k | 4p 2 2 p 2 1 + A |Λ1| 2q-2 P -1 k ≥ C ρ 2 p 4 1 1 + ρp 2 2 + q 2 2q-2 e -(2q-2) √ |Λ k | P -1 k , (64) 
where P k is given in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] and C is a new a positive constant independent of ρ, q, p 1 and p 2 . In the real case, we deduce the following inequality for P (k) 1 :

P (k) 1 ≥ C ρ 2 p 4 1 1 + ρp 2 2 2q-2 e -(2q-2) √ |Λ k | P -1 k . (65) 
Let us now estimate the product P (k) 2 . At this point we will use the gap condition assumed in hypothesis (H5) when |n -k| ≥ q. We will follow some ideas from [START_REF] Benabdallah | Sharp estimates of the onedimensional boundary control cost for parabolic systems and application to the N -dimensional boundary null controllability in cylindrical domains[END_REF]. Using again Lemma 2.1 (or inequality [START_REF] Tenenbaum | On the null-controllability of diffusion equations[END_REF] in the real case), we deduce

k + n |Λ k | ≥ k k p1 + C(1+q) ρp 2 1 = ρp 2 1 k ρp 1 k + C(1 + q) ≥ ρp 2 1 ρp 1 + C(1 + q) := B, ∀n, k ≥ 1. ( 66 
) (or k + n |Λ k | ≥ k k p1 + C ρp 2 1 = ρp 2 1 k ρp 1 k + C ≥ ρp 2 1 ρp 1 + C := B, ∀n, k ≥ 1. ( 67 
)
when Λ is real). Then, if n ∈ S 2 (k),

P (k) 2 = n∈S2(k) Λ n -Λ k Λ n ≥ n∈S2(k) ρ 2 |k -n||k + n| |Λ k | ≥ n∈S2(k) Bρ 2 |k -n| |Λ k | ,
where B is given in (66) (or (67) in the real case). Let r k := # {n ∈ S 2 (k) : n ≤ k -q} and s k := # {n ∈ S 2 (k) : n ≥ q + k}. Then, from the previous estimate, one has

P (k) 2 ≥ r k ! Bρ 2 |Λ k | r k s k ! Bρ 2 |Λ k | s k := P (k) 2,1 P (k) 2,2 . 
Observe that Stirling's formula implies the existence of a positive constant c 0 > 0 such that n! ≥ c 0 √ 2πn n e n , ∀n ∈ N.

On the other hand, for c 1 = e -1 one has

x log x ≥ -c 1 , ∀x ∈ (0, ∞).

Thus,

           P (k) 2,1 = r k ! Bρ 2 |Λ k | r k ≥ c 0 Bρr k 2 e |Λ k | r k = c 0 exp 2e √ Λ k Bρ Bρr k 2e |Λ k | log Bρr k 2e |Λ k | ≥ c 0 exp -2c 1 e Bρ |Λ k | .
Taking into account the expression of B (see (66), resp., (67) in the real case) and inequalities [START_REF] Lissy | The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation[END_REF] and [START_REF] Ouaili | Contrôlabilité de Quelques Systèmes Paraboliques[END_REF], we can conclude the existence of positive constant C 1 and C 2 (independent of ρ, q, p 1 , p 2 and T ) such that

-C 1 (1 + q) ρ 2 p 2 1 ≤ -1 Bρ ≤ -C 2 (1 + q) ρ 2 p 2 1 , (resp., -C 1 ρ 2 p 2 1 ≤ -1 Bρ ≤ -C 2 ρ 2 p 2 1
, in the real case).

Therefore,

P (k) 2,1 ≥ C exp -C(1+q) ρ 2 p 2 1 |Λ k | , (resp., P (k) 2,1 ≥ C exp -C ρ 2 p 2 1 |Λ k | , in the real case).
A similar reasoning can be applied to P (k) 2,2 . Therefore, we have proved:

P (k) 2 ≥ C exp -C(1+q) ρ 2 p 2 1 |Λ k | , (resp., P (k) 2 ≥ C exp -C ρ 2 p 2 1 |Λ k | , in the real case), (68) 
for any k ≥ 1. Again, C is a positive constant independent of ρ, q, p 1 , p 2 and T .

In order to finish, let us analyze the third product in (63). To this aim, we will use the inequalities

log(1 -x) ≥ -2x, ∀x ∈ 0, 1 2 
, and

|Λ k | |Λ n | < 1 2 , ∀n ∈ S 3 (k).
From these inequalities and (H6), we can write N (r) ≤ α + p 2 √ r, for any r > 0, and log P

(k) 3 ≥ n∈S3(k) log 1 - |Λ k | |Λ n | ≥ -2|Λ k | n∈S3(k) 1 |Λ n | ≥ -2|Λ k | ∞ 2|Λ k | 1 r dN (r) = -2|Λ k | - N (2|Λ k |) 2|Λ k | + ∞ 2|Λ k | N (r) r 2 dr ≥ -2|Λ k | ∞ 2|Λ k | N (r) r 2 dr ≥ -2|Λ k | ∞ 2|Λ k | α + p 2 √ r r 2 dr = -2|Λ k | α 2|Λ k | + 2p 2 2|Λ k | = -α -2 √ 2p 2 |Λ k |.
Coming back to (63) and putting together the previous inequality and inequalities (64) (or (65) in the real case) and (68), we conclude that inequality (62) holds. This ends the proof.

Additional properties and proof of Theorem 3.2.

In this paragraph we will prove some additional properties that we will use in the proof of Theorem 3.2. To this end, we will introduce a "mollifier" function and we will construct the entire function G k (k ≥ 1) in Theorem 3.2 by means of this function and function f k (see (60)). In order to construct this "mollifier" function, we follow the strategy of [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF][START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF].

Let us take T > 0 and a sequence Λ = {Λ k } k≥1 ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α), with parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF] (see Definition 1.3). With all these data, we fix an integer N ≥ 2 and we define the sequence {a k } k≥1 ⊂ (0, ∞) given by

a k := C N,T k 2 , where C N,T := T 2 k≥N 1 k 2 , ( 69 
)
in order to have

k≥N a k = T 2 .
Observe that this choice implies

1 N = ∞ N 1 y 2 dy ≤ k≥N 1 k 2 ≤ +∞ N -1 1 y 2 dy = 1 N -1 ,
and the estimate

N -1 2 T ≤ C N,T ≤ N 2 T. (70) 
Consider now the function

P N,T (z) := e iz T 2 k≥N cos (a k z) , z ∈ C.
With the previous data, one has: Lemma 3.5. Under the previous conditions, the following properties hold:

1. The function P N,T is entire over C and satisfies

     P N,T (0) = 1, |P N,T (z)| ≤ 1, ∀z ∈ C such that (z) ≥ 0, e -iz T 2 P N,T (z) ≤ e |z| T 2 , ∀z ∈ C.
2. There exist positive constants θ 0 > 0 and θ 1 > 0 (independent of T and N ) such that

         C N,T θ 0 1 2 |x| + 1 ≥ N =⇒ log |P N,T (x)| ≤ -θ 1 2 3 C N,T θ 0 1 2 |x|, C N,T θ 0 1 2 |x| + 1 ≤ N =⇒ log |P N,T (x)| ≤ -θ 1 N 3 C N,T θ 0 2 |x| 2 .
(71)

3. There exists a positive constant θ 2 > 0 (independent of T and N ) such that

P N,T (ix) ≥ e -θ2 √ C N,T x , ∀x ≥ 0. ( 72 
)
For the proof of Lemma 3.5, see [START_REF] Seidman | The "window problem" for series of complex exponentials[END_REF][START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF][START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF]. We are ready to prove the fundamental result stated in Theorem 3.2.

Proof of Theorem 3.2. Recall that T > 0 is given and Λ = {Λ k } k≥ is a complex sequence in L(β, ρ, q, p 0 , p 1 , p 2 , α). Let us define the function

G k (z) := 1 √ 2π f k (-iz) P N,T (z + (Λ k )) f k (Λ k ) P N,T (i (Λ k )) ; (73) 
(the function f k is given in (60)). From the properties of the functions P N,T (see Lemma 3.5) and f k we deduce that the function G k is well defined and is an entire function over C. In addition,

G k (iΛ n ) = 1 √ 2π δ kn , ∀k, n ≥ 1.
Observe that the function P N,T only has real zeros ({a n } n≥1 is a real sequence) and, then, the sequence {Λ n } n≥1, n =k are zeros of G k of multiplicity 1. This proves item 2 in Theorem 3.2.

Let us now see that e -iz T 2 G k satisfies inequality (56). From Lemmas 3.3 and 3.5, one has

e -iz T 2 G k (z) ≤ e (p2π+1) √ |z|+C e |z+ (Λ k )| T 2 √ 2π |f k (Λ k )| |P N,T (i (Λ k ))| ≤ e | (Λ k )| T 2 +(p2π+1) √ |z|+C √ 2π |f k (Λ k )| |P N,T (i (Λ k ))| e |z| T 2 ,
for any k ≥ 1. If we combine the previous inequality with

(p 2 π + 1) |z| ≤ 1 4ε (p 2 π + 1) 2 + ε|z|,
valid for any ε > 0, we conclude that there exists a positive constant C N,T,k,ε such that one has (56). This proves item 1 in Theorem 3.2. Let us prove that G k belongs to L 2 (R) and satisfies estimate (57). To this end, we will make the following choice of N :

2 + γ (p 2 π + 1) 2 1 T ≤ N ≤ 4 + γ (p 2 π + 1) 2 1 T with γ = 2 7 θ 0 θ 2 1 ; (74) 
(p 2 is given in assumption (H6)).

Using (61) and (71), we have that for |x| large enough one has

|G k (x)| ≤ e (p2π+1) √ |x|+C- θ 1 2 3 C N,T θ 0 1 2 √ |x+ (Λ k )| √ 2π |f k (Λ k )| |P N,T (i (Λ k ))| .
Observe that if

p 2 π + 1 < θ 1 2 3 C N,T θ 0 1 2 , then G k ∈ L 2 (R).
In fact, thanks to assumption (74) the previous estimate is satisfied. Indeed, recall that a k and C N,T are given in (69) and satisfies (70). So, from (74)

θ 1 2 3 C N,T θ 0 1 2 ≥ θ 1 2 3 (N -1)T 2θ 0 1 2 > p 2 π + 1. This proves G k ∈ L 2 (R).
In what follows, we will estimate G k L 2 (R) . First, from the expression of G k (see (73)) and using (61), ( 70), ( 72) and ( 74), one has

G k 2 L 2 (R) ≤ e 2θ2 √ C N,T (Λ k )+2C 2π |f k (Λ k )| 2 ∞ -∞ e 2(p2π+1) √ |x| |P N,T (x + (Λ k ))| 2 ≤ e 2θ2 [2T +γ(p2π+1) 2 /2] (Λ k )+2C 2π |f k (Λ k )| 2 ∞ -∞ e 2(p2π+1) √ |x| |P N,T (x + (Λ k ))| 2 := e 2θ2 [2T +γ(p2π+1) 2 /2] (Λ k )+2C 2π |f k (Λ k )| 2 I. (75) 
Denote

A 1 := {x ∈ R : |x + (Λ k )| < X N,T } , A 2 := {x ∈ R : |x + (Λ k )| ≥ X N,T } , where X N,T := θ 0 (N -1) 2 C N,T .
Let us first observe that, thanks to inequalities (70) and (74), it is not difficult to see the property

1 2 θ 0 1 T + γ (p 2 π + 1) 2 T 2 ≤ X N,T ≤ 18θ 0 1 T + γ (p 2 π + 1) 2 T 2 , ( 76 
)
with γ given in (74).

With the previous notations, we can write

       I = A1 e 2(p2π+1) √ |x| |P N,T (x + (Λ k ))| 2 dx + A2 e 2(p2π+1) √ |x| |P N,T (x + (Λ k ))| 2 dx := I 1 + I 2 .
The next objective is to provide an estimate of I 1 and I 2 . To this end, we will use property (71) of Lemma 3.5. Firstly, we estimate I 1 . We have:

I 1 ≤ e 2(p2π+1) √ | (Λ k )| A1 e 2(p2π+1) √ |x+ (Λ k )| e -2θ 1 N 3 C N,T θ 0 |x+ (Λ k )| 2 dx ≤ e 2(p2π+1) √ | (Λ k )|+ √ X N,T A1 e -2θ 1 N 3 C N,T θ 0 |x+ (Λ k )| 2 dx ≤ e 2(p2π+1) √ | (Λ k )|+ √ X N,T |A 1 | = 2e 2(p2π+1) √ | (Λ k )|+ √ X N,T X N,T . (77) 
Let us now estimate I 2 . If we denote

L := θ 1 2 2 C N,T θ 0 -2 (p 2 π + 1) ,
and we use again (75), we get

I 2 ≤ e 2(p2π+1) √ | (Λ k )| A2 e 2(p2π+1) √ |x+ (Λ k )| |P N,T (x + (Λ k ))| 2 dx, ≤ e 2(p2π+1) √ | (Λ k )| A2 e -L √ |x+ (Λ k )| dx ≤ 2e 2(p2π+1) √ | (Λ k )| ∞ 0 e -L √ x dx = 4e 2(p2π+1) √ | (Λ k )| 1 L 2 . ( 78 
)
As before and in order to bound L, we use again (70) and (74). Thus,

             L ≥ θ 2 1 2 5 θ 0 (N -1) T -2 (p 2 π + 1) ≥ θ 2 1 T 2 5 θ 0 + 2 2 (p 2 π + 1) 2 -2 (p 2 π + 1) = θ 2 1 T 2 5 θ0 θ 2 1 T 2 5 θ0 + 2 2 (p 2 π + 1) 2 + 2 (p 2 π + 1) ≥ θ 2 1 T 2 5 θ0 2 θ 2 1 T 2 5 θ0 + 2 2 (p 2 π + 1) 2 > 0, and 1 L 2 ≤ γ 1 T + γ (p 2 π + 1) 2 1 T 2 , (79) 
with γ given in (74).

Coming back to (75) and taking into account the inequality

x ≤ e √ x , ∀x ≥ 0, assumption (H3), ( 77) and ( 78), with X N,T and L satisfying (76) and (79), we deduce

G L 2 (R) ≤ e C 1+ √ (1+T +p2) (Λ k ) |f k (Λ k )| e C(1+p2) √ (Λ k )+ √ X N,T 1 T + γ T 2 (p 2 π + 1) 2 ≤ e C 1+ √ (1+T +p2) (Λ k ) |f k (Λ k )| e C(1+p) 1+ (Λ k )+ 1 √ T + p 2 +1 T ≤ e C 1+p2+ √ (1+T +p2)|Λ k | |f k (Λ k )| e C(1+p2) √ |Λ k |+ p 2 +1 T .
Finally, the previous inequality and (62) provide estimate (57), for G k (x). This ends the proof.

4.

A lower bound for the norm of arbitrary biorthogonal families: Proof of Theorem 1.5. This section will be devoted to prove the second main result, Theorem 1.5, of this paper. Observe that in inequality [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF] two important factors appear. The first one, e 1 T ν (ν > 0), is due to the fact we are dealing with infinite sequences. In order to obtain this factor, we will follow some ideas developed by Güichal in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] (see also [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF]). The second factor, P k (see [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]), comes from the eventual condensation of the elements of the sequence Λ. The corresponding part of the proof is completely new.

Let us consider a sequence Λ = {Λ k } k≥1 ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) (the parameters are given and satisfy [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]) such that property (26) holds, for ν > 0. On the other hand, let us also consider {q k } k≥1 ⊂ L 2 (0, T ; C), a biorthogonal family to {e k } k≥1 in L 2 (0, T ; C) (e k is the function given by ( 1)).

Associated to the sequence Λ we introduce the spaces:

E(Λ, T ) := span {e n : n ≥ 1}} L 2 (0,T ;C) , E k (Λ, T ) := span {e n : n ≥ 1, n = k}} L 2 (0,T ;C) , ∀k ≥ 1.
With this notation, one has:

Lemma 4.1. Assume that Λ = {Λ k } k≥1 ⊂ C is a complex sequence satisfying (3)
for a positive constant δ. Then, the closed space E(Λ, T ) is a proper subspace of L 2 (0, T ; C). Moreover, the family of exponentials {e k } k≥1 is minimal in L 2 (0, T ; C), that is to say, for every k ≥ 1, one has

e k / ∈ E k (Λ, T ).
The previous lemma is a well-known result for sequences that satisfy (3) (see for instance [START_REF] Schwartz | Étude des Sommes d'Exponentielles Réelles[END_REF], [START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF], [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF], [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and Remark 12).

As a consequence of Lemma 4.1, we can consider d T,k > 0, the distance between the function e k and E k (Λ, T ), i.e.,

d 2 T,k = inf p∈E k (Λ,T ) e k -p 2 L 2 (0,T ;C) = T 0 e -Λ k t -p k (t) 2 dt, ∀k ≥ 1,
where p k ∈ E k (Λ, T ) is the orthogonal projection of the function e k (t) = e -Λ k t on E k (Λ, T ). Observe that the function p k is characterized by: p k ∈ E k (Λ, T ) and

(e k -p k , e n ) L 2 (0,T ;C) = 0, ∀n ≥ 1 : n = k.
Thus, if we consider the function s k given by

s k (t) := e k (t) -p k (t) d 2 T,k = e -Λ k t -p k (t) d 2 T,k , t ∈ (0, T ), ∀k ≥ 1,
we deduce that the sequence {s k } k≥1 ⊂ E(Λ, T ) is biorthogonal to {e k } k≥1 in L 2 (0, T ; C). In fact, this family is the unique sequence biorthogonal to the exponentials {e k } k≥1 whose elements belong to E(Λ, T ). Moreover, it is optimal in the following sense: if we consider another biorthogonal family

{q k } k≥1 to {e k } k≥1 in L 2 (0, T ; C), then qk -s k ∈ E(Λ, T ) ⊥ . Since s k ∈ E(Λ, T ), we deduce qk 2 L 2 (0,T ;C) = s k 2 L 2 (0,T ;C) + qk -s k 2 L 2 (0,T ;C) ≥ s k 2 L 2 (0,T ;C) = 1 d 2 T,k , ∀k ≥ 1.
In particular,

q k 2 L 2 (0,T ;C) ≥ 1 d 2 T,k , ∀k ≥ 1.
The goal now is to obtain an upper bound of d T,k , for any k ≥ 1. From the definition of d T,k we clearly have

d T,k ≤ e k -p L 2 (0,T ;C) , ∀p ∈ E k (Λ, T ), ∀k ≥ 1.
Then,

q k L 2 (0,T ;C) ≥ 1 d T,k ≥ 1 e k -p L 2 (0,T ;C) , ∀p ∈ E k (Λ, T ), ∀k ≥ 1. ( 80 
)
In order to obtain [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF], we are going to apply the previous inequality to two appropriate functions p ∈ E k (Λ, T ). Inequality [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF] will be a direct consequence of inequality (80), written for these two functions.

4.1.

A lower bound for the norm of arbitrary biorthogonal families. First part. Let us prove that, for any k ≥ 3, one has

q k L 2 (0,T ;C) ≥ 6 π 2 B k P k e 1 T ν , (81) 
where P k and B k are respectively given in ( 23) and [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF]. Following [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF], the idea is to construct a particular function p in E k (Λ, T ). To this end, let us fix a positive integer M ≥ q +k, where q is given in assumption (H5). On the other hand, let us take

f 1 (t) := M +1 n=1 A n e n (t) = M +1 n=1 A n e -Λnt , t ∈ (0, T ), ( 82 
) with coefficients A 1 , A 2 , ..., A M +1 ∈ C. Observe that f 1 ∈ E k (Λ, T )

if and only if

A k = 0 and, when A k = 0 then

1 A k f 1 (t) = e -Λ k t + k-1 n=1 A n A k e -Λnt + M +1 n=k+1 A n A k e -Λnt = e k (t) -p(t), t ∈ (0, T ).
Therefore,

d T,k ≤ 1 A k f 1 L 2 (0,T ;C) , ∀k ≥ 1. ( 83 
)
Let us consider the coefficients A 1 , A 2 , ..., A M +1 ∈ C given by

A n := M +1 i=1 i =n (Λ i -Λ n ) -1 , 1 ≤ n ≤ M + 1. ( 84 
)
The next task will be to estimate f 1 L 2 (0,T ;C) , with f 1 and A n , 1 ≤ n ≤ M + 1, respectively given in ( 82) and (84). To this aim, we recall the following results: 

ai∈B i =n (a n -a i ) = θ r! ∂ r g ∂z r (ξ).
Lemma 4.3. The following properties hold:

1.

T 0 t N e -λt dt ≤ 2T N +1 N + 1 + λT
, for any N ≥ 1 and λ > 0.

2.

1 N ! x 1 + x N e x ≤ ∞ n=N x n n!
, for any x ≥ 0 and N ≥ 1.

Lemma 4.2 is a formula due to Jensen. On the other hand, the proof of Lemma 4.3 can be found in [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF]Lemma 4.2,Lemma 4.3]. Now, using assumption [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF], we can provide an estimate of |A k | -1 . One has:

Lemma 4.4. Let us fix k ≥ 1 and M ≥ q + k. Then, under the assumptions of Theorem 1.5, we have

|A k | -1 ≤          ν M +2-q-k (q -1)!(2k + q -1)! (M + 1 -k)! (M + 1 + k)! P -1 k , if k ≤ q, ν M -2(q-1) (2k -q)! k [(q -1)!] 2 (2k + q -1)! (M + 1 -k)! (M + 1 + k)! P -1 k , if k > q, ( 
85) where A k and P k are respectively given in (84) and [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF].

Proof. The proof is a direct consequence of assumption [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]. Indeed, let us first assume that k > q. From the expression of A k (see ( 84)), we obtain,

|A k | -1 = M +1 n=1 n =k |Λ k -Λ n | = P -1 k k-q n=1 |Λ k -Λ n | M +1 n=q+k |Λ k -Λ n | := P -1 k S 1,k S 2,k ,
where P k is given in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]. On the other hand, assumption [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] provides the following estimate

S 1,k S 2,k ≤ k-q n=1 ν k 2 -n 2 M +1 n=q+k ν k 2 -n 2 = ν M -2(q-1) k-q n=1 (k + n) k-q n=1 (k -n) M +1 n=q+k (k + n) M +1 n=q+k (n -k) = ν M -2(q-1) (2k -q)! k! (k -1)! (q -1)! (k -1)! (q -1)! (M + 1 + k)! (2k + q -1)! (M + 1 -k)! (q -1)! = ν M -2(q-1) (2k -q)! k [(q -1)!] 2 (2k + q -1)! (M + 1 -k)! (M + 1 + k)! .
Putting both inequalities together we deduce (85) in the case k > q.

We can reason as before in the case k ≤ q. In this case, the first product S 1,k in the expression of |A k | -1 does not appear. It is not difficult to deduce the following estimate:

S 2,k ≤ M +1 n=q+k ν k 2 -n 2 = ν M +2-q-k (q -1)!(2k + q -1)! (M + 1 -k)! (M + 1 + k)! .
The previous inequality implies (85) for k ≤ q. This ends the proof.

Let us continue with the proof of inequality (81) when k ≥ 3. Observe that we can apply Lemma 4.2 to f 1 with coefficients A n given in (84), r = M , B = {Λ n } 1≤n≤M +1 and g(z) = e -tz (t ∈ [0, T ] is fixed). We obtain,

f 1 (t) = M +1 n=1 (-1) M M +1 i=1 i =n (Λ n -Λ i ) e -Λnt = (-1) M θ M ! ∂ M g ∂z M (ξ) = θt M M ! e -tξ ,
where θ = θ(t) satisfies |θ| ≤ 1 and

ξ = M +1 n=1 α n Λ n , with α n ≥ 0 and M +1 n=1 α n = 1.
Using assumption (H4) and property (3), we can write:

(ξ) = M +1 n=1 α n (Λ n ) ≥ δ M +1 n=1 α n |Λ n | ≥ δ |Λ 1 | ,
where δ > 0 is a constant only depending on β (δ = 1 when β = 0). Thus,

|f 1 (t)| = θt M e -tξ M ! ≤ t M M ! e -t (ξ) ≤ t M M ! e -δ|Λ1|t , ∀t ∈ [0, T ].
Coming back to (83) with A k given in (84), we deduce that

d T,k ≤ 1 |A k | f 1 L 2 (0,T ;C) ≤ 1 M ! |A k | -1 T 0 t 2M e -2δ|Λ1|t dt 1/2 , ∀k ≥ 1.
Let us introduce the quantity

D k =        ν k+q-2 (q -1)! (2k + q -1)! δ |Λ 1 | + 1 2T P k , if k ≤ q, ν 2(q-1) [(q -1)!] 2 k(2k + q -1)! (2k -q)! δ |Λ 1 | + 1 2T P k , if k ≥ q. ( 86 
)
Let us first work with k ≥ max{3, q}. If we use Lemma 4.4 and item 1 of Lemma 4.3, we deduce

d T,k ≤ ν M -2(q-1) M ! (2k -q)!(M + k + 1)!(M -k + 1)! k [(q -1)!] 2 (2k + q -1)! T M √ 2T 2M + 1 + 2δT |Λ 1 | P -1 k ≤ ν -2(q-1) 2T 1 + 2δT |Λ 1 | (2k -q)!P -1 k (M -k + 1)! k [(q -1)!] 2 (2k + q -1)!M ! (M + k + 1)! (νT ) M = D -1 k (M + k + 1)! M (M -1) • • • (M -k + 4)(M -k + 3)(M -k + 2) (νT ) M ≤ D -1 k 1 (k + q)(k + q -1) • • • (q + 4) (M + k + 1)! (M + 1 -k -q) 2 (νT ) M = D -1 k (q + 3)! (k + q)! (M + k + 1)! (M + 1 -k -q) 2 (νT ) M , ∀k ≥ max{3, q},
where D k is given in (86). In the previous inequalities we have used that k ≥ 3 and M ≥ k + q. Now, if k is such that 3 ≤ k ≤ q, we can argue as before and deduce the same inequality. Summarizing, for any k ≥ 3, one has

d T,k ≤ D -1 k (q + 3)! (k + q)! (M + k + 1)! (M + 1 -k -q) 2 (νT ) M , ∀k ≥ 3,
where D k is given in (86).

Let us finalize the proof of inequality (81) when k ≥ 3. The previous estimate of d T,k and item 2 of Lemma 4.3 allow us to write:

π 2 6 1 d T,k = ∞ M =k+q 1 (M + 1 -k -q) 2 1 d T,k ≥ D k (k + q)! (q + 3)! ∞ M =k+q 1 (M + k + 1)! 1 (νT ) M = (νT ) k+1 D k (k + q)! (q + 3)! ∞ n=2k+q+1 1 n! 1 (νT ) n ≥ (νT ) k+1 D k (k + q)! (q + 3)! 1 (2k + q + 1)! 1 (1 + νT ) 2k+q+1 e 1 νT ,
where D k is given in (86). Coming back to (80), the previous inequality proves (81).

4.2.

A lower bound for the norm of arbitrary biorthogonal families. Second part. In order to finish the proof of Theorem 1.5, let us now show that, for any k ≥ 1, one has

q k L 2 (0,T ;C) ≥ E k P k , (87) 
where E k and P k are respectively given in ( 29) and ( 23).

Let us introduce the function

f 2 (t) = {n≥1:|k-n|<q} A n e n (t) = {n≥1:|k-n|<q} A n e -Λnt , t ∈ (0, T ), (88) 
with coefficients A n ∈ C given by

A n := {i≥1:|k-i|<q} i =n (Λ i -Λ n ) -1 , n ≥ 1 : |k -n| < q. ( 89 
)
Observe that A k = P k = 0 (P k is given in ( 23)). As in the previous subsection, we can write

1 A k f 2 (t) = e -Λ k t + {n≥1:0<|k-n|<q} A n A k e -Λnt = e k (t) -p(t), t ∈ (0, T ).
Therefore,

d T,k ≤ e k -p L 2 (0,T ;C) = P -1 k f 2 L 2 (0,T ;C) , ∀k ≥ 1. ( 90 
)
Given k ≥ 1, we consider the set

B = {Λ n : |k -n| < q}.
and the number r + 1 = #B. It is not difficult to see that

r = k + q -2, if 1 ≤ k < q, 2(q -1), if k ≥ q,
and, therefore r ≥ 1 (q ≥ 2). Now, if we apply Lemma 4.2 to f 2 with coefficients A n given by (89), the set B, r and g(z) = e -tz (t ∈ [0, T ] is fixed), we deduce The previous expression of ξ and assumption (H4) also allow us to deduce

f 2 (t) = θ r! t r e -t ξ ,
( ξ) = {n≥1:|k-n|<q} α n (Λ n ) ≥ δ {n≥1:|k-n|<q} α n |Λ n | ≥ δ min Λn∈B |Λ n | = δ Λ max{1,k+1-q} ,
with δ > 0 as in (3) (δ = 1 when β = 0). Summarizing, we have proved

|f 2 (t)| ≤ 1 r! |t| r e -δ|Λ k+1-q |t , ∀t ∈ [0, T ].
Let us finalize the proof of (87). To this end, we work with the previous inequality, inequality (90), item 1 of Lemma 4.3 and the expression of r. Thus, if 1 ≤ k < q, we obtain

           d T,k ≤ 1 (k + q -2)! T 0 |t| 2(k+q-2) e -2δ|Λ1|t dt 1/2 P -1 k ≤ 1 (k + q -2)! T k+q-2 √ 2T 2(k + q -2) + 1 + 2δ |Λ 1 | T P -1 k .
Now, if k ≥ q, r = 2(q -1) and a similar computation provides

d T,k ≤ 1 (2q -2)! T 2(q-1) √ 2T 4(q -1) + 1 + 2δ |Λ k+1-q | T P -1 k .
Of course, inequality (87) is a direct consequence of these inequalities and inequality (80). This finally ends the proof of Theorem 1.5.

5.

Application to the boundary controllability problem for some parabolic systems. This section will be devoted to apply Theorems 1.4 and 1.5 to two particular parabolic systems in order to provide some new results on the control cost for the boundary controllability problem associated to these systems. To be precise, we will revisit the controllability problems analyzed in [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF] and [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] and we will prove new estimates of the control cost with respect to the final time T > 0. Some results in this section have been previously announced in [START_REF] González-Burgos | Sharp estimates of the one-dimensional boundary control cost for parabolic systems[END_REF].

5.1.

A 2 × 2 linear coupled parabolic system. Let us consider the one-dimensional Dirichlet-Laplace operator

L 1 := -∂ xx with domain D( L 1 ) = H 2 (0, π) ∩ H 1 0 (0, π). It is well-known that ( L 1 , D( L 1 )
) is self-adjoint and admits a sequence of eigenvalues Λ 1 = {λ On the other hand, let Q ∈ L 2 (0, π) be a given function and consider the operator

L 2 := -∂ xx + Q with domain D( L 2 ) = D( L 1 ). Again, ( L 2 , D( L 2 )) is self-adjoint, admits a sequence of increasing eigenvalues Λ 2 = {λ (2)
k } k≥1 and a sequence of normalized eigenfunctions {ϕ [START_REF] Allonsius | Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method[END_REF] k } k≥1 which is an orthonormal basis of L 2 (0, π).

In this section we will revisit the boundary controllability problem for the system

     ∂ t y + L 2 y = 0 in Q T := (0, T ) × (0, π), y(•, 0) = Bv, y(•, π) = 0 on (0, T ), y(0, •) = y 0 in (0, π), (91) 
where

y 0 ∈ H -1 0, π, R 2 is the initial datum, v ∈ L 2 (0, T ) is a scalar control, the operator (L 2 , D(L 2 )
) is given by ( 13) and B ∈ R 2 is the control vector. It is interesting to observe that we want to control system (91), two variables, with a unique control function v ∈ L 2 (0, T ).

For every y 0 ∈ H -1 0, π; R 2 , system (91) admits a unique solution defined by transposition, y, which satisfies

y ∈ L 2 Q T ; R 2 ∩ C 0 [0, T ]; H -1 0, π; R 2 .
It is well-known that, when Q ∈ L 2 (0, π) satisfies ( 14), one has

λ (2) k = λ (1) 
k + ε k = k 2 + ε k , ∀k ≥ 1, with {ε k } k≥1 ∈ 2 .
In particular, lim ε k = 0 (see for instance [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]). Observe that in this case, the eigenvalues of the operator L 2 do not fulfill the gap condition (5) and the null controllability of system (91) has a minimal time T 0 of null controllability which is defined as:

T 0 = lim sup -log |ε k | k 2 ∈ [0, ∞]. (92) 
To be precise, one has: 

Theorem 5.1. Let us consider Q ∈ L 2 (0, π), a function satisfying Q ≡ 0 and (14) 
k = λ (2) n ∀k, n ≥ 1. ( (1) 
) 93 
2. Assume that (93) holds and consider T 0 given in (92). Then (a) If T > T 0 , system (91) is null controllable at time T . (b) If T < T 0 , system (91) is not null controllable at time T .

The previous result has been proved in [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]. In this reference, the author also shows that T 0 depends on Q ∈ L 2 (0, π) and satisfies this property: given τ ∈ [0, ∞], there exists Q ∈ L 2 (0, π) satisfying ( 14) such that T 0 = τ . Thus, the minimal time T 0 associated to system (91) could reach any value in the interval [0, ∞]. Therefore, there exist coefficients Q ∈ L 2 (0, π) such that the corresponding minimal time of system (91) satisfies T 0 > 0.

Remark 21. The study of the controllability of system (91) is easier when Q ∈ L 2 (0, π) does not satisfy condition [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF]. In fact, we have the following property: system (91) is null controllable at time T > 0 if and only if the system is approximately controllable at this time, i.e., if and only if (93) holds. In this case, we have that T 0 = 0 and the null controllability of the system is valid for any T > 0 (see [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]). On the other hand, it is not difficult to check that we can apply Theorem 1.2 to the sequence Λ. As a consequence, the associated control cost K(T ) for system (91) satisfies [START_REF] Bernstein | Leçons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF] and [START_REF] Boyer | Analysis of non scalar control problems for parabolic systems by the block moment method[END_REF] for appropriate positive constants C 0 , C 1 , τ 0 and τ 1 independent of T .

From now on, let us suppose that ( 14) and (93) hold. Then, when T > T 0 , we deduce that system (91) is null controllable at time T . So, for any y 0 ∈ H -1 (0, π; R 2 ), the set C T (y 0 ) := v ∈ L 2 (0, T ) : y(T, •) = 0 in (0, π), y solution of (91) , is non empty and therefore, we can define the control cost of system (91) in time T , K(T ), when T > T 0 (see [START_REF] Benabdallah | The cost of the control in the case of parabolic systems with a positive minimal time coming from the condensation index of the spectrum[END_REF]).

The positive part of the null controllability result for system (91) at time T > 0 stated in Theorem 5.1 is proved in [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF] by using the moment method. Let us briefly describe this method for system (91).

From the previous assumptions, we deduce that (L 2 , D(L 2 )) is a self-adjoint operator. Its spectrum is given by

σ(L 2 ) := Λ = Λ 1 ∪ Λ 2 = λ (1) k , λ (2) k k≥1 = k 2 , k 2 + ε k k≥1 , (94) 
and the eigenspaces of L 2 associated to λ

k and λ

k are respectively generated by φ

k = ϕ (1) k 0 and φ (2) k = 0 ϕ (2) k , ∀k ≥ 1. (1) 
Moreover, the sequence φ

(1) k , φ (2) k k≥1 
is an orthonormal basis of L 2 0, π; R 2 and an orthogonal basis of H 1 0 0, π; R 2 and H -1 0, π; R 2 . Using the spectral properties of the operator L 2 (see ( 13)) we can rewrite the null controllability problem for system (91) at time T as a moment problem. To be precise, one has: Proposition 8. Under the previous assumptions, given y 0 ∈ H -1 0, π; R 2 , the control v ∈ L 2 (0, T ) is such that the corresponding solution of (91) satisfies y(T,

•) = 0 in (0, π) if and only if v ∈ L 2 (0, T ) satisfies        b 1 ϕ (1) k,x (0) T 0 v(T -t)e -λ (1) k t dt = -e -λ (1) k T y 0 , φ (1) k 
H -1 ,H 1 0 , b 2 ϕ (2) k,x (0) 
T 0 v(T -t)e -λ (2) k t dt = -e -λ (2) k T y 0 , φ (2) k H 
-1 ,H 1 0 . (96) 
for any k ≥ 1, where λ

k are respectively given in (94) and (95). For a proof of the previous property, see [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]. In fact, when (93) holds and T > T 0 , T 0 given in (92), the corresponding null controllability problem at time T for system (91) (or equivalently, the moment problem stated in Proposition 8) can be explicitly solved as follows (see [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF] for the details): The sequence Λ given in (94) satisfies (3). Therefore, Lemma 4.1 can be applied to deduce the existence of a sequence {q

(1) k , q (2) k } k≥1 ⊂ L 2 (0, T ) biorthogonal to {e (1) k , e (2) 
k } k≥1 ⊂ L 2 (0, T ), where

e (i) k (t) = e -λ (i) k t , ∀t ∈ (0, T ), i = 1, 2. (97) 
Thus, a formal solution of the moment problem (96) is:

v(t) = k≥1 e -λ (1) k T m (1) k q 
(1)

k (T -t) + e -λ (2) k T m (2) k q 
(2)

k (T -t) , ∀t ∈ (0, T ), (98) 
where m

(i) k = -1 b i ϕ (i) k,x (0) 
y 0 , φ (i) k H -1 ,H 1 0 , ∀k ≥ 1, i = 1, 2. (99) 
Furthermore, when T > T 0 , with T 0 given in (92), the series (98) converges absolutely in L 2 (0, T ) and provides a null control v ∈ L 2 (0, T ) which in fact is a solution of the moment problem (96).

Let us see that we can conveniently choose the sequence {q

k , q

k } k≥1 in order to select a null control for system (91) associated to y 0 ∈ H -1 0, π; R 2 with minimal norm in L 2 (0, T ). For that purpose, we define (see Section 4)

E(Λ, T ) := span e (i) n : n ≥ 1, i = 1, 2} L 2 (0,T ) , E (1) 
k (Λ, T ) := span e (1)
n , e

: n ≥ 1, n = k, l ≥ 1 L 2 (0,T ) , ∀k ≥ 1 E (2) k (Λ, T ) := span e (1) (2) l 
n , e

: n ≥ 1, l ≥ 1, l = k L 2 (0,T ) , ∀k ≥ 1. (2) l 
We have: Proposition 9. Under the previous assumptions, let us suppose that (93) holds. Let us also consider T > T 0 and the sequence of functions

s (i) k (t) := e -λ (i) k t -p (i) k (t) d 2 T,k,i , t ∈ (0, T ), ∀k ≥ 1, i = 1, 2,
where d T,k,i and p

(i) k ∈ E (i) k (Λ, T ) are defined by d 2 T,k,i = inf p∈E (i) k (Λ,T ) e (i) k -p 2 L 2 (0,T ) = T 0 e -λ (i) k t -p (i) k (t) 2 dt, ∀k ≥ 1, i = 1, 2.
Then, the sequence {s

(1) k , s (2) 
k } k≥1 ⊂ E(Λ, T ) is biorthogonal to {e (1) 
k , e

k } k≥1 in L 2 (0, T ) (the function e (i) (2) 
k is given in (97)). Moreover, given y 0 ∈ H -1 (0, π; R 2 ), the control u ∈ L 2 (0, T ) given by

u(t) = k≥1 e -λ (1) k T m (1) k s (1) 
k (T -t) + e -λ (2) k T m (2) k s (2) 
k (T -t) , ∀t ∈ (0, T ), (100) where m (i) 
k is given in (99), satisfies u ∈ C T (y 0 ), u ∈ E(Λ, T ) ( u is the function u(t) = u(T -t), t ∈ (0, T )) and u L 2 (0,T ) = inf v∈C T (y0) v L 2 (0,T ) .
Proof. As said before, under assumption (93), the sequence Λ satisfies (3). Then, the family {e

(1) k , e (2) 
k } k≥1 is minimal in L 2 (0, T ). In particular, we deduce that the functions s (i) k are well defined, live in E(Λ, T ), for any k ≥ 1 and i = 1, 2, and are biorthogonal to {e

(1) k , e (2) 
k } k≥1 . These properties together with T > T 0 imply that the function u defined in (100) satisfies u ∈ E(Λ, T ) and solves the null controllability problem at time T for system (91) and y 0 ∈ H -1 (0, π; R 2 ), i.e., u ∈ C T (y 0 ).

Let us now consider another null control v ∈ C T (y 0 ). Using the equivalence stated in Proposition 8 we infer that v satisfies the moment problem (96). Therefore,

T 0 [v(T -t) -u(T -t)] e -λ (i) k t dt = 0, ∀k ≥ 1 and i = 1, 2, that is to say, v -u ∈ E(Λ, T ) ⊥ ( v and u are defined as v(t) = v(T -t) and u(t) = u(T -t), t ∈ (0, T )). Using that u ∈ E(Λ, T ), we deduce v 2 L 2 (0,T ) = v 2 L 2 (0,T ) = ( v -u) + u 2 L 2 (0,T ) = v -u 2 L 2 (0,T ) + u 2 L 2 (0,T ) ≥ u 2 L 2 (0,T ) = u 2 L 2 (0,T )
. The previous inequalities prove the result. This finalizes the proof.

Our objective is to apply Theorems 1.4 and 1.5 to system (91) in a particular case. To this end, let us state a technical result of inverse spectral theory whose proof can be found in [START_REF] Pöschel | Inverse Spectral Theory[END_REF] (see also [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF]):

Lemma 5.2. Let us consider {ε k } k≥1 , a sequence in 2 . Then, there exists a function Q ∈ L 2 (0, π) satisfying (14) such that σ( L 2 ) = Λ 2 = k 2 + ε k k≥1 , where L 2 := -∂ xx + Q with domain D( L 2 ) = H 2 (0, π) ∩ H 1 0 (0, π).
From now on, we will take

ε k = e -k 2γ , k ≥ 1, with γ ∈ (0, ∞), and B = (b 1 , b 2 ) t with b 1 b 2 = 0. Clearly {ε k } k≥1 ∈ 2
and we can apply Lemma 5.2. We will work with the function Q γ associated to the previous sequence provided by Lemma 5.2 and the corresponding sequences of eigenvalues and orthogonal basis Λ 1 , Λ 2 and {ϕ

k } k≥1 and {ϕ

k } k≥1 associated to the operators L 1 and L 2 . With this choice, we consider the parabolic control system (91) with L 2 given in [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF].

Observe that the sequence Λ of eigenvalues of the operator L 2 can be rearranged as an increasing sequence Λ = {Λ k } k≥1 (γ ∈ (0, ∞)) doing:

Λ 2k-1 = k 2 , Λ 2k = k 2 + e -k 2γ , ∀k ≥ 1. (101) 
It is clear that the functions

φ 2k-1 = ϕ (1) k 0 and φ 2k = 0 ϕ (2) k , ∀k ≥ 1. (102) 
are an orthonormal basis of eigenfunctions of the operator L 2 in L 2 (0, π; R 2 ) and an orthogonal basis of H 1 0 (0, π; R 2 ) and H -1 (0, π; R 2 ). The controllability properties of system (91) at time T > 0 can be deduced from Theorem 5.1. In this case, system (91) is approximately controllable for any final time T > 0. The expression of the minimal time is (see (92))

T 0 = lim -log e -k 2γ k 2 =    0 if γ ∈ (0, 1), 1 if γ = 1, ∞ if γ > 1.
We deduce then 1. If γ ∈ (0, 1), system (91) is null controllable at any final time T > 0.

2. If γ = 1, system (91) is null controllable at any final time T > 1 and is not controllable at time T when T < 1. 3. When γ > 1, system (91) is never null controllable at any final time T > 0.

Observe that, when γ ∈ (0, 1) and Q γ ∈ L 2 (0, π) is the function provided by Lemma 5.2 associated to ε k = e -k 2γ , system (91) is null controllable at time T , for any T > 0. We can introduce the control cost K(T ) associated to this system (see [START_REF] Benabdallah | The cost of the control in the case of parabolic systems with a positive minimal time coming from the condensation index of the spectrum[END_REF]). Our objective is to analyze the dependence of K(T ) with respect to T and γ ∈ (0, 1).

First, let us see that the sequence Λ = {Λ k } k≥1 (see ( 101)) of eigenvalues of the operator L 2 is in the class L(β, ρ, q, p 0 , p 1 , p 2 , α) (see Definition 1.3) for appropriate parameters satisfying [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]. One has: Proposition 10. Let us fix γ ∈ (0, 1) and consider the sequence Λ = {Λ k } k≥1 with Λ k given in (101), k ≥ 1. Then, the sequence Λ satisfies Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) and [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF], with β = 0, q = 2,

ρ = 1 16 , p 0 = 1, p 1 = p 2 = 2, α = 2 + 1 √ e and ν = 1 2 1 + 1 e .
Proof. The proof of this result is a direct consequence of Proposition 6 and Remark 16. Indeed, the sequence Λ can be written as

Λ = Λ 1 ∪ Λ 2 with Λ 1 = λ (1) k k≥1 = k 2 k≥1 and Λ 2 = λ (2) k k≥1 = k 2 + e -k 2γ k≥1 .
It is easy to see that Λ 1 ∈ L (β, ρ 1 , q, π 0 , π 1 , π 2 , α 1 ) and satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] with β = 0,

ρ 1 = 1, q = 1, π 0 = π 1 = π 2 = 1, α 1 = 1 and ν = ρ 1 = 1. On the other hand, ε 0 = sup k≥1 |ε k | = sup k≥1 e -k 2γ = e -1 .
In addition, the sequence Λ can be explicitly defined by (101) (see (50)). So, from Proposition 6 and Remark 16, we deduce that Λ ∈ L(β, ρ, q, π 0 , p 1 , p 2 , α) and satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] with parameters given in the statement of the result. This finalizes the proof.

With the previous choice, the sequence Λ satisfies property (H5) for q = 2. In this case, let us see how the term P k (see [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]) can be estimated. One has: Proposition 11. Let us fix γ ∈ (0, 1) and consider the sequence Λ given by (101).

Then, P 1 = e and        1 (2n -1) e n 2γ ≤ P 2n-1 ≤ 1 (2n -1) -e -1 e n 2γ
, ∀n ≥ 2,

1 (2n + 1) e n 2γ ≤ P 2n ≤ 1 (2n + 1) -e -1 e n 2γ
, ∀n ≥ 1,

where P k and the sequence Λ are respectively given in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] and (101).

Proof. Let us prove the result when k = 2n, with n ≥ 1. The case k = 2n -1, with n ≥ 1, is similar. From ( 23) and (101), we deduce

P -1 2n = (Λ 2n -Λ 2n-1 ) (Λ 2n+1 -Λ 2n ) = e -n 2γ (2n + 1) -e -n 2γ
, ∀n ≥ 1.

The previous formula provides the proof of the result.

Remark 22. Let us take a sequence {ε k } k≥1 in 2 such that 0 < ε k < 1 for any k ≥ 1. From Lemma 5.2, there exists a function Q ∈ L 2 (0, π) such that σ( L 2 ) = k 2 + ε k k≥1 . As before, we can consider the operator L 2 associated to system (91) (see [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF]) and the corresponding sequence of eigenvalues Λ given by (94). In this case, we can repeat the computations in Proposition 11 and deduce

P 1 = ε -1 1 and        1 (2n -1) ε n ≤ P 2n-1 ≤ 1 (2n -2) ε n , ∀n ≥ 2, 1 (2n + 1) ε n ≤ P 2n ≤ 1 2n ε n , ∀n ≥ 1,
(P k is given in [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] with q = 2). The previous estimates prove that we can construct functions Q ∈ L 2 (0, π) such that the sequence {P k } k≥1 associated to the sequence Λ = σ(L 2 ) can have any arbitrary explosive behavior.

The main results of this section concern the control cost K(T ) associated to system (91). First, let us state a bound from above of the control cost: Theorem 5.3. Let us fix γ ∈ (0, 1) and take the function Q γ ∈ L 2 (0, π) provided by Lemma 5.2 associated to ε k = e -k 2γ . If we denote K γ (T ) the control cost of system (91) in L 2 (0, T ) at time T > 0, then, there exists a positive constant C, independent of γ, such that

K γ (T ) ≤ exp C 1 + 1 T + C (1 -γ) T + 1 -γ T γ 1-γ , ∀T > 0. ( 103 
)
Proof. Under the assumptions of the theorem, we can apply Proposition 10 and deduce that the sequence Λ = {Λ k } k≥1 (Λ k given in (101)) of eigenvalues of the operator L 2 (see ( 13)) satisfies Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) and ( 26), with β, ρ, q, p 0 , p 1 , p 2 and α given in the statement of this result.

Let us now take T > 0. Recall that the minimal time associated to system (91) is T 0 = 0. Therefore, without loss of generality, we can assume that T ∈ (0, 1). Thus, Theorem 1.4 can be applied to Λ and we deduce the existence of a family of functions {q k } k≥1 ⊂ L 2 (0, T ), biorthogonal to {e k } k≥1 in L 2 (0, T ) (for the expression of e k , see [START_REF] Allonsius | Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries[END_REF]) which satisfies [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]. In particular, there exists a positive constant C, independent of γ, such that

q k L 2 (0,T ) ≤ exp C 1 + |Λ k | + 1 T P k , ∀k ≥ 1.
If we combine the previous inequality with Proposition 11 and (101), we get

       q 2k-1 L 2 (0,T ) ≤ exp C 1 + k + 1 T + k 2γ , ∀k ≥ 1, q 2k L 2 (0,T ) ≤ exp C 1 + k + 1 T + k 2γ , ∀k ≥ 1, (104) 
for a new positive constant C, independent of γ.

Let us prove the result. To this end, we consider y 0 ∈ H -1 (0, π; R 2 ) with

y 0 H -1 (0,π;R 2 ) ≤ 1.
Using the moment method, in [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF], the author proves that, taking

v(t) = k≥1 e -k 2 T m (1) 
k q 2k-1 (T -t) + e -k 2 +e -k 2γ T m (2) k q 2k (T -t) , (105) 
t ∈ (0, T ), where m

(i)
k is given in (99), one has v ∈ L 2 (0, T ) and the corresponding solution of system (91), y ∈ C 0 ([0, T ]; H -1 (0, π; R 2 )), satisfies y(T, •) = 0 in (0, π)

(φ (i)
k is given in (95)). In [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF] the author also shows that there exists a positive constant C (independent of k) such that

m (i) k ≤ C y 0 H -1 (0,π;R 2 ) ≤ C, ∀k ≥ 1, i = 1, 2.
Coming back to (105) and taking into account (104) and the previous estimate, we deduce

v L 2 (0,T ) ≤ e C(1+ 1 T ) k≥1 e -k 2 T +Ck+k 2γ ,
for a new positive constant C, independent of γ. Let us now take ε ∈ (0, 1/2), which will be fixed later. Observe that Young inequality implies

Ck ≤ εk 2 T + C 2 4εT , ∀k ≥ 1,
and therefore, we can write

-k 2 T + Ck + k 2γ ≤ -k 2 T + εk 2 T + C 2 4εT + k 2γ = h ε k 2 + C 2 4εT -εk 2 T, ∀k ≥ 1,
where the function h ε is given by

h ε (x) = -(1 -2ε) T x + x γ , x ∈ (0, ∞).
To summarize, the previous calculations provide the following estimate:

v L 2 (0,T ) ≤ e C(1+ 1 T ) e C 2 4εT k≥1 e hε(k 2 ) e -εk 2 T , (106) 
for any ε > 0.

It is easy to see that h ε possesses an absolute maximum in (0, ∞) at point

x * = γ 1 -2ε 1 T 1 1-γ .
Thus, if we take ε = (1 -γ)/2, we can write

h ε (x) ≤ h ε (x * ) = (1 -γ) γ 1 -2ε γ 1-γ 1 T γ 1-γ = 1 -γ T γ 1-γ , ∀x ∈ (0, ∞).
Going back to the formula (106), we deduce

v L 2 (0,T ) ≤ exp C 1 + 1 T + C 2 2 (1 -γ) T + 1 -γ T γ 1-γ k≥1 e -1 2 (1-γ)k 2 T .
Finally, a comparison with Gauss integral gives

k≥1 e -1 2 (1-γ)k 2 T ≤ ∞ 0 e -1 2 (1-γ)T x 2 dx = √ 2π 2 1 (1 -γ)T ≤ e 1 2(1-γ)T ,
and then,

v L 2 (0,T ) ≤ exp C 1 + 1 T + C 2 + 1 2 (1 -γ) T + 1 -γ T γ 1-γ .
It is clear that, from the previous inequality, we can deduce (103) for a new positive constant C, independent of γ. This completes the proof.

Our second result provides an estimate from below of the control cost K γ (T ) for system (91) in L 2 (0, T ) at the final time T > 0. As before, we are going to fix γ ∈ (0, 1) and take the function Q γ ∈ L 2 (0, π) provided by Lemma 5.2 associated to ε k = e -k 2γ . One has: Theorem 5.4. Under the assumptions of Theorem 5.3, there exists two positive constants τ 0 and C, independent of γ, such that

K γ (T ) ≥ C exp C T + C (1 -γ) T γ 1-γ , ∀T ∈ (0, τ 0 ). ( 107 
)
Before starting the proof of Theorem 5.4, we will show a technical result that we will use in its proof: Lemma 5.5. Let us consider T > 0 and γ ∈ (0, 1) and define the function

h(x) = -T x + x γ , ∀x ∈ (0, ∞).
Let us assume that

T < γ √ 2 -1 √ 2 2(1-γ) . (108) 
Then, there exists k 0 ≥ 1 such that

h k 2 0 ≥ (1 + log 2) 2e (1 -γ) T γ 1-γ .
Proof. Under the assumptions of the lemma, it is easy to see that the function h is increasing in (0, x) and decreasing in ( x, ∞), where

x = γ T 1 1-γ . Thus, if k 0 ≥ 1 is such that 1 2 x ≤ k 2 0 ≤ x, (109) 
then

h k 2 0 ≥ h( x/2) = 1 2 γ - γ 2 γ T γ 1-γ > 1 2 (1 + log 2) (1 -γ) γ T γ 1-γ ≥ (1 + log 2) 2e (1 -γ) T γ 1-γ
, and we would have the proof of the result.

In order the finish the proof, let us check that there exists k 0 ≥ 1 such that (109) holds. Indeed, (109) is equivalent to

1 √ 2 √ x ≤ k 0 ≤ √ x.
Observe that this property occurs if

√ x - 1 √ 2 √ x > 1,
i.e., if T satisfies (108). This ends the proof.

Proof of Theorem 5.4. As before, under the assumptions of the theorem, we know that the sequence Λ of eigenvalues of the operator L 2 (see [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF]) satisfies Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) and ( 26), with β, ρ, q, p 0 , p 1 , p 2 and α given in the statement of Proposition 10.

Let us fix T > 0. The minimal time T 0 for system (91) associated to the function Q γ is T 0 = 0. In addition, we can apply Proposition 9 and Theorem 1.5. We deduce that the optimal family {s k } k≥1 ⊂ E(Λ, T ) biorthogonal to {e k } k≥1 in L 2 (0, T ) satisfies ( 27) (e k is given in ( 1)).

We will divide the proof of the result into two parts:

1. Assume that γ ∈ (0, 1/2]. In this case, it is easy to check that, for any τ 0 ∈ (0, 1], one has 1

T ≥ 1 -γ T γ 1-γ , ∀T < τ 0 .
Therefore, inequality (107) is equivalent to prove the existence of a positive constant C 0 , independent of γ, such that

K γ (T ) ≥ C 0 exp C 0 T , ∀T ∈ (0, τ 0 ). ( 110 
)
Our objective is to find C 0 > 0 and τ 0 ∈ (0, 1], independent of γ, such that one has inequality (110).

From inequality [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF] written for the function s 3 , we deduce (ν = 1 2 1 + 1 e ):

s 3 L 2 (0,T ) ≥ 6 π 2 B 3 P 3 e 1 T ν
where (see [START_REF] Lissy | On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension[END_REF] for q = 2)

B 3 = C (νT ) 4 (1 + νT ) 9 |Λ 1 | + 1 2T ,
and C is a positive constant (β = 0 and then δ = 1). From the previous expression, it is not difficult to see that there exist C 0 > 0 and τ 0 ∈ (0, 1], independent of γ, such that B 3 P 3 ≥ C 0 e -1 2T ν , ∀T ∈ (0, τ 0 ). Coming back to the expression of s 3 L 2 (0,T ) , we finally deduce:

s 3 L 2 (0,T ) ≥ Ce 1 2T ν , ∀T ∈ (0, τ 0 ). (111) 
Let us take y 0 = φ 3 / φ 3 H -1 (see ( 102)). Then, applying Proposition 9 to y 0 , it is possible to construct the null control with minimal L 2 -norm for system (91) associated to y 0 (see (100)):

u(t) = e -4T 1 b 1 ϕ (1) 2,x (0) 1 φ 3 H -1 s 3 (T -t), ∀t ∈ (0, T ).
From (111), we also have

K γ (T ) ≥ inf v∈C T (y0) v L 2 (0,T ) = u L 2 (0,T ) = C s 3 L 2 (0,T ) ≥ Ce 1 2T ν , ∀T ∈ (0, τ 0 ).
This proves inequality (110) and inequality (107) when γ ∈ (0, 1/2].

2.

Let us now assume that γ ∈ (1/2, 1). In this case, inequality (107) is equivalent to

K γ (T ) ≥ C 0 exp C 0 T γ 1-γ , ∀T ∈ (0, τ 0 ). ( 112 
)
and therefore, our goal is to prove that there exist two positive constants C 0 and τ 0 , independent of γ, in such a way that the previous inequality holds. As before, we are going to work with an appropriate element s k0 of the optimal biorthogonal family {s k } k≥1 ⊂ E(Λ, T ) provided by Proposition 9.

Let us define τ 0 as

τ 0 = 1 2 √ 2 -1 √ 2 .
Observe that if T ∈ (0, τ 0 ), then inequality (108) is valid for any γ ∈ (1/2, 1). From Lemma 5.5, we can infer the existence of k 0 ≥ 1 such that

h k 2 0 = -k 2 0 T + (k 0 ) 2γ ≥ (1 + log 2) 2e (1 -γ) T γ 1-γ = C (1 -γ) T γ 1-γ . ( 113 
)
Consider y 0 = φ 2k0-1 / φ 2k0-1 H -1 , i.e. (see ( 102)),

y 0 (x) = k 0 2 π sin (k 0 x) 0 .
On the other hand, let us also consider the null control for system (91) associated to y 0 provided by Proposition 9:

u(•) = e -k 2 0 T 1 b 1 ϕ (1) k0,x (0) 
y 0 , φ 2k0-1 H -1 ,H 1 0 s 2k0-1 (T -•) = 1 b 1 2 π e -k 2 0 T s 2k0-1 (T -•).
Using inequality [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF], written for the function s 2k0-1 , and taking into account Proposition 11 (q = 2 and δ = 1) and (113), we deduce

                   u L 2 (0,T ) = Ce -k 2 0 T s 2k0-1 L 2 (0,T ) ≥ C T 2 5 2T + Λ 2k0-2 1/2 e -k 2 0 T P 2k0-1 ≥ C T 2 5 2T + Λ 2k0-2 1/2 1 2k 0 -1 e -k 2 0 T +(k0) 2γ = C T 2 5 2T + Λ 2k0-2 1/2 e h(k 2 0 ) 2k 0 -1 ≥ C T 2 exp C (1 -γ) T γ 1-γ .
where C is a constant independent of γ and k 0 .

As before,

K γ (T ) ≥ inf v∈C T (y0) v L 2 (0,T ) = u L 2 (0,T ) ≥ C T 2 exp C (1 -γ) T γ 1-γ , ∀T ∈ (0, τ 0 ).
Thus, we can conclude that inequality (112) holds. This ends the proof of Theorem 5.4.

Remark 23. Observe that inequalities (103) and (107) are valid when γ ∈ (0, 1). In fact, these inequalities are equivalent to:

1. If γ ∈ (0, 1/2], then, there exist three positive constants τ 0 , C 0 and C 1 (independent of γ) such that

exp C 0 1 + 1 T ≤ K γ (T ) ≤ exp C 1 1 + 1 T , ∀T ∈ (0, τ 0 ).
Observe that the previous estimates for the control cost of system (91) are similar to those obtained for the control cost of the heat equation (see for instance [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF] and [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]).

2. If γ ∈ (1/2, 1), again, there exist three positive constants τ 0 , C 0 and C 1 (independent of γ) such that exp C 0 1 + 1

T γ 1-γ ≤ K γ (T ) ≤ exp C 0 1 + 1 T γ 1-γ , ∀T ∈ (0, τ 0 ).
The previous expressions prove that the control cost blows up when γ → 1 -. This is natural because the minimal time for system (91) when γ = 1 is T 0 = 1 and the system is not null controllable at time T when T < 1.

5.2.

The linear phase-field system. Let us now apply Theorem 1.4 and Theorem 1.5 to the linear version of (15) around the constant trajectory (0, c) with c = 1 or c = -1. To be precise, we will work with the linear system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]) and ρ, τ, ξ ∈ (0, ∞). As said above, the controllability properties of this system has been analyzed in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] under the condition ξ = 1

j 2 ρ τ
, for any j ∈ N. The approximate controllability of this system is given by the next result: Theorem 5.6 (Approximate controllability). Fix T > 0. Then, system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with

L = L 3 (see (16)) is approximately controllable in H -1 (0, π; R 2 ) at time T > 0 if and only if λ (3,1) k = λ (3,2) n
for any k, n ≥ 1 (see [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]), that is to say, if and only if

ξ 2 τ 2 ( 2 -k 2 ) 2 -2ξρτ ( 2 + k 2 ) -2ρ -1 = 0, ∀k, ≥ 1, > k. (114) 
The proof of this result can be found in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]. Now, our objective is to give a null controllability result at time T > 0 for this system when (114) holds (which, in fact, is a necessary condition for the null controllability at time T of system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 ) and obtain a bound for the corresponding control cost K(T ). This problem has analyzed in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] under additional assumptions on the parameters ξ, ρ and τ . To be precise, in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] the authors prove: Theorem 5.7. Let us us fix T > 0 and consider ξ, ρ and τ , positive real numbers satisfying (114) and

ξ = 1 j 2 ρ τ , ∀j ≥ 1. (115) 
Then, system (12) with L = L 3 (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]) is exactly controllable to zero at time T > 0 in H -1 (0, π; R 2 ). Moreover, there exist two positive constants C and M , only depending on ξ, ρ and τ , such that

K(T ) ≤ Ce M/T , ∀T > 0,
where K(T ) is the control cost for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 :

K(T ) = sup y0 H -1 (0,π;R 2 ) =1 inf v∈Z T (y0) v L 2 (0,T ) , ∀T > 0. and Z T (y 0 ) := v ∈ L 2 (0, T ) : y(•, T ) = 0 in (0, π), y solution of (12) for L = L 3 .
Conditions (114) and (115) implies that the sequence Λ

(3) = {λ (3,1) k , λ (3,2) k 
} k≥1 (see [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]) satisfies the conditions in Theorem 1.2 (see Remark 1). In fact, condition (115) provides the gap condition (5) for the sequence Λ 3 . Therefore, Theorem 5.7 is a consequence of Theorem 1.2.

As said before, our objective is to analyze the null controllability of system ( 12) with L = L 3 without imposing condition (115) to the sequence Λ 3 of eigenvalues of the operator L 3 . Let us first see that this sequence is in L(β, ρ, q, p 0 , p 1 , p 2 , α) with β = 0 and appropriate parameters ρ, p 0 , p 1 , p 2 , α ∈ (0, ∞) (see Definition 1.3): Proposition 12. Let us consider ξ, ρ and τ , positive real numbers satisfying (114). Then, the sequence Λ

(3) = {λ (3,1) k , λ (3,2) k } k≥1 , with λ (3,i) k
given in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], can be rearranged as a positive increasing sequence Λ (3) = {Λ k } k≥1 satisfying Λ (3) ∈ L(0, ρ, q, p 0 , p 1 , p 2 , α) and (26), with

p 0 = p 1 = p 2 = 2 √ ξ and α = 1 2 √ ξ ρ τ + 3ρ + 4 τ + 2,
and q ≥ 2, ρ and ν positive constants only depending on ξ, ρ and τ .

Proof. The proof of this result is a direct consequence of the results in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]. Indeed, from Proposition 3.2 of [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] one has, 0 < λ

(3,1) k < λ (3,2) k , ∀k ≥ 1.
Secondly, as a consequence of assumption (114) and Theorem 5.6, we deduce that the elements of the sequence Λ (3) are pairwise different. Thus, this sequence can be rearranged into a positive increasing sequence Λ (3) = {Λ k } k≥1 that satisfies (H1) and, of course, (H2), (H3) (β = 0) and (H4).

On the other hand, taking into account the proof of Proposition 3.3 in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF], we also have that Λ (3) satisfies condition (H6) in Definition 1.3 with parameters p 0 , p 1 , p 2 and α as in the statement of the proposition.

Finally, we deduce properties (H5) and ( 26) from Proposition 2 with q, ρ and ν given in [START_REF] Pöschel | Inverse Spectral Theory[END_REF]. This ends the proof of the proposition.

In the next result we will provide further properties of the sequence Λ (3) that will be used later. Again, we will use some properties that has been proved in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]. One has: Proposition 13. Let us consider ξ, ρ and τ , positive real numbers. Then,

λ (3,2) k -λ (3,1) k+i = ξ ρ ξτ -i (2k + i) + k+i k + i + k k , ∀k, i ≥ 1, (116) where λ 
(3,i) k
is given in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and { k } k≥1 is the increasing sequence given by

k = ρ + 1 2τ 2 1 ξρ τ + 1 k 2 ρ+1 2τ 2 + ξρ τ , ∀k ≥ 1. ( 117 
)
Proof. The proof of the result can be found in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF].

Let us now analyze the control cost for the linear phase-field system, i.e., the control cost for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 . One has: Theorem 5.8. Let us consider ξ, ρ and τ , positive real numbers satisfying (114). Then, system (12) with L = L 3 (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]) is exactly controllable to zero at any time T > 0. Moreover, there exist positive constants C 0 , C 1 , M 0 and M 1 (only depending on ξ, ρ and τ ) such that

C 0 e M0/T ≤ K(T ) ≤ C 1 e M1/T , ∀T ∈ (0, 1], (118) 
where K(T ) is the control cost for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 defined in the statement of Theorem 5.7.

Proof. The result is proved in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] when the coefficients ξ, ρ and τ satisfy conditions (114) and (115). Thus, let us prove the result when these coefficients do not satisfy (115), that is to say, when one has

ξ = 1 j 2 0 ρ τ ,
for some integer j 0 ≥ 1. In this case, (116) becomes

λ (3,2) k -λ (3,1) k+i = ξ (j 0 -i) (2k + i) + k+i k + i + k k , ∀k, i ≥ 1, (119) 
where λ

(3,i) k
is given in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and { k } k≥1 is the increasing sequence given by (117). In particular, we can estimate the terms k of the sequence as follows:

ρ + 1 2τ 2 1 ξρ τ + ρ+1 2τ 2 + ξρ τ = 1 ≤ k < lim k→∞ k = ρ + 1 2τ 2 √ τ 2 √ ξρ := L,
for all k ≥ 1. We will use the previous inequalities in what follows.

If we choose i such that 1 ≤ i ≤ j 0 -1, from (119), we infer

   λ (3,2) k -λ (3,1) k+i > ξ (j 0 -i) (2k + i) , λ (3,2) k -λ (3,1) k+i < ξ (j 0 -i) (2k + i) + 2L k ≤ ξ (j 0 -1) (2k + j 0 -1) + 2L, (120) 
for any k ≥ 1. Now, if we take i = j 0 , using again (119), we deduce

     λ (3,2) k -λ (3,1) k+j0 = k+j0 k + j 0 + k k > 2 1 k + j 0 , ∀k ≥ 1, λ (3,2) k -λ (3,1) k+j0 = k+j0 k + j 0 + k k < 2L k , ∀k ≥ 1. (121) 
Finally, if i ≥ j 0 + 1, equality (119) provides the formula

λ (3,1) k+i -λ (3,2) k = ξ (i -j 0 ) (2k + i) - k+i k + i + k k , ∀k ≥ 1, ∀i ≥ j 0 + 1.
If we take k 0 ≥ 1 (only depending on ξ, ρ and τ ) such that

2L k 0 ≤ ξ 2 (2k 0 + j 0 + 1) ,
in particular, for any k ≥ k 0 and i ≥ j 0 + 1, one has

k+i k + i + k k < 2L k ≤ 2L k 0 ≤ ξ 2 (2k 0 + j 0 + 1) ≤ ξ 2 (i -j 0 ) (2k + i) , and    λ (3,1) k+i -λ (3,2) k > ξ 2 (i -j 0 ) (2k + i) ≥ ξ 2 (2k + j 0 + 1) , ∀k ≥ k 0 , λ (3,1) k+i -λ (3,2) k < ξ (i -j 0 ) (2k + i) . (122) 
The first consequence that we can obtain from (120)-( 122) is the following one: for any k ≥ k 0 , we can write

λ (3,1) k+j0 < λ (3,2) k < λ (3,1) k+1+j0 < λ (3,2) k+1 < • • • , ∀k ≥ k 0 , (λ (3,i) k
is given in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]). Thus, we can give an explicit expression of the elements of the increasing sequence Λ (3) 

= {Λ k } k≥1 (see Proposition 12): if 1 ≤ k ≤ 2k 0 +j 0 -2, we define Λ k such that {Λ k } 1≤k≤2k0+j0-2 ≡ λ (3,1) k 1≤k≤k0+j0-1 ∪ λ (3,2) k 1≤k≤k0-1
, and Λ k < Λ k+1 , for any k : 1 ≤ k ≤ 2k 0 + j 0 -3. From the (2k 0 + j 0 -1)-th term, we define

Λ 2k0+j0+2s-1 = λ (3,1) k0+j0+s 
and Λ 2k0+j0+2s = λ

(3,2) k0+s , ∀s ≥ 0. Equivalently, in the case k ≥ 2k 0 + j 0 -1, we have    Λ k = λ (3,1) 1 2 (k+j0+1) , if k ≥ 2k 0 + j 0 -1 and k + j 0 is odd, Λ k = λ (3,2) 1 2 (k-j0) , if k ≥ 2k 0 + j 0 -1 and k + j 0 is even. (123)
Our next objective will be to obtain appropriate estimates of the products P k (see [START_REF]A lower bound of the norm of the control operator for the heat equation[END_REF]) for the sequence Λ (3) . Recall that Λ (3) ∈ L(0, ρ, q, p 0 , p 1 , p 2 , α) and satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF], with p 0 , p 1 and p 2 given in Proposition 12, and q ≥ 2, ρ and ν positive constants only depending on ξ, ρ and τ . We will reason for arbitrary k ≥ 2k 0 +j 0 +q -2 because if k is such that 1 ≤ k < 2k 0 + j 0 + q -2, taking into account that |Λ k -Λ n | > 0 for any k = n (assumption (114)), we deduce the existence of two positive constants c 0 and c 1 (only depending on ξ, ρ and τ ) such that

0 < c 0 ≤ P k ≤ c 1 , ∀k : 1 ≤ k < 2k 0 + j 0 + q -2. ( 124 
)
Let us then take k ≥ 2k 0 + j 0 + q -2 and n ≥ 1 such that 1 ≤ |k -n| < q. In particular, n ≥ 2k 0 + j 0 -1 and we can use formulae (123) for the expression of Λ k and Λ n , and inequalities (120)-(122) for the corresponding indexes.

We will reasoning when k + j 0 is odd. A similar argument will provide the proof when k + j 0 is even. Indeed, if k + j 0 is odd, from (123), one has Λ k = λ with k = 1 2 (k + j 0 + 1). Thus, we can apply (121) for k -j 0 and write 2 1 1 2 (k + j 0 + 1)

≤ Λ k+1 -Λ k ≤ 2L 1 2 (k -j 0 + 1)
.

On the other hand, let us take n = k+1 with 1 ≤ |k -n| < q. Using properties (120) and ( 122) and the expression of λ (see [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and ( 18)) and Λ n (see ( 123)), it is not difficult to check the existence of positive constants c 0 and c 1 (as before, only depending on ξ, ρ and τ ) such that

c 0 k ≤ |Λ k -Λ n | ≤ c 1 k, ∀n = k + 1 with 1 ≤ |k -n| < q.
As a consequence of the previous inequalities, again, we deduce the existence of positive constants c 0 and c 1 (only depending on ξ, ρ and τ ) such that

c 0 k 2q-4 ≤ {n≥1: 1≤|k-n|<q} |Λ k -Λ n | ≤ c 1 k 2q-4 , or, equivalently (see (23)), c 0 k 2q-4 ≤ P k ≤ c 1 k 2q-4 , ∀k ≥ 2k 0 + j 0 + q -2, (125) 
(c 0 and c 1 are new positive constants only depending on ξ, ρ and τ ). We will use this inequality later.

Let us now revisit some properties on null controllability of system ( 12) with L = L 3 proved in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]: Given T > 0 and y 0 ∈ H -1 (0, π; R 2 ), there exists a control v ∈ L 2 (0, T ) such that the solution of ( 12) with L = L 3 satisfies y(•, T ) = 0 in (0, π) if and only if v ∈ L 2 (0, T ) solves the moment problem

T 0 e -Λ k t v(T -t) dt = e -Λ k T m k , ∀k ≥ 1. (126) 
In the previous equality Λ

(3) = {Λ k } k≥1 = {λ (3,1) k , λ (3,2) k } k≥1 (λ (3,i) k
is given in ( 17)) and m k only depends on y 0 and satisfies

|m k | ≤ Ck y 0 H -1 , ∀k ≥ 1, (127) 
with C > 0 only depending on ξ, ρ and τ . On the other hand, the sequence Λ (3) belongs to L(0, ρ, q, p 0 , p 1 , p 2 , α) and satisfies (26) (p 0 , p 1 and p 2 are given in Proposition 12, q ≥ 2, and ρ and ν are positive constants only depending on ξ, ρ and τ ). Then, we can apply Theorems 1.4 and 1.5 to the sequence Λ (3) . We deduce the existence of a biorthogonal family {q k } k≥1 to the exponentials {e k } k≥1 (see ( 1)) associated to the sequence Λ (3) satisfying ( 22) and [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF].

Let us first prove that, under the assumptions of Theorem 5.8, system ( 12) with L = L 3 is null controllable at any time T > 0 and satisfies the second inequality in (118). To this end, we will solve the previous moment problem for any y 0 ∈ H -1 (0, π; R 2 ). An explicit solution of this problem is

v(t) = k≥1 e -Λ k T m k q k (T -t), ∀t ∈ (0, T ).
Since q k , P k and m k respectively satisfy [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF], (124) or (125), and (127), we can prove that the previous series is absolutely convergent in L 2 (0, T ) and provide an estimate of the L 2 -norm of v. Indeed,

|m k | q k L 2 (0,T ) ≤ Ck e C √ Λ k e C/T P k ≤ Ce C √ Λ k e C/T y 0 H -1 ≤ Ce C/T e C 2 2T + T 2 Λ k = Ce C/T e T 2 Λ k , ∀k ≥ 1,
for a new positive constant C, only depending on ξ, ρ and τ . If we use (43) (p 2 and α are given in the statement of Proposition 12), we deduce that v ∈ L 2 (0, T ) and

         v L 2 (0,T ) ≤ Ce C/T ∞ k=1 e -T 2 Λ k ≤ Ce C/T α k=1 e -T 2 Λ k k>α e -T 8 ξ(k-α) 2 ≤ Ce C/T R e -T 8 ξ(x-α) 2 dx = C 8π ξT e C/T .
From this inequality we deduce the estimate from above of K(T ) in (118).

Let us now prove the first inequality in (118). To this end, we will reason as in Subsection 5.1 and, to be precise, as in Proposition 9 and the first point of the proof of Theorem 5.4. We first construct the sequence {s k } k≥1 biorthogonal to the exponentials {e k } k≥1 associated to the sequence Λ (3) . Given y 0 ∈ H -1 (0, π; R 2 ), we know that the null control with minimal L 2 -norm for system [START_REF] Cannarsa | Exact controllability to eigensolutions of the bilinear heat equation on compact networks[END_REF] with L = L 3 (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]) associated to y 0 ∈ H -1 (0, π; R Let us take = max {3, q} and y 0 = Ψ , with Ψ the eigenvector of L 3 associated to Λ with Ψ H -1 = 1 (for the expression of Ψ see Proposition 3.1 in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF]). In this case, the corresponding null control with minimal L 2 -norm is Finally, there exist C > 0, only depending on ρ, ξ and τ , such that (νT )

+1

(1 + νT )

2 +q+1 |Λ 1 | + 1 2T ≥ C e -1
2T ν , ∀T ∈ (0, 1].

Therefore, K(T ) ≥ C e 1 2T ν , ∀T ∈ (0, 1], for a new constant C > 0 only depending on ρ, ξ and τ . This proves (118) and finalizes the proof of Theorem 5.8 Theorem 5.8 in particular provides a local boundary exact controllability result to the trajectory (0, c) (c = ±1) for the nonlinear system [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF] under assumption (114). One has: Theorem 5.9. Let us consider ξ, τ and ρ three positive numbers satisfying (114), and let us fix T > 0 and c = -1 or c = 1. Then, there exists ε > 0 such that, for any (θ 0 , φ 0 ) ∈ H -1 (0, π) × (c + H 1 0 (0, π)) fulfilling θ 0 H -1 + φ0 -c H 1 0 ≤ ε, there exists v ∈ L 2 (0, T ) for which system (15) has a unique solution (θ, φ) ∈ L 2 (Q T ) ∩ C 0 ([0, T ]; H -1 (0, π; R 2 )) × C 0 (Q T ) which satisfies θ(•, T ) = 0 and φ(•, T ) = c in (0, π).

In order to obtain the proof of the previous local controllability result for system [START_REF] Cîndea | Particle supported control of a fluid-particle system[END_REF], it is enough to follow the reasoning of the reference [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] that combines inequality (118) with the general methodology developed in [START_REF] Liu | Single input controllability of a simplified fluidstructure interaction model[END_REF]. For further details, see [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF].

Remark 24. Theorem 5.9 is valid under the only assumption (114). In this sense, Theorem 5.9 generalizes the local controllability result for system (15) stated in [START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] where the authors prove the same result under assumptions (114) and (115).

where N (r) is given in [START_REF] González-Burgos | Sharp estimates of the one-dimensional boundary control cost for parabolic systems[END_REF]. Using the first property in (45) we infer

1 π 2 i k 2 -c 1 k ≤ λ (i) k ≤ 1 π 2 i k 2 + c 1 k, ∀k ≥ 1, i = 1, 2.
Therefore, we can follow the arguments in Remark 10 and deduce

-1 - 1 2 π 2 i c 1 + π i √ r < N i (r) ≤ π i √ r + c 1 π 2 i , i = 1, 2.
Coming back to the expression of N (r), we finally obtain

-2 - 1 2 c 1 π 2 1 + π 2 2 + (π 1 + π 2 ) √ r < N (r) ≤ (π 1 + π 2 ) √ r + c 1 π 2 1 + π 2 2 , ∀r > 0.
Thus, condition (H6) holds with p 0 , p 1 , p 2 and α as in the statement of Proposition 4. Finally, applying Proposition 2, we also have that the sequence Λ satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] and Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) with the parameters ρ, q, p 0 , p 1 , p 2 , α and ν given in the statement of Proposition 4.

Let us now check the gap condition [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. Taking into account property (47), we just have to check the following property

λ (1)
k -λ (2) n ≥ c 2 > 0, ∀k, n ≥ 1, and this will be deduced from the third condition in (45). Indeed, this condition implies

λ (1) k -λ (2) n ≥ r k λ (1) 
k + λ (2) n ≥ r k λ (1) 
k , ∀k ≥ 1.

If k ≤ 2c 1 p 2 1 , from the previous inequality we deduce the existence of a constant c > 0 such that λ

k -λ (2) n ≥ c, ∀n ∈ N.

If k > 2c 1 p 2 1 , then we can apply the first assumption in (45) and deduce

λ (1) k -λ (2) n ≥ r k λ (1) k ≥ r k k 2 π 2 1 -c 1 k = r k k π 2 1 (k -c 1 π 2 1 ) ≥ r k k 2 2π 2 1 = r √ 2π 1 .
This proves [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] and ends the proof of the result. Thus, condition (H6) holds with p 1 = p 2 = p and α given in (49). As a direct consequence of Proposition 2 we can deduce [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] and Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α), (q, ρ and ν given in [START_REF] Pöschel | Inverse Spectral Theory[END_REF]). We will provide better values of these parameters using the expression of Λ. Indeed, if we take r = Λ k , k ≥ 1, one has k = N (Λ k ) and

k = N (Λ k ) = Λ k + √ Λ k √ d , ∀k ≥ 1.
Observe that if Λ k = n 2 k for some n k ≥ 1, from the previous inequality we deduce

k = n k + √ Λ k √ d .
Using that x -1 ≤ x ≤ x, for any x > 0, the previous inequality provides,

Λ k + √ Λ k √ d -1 = n k + √ Λ k √ d -1 ≤ n k + √ Λ k √ d = k ≤ n k + √ Λ k √ d = Λ k + √ Λ k √ d ,
and

k ≤ 1 + 1 √ d Λ k ≤ k + 1, ∀k ≥ 1. ( 129 
)
The same property can be proved in the case in which Λ k = dn 2 k for some n k ≥ 1. Let us now prove conditions (H5), with q = 2, and [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]. If k -n ≥ 2, from (129), one has

1 + 1 √ d 2 Λ k -Λ n k 2 -n 2 ≥ k 2 -(n + 1) 2 k 2 -n 2 = 1 + 1 k + n 1 - 1 k -n ≥ 5 8 .
Thus, (H5) holds with ρ given in (49). On the other hand, if k > n, we deduce (see (129))

1 + 1 √ d 2 Λ k -Λ n k 2 -n 2 ≤ (k + 1) 2 -n 2 k 2 -n 2 = 1 + 1 k + n 1 + 1 k -n ≤ 8 3 ,
and property [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] with ν given in (49). This ends the proof of Proposition 5.

A.4. Proof of Proposition 6. Let us consider two sequences Λ 1 = {λ

k } k≥1 and Λ 2 = {λ [START_REF] Allonsius | Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method[END_REF] k } k≥1 under the conditions of Proposition 6. In particular, the sequence Λ 1 ∪ Λ 2 can be rearranged as a positive increasing sequence Λ = {Λ k } k≥1 . Let us see that Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α), for β = 0 and appropriate positive constants ρ, q, p 0 , p 1 , p 2 and α, and (26) holds for ν > 0.

First, it is clear that Λ satisfies (H1)-(H4) (β = 0). As above, using that λ

(1)

k = λ (2)
n for any k, n ≥ 1, we also have

N (r) = # k : λ (1) k ≤ r + # k : λ (2)
k ≤ r := N 1 (r) + N 2 (r), ∀r > 0.

From Remark 2 we deduce the following property:

N 1 (r -ε 0 ) ≤ N 2 (r) ≤ N 1 (r + ε 0 ), ∀r > 0, (130) 
(in the previous inequality we have taken N 1 (r -ε 0 ) = 0 when r ≤ ε 0 ). Indeed, given r > 0, if k 2 = N 2 (r), then λ

k2 ≤ r and λ

(2) k2+1 > r. In particular, λ

k2 -ε 0 ≤ λ

k2 ≤ r and r < λ ∈ L(0, ρ 1 , 1, π 0 , π 1 , π 2 , α 1 ). Thus, from (H6), we deduce π 1 √ r -α 1 ≤ N 1 (r) ≤ π 2 √ r + α 1 for any r > 0. Combining this inequality and the expression of N (r) with (130), we obtain

π 1 √ r -α 1 ≤ N (r) ≤ π 2 √ r + π 2 √ r + ε 0 + 2α 1 , if r ≤ ε 0 , π 1 √ r + π 1 √ r -ε 0 -2α 1 ≤ N (r) ≤ π 2 √ r + π 2 √ r + ε 0 + 2α 1 , if r > ε 0 .
Now, from the previous property and taking into account inequalities [START_REF] Ouaili | Minimal time of null controllability of two parabolic equations[END_REF], it is easy to deduce that N (r) satisfies

π 1 √ r -α 1 ≤ N (r) ≤ 2π 2 √ r + π 2 √ ε 0 + 2α 1 , if r ≤ ε 0 , 2π 1 √ r -π 1 √ ε 0 -2α 1 ≤ N (r) ≤ 2π 2 √ r + π 2 √ ε 0 + 2α 1 , if r > ε 0 .
In particular,

2π 1 √ r -π 1 √ ε 0 -2α 1 ≤ N (r) ≤ 2π 2 √ r + π 2 √ ε 0 + 2α 1 , ∀r > 0.
Therefore, condition (H6) holds with p 1 , p 2 and α as in the statement of Proposition 6.

Let us now see that the sequence Λ satisfies (H5) and ( 26) with q = 2 and appropriate positive parameters ρ and ν. To this end, we will use that Λ 1 is in L(0, ρ 1 , 1, π 0 , π 1 , π 2 , α 1 ) (q = 1) and satisfies [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF], for ν 1 ∈ (0, ∞) or, more precisely, we will use

ρ 1 k 2 -n 2 ≤ λ (1) k -λ (1) n ≤ ν 1 k 2 -n 2 , ∀k, n ∈ N. (131) 
The sequence {ε k } k≥1 is bounded. So, there exists k 0 ≥ 1, depending on ρ 1 and ε 0 , such that

|ε k | ≤ ε 0 ≤ ρ 1 4 (2k -1) ≤ ρ 1 4 k 2 -n 2 , ∀k, n ≥ 1 : k ≥ k 0 , n = k.
With this value of k 0 and (131), written for k and n, we obtain

           λ (1) 
k -λ (1) n

≥ ρ 1 k 2 -n 2 ≥ ρ 1 2 k 2 -n 2 , λ (1) 
k -λ (2) n ≥ λ

(1)

k -λ (1) n -ε 0 ≥ ρ 1 k 2 -n 2 - ρ 1 4 k 2 -n 2 ≥ ρ 1 2 k 2 -n 2 , λ (2) 
k -λ (2) n ≥ λ

k -λ (1) n

-2ε 0 ≥ ρ 1 k 2 -n 2 - ρ 1 2 k 2 -n 2 ≥ ρ 1 2 k 2 -n 2 ,
with k ≥ k 0 and n = k, i.e.,

λ (i) k -λ (j) n ≥ ρ 1 2 k 2 -n 2 , ∀k, n ≥ 1 : k ≥ k 0 , n = k, ∀i, j ∈ {1, 2}. ( 132 
)
As a consequence of (132), we also obtain λ

(1)

k < λ (2) 
k+1 and λ

(2)

k < λ (1) 
k+1 , for any k ≥ k 0 . This provides the following explicit formula for the terms of the increasing sequence Λ when k ≥ 2k 0 -1: 1) , λ (2) , if k = 2 -1, max λ (1) , λ (2) , if k = 2 .

Λ k =      min λ ( 
(133)

We are going to use the previous expression of the terms Λ k in order to prove condition (H5) with q = 2. Recall that the sequence Λ is real and increasing. Then,

Λ k -Λ n k 2 -n 2 > 0, ∀k, n ≥ 1 : k ≥ n + 1.
Assume that, for every n ∈ {1, . . . , 2k 0 -2} fixed, one has

lim inf k→∞ Λ k -Λ n k 2 -n 2 ≥ ρ 1 4
and lim sup k→∞

Λ k -Λ n k 2 -n 2 ≤ ν 1 4 . (134) 
Then, there exists a positive constant ρ, only depending on k 0 and ρ 1 or, equivalently, on ρ 1 and ε 0 , such that Λ k -Λ n ≥ ρ k 2 -n 2 , ∀k, n ∈ N : 1 ≤ n ≤ 2k 0 -2 and n ≤ k.

In this way, we have proved condition (H5) for q = 1 and k, n ∈ N such that 1 ≤ n ≤ 2k 0 -2 and n ≤ k. We will prove (134) below.

Let us now see that the sequence Λ satisfies (H5), with q = 2 and an appropriate value of the parameter ρ, when k, n ≥ 1 with k ≥ n + 2 and n ≥ 2k 0 -1. We divide the proof into four cases:

1. Assume that k = 2 -1 and n = 2m -1, with , m ≥ k 0 and k -n ≥ 2.

In particular, -m ≥ 1, Λ k = λ (i) and Λ n = λ (j) m , with i, j ∈ {1, 2}. Thus, from (132)

Λ k -Λ n = λ (i) -λ (j) m ≥ ρ 1 2 2 -m 2 = ρ 1 8 (k + 1) 2 -(n + 1) 2 = ρ 1 8 (k + n + 2) (k -n) ≥ ρ 1 8 k 2 -n 2 .
2. Assume now that k = 2 -1 and n = 2m, with , m ≥ k 0 and k -n ≥ 2. In particular, -m ≥ 3/2, Λ k = λ (i) and Λ n = λ (j) m , with i, j ∈ {1, 2}, and we can apply (132): and Λ n = λ (j) m , with i, j ∈ {1, 2}. Applying again (132), we get

Λ k -Λ n = λ (i) -λ (j) m ≥ ρ 1 2 2 -m 2 = ρ 1 8 (k + 1) 2 -n 2 ≥ ρ 1 8 k 2 -n 2 .
Λ k -Λ n = λ (i) -λ (j) m ≥ ρ 1 2 2 -m 2 = ρ 1 8 k 2 -n 2 .
4. In the case k = 2 and n = 2m -1, with , m ≥ k 0 and k -n ≥ 2 we will use the inequality

k 2 -(n + 1) 2 ≥ 1 2 k 2 -n 2
which is valid for any k, n ≥ 1 such that k ≥ n + 2. Also, -m ≥ 1/2, i.e., -m ≥ 1 and we can apply (132). As before, Λ k = λ (i) and Λ n = λ (j) m , with i, j ∈ {1, 2}, and

Λ k -Λ n = λ (i) -λ (j) m ≥ ρ 1 2 2 -m 2 = ρ 1 8 k 2 -(n + 1) 2 ≥ ρ 1 16 k 2 -n 2 .
We can conclude that property (H5) holds for the sequence Λ with q = 2 and ρ = min ρ, ρ 1 16 .

Recall that the constant ρ only depends on ρ 1 and ε 0 . Therefore, ρ only depends on ρ 1 and ε 0 .

2 T 6 π 2 B k e 1 T

 2621 in inequality[START_REF] González-Burgos | Boundary controllability of a one-dimensional phase-field system with one control force[END_REF] of Theorem 1.4, and max ν , E k

  k≥1

Lemma 4 . 2 .

 42 Let B := {a n } 1≤n≤r+1 ⊂ C be a set of distinct points, r ≥ 1, and let us fix g an analytic function in a convex domain Ω ⊂ C such that B ⊂ Ω. Then, there exists θ ∈ [-1, 1] and ξ ∈ Conv (B), the convex hull of B, such that r+1 n=1 g(a n )

  where θ = θ(t) is such that θ ≤ 1 and ξ ∈ Conv (B), i.e., ξ = {n≥1:|k-n|<q} α n Λ n with α n ≥ 0 and {n≥1:|k-n|<q} α n = 1.

( 1 )

 1 k } k≥1 = {k 2 } k≥1 and normalized eigenfunctions given by ϕ ) , ∀k ≥ 1, x ∈ (0, π).

  . Given T > 0 and B = (b 1 , b 2 ) t , one has 1. System (91) is approximately controllable at time T > 0 if and only if b 1 b 2 = 0 and λ

  2 ) isu(t) = k≥1 e -Λ k T m k s k (T -t), ∀t ∈ (0, T ),where m k depends on y 0 and appears in the corresponding moment problem (126).

1 T 1 T

 11 u(t) = e -Λ T m s (T -t), ∀t ∈ (0, T ), and K(T ) ≥ u L 2 (0,T ) = e -Λ T |m | s (m only depends on ρ, ξ and τ ). If we use inequalies[START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF], for the function s , and (124) or (125) for k = , we deduce the existence of a positive constant C, only depending on ρ, ξ and τ , such that K(T ) ≥ CB e ν , ∀T > 0.

A. 3 .

 3 Proof of Proposition 5. Let us consider the sequence Λ = {k 2 } k≥1 ∪ {dk 2 } k≥1 with d > 0. Thanks to assumption √ d ∈ Q, it is clear that k 2 = dn 2 for any k, n ≥ 1. So, the sequence Λ = {k 2 } k≥1 ∪ {dk 2 } k≥1 can be rearranged as an increasing sequence Λ = {Λ k } k≥1 that satisfies (H1)-(H4) with β = 0. On the other hand, N (r) = # k : k 2 ≤ r + # k : dk 2 ≤ r =

( 2 )

 2 k2+1 ≤ λ (1) k2+1 + ε 0 , (ε 0 = sup k≥1 |ε k |) and λ (1) k2 ≤ r + ε 0 and r -ε 0 < λ (1)k2+1 . Applying item 2 of Remark 2, property (130) can be easily deduced.Recall that Λ 1 = λ (1) k k≥1

3 .

 3 If k = 2 and n = 2m, with , m ≥ k 0 and k -n ≥ 2, then -m ≥ 1, Λ k = λ (i)
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Appendix A. Proof of Propositions 3, 4, 5 and 6.

A.1. Proof of Proposition 3. Let us take Λ = {Λ k } k≥1 ⊂ (0, ∞), a sequence under the assumptions of the proposition. It is clear that the sequence Λ satisfies (H1)-(H4) for β = 0.

Let us first see that property [START_REF] Young | An Introduction to Nonharmonic Fourier Series[END_REF] implies property (H6). Indeed, given r > 0, one has N (r) = k if and only if Λ k ≤ r and Λ k+1 > r. Since the sequence Λ satisfies

we can write

i.e., condition (H6) holds with p 0 , p 1 , p 2 and α as in the statement of the proposition.

Let us now see that we can deduce (H5) from property [START_REF] Young | An Introduction to Nonharmonic Fourier Series[END_REF]. First, one has

As a direct consequence, one also has

that together with (128) provides

clearly one gets (H5) with ρ as in the statement. Otherwise, √ Λ 1 < γ 0 and, from the previous inequality, we deduce

for any k, n : k ≥ n. In this case we also deduce (H5) with ρ given in the statement. Finally, let us prove [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF]. Reasoning as before, we can write

for any k, n : k ≥ n, that together with (128) gives

In the case in which

for any k, n : k ≥ n. We also obtain [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] in this case with ρ given in the statement. This finalizes the proof of Proposition 3.

A.2. Proof of Proposition 4. Let us consider {λ

k } k≥1 and {λ

k } k≥1 , two sequences satisfying (45) and (47). It is clear that, from (47) and the third condition in (45), the sequence {λ

k } k≥1 can be rearranged as an increasing sequence Λ = {Λ k } k≥1 .

First, let us see that [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] holds and Λ ∈ L(β, ρ, q, p 0 , p 1 , p 2 , α) for appropriate positive constants ρ, q, p 0 , p 1 , p 2 , α and ν. It is clear that Λ satisfies (H1)-(H4). On the other hand, using that λ

n for any k, n ≥ 1, we also have

The next task will be the proof of (134). To this end, let us fix n such that 1 ≤ n ≤ 2k 0 -2 and k ≥ 2k 0 -1. Then k = 2 or k = 2 -1 with ≥ k 0 . In both cases, Λ k = λ (i) , with i ∈ {1, 2}, and we can write (see (131)):

This proves (134).

In order to finish the proof of Proposition 6, let us check that the sequence Λ fulfills condition [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] for an appropriate ν > 0. The proof is very close to that of condition (H5). First, one has

From this inequality and ( 26), for ν 1 ∈ (0, ∞), we deduce

for any k, n ≥ 1 with = k.

Let us now prove condition [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] for the sequence Λ. As before, from the second property in (134) we deduce the existence of a positive constant ν, only depending on k 0 and ν 1 , such that

Let us now see inequality [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] when k, n ∈ N are such that 2k 0 -1 ≤ n ≤ k. Recall that, in this case, we have an explicit formula of the terms of the sequence Λ (see ( 133)). Let us first consider the case n ≥ 2k 0 -1 and k = n + 1. Thus,

In the general case, i.e., when k, n ∈ N are such that 2k 0 -1 ≤ n ≤ k with k ≥ n + 2, we can repeat the arguments above and deduce inequality [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] . Indeed, as a consequence of (135), we deduce

2. Assume now that k = 2 -1 and n = 2m, with , m ≥ k 0 and k -n ≥ 2. In this case, -m ≥ 3/2, Λ k = λ (i) and Λ n = λ (j) m , with i, j ∈ {1, 2}. On the other hand, it is not difficult to check that

Thus, from (135) we get:

m , with i, j ∈ {1, 2}. Applying again (135), we get

4. Finally, let us take k = 2 and n = 2m -1, with , m ≥ k 0 and k -n ≥ 2. Again, -m ≥ 1/2, i.e., -m ≥ 1 and we can apply (135). As in the previous cases, Λ k = λ (i) and Λ n = λ (j) m , with i, j ∈ {1, 2}, and

Summarizing, we have prove property [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] for the sequence Λ with ν = max ν, ν 1 + 2ε 0 2 .

Recall again that the constant ν only depends on k 0 and ν 1 , that is to say, on ρ 1 , ε 0 and ν 1 . Therefore, the parameter ν only depends on ρ 1 , ν 1 and ε 0 .

With the proof of property [START_REF] Kirsch | An introduction to the Mathematical Theory of Inverse Problems[END_REF] we end the proof of Proposition 6.