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Abstract

The general goal of this work is to obtain upper and lower bounds for the L2-norm of biorthogonal fam-
ilies to complex exponential functions associated to sequences {A},~,; C C which satisfy appropriate
assumptions but without imposing a gap condition on the elements of the sequence. As a consequence,
we also present new results on the cost of the boundary null controllability of parabolic systems at time
T > 0. In this case, the eigenvalues of the generator of the Cy-semigroup associated to this parabolic
system accumulate, do not satisfy a gap condition and can develop a positive minimal time for the null
controllability.

1. Introduction and main results

In the last years, an increasing number of authors have addressed the problem of the null controllability
of coupled parabolic systems with less controls than equations (see [2], [16], [3], [28]....). One of the most
important problems in this framework is obtaining necessary and sufficient conditions that allow the system
to be controlled with a reduced number of distributed or boundary controls.

Another important problem is the study of the dependence of the so-called control cost with respect
to the final observation time 7' > 0, when 7" is small enough and the corresponding null controllability
result holds at any time 7" > 0. Regarding this latter problem, we highlight the works [14], [15], [37], [20],
[21], [17], [30], [40], [6], [12], [27], [10], [11], etc., where the authors study an estimate of the control cost
K(T) (for the definition, see (1.5)) in the case of scalar parabolic problems (problems that, under general
assumptions, are null controllable for any 7" > 0). Most of the previous works uses the moment method in
order to obtain an estimate of the control cost.

In order to solve both problems, a classical tool in Control Theory is the use of biorthogonal families
to appropriate sequences of exponentials in L2(0, T'; C) and, to be precise, sharp estimates on the L?-norm
of the elements of the biorthogonal family. We will provide more details in what follows.

Given {A},~, C C, a complex sequence of pairwise distinct elements, we will use the following
notation:

ex(t) =e Mt Yt e (0,T), (1.1)

where T' > 0 is fixed. With this notation, we define

Definition 1.1. Let A = {Ay}x>1 C C be a complex sequence and T' > 0. We say that the family
of functions {qx}r>1 C L?(0,T;C) is a biorthogonal family to the sequence of complex exponentials
{ex}y>, in L2(0,T; C), if for every k,n € N, one has

/O D (07, (6) i = 540,
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where the function ey, is given in (1.1).
Given T' > 0, the general objective of this work is

1. to analyze the existence of families {gy},~, biorthogonal to {e;},~, in L?*(0,T;C) for general
sequences A = {Aj}x>1 C C of complex numbers pairwise distinct (e, is the exponential function
defined in (1.1)) and

2. to obtain sharp and explicit estimates of || gy || £2(0,;c) With respect to 7', A and some appropriate
parameters associated to the sequence A.

Biorthogonal families play a crucial role in the moment method. This method was developed by Fat-
torini and Russell (see [14] and [15]) to study the boundary null controllability of the heat equation and
uses in a key way the existence and estimates of biorthogonal families to {ej, } .

In [14] the authors provide an approach that allows to construct biorthogonal families {gj },~, to the
sequence {ex },~, in L2(0,T) (I > 0) with explicit bounds of the L?-norm of g, with respect to the final
time 7' > 0. To be precise, for increasing sequences A = {Aj}r>1 C R satisfying

Ag € (0,00), Ap=A(k+w)*+o(k), Vk>1, (1.2)

with A > 0 and w € R, there exist Co, 70 € (0,00) and a family {g4},, biorthogonal to {ej},-, in
L?(0,T) (T > 0) such that

gkl 207y < Coe®VAHE) | WT € (0,70), VR 21, (1.3)

(see for instance [14] and [30]).
As a consequence of inequality (1.3), in [14], the authors prove that the one-dimensional heat equation

01y — Opay =0 in (0,7) x (0,L),
y(vo) =, y(a L) =0 on (07T)a (14)
y(07 ) =%Yo in (05 L)7

(L > 0) is null controllable in H~1(0, L) at any time 7" > 0 with controls v € L?(0,T). In fact, they
prove the existence of a constant Cy (only depending on L) such that for any yo € H~1(0, L) there exists
a control v € L?(0,T) satisfying

[0llz2(0.m) < Coe ™ loll -0,z -
and such that the corresponding solution to (1.4) satisfies y(7',-) = 0in (0, L). Thus, the set
Cr (yo) == {v € L*(0,T) : y(T,-) = 0in (0, L), y solution of (1.4)},
is non empty and we can define the so-called control cost of system (1.4) at time 7" > 0:

X(T):= sup inf )||’UHL2(0,T)~ (1.5)

ol r—1=1vE€CT(¥o

Therefore, for system (1.4), one has
K(T) < Coe ™, VT >0, (1.6)

for a positive constant Cjy only depending on L.

In the framework of N-dimensional scalar parabolic problems, [37] and [17] give an estimate of the
cost X(T') similar to (1.6) using different approaches: In [37] the authors use the exact controllability
of the wave equation to prove inequality (1.6) for the null-controllability of the heat equation. In [17],
inequality (1.6) is deduced from appropriate global Carleman inequalities for general parabolic operators.



Estimate (1.6) is known to be optimal thanks to the work [20]: under assumption (1.2), there exists a
positive constant C; such that for any sequence {q }x>1 C L*(0,T) biorthogonal to {e }x>1 in L?(0,T),
one has

M(k) e
eT

gkl 20,7y = N VI >0, Vk>1, (1.7)

where M (k) is a positive constant only depending on k and L. In particular, inequality (1.7) implies
the existence of new positive constants C; and 71 (only depending on L) such that the control cost for
system (1.4) satisfies

K(T) > Che™, VT € (0,7). (1.8)

The existence of biorthogonal families {g; },~ to sequences of exponentials {ej },~ (e is the func-
tion given in (1.1)) and estimates (1.3), (1.6), (1.7) and (1.8) strongly depend on the properties of the
sequence A = {Ay}r>1. Our next objective is to provide some general properties for real or complex
sequences A appearing in the literature which assure the existence of sequences {qy },~ biorthogonal to
{ex};~, in L2(0,T;C) (T > 0) satisfying (1.3) or (1.7).

As said before, the first results on existence and estimates of families {¢;},~, biorthogonal to se-
quences of exponentials {eg} &>1 was proved in [14], [15] and [20] (see also [241, [38], [30], [39], [25]
and [26]) for increasing real sequences that satisfy (1.2).

The results on existence of biorthogonal families to {ej},~, has been extended to the complex case
in [21], [3], [4] and [6]. In the three first works, the authors prove the existence of biorthogonal sequences
{qr};>, under general assumptions on the sequence A and prove appropriate estimates of ||qx |20, 7;c)
(in the case of [4], the authors prove the results without imposing gap conditions on the sequence A).
Nevertheless, in these works the authors use a technique that does not allow them to obtain an explicit
dependence of this estimate with respect to the final time 7' > 0. Therefore, inequality (1.6) cannot be
deduced from these works (for the details, see [21] and [4]).

Let us describe the result on existence and estimates of biorthogonal families to complex exponentials
proved in [6]. One has:

Theorem 1.1 ([6]). Let A = {Ay},~, C C be a sequence satisfying assumptions (H1)—(H5), in Defini-
tion 1.3, the gap condition -
inf  [Ar —Apn| >0, (1.9)
kn>1:k#n

and
’p\f— N(r)‘ <a, VYr>0o0,

(N is the counting function associated with the sequence A, defined in (1.22)), for some parameters 3 €
[0,00), p,p,x € (0,00) and q € N. Then, there exists Ty > 0 such that for every T € (0, Tp), there exists
a sequence of C-valued functions

{ak}r=1 € L*(0,T;C)

biorthogonal to the exponentials {ej}r>1 in L*(0,T;C), ey given in (1.1), which, in addition, satis-
fies (1.3) for a positive constant Cy independent of k and T

The previous result can be applied to a large range of scalar and coupled parabolic problems. It assures
that the system under consideration is null controllable at any time 7" > 0. In addition, Theorem 1.1
provides the inequality (1.6) for the control cost X(7') as in the scalar case (Cj is a positive constant).
In order to prove Theorem 1.1, the authors use the Fourier transform with the help of the Paley-Wiener
theorem (see [6] for the details).

The existence of biorthogonal families to real exponentials that satisfy (1.3) and (1.8) has been also
treated by some authors with assumptions on the sequence A different from (1.2). In [12], the authors
consider a real increasing sequence A = {Aj}, -, thatis given as

A= {)\5“1)}1@21 Y {)\’(62)}1@21 ’



with {)\g) }k>1 and {x\,@ }k>1 two increasing sequences of positive real numbers satisfying

1
<eak, AP - Sk
) T,

2

<k, Vk>1,

1
A(l) _ 7]?2
k 7‘[‘%

/Ag) B /Agll)

(1.10)

inf >T 0 wE >,
n>1 k

and the strong gap condition

VAL VA > e, VAZ VAP > e, VR, (1.11)

for some positive constants 71, o, ¢1, c2 and r. For this class of sequences, the authors prove the existence
of a sequence {q;},~, C L?(0,T) (I > 0 is given) biorthogonal to {ej},~, (ex given in (1.1)) in
LQ(O, T') which satisfies (1.3) for a positive constant Cy independent of k& and 7" and uniform for the class
of sequences A satisfying the previous assumptions.

In [10] and [11], the authors again consider increasing real positive sequences A = {Ax}r>1 C R
satisfying a “global gap condition”:

Y% < VA1 — VAL <, VE>1, (1.12)

and an “asymptotic gap condition’:

% < VA1 — VAL <5, VE>N,

where N is a positive integer and o, 71,75, 7} € (0, 00) are such that 0 < 4 — 74 < 71 — Yo. Under
these assumptions on A the authors obtain general and precise upper and lower bounds for biorthogonal
families as (1.3) or (1.7), paying attention to the dependence of the constant Cy and C; with respect to the
parameters Yo, Y1, g and 7.

It is interesting to observe that in all the previous works the authors impose conditions on the sequence
A = {A;},~; C C, which, in particular, imply that it satisfies the gap condition (1.9). This is easy to
check for increasing real sequences fulfilling condition (1.12) and can be checked for the class of sequences

A= {)\,(Cl) }k>1 U {/\’(“2)}101 under the assumptions of [12]. In fact, if the sequence A satisfies (1.10)

and (1.11), then A also satisfies the assumptions in Theorem 1.1 (see Proposition 2.6 and Remark 2.7). To
our knowledge, assumptions (H1)-(HS5) and (1.9) are the most general hypotheses on the sequence A that
guarantee the existence of a family {gx }x>1 C L?(0,T;C) biorthogonal to the exponentials {ej }r>1 in
L?(0,T;C), e, given in (1.1), that satisfies (1.3) for a positive constant Cy independent of k and 7.

The work [27] is of special relevance because in it, the author studies the cost of the controllability of
the one-dimensional heat equation with a pointwise control at point x( and, in this framework, there might
exist a positive minimal time of null-controllability Tj € [0, co] (which depends on x and could take any
arbitrary value in [0, co], see [13]). In this work the eigenvalues satisfy (1.9) and the minimal time comes
from the action of the control. In particular, the author proves that, if Ty > 0, the cost of the controllability
at time T > Ty when T’ is close to Tj, may explode in any arbitrary way.

As said before, the analysis of the control cost in the framework of the controllability of coupled
parabolic systems has been addressed in [6]. As in the previous works, the authors impose appropriate as-
sumptions on the sequence A which include a gap condition on the terms of the sequence (see Theorem 1.1
and (1.9)). In particular, conditions in Theorem 1.1 assure that the system under study is null controllable
at any positive time 7" and the control cost X (T') satisfies (1.6) for a positive constant Cy.

In the framework of the controllability of non-scalar parabolic problems, new phenomena associated
with the vectorial nature of the problem arise (hyperbolic phenomena): minimal time of null controllability
and dependence of the controllability result on the position of the control domain (see [4], [5], [35], [31],...).
This minimal time may come from the control action itself (as in [13] and [27]) or from the condensation
index of the sequence of eigenvalues of the generator of the semigroup associated to the system (see [4]).
In this latter case, the sequence A, in general, does not satisfy the gap condition (1.9). Let us provide



more details in the case of systems with a minimal time which comes from the condensation index of the
sequence.
Assume that the sequence A = {Ay},~, C C satisfies

A; # Ay, Vi k€ Nwithi # k,
1

R(Ar) > 6[Ax >0, VE>1, and Y o < oo, (1.13)
=1 1A

for a positive constant §. Observe that, in general, a sequence A satisfying (1.13) does not fulfill the gap
condition (1.9).

Properties (1.13) for the sequence A imply that the family of exponentials {e},~, is minimal?® in
L%*(0,T;C) for any T > 0 and, therefore, there exists a biorthogonal family {gx},~, to {ex},~, in
L2(07 T; C) (see for instance [36], [34], [3], Theorem 4.1 in [4],...). In addition, in [4], the authors prove
that there exist two positive constant C and C (only depending on A and T") such that

|1+Ak|2
| Ak

11+ Agl

C L
' |A]

Wi < gk llz20,7:0) < C2 Wi, (1.14)

where C; and C are positive constant depending on 7" and W is the infinite Blaschke product given by

1 An + Ak)
Wy = .
PR nl:[l A, — Ay,
n;«_ék:

Nevertheless, the authors do not provide an explicit dependence of the constants Cy and Cs in (1.14) with
respect to the final time 7" > 0. This is due to the method used by the authors to prove (1.14): these
inequalities are first obtained in L?(0, 0o; C) (T' = oo) and, then, proved in L?(0,T; C) (T € (0, c0)) after
a contradiction argument (see [4] for the details).

From inequality (1.14), among other properties, in [4], the authors prove a general result of null con-
trollability for abstract parabolic problems that develop a minimal time Tj € [0, oo] of controllability: the
system is null-controllable at any time 7" > Tj and not null-controllable for 7" < Tp. This minimal time is
related to the Bernstein’s condensation index of the sequence of eigenvalues A = {A}, .., of the generator
of the semigroup (see [4] and [8] for further details). B

Let us now revisit some one-dimensional non-scalar parabolic systems with a generator whose sequence
of eigenvalues A = {A;},, C C satisfies (1.13) and not inequality (1.9). To this end, we consider a
boundary controllability problem for the generic 2 x 2 system

oy+Ly=0 in (0,7) x (0,7),
y(-,0) = Bv, y(,7)=0 on(0,T), (1.15)
y(ov ) =% in (07 77)7

where L is a second order elliptic operator, with domain D(L) = H?(0,m;R?) N H}(0,m;R?), yo €
-1 (O, 1, ]R2) is the initial datum, B € R? is the control vector and v € L?(0,T) is a scalar control.

The null controllability properties of the first example has been analyzed in [4]. We consider sys-
tem (1.15) with L = Ly = — (D10, + A1), with domain D(L1) = H?(0,7;R?) N H} (0, 7; R?), and

D, :=diag(1,d), d>0,d# 1, and A1::<8 (1)),

(see system (2.15)). Observe that the sequence of eigenvalues associated to the operator L; is A =

{k2 U {dk2 If v/d ¢ Q (and this condition is necessary for the approximate controllability at

}k21 }kzr

2A sequence {zy }x>1 in a Hilbert space H is said to be minimal if it satisfies z,, & span {zy, : k # n} forany n > 1.



time T > 0 of the system (1.15) with the previous data, i.e., system (2.15)), the sequence A® can be
rearranged as an increasing sequence A1) = {Ag)} C R that fulfills property (1.13). It is clear that
E>1

A does not satisfy, in general, the gap condition (1.9). As a consequence, system (2.15) has a minimal
time Ty = Tp(d) € [0, co] which, for some d, with Vd ¢ Q, is positive. Therefore, the system is not null
controllable at time 7" when 1" < Tg (see [4] for the details).

The controllability properties of our second example has been analyzed in [31]. Let us consider sys-
tem (1.15) with

o O 0 2 2 1 2
LL2.< X _8M+Q), D(Ly) = H2(0, 3 R?) N HY(0, 5 R?),  (1.16)

with Q € L2(0,7). In this case, the sequence of eigenvalues of the vectorial operator L is given by

A2 — {k2}k21 U {/\5“2)}101 C R, where {)\22)}]01 is the sequence of eigenvalues of the operator

— Dz + Q with domain H2(0,1) N HL(0, 7). When Q € L%(0, n) satisfies

/OWQ(m)dac:O,

then
A2 — k2 ey, VB>,

with {e} k>1 € 2. In particular, lim e, = 0 and A(®) does not fulfill the gap condition (1.9). Assume that

)\,(f) # n? for any k,n > 1 (that, in fact, is a necessary condition for the approximate controllability of
system (1.15) with L = Lo, see [31] and Section 5). In this case, the sequence A(?) satisfies property (1.13).
Again, system (1.15) has a minimal time Ty = T(Q) € [0, 0o] and there exists coefficients Q € L2(0, )
such that 75(Q) > 0. Thus, the system is not null controllable at time T" when T < Tj (see [31] and
Section 5 for the details).

Let us consider a third example of non-scalar parabolic system. In [19] the authors study the boundary
null controllability of a phase field system of Caginalp type which is a model describing the transition
between the solid and liquid phases in solidification/melting processes of a material occupying the interval
(0, 7). For that purpose, they consider the nonlinear system

915 - 69:1:30 + %p€¢rz + 29 = f(¢) in (07T) X (077'(')7

60— €20 =20 = == [(9) in (0.7) x (0,), )
0(,0) =, ¢(70) =G 9('777) = 0; (z)('vﬂ-) =c¢c on (OvT)v

9(01 ) = 907 ¢(07 ) = ¢O in (0771'),

where: 6 = 0(t, x) is the temperature of the material; ¢ = ¢(¢, ) is the phase-field function used to identify
the solidification level of the material; ¢ € {—1,0,1}; f is the nonlinear term which comes from the
derivative of the classical regular double-well potential W:

F(@) ==L (06— ¢°).

On the other hand, p > 0, 7 > 0 and £ > 0 are, resp., the latent heat, a relaxation time and the thermal
diffusivity. Finally, v € L2(0,T) is the control function, and g, ¢ are the initial data.

The null controllability property of the nonlinear system (1.17) depends on the coefficients p, 7 and &.
This property is obtained from the corresponding one of the linear version of (1.17) around the constant
trajectory (0, c) (see [19] for more details). This linear system is as system (1.15) with y = (6, ¢) and
L = L3 given by

L=1L3:=—Dy0,, + A27 with

1 2 £ 1.18
DeDy=| & 2% ). A-a, = P B:((l)). (1.18)
0 ¢ o



In this case the sequence of eigenvalues of the operator L3, with domain D(L3) = H?(0,1;R?) N
HE(0,1;R?), is given by A®) = {Ag‘*”, A2 }k with
>1

1
ABD _gg2y AL e 2l ks (1.19)
2T 2

1 2
P = \/5”1{2 + (”Jr) COVE> 1. (1.20)
T 2T

It )‘1(371) #* )\513’2) for any k,n > 1 (which in fact is a condition equivalent to the approximate control-
lability of the linear system (1.15) with L = L3), the sequence A(®) can be rearranged in such a way that

where 7y, is given by

AB) = { A,(f) }k is an increasing sequence that satisfies (1.13) for appropriate § > 0. However, if for
>1
some integer j > 1 one has
1
(= 87 (1.21)
.

then, the eigenvalues of L3 concentrate and one has

inf (A,&”’jl — A(3)) 0,

and condition (1.9) does not hold (see [19] and Section 5 for the details). Therefore, we have another
system where the associated sequence of eigenvalues does not satisfy the gap condition (1.9).

Remark 1.2. It is interesting to observe that the objective of the work [19] is to study the exact boundary
controllability to constant trajectories at time 7', 7' > 0 arbitrary, of the nonlinear system (1.17). To this
end, the authors follow a technique developed in [29]. This methodology consists of obtaining a null
controllability result at time 7" for system (1.15), with L = L3, and an estimate of the cost of fast controls
like (1.6). In order to obtain inequality (1.6) for the linear version of system (1.17), the authors assume the
condition

Lp ,
§# 5=, VjeN
]°T

This condition is crucial in [19] because it assures that the sequence A(®) satisfies (1.9) and the conditions
in Theorem 1.1. Thus, system (1.15), with L = Lg, is null controllable at time 71" for any 7" > 0 and the
control cost X (7') satisfies (1.6) for a positive constant Cyy only depending on p, 7 and &. O

We have seen three examples of sequences of eigenvalues satisfying (1.13) and for which the gap
condition (1.9) fails. The corresponding parabolic systems could have a positive minimal time of null
controllability Tj and the system is not null controllable at time 7" when T" € (0,Tp). Even if Ty = 0, it is
not clear that the control cost of the associated system fulfills inequality (1.6) or inequality (1.8) and this is
an open problem.

In order to obtain sharp estimates of the control cost X (7T') associated to non-scalar parabolic systems,
it is very important to prove sharp estimates for biorthogonal families to the exponentials associated to
the corresponding sequence of eigenvalues of the generator when this sequence does not satisfy a gap
condition. This is the objective of this work: Given a complex sequence A = {Ay},~, satisfying appro-
priate assumptions and such that inequality (1.9) does not hold, is there a biorthogonal family {gy },~ to
{ex}, in L?(0,T;C) (ey is given in (1.1)) satisfying an appropriate estimate for gkl 2 (0,7c) Which,
in particular, provides an estimate of the control cost X(7")? Understanding the behavior of the control
cost K(T') for general systems as (1.15) would allow us to extend the null controllability result in the
one-dimensional case to some parabolic systems in any dimension (see for instance [6, 1]) and to some
nonlinear parabolic equations using the method of Liu, Takahashi and Tucsnak introduced in [29] (see for
instance, [19] and [32]).

Let us now present the main results of this work. To this aim, let us first introduce the class of complex
sequences we will work with throughout this work:



Definition 1.3. Let A = {A;} »>1 be a complex sequence and let us fix constants 3 € [0, c0),

P,Po,P1,P2, S (07 OO)

and ¢ € N. We say that the sequence A is in the class £(S, p, ¢, po, 1, P2, @), if the following properties
hold:

(H1) Ay # A, forall n, k € N* with n # k;
(H2) R(A,) > 0foreveryn > 1;
(H3) |S(A,)| < Bv/R(A,), forany n > 1;
(H4) {A,}n>1 is nondecreasing in modulus, i.e., |A,| < [Ay41], forany n > 1;
(H5) p|k?* —n?| < |Ax — Ay foranyn,k > 1: [k —n| > g;
(H6) p1,p2 > po and one has
—a+piVr <N(r) <a+pVr, Vr>0,
where N is the counting function associated with the sequence A, defined by

N(r)=#{k: |Ax| <7}, Vr>0. (1.22)

Remark 1.4. Observe that from the definition of the counting function N (see (1.22)) associated with the

sequence A= {Ak}kz S L(ﬁap7qap05plap27a) (ﬁ S [0,00), P,Po,P1,P2, X S (Oa OO) and q € Nare
given), we deduce the following properties:

1. For any r > 0, one has

N(r)=k <= |Ae| <r and [Apy] >

2. If for some kq, ko > 1 and 71,79 > 0 one has |Ag, | < 7y and [Ag,| > ro, then
kl S N(T’l) and kg Z N(TQ) + 1.
We will use these properties throughout this work. U

Remark 1.5. The parameter ¢ € N in Definition 1.3 plays an important role in this paper. Observe that
in this work we are dealing with sequences A that, in general, do not satisfy condition (1.9) and whose
terms could condense. With condition (HS) and the parameter ¢ we mesure the maximal cardinal of the
condensation groupings of the sequence A, that is to say, the maximal number of elements in A around the
term Ay that do not satisfy (HS) and could condense. At the end of Section 2 we will see, by means of an
example, that the parameters p; and ps increasingly depend on ¢, even for real sequences A that satisfies
the gap condition (1.9). O

We will see in Section 2 that the class £(8, p, ¢, po, 1, P2, @) includes sequences A = {Ak}k21 sat-
isfying (1.2) or condition (1.12), and sequences A = {)\,(:)} U {)\,(f) } under assumptions (1.10)
E>1 E>1

and (1.11). Also, it includes sequences that do not satisfy the gap condition (1.9) as A = {kz}k>1 U

{dk?}, (Vd € Q),or A = {k*} U {k? + &}, with {er} >y € €7, or the sequence considered in [19]
(see Remark 1.2).
We are now in a position to establish the first main result of this work. It reads as follows:



Theorem 1.2. Let A = {Ay},~ C C be a sequence satisfying A € L(5,p,q,po,p1,D2, ) with 3 €
[0,00), p,po, 1, P2, € (0,00) and q € N. Then, given T > 0, there exists a family of complex functions

{Qk}kzl C L2(07 T7 (C)v

biorthogonal to {ej }>1 in L2(0,T;C) (ey, is given in (1.1)) which, in addition, satisfies

llarll 20,70y < Hilp, g, 1, p2) exp

(1+p2)°
C 1+H2(p7qap1ap27T) |Ak‘ +? UJkn (123)

Sorevery k > 1. In (1.23), C is a positive constant only depending on |A1|, B, po and « (increasing with
respect to av), and Py, H1(p, q,p1, p2) and Ho(p, q, p1,p2, T) are respectively given by

Pr = 1 VE>1, ifqg>2, (1.24)

H |Ak *An|7

{n>1: 1<|k—n|<q}

Pr:=1foreveryk > 1,ifqg=1,

2q—2
1+ pp3 +¢°
9{1(p7Qap1ap2) (2 )

2,1
L\ (1.25)
Hi(p, g, p1,p2) = < 2'052) ., when A is real.
PP
and -
q
%2(p7Qap1ap2aT):1+q+\/T+ ) + pa,

p*p? (1.26)

1
Holp,q,p1,02,T) =14+ q+ VT + W + po, when A is real.
1

Remark 1.6. It is clear that if A = {A},-, is a sequence satisfying the assumptions in Theorem 1.1 for
some parameters § € [0,00), p,p,a € (0,00) and ¢ € N, then A belongs to £(5, p, q, p,p, p, @), and
satisfies

[Ap = An| >~v>0, Vk,n>1:k#n,

for a positive constant 7. As a consequence, we can apply Theorem 1.2 and deduce the existence of
{qx}r>1 C L*(0,T;C), a biorthogonal family to {ey }r>1 in L?(0,T; C), satisfying (1.23). Thanks to the
previous gap condition, we get P, = 1,if ¢ = 1, or

Pe<AT, VE>1, ifg>2.

Combining this inequality and (1.23) we deduce (1.3) for a positive constant €y independent of k and T'.
Therefore, Theorem 1.2 is a generalization of Theorem 1.1 to the case of complex sequences that do not
satisfy the gap condition (1.9).

On the other hand, we will see in Section 2 that if sequence A = {A;} w>1 C Csatisfies (1.2), or (1.10)-
(1.11), or (1.12), then A belongs to £(0, p, ¢, po, p1, P2, @), for appropriate p, pg, p1, p2, € (0,00) and
q € N, and satisfies the gap condition (1.9). Therefore, Theorem 1.2 generalizes the results on bounds of
biorthogonal families to exponentials proved in [14], [30], [12], [10] and [11]. O

The quantity Py in Theorem 1.2 provides a mesure of the condensation of the sequence A. When
condition (1.9) holds, then, there exists a constant € > 0 such that |P;| < € for any positive integer k. But
in general, Py, could have any explosive behavior with respect to k (see for instance Remark 5.2).

In the next result we will prove that inequality (1.23) is optimal with respect to P. This is our second
main result:



Theorem 1.3. Let A = {Ay} 1> C C be a complex sequence satisfying

Ak — Apl S v |K* —n?|, Vk,n>1, (1.27)

forv > 0,and A € L(B,p,q,p0,p1,p2, ) with 5 € [0,00), p,po, 1,2, € (0,00) and q € N. Then,
for any sequence {q }r>1 C L*(0,T;C) biorthogonal to {ey }r>1 in L*(0,T;C) (ey is given in (1.1)),
one has

6 1
| L2 0,7:c) = max {ﬂ_Q‘Bk eT7, Ek} Pr, Vk >3, (1.28)
where Py, is given in (1.24),
k+1 |
3 ) (q+3)!( q>'(1+yT)2’“+q+1 (2k +q +1)! T Flsk<a
k =
panla=D (k+glk @) (@2ktq-1)! [ A+ o k> g
(G+3)! 2k—a)! (14 v7) P 2k +q+1)! U o =D
(1.29)
k+q—2) (2(k+q)—3 1/2
( if_g) < (k+9) +5|A1|> Cifl<k<gq,
Er = s 2T (1.30)
/ 2q —2)! (4q—3 1/2 .
(T2(q713 ( 9T +5Ak+1q> ; ifk>gq,

and ¢ is a positive constant only depending on 3 (6 = 1 when 5 = 0).

Remark 1.7. Theorem 1.3 generalizes the results proved in [20], [10] and [11] to general complex se-
quences that might not satisfy the gap condition (1.9). O

As an application of Theorems 1.2 and 1.3, we will study the cost of fast controls X(7') for sys-
tem (1.15) in two situations in which condition (1.9) does not hold:

1. First, we will analyze system (1.15) when the operator L = L is given by (1.16) with Q € L?(0, )
a function such that the sequence of eigenvalues of L5 is given by

A® = {2 82 4 e

k>1
and v € (0,1). In this example the minimal time associated to system (1.15) with L = Lo is
To(Q) = 0. Observe that the sequence A®) does not satisfy (1.9) and, therefore, Theorem 1.1 cannot
be applied. We will see that the sequence A(?) fulfills the assumptions in Theorems 1.2 and 1.3 and,
as a consequence, we will obtain new estimates (even with Tp(Q) = 0) from above and from below
for the control cost X(7T') associated to system (1.15) for L = Ly (see Theorems 5.7 and 5.8). These
estimates show that the fast controls for system (1.15) with L. = Lo are more violent than those
of the heat equation. This violent behavior comes from the condensation of the eigenvalues of the
elliptic operator L.

2. We will also study system (1.15) with L = L3 (see (1.18)), and p, 7 and £ positive constant sat-
isfying (1.21) for an integer ; > 1. In this case we will check that system (1.15) is null con-
trollable for any T > 0 and the corresponding control cost K(T) satisfies (1.6) for a constant
Co = Co(p,7,&) > 0. With this example we generalize the null controllability result obtained
in [19] for the linear version of (1.17).

In a forthcoming paper (see [7]) we will carry out a more in-depth analysis of the cost of fast controls
K(T) of parabolic systems with a positive minimal time Ty which comes from the condensation index
associated to the sequence of eigenvalues of the generator of the corresponding Cj-semigroup.

The plan of the paper is the following: In Section 2, we will study some general properties of the
sequences A in the class £(3, p, q, po, p1, D2, ), with 8 € [0, c0),

p,Po,P1,P2, & S (07 OO)
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and g € N. We will also provide in this section some examples of sequences A in the literature that satisfy
the conditions in Definition 1.3. Sections 3 and 4 will be respectively devoted to the proofs of the main
results of this work, namely, Theorem 1.2 and Theorem 1.3. Finally, in Section 5 we will apply the results
on general bounds of biorthogonal families to complex sequences that do not satisfy the gap condition (1.9)
to system (1.15) when L = L, (see (1.16)) and

o(Lz) = {k2, 1% + 77}
k>1

with v € (0,1), and when L = L3 (see (1.18)) is such that p, 7, £ € (0, 00) satisfy (1.21) for an integer

7 > 1. Some results presented in this fifth section have been announced in [18].

2. Some general properties of sequences under the assumptions of Definition 1.3. Some examples

We will devote this section to prove some general properties of sequences A in the class of Defini-
tion 1.3, £(8, p, ¢, po, p1, P2, @), with 3 € [0,00), p,po, p1,p2, @ € (0,00) and ¢ € N. These properties
will be used in the proof of Theorems 1.2 and 1.3. We also complete this section with some examples of
sequences A that fulfill assumptions in Definition 1.3.

Let us first analyze the conditions which appear in Definition 1.3 and condition (1.27) because in some
particular cases they are redundant. To be precise, let us first check that the properties (H1)—(H5) and (1.27)
imply property (H6) for some pg, p1, p2 and c.. One has:

Proposition 2.1. Ler A = {Ay}, -, C C be a sequence satisfying (H1), (H4), (H5) and (1.27) for some
p,v > 0and q > 1. Then, (H6) holds, with

po=i p1=L pgzL and o =max{ q— M M—Fl M—Fl .
N N Nz o\ e TV

Proof. Let us take A = {A;}, -, C C, asequence under the assumptions of the proposition, and let us
prove that (H6) holds for appropriate parameters pg, p1, p2 and c.
From (H5) and (1.27), we have

p(k* —n?) <|Apl+|An|, Vk,n:k>n+gq, and [Ag|— [N, <v(K*—n?), Vkn:k>n
In particular,

@2.1)

Akl >p(k*=1) = |A1], VE>q+1,
|Ag| <v (k* —1) +|A], VEk>1.

Let us consider 7 > |A,11|. Taking into account the first item in Remark 1.4, if N(r) = k, then
k>q+ 1, |Ax| <rand|Agi1| > 7. The first inequality in (2.1) gives r > p (k2 - 1) —|Aq], ie.,

1 ‘Al‘ 1 ‘ 1‘
N() =k <q[=r+ =2+ 1< =ty [0+ 1 V2 Al
(r) \/ﬁ NG p At

On the other hand, the second inequality in (2.1) also provides r < v {(k +1)% - 1} +|A1| and

N(r)k>1+\/1r|A1|+l>\/1TA1|121\/F M71.
v v v v N4 v

Observe that this inequality is also valid when 0 < r < |A4+1|. In the previous reasoning we have used
the inequalities

{ Va+b<Va+vbh, Vabel0,00), (2.2)

Va—1b>a— Vb, Va,b € [0,00), a>b.

11



Let us now take r such that |[A1] <7 < |Ag41|. In this case,

1 1
N(r)<qg< —Vr+q——+/|Ai].

VP NG
Finally, when r is such that 0 < r < [A{|, N(r) = 0 < \/r/,/p. We deduce then that A satisfies (H6) with
Do, P1, P2 and « given in the statement. This proves the result. O

Remark 2.1. Property (H5) does not imply, in general, (H6), even for increasing positive real sequences.
Indeed, A = {k3}k>1 is an increasing positive real sequence that satisfies (HS), with p = 1 and ¢ = 1,
and does not satisfy (H6).

Something similar can be said for property (1.27): A = {k},~ is an increasing positive real sequence
that satisfies (1.27) with v = 1 and does not satisfy (H6). B

On the other hand, sequences A that satisfy (H1)—(H5) and (1.27) for some 8 > 0, p,v > 0and g > 1,
also satisfy condition (H6) with parameters pg, p1, p2 and « given in the statement of Proposition 2.1. In
COHCIUSiOILA € L(ﬁﬂpvq,pO;plaPQaO‘)' u

As a consequence of the previous result, we also have a relation between the different parameters that
appear in (1.27) and in Definition 1.3. To be precise, one has:

Corollary 2.2. Let A = {Ay},~,; C C be a sequence satisfying (HI), (H4) and (H6) for some positive
constants py, p1, p2. Then, -

1. If A satisfies property (H5), then
(2.3)

Sl-

2. If (1.27) holds, then

1
— < po.
ﬁ_p2

Proof. Let us consider a sequence A = {A}, -, C C satisfying (H1), (H4) and (H6) for some parameters
Do, P1, P2, @ € (0,00). In addition, let us assume that property (H5) holds. In particular, from (H6), we get
p1v/T — a < N(r), for any > 0. On the other hand, thanks to property (H5), one also obtain (see the
proof of Proposition 2.1),

[T A 1 A4
Nr)<q|=r+—+1< —Vr+4/—+1, Vr>|Agl,
(r) ; ; 7 ; [Ag1]
1 [1A4]
pVr—a< —Vr+ 4/ — +1, ¥r> Al
\/ﬁ p ‘1"1‘

From this inequality, it is not difficult to deduce (2.3). This proves item 1.
The proof of the second item of the result follows the same ideas as above. We leave it to the reader.
This ends the proof. O

that is to say,

Remark 2.2. Observe that, if A is a sequence under the conditions of Corollary 2.2, from inequality (2.3)
we also deduce
0<p§i27 pp? <1, and pplS\FPSi- 2.4)
Py Po
These estimates will be used later. O

Let us now analyze the case of increasing positive real sequences A = {A;}, ., C (0,00). This case is
specially interesting because some assumptions in Definition 1.3 are direct. For instance, A satisfies (H1)-
(H4) for 5 = 0. In addition, if (H6) holds for some parameters pg, p1, p2 and « satisfying p; = ps =
p > po > 0, some assumptions in Definition 1.3 are redundant. To be precise, in this particular case, (H6)
implies (HS) and the additional property (1.27). One has:

12



Proposition 2.3. Let A = {A}, -, be a positive real sequence satisfying (HI), (H4) and (H6) for some
po, @ € (0,00), with p; = pa = p > po. Then, A € L£L(0, p, q, po, 1, P2, ) and (1.27) holds, with

1 1/2+a)\’
q = 3a, p:@ and V=3<p>. 2.5)

Proof. Letustake A = {A} >1- a positive real sequence satisfying (H1), (H4) and (H6) for some pg, o €
(0, 00), with p1 = pa = p > pg. It is clear that A satisfies (H2) and (H3) for 8 = 0.

Let us see that A also satisfies (HS) for appropriate positive constants p and q. Indeed, using (H1) and
(H4) we infer that A is an increasing positive real sequence. Thus, N(Ay) = k, for any k£ > 1, (see (1.22))
and, from (H6) (p1 = p2 = p), we deduce

k—a<pVA,<k+a Vk>1. (2.6)
If k,n € N are such that k — n > 3q, then, k£ > « and inequality (2.6) provides
PPAr—A) _ (k—a)—(n+a)?® k—n-—2a 2a 1
> = =1—- > —.
k2 —n?2 — k2 —n? k—n k—n — 3

Therefore, sequence A satisfies assumption (HS) for ¢ and p as in the statement of the proposition.
Let us now check property (1.27). To this end, we will again use (2.6). Without loss of generality, we
can assume that o« > 1. Thus, if &« < n < k, one has

2 2 2
p*(Ar—An)  (k+a) —(n—a) E—n+2a 2« 1 2
< = =1+ —<1+4+2a<-(2 .
k2 —n2 — k2 — n? k—n +kfn_ + a_3( +a)
On the other hand, if n < a < k, i.e.,if n < |a] < |a] + 1 < k (|-] is the floor function: given z € R,
| ] is the greatest integer less than or equal to x), we also deduce

A=A _ (k+a)? _ (la] +at1)’
2—-n2 “k2—|a)2”  2la)+1

In the previous inequality we have used that o > 1.
Finally, let us assume that @ > 2 and take n < k < «. We can write
(k+a)® 1

2
p(Ak*An) 2
< < — .
2oz S opp S3(ta)

Summarizing, property (H5) holds for v given in (2.5). This ends the proof. O

Remark 2.3. Let us consider A = {A},~, an increasing positive sequence, satisfying property (H6)
with p; = po = p > 0. In this case, this condition can be written under the equivalent form

1
A= <K +O0(k), Vk>1. (2.7)
p
Indeed, from (H6) with p; = po = p, we infer (2.6) and
‘p\/A - k‘ <a, VE>1,

ie., pvAr =k + O(1) forany k > 1. So, (2.7) holds.
On the other hand, from (2.7) we deduce

1 1
FkQ —aqk < Aj < ka + ok, Vk>1, (2.8)

with a; > 0. Thus, given r > 0, if N(r) = k, then, (see Remark 1.4) we also have Ay, < rand Agq > 7.
Using the previous inequalities, we obtain

1
2

1
Pktalk—rgo and . (k+1)% 4o (k+1)—7r>0.
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In particular,

1
= 2(19 a1 +p pa1+4r>§p\/?+p2a1,

1
Nr)+1=k >2( p2on + py/p? a1+4r)>p\/772p2a1.

Therefore, (H6) holds with pg = p; = po = p and
2 L,
o =max<p al,ip ar+1p.

Observe that, in particular, if A = {Ay} x>1 1 an increasing real sequence such that (1.2) holds, then
A also satisfies (2.7) with L = 1/p®. As a consequence of Proposition 2.3, we can conclude that if
A = {Ay},~, is an increasing real sequence satisfying (1.2), then A € L(83, p, ¢, po, p1, p2, @) and (1.27)
holds for 3 = 0, pg = p1 = p2 = p = 1/V/C, a € (0,00) and ¢, p and v as in (2.5). Therefore,
Theorems 1.2 and 1.3 generalize the results on estimates of biorthogional families established in [14]
and [20]. O

Let us continue showing some properties for sequences A in the class A € £(8, p, ¢, po, p1, P2, ). One
has:

Lemma 2.4. Let A = {A},~ C C be asequence satisfying A € L(3, p,q, po, p1,p2, ) with 5 € [0, 00),
0,0, D1, D2, & € (0,00) and& € N. Then,

> m <oo and |Ap| < R(AR) 4 BVR(A), Vk>1. (2.9)

k>1

On the other hand, there exists a positive constant C, only depending on |A1],
respect to o), such that

1 1 C(1
—(k—a) <V|Al € —k+ (7?), VEk > 1. (2.10)
b2 p1 PP1
Proof. Let us take a sequence A = {Aj},~, under assumptions of the proposition. From items (H4)
and (H6) of Definition 1.3, we have that:

e 1 <1 o a—|—p2\f « 2ps
dN(r / —N(r dr</ dr = + < o0
Z \Ak /|A | = Ay T2 ) w2 ML VA

On the other hand, using assumption (H3), we deduce that

ARf? = RO + S(A0)? < R(A)” +F2R(A) < (R(Ax) + 5«/%(1&,6))2

Therefore, we have the proof of (2.9).

Let us now prove property (2.10). Let us first assume that A € L£(3, p, q, po, P1, P2, ) is a positive
real sequence (8 = 0). We have that N(Ay) = k, for any £ > 1. In particular, taking r = Ay in
assumption (H6), we deduce

k—a k+ « k « k a 1 k a 1
<AL < :—+—§——|———pp7—+—— Vk > 1.
L P PP poppt T p1 poppd

In the previous inequality we have used (2.4). This shows inequality (2.10) in the real case.

Let us now assume that the sequence A € £(8, p, q, po, p1, P2, &) is complex, i.e., B > 0. As before,
we are going to work with property (H6) with r = |Ag| (k > 1). From Remark 1.4, (H4) and (H6) (see
Definition 1.3), we can write that, if n = N (|Ag|), then & < n, |Ax| = |A,| and

_a+n:_a+N(|AkD < |Ak|§Oé_‘_j\r(|Ak|):Oé—i_n7 vk > 1. .11
p2 D2 p1 b1
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In particular, £ < n and
—a+k < —a+n<pyy/[Ax], VE>1

This proves the first inequality in (2.10) in the complex case.
In order to show the second inequality in (2.10), let us estimate n = N (JAg|). As |Ax| = |A,], using
property (H3), we infer

IR(An)? — R(AR)?| = |S(An)? — S(AR)?| < B2R(AR) + R(AR)),

that is to say,
[R(AR) — R(An)| < B2

Again, assumption (H3) also provides the inequality

Ak = Al < [R(AR) = R(AR)| + [S(Ak) = S(An)] < 87 +28v/[Awl.

If |k — n| > ¢, combining the previous inequality and assumption (H5) we obtain

plk—n|(k+n) :p|k2—n2| < |Ax — Ay §B2+2B\/|Ak\.

2 +28/|A
n—k:|k—n|§max{q,5+ﬁ|k|},

Thus,

p(k+n)

ie.,

n < k+ max< q,
{ o (k+ N ([A)

32 +28/[Ax] }

and, from (2.11)

2 /
p1\/|Ak|§a+k+max{q,Mg|Ak|}. (2.12)

p (k+N([A])

If the maximum in (2.12) is ¢, in particular,

pV Ak <Ek+a+g.

Taking into account inequalities (2.3) and (2.4), we also deduce

(a+4q) /po
PP1 .

Thus, we get the second inequality in (2.10) for a positive constant C' only depending on o and pg and
increasing with respect to a.

Let us now assume that the maximum in (2.12) is given by the second term. Using again (H6) and (2.4),
for £ > «, we can write

*+26VIA > +28V]A 1 B2+28y]A
OO w8 P eV L R MR e . CAVALLY: N PR e CAVALVE
p(k+N(|Ax]) ) (k —a+p1\/M) PP1 Po o1/ Ak

This inequality provides the second inequality in (2.10) when k& > « for a positive constant C' only de-
pending on |A4], 8, po and « (of course, increasing with respect to ).

Finally, let us consider the case k¥ < «. Thus, there exists a positive constant C' (only depending on «
and increasing with respect to «) such that

\/|Ak‘§0§£+£

p1 pp?

o+
p1V A < k‘+?qpp1 <k+
1

In the previous inequality we have used (2.4).
Finally, it is not difficult to see that the constant C' appearing in the second inequality of (2.10) is
increasing with respect to the parameter .. This ends the proof. O

15



Remark 2.4. Analyzing the proof of Lemma 2.4 we deduce that, in fact, if the sequence A is real and
satisfies the assumptions of the result, then the second inequality in (2.10) can be written as follows: there
exists a positive constant C', only depending on pg and « (increasing with respect to «;) such that

1 1 C
—(k—a) <V|Ag| £ —k+—, VE>1. (2.13)
pz( ) | k' P1 Pp%

In particular the previous inequalities are independent of q. We will use this property for real sequences A
throughout the paper. O

Remark 2.5. From the previous result we deduce that, if the sequence A = {Ay}x>1 is in the class
L(B, p,q,po, 1, P2, ), with § € [0,00), p, po, 1,2, € (0,00) and ¢ € N, then one also has (1.13) for
some ¢ > 0, only depending on /5 (0 = 1 when 5 = 0).

As said before, property (1.13) implies that the family of exponentials {ej },~, e is given in (1.1), is
minimal in L?(0,T;C) for any 7" > 0. Thus, there exists a biorthogonal family {g},~, to {ex},~, in
LQ(O, T; C) (see for instance [36], [34], [3], Theorem 4.1 in [4],...). O

Let us complete this section providing some examples of sequences A = {Aj}r>1 such that A €
L(B,p,q,po,p1,p2, ) for some S € [0,00), p,po,p1,p2,« € (0,00) and ¢ € N. In order to have a
clearer exposition, we will present the results and we will include the corresponding proofs in an appendix,
at the end of this paper.

Firstly, we will analyze the case of real sequences that fulfill the assumptions in [10] and [11]. In
particular, this class of sequences also satisfies a gap condition and, therefore, the general assumptions
in [6]. One has:

Proposition 2.5. Let A = {A},~,; C (0,00) be a real sequence satisfying (1.12) for two positive con-
stants ~o and 1. Then, A = {Ay}, <, € £(B, p,q,po, p1, D2, @) and (1.27) holds with 8 = 0,

1 1 { VAL \/Al}
po=p1=—, p2=—, a=maxyl-—, ,
" Yo Yo N
. 91 5 2 o 1 5 2
¢g=1, p=min 70,§’YO+§70\/A1 and v = max yl,gyljugfyl\//\l .

In particular, the gap condition (1.9) holds.
For the proof, see Appendix A.1.

Remark 2.6. As said before, sequences A = {A},~; C (0, 00) under the assumptions of Proposition 2.5

satisfy the general assumptions that assure the existence of a family {g }x>1 C L?(0,7) biorthogonal to
{ex}r>11n L%(0,T) (e is given in (1.1)) satisfying Theorem 1.2 and Theorem 1.3 with parameters given
in the statement of the proposition. Observe, in particular, that ¢ = 1 and Py, = 1. Therefore, Theorems 1.2
and 1.3 cover the results in [10] and [11]. O

We continue our analysis of real sequences that fulfill general assumptions previously discussed in the
literature. More specifically, we will analyze real sequences that fulfill the assumptions in [12]. One has:

Proposition 2.6. Let us consider two increasing sequences of positive real numbers

{)\S) }k21 and {)\’(@2) }kzl

satisfying (1.10) and
ML =AY > e and A2 AP > e, VB>, (2.14)

for some positive constants Ty, o, cg, ¢1 and r. Then, the sequence

A= {)\’(“1)}1921 - {)\’(“2)}1@21
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can be rearranged as an increasing sequence A = {Ay}, ., satisfying A € L(5, p, q,po, p1, D2, ), (1.27)
and the gap condition (1.9), with 8 = 0, po = min{my, T2}, p1 = p2 = p = 71 + 7o,

o= max{?—i— %cl (Wf +7r§) ,C1 (w% —|—7r§)}

and q, p and v given in (2.5).

The proof of this result can be seen in Appendix A.2.

Remark 2.7. In [12] the authors consider families of positive real numbers {)\'(“1)}#»1 and {)\,(f) }k>1

satisfying (1.10), for some positive constants 7y, 72, ¢; and 7, and the strong gap condition (1.11), with c; a
positive constant. In particular, these sequences fulfill assumptions (1.10) and (2.14) in Proposition 2.6 and,
therefore, the general hypotheses imposed to general complex sequences {Aj }, -, in [6] (see assumptions
in Theorem 1.1). Thus, the results on existence and sharp estimates of biorthogonal families established
in [12] can be deduced from the corresponding results proved in [6]. Of course, Theorem 1.2 generalizes
the results in [12] and in [6] to complex sequences that do not satisfy the gap condition (1.9). O

As said before, in [4] the authors prove the existence of a minimal time of controllability for some
parabolic problems. This minimal time is related to the condensation index of the sequence of eigenvalues
of the corresponding operator. In order to illustrate the existence of this minimal time, the authors consider
the system
8ty — (Dlam(lj + Al)y =0 in (O,T) X (0,71'),
y(-,0) = Bv, y(,7)=0 on(0,T), (2.15)
y(oa ) = %Yo in (Ov 77)7

where B € R?, v € L?(0,T) is the control,

D, :=diag(1,d), d>0,d#1, and A;:= ( 8 (1) ) .
The sequence of eigenvalues associated to the operator L1 = — (D10, + A1), with domain D(L;) =
H?(0,m;R?) N H}(0,7;R?), is given by A = {kQ}k21 U {de}kZI’ Remember that the condition
Vd ¢ Q is necessary for the approximate controllability of the system (2.15) at time 7" > 0. On the other
hand, under this assumption, there exists a minimal time Ty = Tp(d) € [0, 0o] such that the system is not
null controllable at time 7" when T' < T} (see [4] for the details). In our second example we will consider
the sequence of eigenvalues associated to this system:

Proposition 2.7. Let us consider d € (0,00) such that \/d & Q. Then, the sequence

A= {k2}k21 U {dkz}k21

can be rearranged as an increasing sequence N = {Ay},~, satisfying A € L(B, p,q,po,p1,p2, ) and
condition (1.27) with B =0, pg = 1, -
1

51 81
plngzpzl—l-ﬁ, a=2, q=2, p:§]¥ and V:gﬁ. (2.16)

The proof of Proposition 2.7 can be found in Appendix A.3.

Let us now analyze a fourth example of sequence A which satisfy (1.27) and the general conditions
appearing in Definition 1.3. With this example we cover the kind of sequences associated to some parabolic
problems studied in [31]:

Proposition 2.8. Let us consider two real positive sequences A; = {)\g)} and Ay = {)\,(f)} .
E>1 E>1

Assume that Ay satisfies A1 € L£(0, p1,1, mo, 71, T2, 1), for p1, 7o, 771,71'2,0[176 (0,00), and (1.27), for
v =11 € (0,00). On the other hand, assume

AD =AW L vE>1 AP £AD V> 1, withk#£n, and A #£AP, Ve > 1,
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where {c},} .~ is a real bounded sequence. Let us take £g = supy~, |ex|. Then, the sequence

A1)
{k k21u ko fe>1

can be rearranged as a positive increasing sequence A = {Ay},~, satisfying A € £(0, p, q, 0, p1, P2, @)
and (1.27), with 8 = 0, p1 = 271, p2 = 2m9, a = Tay/eg + 2c1, ¢ = 2 and p and v positive constants
only depending, resp., on p1 and €y and on p1, vy and €.

For the proof, see Appendix A.4.

Remark 2.8. Proposition 2.8 covers the sequence of eigenvalues of operator L in system (1.15) when
L = L, (see (1.16)). We will use this proposition in Section 5. O

Remark 2.9. Under assumptions of Proposition 2.8, observe that the sequence A, in general, does not
satisfy the gap condition (1.9). In fact, it is easy to see that condition (1.9) holds if and only if

liminf |eg| > 0.

On the other hand, analyzing the proof of Proposition 2.8, it is possible to provide some additional
information about parameters p and « in Proposition 2.8 when the sequence {¢;, }, -, satisfies appropriate
properties. Indeed, when the bounded sequence {¢} },, is such that eg = sup,. >4 [ex| satisfies

len] < g0 < %, Vk>1,

then ky = 1 and the sequence A can be explicitly defined by (A.6) for any k£ > 1 (see Appendix A.4), that
is to say,
min{Aél),Af)}, ifh=20—1,
Ay = (2.17)
max {)\El), )\f)} , ifk =24,

for any k£ > 1. In addition, from the proof of Proposition 2.8, we can deduce

Ak—Anz%(kz—nQ), VE,neN:k>n+ 2,

Ae— Ay < 200 (12— n?), VEneN,

i.e., we can take p = p1/16 and v = (11 + £¢) /2 in Proposition 2.8. O

As said in Remark 1.5, let us finalize this section with an academic example of a positive sequence A
in the class £(0, p, ¢, po, p1, p2, &) with a parameter ¢ which can be chosen as large as we want. With this
example will see that the parameters p; and py are increasing with respect to ¢q. To this end, let us fix a
positive integer m > 2. With this integer, we define

A:{k2+H:k>1, 1<€<m}. (2.18)
m

It is clear that the set A can be written as an increasing sequence A = {Ay},- that satisfies the gap
condition (1.9). Let us see that it also satisfies A € £(0, p, ¢, po, p1, P2, @), for appropriate parameters
g € Nand p, pg, p1, p2, @ € (0,00), and condition (1.27), for v > 0. One has:

Proposition 2.9. Let us take a positive integer m > 2 and consider the sequence A defined in (2.18). Then,
1. A e L(0,p,q,p0,p1,P2, ), withq =m, pg = 2, p1 = p2 =m, &« = m and

2
2m —1)(2m + 1)

a

In fact, property (H5) does not hold if ¢ < m — 1.
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2. The sequence A satisfies (1.27) with

L Im—1
 m(@2m+1)’

Proof. If m > 2, it is clear that the sequence A, given in (2.18), is an increasing sequence that satisfies
items (H1)-(H4), with 8 = 0. Let us check the other items in Definition 1.3 and condition (1.27):

1. Let us prove item (H6) for the sequence A. To be precise, let us see
—m+myr <N(r) <myr, Vr>0, (2.19)

where N(r) is defined in (1.22). First, if r € (0,1), N(r) = 0 and it is clear that (2.19) holds. Therefore,
we will prove (2.19) when r > 1. In this case, the function N(r) is given by

N(r):i# k:k2+u<r :i 7’76771 <§:L\/FJ:m\/; Vr > 1.
— m — — ) -

=1 (=1

On the other hand, we can explicitly calculate N(r): Given r > 1, there exists an integer k£ > 1 such
that 7 € [k?, (k + 1)?). In this case,

~ -1 ¢ - ~
mlyr] —m+¢, if re k2+,k2+>,with€€N:1<€<m,
m m

N(r) = (2.20)

m|\/r], it rel[k®+1,(k+1)%).

(-1 ‘ ~ ~ ~
Indeed, if r € k2—|—,k2—|—),withéEN:1<€<m,then,f0rany€:1<€<€,
m m

(- (—0+1
[l o, Tt

m m

r—;e
m

K +

) C [k, (k+1)%),
and{ T—HJ =k= Lﬁj.Also,if@:Z—i—l§€§m,0nehas

~1 -y (—0—1
Melkz_ﬁ (e )c[<k_1>2,k2>,

m m

and {1/7"— Z_mlJ =k —1=|/r] — 1. We deduce in this case
NOEDY b/r—g_mlJ =mk—m+{=m|Vr] —m+7,

{=1

and the first equality in (2.20).
Now, if r € [k:Q +1,(k+ 1)2) , we can apply the same reasoning as before and deduce

{T_f_lJ:k:LVH,Vhlgﬁgm,

and the second equality of (2.20).
Let us now prove the first inequality in (2.19) for 7 > 1. As before, 7 € [k?, (k + 1)?), with k > 1 an

integer. Thus, if
-1 ¢
T E k2+,k2+>,
m m
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with € N: 1 < ¢ < m, then

m

- (karZ)Q— (kaQerZ) _ Paml(2k-1)

- — > 0.
mk + 0 +my/k? + £ mk + 0 +my/k2 + £

Finally, if r € [k* + 1, (k + 1)?), we can write

N(r)=mlyr] >m(Vr—1).

This proves (2.19) and property (H6) for the sequence A with pg = 2, p1 = p2 = m and a = m.

2. Let us now see that property (HS5) holds for ¢ = m (and an appropriate parameter p > 0) and is not
valid if ¢ < m. To this end, let us first provide the expression of the terms of the sequence A. It is not
difficult to see that, given an integer k£ > 1, this can be written as k = mk + ¢, with £ > 0 and ¢ € N with
1 < ¢ < m. Thus,

~ 2 ¢-1
he= (i) e L
m

Negative part: Fix ¢ € N, with1 < ¢ < m —1, and take n = m%—i— land k = m%—i—q—}- 1, with & >0,

an arbitrary integer. It is clear that k —n = ¢ < m — 1 and

Ap— A, (E+1)2+%— (76+1)2 1 N
2_ .2 — 3 — 5 = — — 0, when k — oo.
K n (mk+q+1) f<mk+1> m<2mk‘+2+q)

We deduce that property (HS) is not valid when ¢ < m — 1.
Positive part: Let us take ¢ = m and n, k > 1 with kK — n > ¢. In this case,

k=mk+0ly, n=mn+0l, withn, {1,k ls€Z, 1<l lo<mandk,7n>0.

Observe that, thanks to the inequality £ — n > g = m, we can conclude k—n > 1. So,

Ap— A, (E+1)2+£2,;1—(ﬁ+1)2—%1 (E—ﬁ)(%+ﬁ+1)+(%—ﬁ)+%
k2 _n2 -

- (m%+£2)27(mﬁ+£1)2 - (mE+62)2 — (mii+ 61)?
(E—ﬁ)(%+ﬁ+1)+%—ﬁ—1+%> T | PR

(m%+m)27(mﬁ+1)2 m(k=7)+m=1 m(k+i+1)+1
2 zml— 1 2m2+1'

Y

This shows property (H5) for the sequence A with ¢ = m and p given in the statement.

3. In order to finish the proof of this result, let us show property (1.27). Again, let us take k,n € N
with k > n. As before,

k=mk+0ls, n=min+/0, withn, (i, kls€eZ 1<, l,<mandk,n>0withk>n >0.

Let us first analyze the case k=n=F > 0 and, of course, 1 < /1 < f9 < m. We deduce,

~ 2 ~ 2
la—1 l1—1
Ak—An_(k"‘l) +5 —(’Hl) ~ w1 1 _ 1

k2 —n? (mz+f2)2*(mi€\+fl)2 E2m%+€2+€1

3m’
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Now, ifk>mand1 < ly,05 < m, one gets

Ap—An _ (%_ﬁ) (E+ﬁ+2)+% § (E—ﬁ) (7%+ﬁ+2)+1—%

B —n? (m%+€2)2—(mﬁ—|—€1)2 - (m%+1)2—(mﬁ+m)2
B k-7 E+mn+2 1-L
7m<,lgfﬁ)+lfm.m(%+ﬁ+l)+l (m%+1)2—(mﬁ+m)2
3 m—1 4m —1

< .
_2m+1+m(2m+1) m (2m + 1)
Taking into account that m > 2, we can infer that

1 < dm —1
3m ~ m(2m+1)

and, therefore, the sequence A fulfills inequality (1.27) with v given in the statement. This ends the proof
of the proposition. O

Remark 2.10. It is interesting to point out that, thanks to Proposition 2.3, once property (H6) is proved for
the sequence A with py = 2, p; = p2 = m and o = m, we can conclude that A € £(0, g, q, 2, m, m,m)
and (1.27) holds, with (see (2.5))

2
~ ~ 1 - 1 /(24m
q—3m, p—gﬁ and V—3<m> .

The parameters provided by Proposition 2.9 are better than the previous values. Indeed, taking into account
that m > 2, itis clear that ¢ = m < ¢ = 3m,

O

2 1 4m —1 N 1<2+m)2

g d = LU=
om—Dem+ 1) " e v Y

P=1 3m2 m(2m + 1) 3

m
Remark 2.11. We can apply Theorems 1.2 and 1.3 to the sequence A given by (2.18) and conclude the
existence of a sequence {qx x>1 C L%(0,T), biorthogonal to {ej } x>1 in L?(0,T’; C) (e, is givenin (1.1)),
which satisfies (1.23) and (1.28). If we make use of Proposition 2.9, these two inequalities can be written

under the form ) ,
AL (m) Py < llarll2 o) < AP (m) Py, Yk > 3, 221

where A\ (m) 1= & (see (1.30)) and

AP (m) := 31 (p, ¢, p1,p2) exp

1+ py)°
e <1+H2<p,q,p1,p2,T>¢|Ak| ¥ (Tp)ﬂ ,

(see (1.25) and (1.26) in the real case) with p, g, p1, p2 and v given in Proposition 2.9 (recall that the
parameter m is the maximal cardinal of the condensation groupings of the sequence A, that is to say the
maximal number of elements in A that do not satisfy (H5) and could condense).

Observe that, taking into account Remark 2.3, the elements of the sequence A satisfy

1
Ap=—k +O(k), Vk>1
m
and, therefore, one has

1
1i_r>n 8(m) =00 where 8(m)= E o Ym > 2.
m—o0 k
k>1
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In some sense, the family of exponentials {ex}, -, (e given in (1.1)) “loses” its property of minimality

in L2(0,T) when m tends to infinity. Thus, it is natural that the constants Afcl) (m) and A,(f) (m) in (2.21)
satisfy

lim AM(m) = lim AP (m) =00, VEk>1. (2.22)

m— 00 m—r 00

Let us see that (2.22) holds. To this end, we will analyze the asymptotic behavior of A,(Cl)(m) and

A,(f) (m) when m — oo. In what follows, we will provide an explicit expression of these constants when
3<k<m.

1. Let us first analyze .A,(Cl)(m). From the expression of & for 3 < k < m (see (1.30)) and Proposi-
tion 2.9, we can write

Agcl)(m) =&, =

(m+k=2)! (2Am+k) -3 1/2
Tm+k—2 2T + !

Observe that Stirling’s formula implies the existence of a positive constant ¢y > 0 such that

n! > cpV2mn (g) , VnéeN.

In particular, for a new positive constant ¢ (independent of m), we deduce

AL (m) > C\/(m+k—2) [2(m+k)—3 +1] <m+k_2>m+k27

2T el
which is valid for any m > 2 and any & : 3 < k < m. One has the first equality in (2.22).

2. We continue with the analysis of .A,(f)(m). Let us start with 31 (p, ¢, p1,p2) (see (1.25) in the real
case). From Proposition 2.9, this constant only depends on m and has the expression:

(6m2 — 1) (4m? — 1)]2("”)

, Vm > 2.

}Cl(p?Q7p17p2) = 9‘61(777,) = [ A

It is not difficult to see that
Hi(m) 1

m1—>oo 62(m—1) -

and, then
1621 < Hy(m) < 0262(7”71), Ym > 2.

for two positive constants c¢; and co, independent of m.

On the other hand, from the expression of Hs(p, ¢, p1,p2) (see (1.26) in the real case), we can write

1
9{2(p7Qap1ap27T) = }CQ(m7T) = 4m2 +2m—1+ m + \/T

Observe that in our case o = m. We can conclude that A,(f) (m) is given by

2
C(m) <1+j‘f2(m,T)\//Tk+ me)ﬂ . om>2,

with C(m) a positive constant only depending on m and increasing with respect to m (see Theo-

A,(f)(m) = Hi(m)exp

rem 1.2 with « = m). Clearly, Afcl) (m) has an exponential behavior with respect to m and we can
write

1
A;(f)(m)2exp[0<1+m2<\/Ak+T>+\/TAk)], Vm>2, Vk:3<k<m.

We can conclude that Ag) (m) has an exponential behavior with respect to m and saisfies the second
equality in (2.22). O
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3. Proof of the first main result

This section is devoted to prove Theorem 1.2. The main idea we will use is the Fourier transform
together with the Paley-Wiener Theorem. We need to introduce the following definition and recall the
Paley-Wiener Theorem.

Definition 3.1. An entire function f is said to be of exponential type A if the inequality
f(2)| < Be*!
holds for some positive constants A and B and all values of z € C.

Let us now present the Paley-Wiener Theorem:

Theorem 3.1. Let f be an entire function of exponential type A > O such that

o 1/2
1l oy = (/ f(:c)lzdx) s

Then, there exists a function ¢ € L*(—A, A; C) such that

1 4 izt
f(z)= E/—A p(t)e™" dt.

Moreover, the Plancherel theorem gives

&l z2(-a,a:0) = 1f | L2 -
For the proof of Theorem 3.1 we refer to [41, Theorem 18. p. 101].

Remark 3.2. In what follows, C' will denote a positive constant independent of 7', k € N, p, ¢, p1 and po,
which may change from one line to another (C' may depend on |A1], 8, po and «, and is increasing with
respect to «). In this work, the dependence of the constants with respect to the parameters p, q, p; and ps
(see assumptions (H5) and (H6)) will be explicitly given. O

Let us begin with a result of existence of entire functions satisfying appropriate properties. Our first
main result will be a consequence of this theorem. One has:

Theorem 3.2. Ler A = {Ay},~ C C be a sequence satisfying A € L(5,p,q,po,p1,p2,a) with B €
[0,00), p, po, p1, P2, € (0,00) and q € N. Then, for all T > 0, there exists a sequence of entire functions
{Gk}i>1, with the following properties:

1. Forany k > 1 and e > O, there exists a positive constant C7. ;. _ such that
’e*iz%Gk(z)‘ < C’},k_yse(%“)'d, Vz € C; (3.1)

1
—— 0k, forall k,n > 1;
\/ﬂ kn f
3. Gy, belongs to L*(R), for any k > 1, and there exists a positive constants C' > 0, only depending on

|A1l, B, po and « (increasing with respect to ), such that

2. Gi(iA,) =

Gkl L2y < Hilp,q,p1,p2) exp -

(1+p2)®
Cl1 + %2(p7Qaplap2aT) ‘Ak| + j)kv (32)

forany k > 1, where Pr, H1(p,q,p1,p2) and Ha(p, q,p1,p2,T) are respectively given in (1.24),
(1.25) and (1.26).
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Theorem 1.2 is a direct consequence of Theorem 3.2. Therefore, before providing the proof of the
technical result established in Theorem 3.2, we will complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Letus consider asequence A = {A},.. C Csuchthat A € £(5,p, q,po, 1,2, )
with 8 € [0,00), p, po, p1,p2, @ € (0,00) and ¢ € N. On the other hand, let us fix 7' > 0. With the
previous data, let us consider the function

Fi(2) = Gr(2)e ™%, z€C, k>1,

where { G, }1>1 is the sequence provided by Theorem 3.2. Let us see some properties of the function F.
First, Fy, is, for any & > 1, an entire function over C. In fact, F}, € L?(R) with

1Fkll 2y = Gkl L2y, VE 21

Secondly, for any ¢ > 0 and k& > 1, F}, is an entire function of exponential type 7'/2 + ¢ (see (3.1)).
So, we can apply Payley-Wiener Theorem (see Theorem 3.1) and deduce that there exists

Y € L*(=T/2 —¢,T/2+¢;C)
such that

_ 1 00 _
Fr(z) = e ?2G(2) = \/ﬁ/ Yp(t)e*tdt, VzeC, Vk>1.

Observe that the support of the function 1)y, is contained in [-7'/2 — e, T/2 + €], for any k > 1 and for
any £ > 0. We conclude that, in fact, 1, € L?(—T/2,T/2;C) and

T
. 1 2 .
Fo(2) = e #7G(2) = — | ¢u(t)e®'dt, VzeC, Vk>1. (3.3)
V2T -z
Let us now consider the function
T
a(t) = v (t2>, rel0,T], k>1. (3.4)

It is clear that gy, is well defined and i € L?(0, T’; C) for any k > 1. The objective now is to prove that
the sequence {qx }x>1 C L?(0,T;C) satisfies Theorem 1.2. Let us first see that {q }x>1 is biorthogonal
to {e‘Akt}kzl in L2(0, T; C). Indeed, for any k,n > 1 and thanks to (3.3) and item 2 in Theorem 3.2, we
can write,

! x T ™\ _x — (% -
/ g (t)e " dt = / U <t - ) e hetdt = e Mz U () e Mt dt
0 0

As said before, g, € L?(0,T; C). Let us now estimate ||q || £2(0,7)- To this aim, we will use Plancherel
Theorem and estimate (3.2). From the expression of g, (see (3.4)), one has

lakll20,750) = Wkl L2~z 2.0) = 1FkllL2r) = GrllL2(R)-

Combining the previous inequality and inequality (3.2) we deduce (1.23). This completes the proof of
Theorem 1.2. O

Once Theorem 1.2 is proved, our next objective will be to show Theorem 3.2. The proof of this result
is very technical. In order to make it clearer, we will divide it in two subsections:

1. In the first subsection (see Subsection 3.1) we will introduce an entire function fi(z) (k > 1) with
simple zeros at A,, with n > 1 and n # k. To this end, we will use the natural infinite product that
satisfies the condition fj(A,) = 0 for any n # k. We will show some properties of this function
that, in particular, will imply item 2 in Theorem 3.2.
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2. In the second subsection (see Subsection 3.2) we will introduce a “mollifier” function that we will
use in the definition of the entire function G, (k > 1) in Theorem 3.2. We will prove some properties
of this function (which, in particular, will provide the property of item 3 in Theorem 3.2) and we will
complete the proof of Theorem 3.2.

Remark 3.3. Let us remark that, if the sequence A = {Ay}x>1 satisfies A € L(8, p, ¢, po, p1, P2, @), with
B € [0,00), p,po, 1,2, € (0,00) and g € N (see Definition 1.3), then, the sequence A := {Aj}r>1
also belongs to £(f3, p, q, po, P1, P2, ). As a consequence, we will prove Theorem 3.2 for the sequence A
instead of A. O

3.1. An infinite product

In this section we will consider again a sequence A = {Ay },>1 satisfying A € L£(8, p, ¢, po, p1, P2, @),
for 8 € [0, 00), p, po, P1,P2, @ € (0,00) and ¢ € N. Thus, for each k > 1 and z € C, we define

fe(2) = H (1 — AZ) , zeC. 3.5
n>1 n
n#k

The objective of this section is to prove some interesting properties satisfied by the function fj.
First, observe that, by property (2.9), the previous product is uniformly convergent on compact sets of
C. Therefore, f} is, for any k£ > 1, an entire function over C (see for instance [22, p. 457]). Moreover,

fk(An) = 0, Vn 7§ k.

In fact, the zeros of f, are exactly the elements of the sequence {A, },>1,n2r and they are zeros of
multiplicity 1.
We have the following property of function fy:

Lemma 3.3 ([6]). Let A = {Ay},~ C C be a sequence satisfying A € L(B,p,q,po,p1,p2, ) with
B € 10,00), p,po,p1, P2, € (0,00) and q € N. Then, for every z € C and k > 1, we have

log | fx(2)| < (pom + 1)V/]2] + C, (3.6)

where po is given in assumption (H6) and C' is a positive constant only depending on « and |A1| and
increasing with respect to o.

Proof. The proof of this result can be found in [6]. For completeness, we provide the proof here.
Given z € C, one has

log | fx(2)] < log <1+|Ak> </:|1og( |t||) dN(t).

n>1
n#k

By assumption (H6), we get

and an integration by parts provides

/|:| log <1 + |:|> dN(t) = /:o t(|z||ZLt) N(t) dt.

The change of variables ¢ = |z| s leads to
oo oo N
/ ﬂN(t)dt:/ N=ls)
Ayt +1) 1a11 s(s+1)
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Using again assumption (H6), we can conclude

= N(zls) E /°° 1
[Au s(s+1) SO \Al\fs+1)d8+a %s(s—i—l)ds

H
< pamy/|z] + alog (1 + k)

Finally, it is easy to check that there exists a positive constant C' (only depending on « and |A;| and
increasing with respect to «v) such that

alog (1+|AZ||> -0z <C, vzeC.

Thus, we can conclude that inequality (3.6) holds. This finishes the proof. 0

Remember that our objective is to construct a sequence {G}}, -, of entire functions over C satisfying
items 1-3 in Theorem 3.2. This construction will use the function f;(z) and an estimate from below of the
non-zero quantity | i (Ax)|. This is one of the key points of this work and is established in the next

Lemma 3.4. Let A = {A},~ C C be asequence satisfying A € L(3, p, q, po, p1, D2, ) with 3 € [0, 00),
0, P0,D1,P2, @ € (0,00) and q € N. Then,

| £ (Ax)| > Hi(p, g, p1, pa)~te” CTalpaprp)VIAl pol -y > 3.7

where C' is a positive constant, only depending on |A1],
Hi(p, q,p1,D2), fr and Py, are respectively given in (1.25), (3.5) and (1.24), and Hs is defined by

1+
Hs(p:q:p1,p2) =1+q+ q+p27
p*pi
1
Hs(p, g, pl»p2)—1+q-‘r 2+p27 when A is real.

Proof. As said before, if A = {A}, . C Csatisfies A € L(3, p, ¢, po, p1, P2, @) for constants 5 € [0, 00),
p,D0,P1,P2, @ € (0,00) and q € N, then fi, (see (3.5)) is an entire function over C with simple zeros at
the points {An}n>1 ntk: Moreover, from assumption (H1), we have

Ap — Ay

)l =] AL

n>1
n#k

£0.

In order to obtain lower estimates of |f;(Ag)| let us decompose the set {n > 1 : n # k} into the
following sets:

Sik):={n>1:1<|n—-k| <q},
Sa(k) :={n>1:|n—k| >q, |An] <2|Akl},
Ss(k):={n>1:|n—k|>gq, |Ay| > 2|Ax|}.
Then,
Ay

-5 11

" neSz (k)

3
Sl (3.8)

i=1

)= 1

nesS (k)

A
1—Ai 11

" ness (k)

Let us estimate each term in (3.8) and, to this aim, let us take n € Sy (k). In particular, n < k + ¢ and,
from (H4) and (2.10) (or (2.13) in the real case), we deduce

2 20(1 + (1+
Al < el < kg + 2EEAD < 2y a4 02D
Pi P2pi
2 20(1 2 20(1
422 60 4 ( :q) + (th) ::4])—3\Ak|+A, Yn € Sy (k),
1 P1 PP P
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(or
2 2C
|A |<4 |Ak|+ +ﬂ 4 |A]€|-|-A7 VTLESl(k)7
p1 P P1 pl
when A is a real sequence). In the previous inequalities, C' is a positive constant independent of p, ¢, p1
and po.
One has

2 A A
1og<4p§x+A>:log()+log(p2+)S\/:E+log( +> Vo > |Aq].
P Pt @ A4

1

On the other hand, thanks to (2.3) and (2.4), we also deduce

C(l+¢°) (1 1 ) _ AAp?pip3 + C(A+ ¢?) (p°pi +1)

+ _
i Pl A1 p?pt

i A i |Ay]
_ C (1+ pp3 +4%)

— )

p?pi

(or
A C(1+ pp3
i 2+ < Cltom)
Al P?pi
when A is real).
Thus,

A, — Ay Ap — Ay
Pl(k): H MZ H |2 ¢ = ! 2q—2 H A — Ayl

4
nes: (k) [An] nes (k) p%z Ak + A (% |Ak| + A) nes (k)

1 2,4 2q-2
—(24—2)~/| Akl U;I;1 >C ( PPy ) o~ (2a=2)1/IA] ?;17

> e
- (ﬁjLi)zq’z 1+ pp3 + ¢
T TA
3.9)

where Py, is given in (1.24) and C' is a new a positive constant independent of p, g, p1 and po. In the real

case, we deduce the following inequality for Pl(k):

2 4 2q—2
PM > o LPL e~ (2a=DV/IAk] p-1 (3.10)
1+ pp3 B .

Let us now estimate the product PQ(k). At this point we will use the gap condition assumed in hy-
pothesis (H5) when |n — k| > ¢. We will follow some ideas from [6]. Using again Lemma 2.4 (or

inequality (2.13) in the real case), we deduce

ki k pp3k ppi
VI C(,}p“) ~ ik +C(+q) = ppr + C(1+q)

=B, Vn,k>1. @3.11)

(or
ktn ok _ ppik > pp
VIM] T st ik +C ppr+C

when A is real). Then, if n € S3(k),

PP = 1]

TLESQ(}C)

=B, Vnk>1. (3.12)

A plk—nllk+n] Bp |k —n|
> 11 3 > 11 +

nESQ(k) M neSa (k) 2 VIl

where B is given in (3.11) (or (3.12) in the real case).
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Letry := #{n € Sa(k) :n <k —q} and s, := # {n € Sa2(k) : n > g + k}. Then, from the previ-

ous estimate, one has
Tk Sk
Bp Bp (k) p(k)
P(k) > 1! sp! =PV Py
2 2Tk 2 /T k 2 /|Ar] 2,11722

Observe that Stirling’s formula implies the existence of a positive constant ¢o > 0 such that
n n
n! > coV2mn (f) , VYneN.
e

On the other hand, for ¢; = e~! one has

zlogx > —¢y, Vax € (0,00).

Tk Tk
(k) Bp Bprk - 26\/Ak BpT’k Bp’l’k
P =1r! > | ———— = cg exp log
ot (2 |Ak> ’ (2@«/|Ak> ’ ( Bp 2e\/[Ai] -\ 2e/A]
-2
2 Co exp ( qu\/ |Ak|> :
o

Taking into account the expression of B (see (3.11), resp., (3.12) in the real case) and inequalities (2.3)
and (2.4), we can conclude the existence of positive constant C; and C (independent of p, ¢, p1, p2 and
T)) such that

Ci(1 -1 Co(1 C —1
D 2 GUAD e, - <
p*pi Bp p*pi
As a consequence,

-C(1 -C
Pz(ﬁ) > Cexp (;%);_@1 /|Ak.|) , (resp., PQ(ﬁ) > Cexp <p2p2 2V |Ak|) , in the real case).
1

1

2.
— ——5 < — < ——=, inthe real case).
p*pi ~ Bp = p*pi’

A similar reasoning can be applied to Pz(fcz)- Therefore, we have proved:

-C(1 —C
Pg(k) > Cexp (p(zp;"‘l), /|Ak|) , (resp., PQ(k) > Cexp <p2p2 \/|A;€|> , in the real case),
1 1
(3.13)

for any k£ > 1. Again, C'is a positive constant independent of p, ¢, p1, p2 and T'.
In order to finish, let us analyze the third product in (3.8). To this aim, we will use the inequalities

1
log(l1—2) > -2z, V&€ [0, 2] ,

Ag| 1
‘A"‘ < 5 Vn € Sd(k)

From these inequalities and (H6), we can write N(r) < « + po+/r, for any r > 0, and

log PV > 37 log< |Ak>>—2|Ak| > L~ oy Lane)

n€Ss (k) [An] neSs (k) [An] 2|Ak| T
N(2|A < N < N
= —2|Ay| _N@IAD +/ (27") dr | > —2|A| (f) dr
2|A| 20, T 2lA,] T
X a+payr o 2po
> —oal [ R = —oay | i+
ohl TP 2(Ak]  \/2]Ag]
= —a = 2V2p2 /| Al
Coming back to (3.8) and putting together the previous inequality and inequalities (3.9) (or (3.10) in
the real case) and (3.13), we conclude that inequality (3.7) holds. This ends the proof. O
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3.2. Additional properties and proof of Theorem 3.2

In this paragraph we will prove some additional properties that we will use in the proof of Theorem 3.2.
To this end, we will introduce a “mollifier” function and we will construct the entire function G (k > 1)
in Theorem 3.2 by means of this function and function f; (see (3.5)). In order to construct this “mollifier”
function, we follow the strategy of [38, 11]

Let us take 7' > 0 and a sequence A = {A,},~, € L(B,p,q,po,p1,p2, ), with 5 € [0,00), ¢ € N
and p, po, p1,p2, @ € (0,00) (see Definition 1.3). With all these data, we fix an integer N > 2 and we
define the sequence {a }r>1 C (0,00) given by

T
ar = ON’T, where Oy 7 1= ———— (3.14)
¥ C2) 5
2
k>N k

in order to have

Su-g

Observe that this choice implies

[ ps G e
N V=2 @) YT N

k>N

and the estimate N1
(‘) T<Cnr<—T. (3.15)

=

2 2

Consider now the function

Pnr(z H cos (agz) z e C.

With the previous data, one has:
Lemma 3.5. Under the previous conditions, the following properties hold:

1. The function Py r is entire over C and satisfies

Pyr(0) =1,
|Pyr(2)] <1, Vz € Csuch that (z) > 0,

‘e‘iz%PMT(z) < e|z|%, Vz € C.

2. There exist positive constants 0y > 0 and 61 > 0 (independent of T and N ) such that

C 2 -
( ;VOT> Vgl +12 N = log|Pyr(x)| < 55 < ;V0T> Vil

c 1 s ) (3.16)
N,T 1 N,T
( 00 ) vV |x|+1SN:>IOg|PN,T( )l < N3 ( 00 ) |q;|2
3. There exists a positive constant 05 > 0 (independent of T and N ) such that
Py p(iz) > e 2VONTE - yp >0, (3.17)

For the proof of Lemma 3.5, see [38, 10, 11].
We are ready to prove the fundamental result stated in Theorem 3.2. We will follow some ideas of [6].
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Proof of Theorem 3.2. Remember that 7" > 0 is given and A = {Ay},~ € L£(B,p,q,po,p1, P2, @), with

B € [0,00), p,po, p1, P2, € (0,00) and ¢ € N, is a complex sequence. Let us define the function
1 fu(=iz) Pno(z + S(Ak)) |

V21 fe(Ag) Py (i R(Ag)) 7

(the function fj, is given in (3.5)). From the properties of the functions Py 1 (see Lemma 3.5) and f;, we
deduce that the function GG}, is well defined and is an entire function over C. In addition,

Gk(z) =

(3.18)

L 1)
\/ﬂkna

Observe that the function Py 1 only has real zeros ({an}n>1 is a real sequence) and, then, the sequence
{An}n>1, nxk are zeros of G, of multiplicity 1. This proves item 2 in Theorem 3.2.

Gk(ZAn> = Vk, n 2 1.

Let us now see that e‘iz%Gk satisfies inequality (3.1). From Lemmas 3.3 and 3.5, one has

e(P2m+1)V/12[+C 245 (k)| S
‘ ‘ T V2 [ fe(AR)] Py (iR(AR))]
| SADIF +(2m+1)y/[2]+C
= Var 50| P (R

If we combine the previous inequality with

|21

1
(2 + 1) VIe] < - (02 + 1) + e,

valid for any £ > 0, we conclude that there exists a positive constant C N.T.k, such that one has (3.1). This
proves item 1 in Theorem 3.2.

Let us prove that G, belongs to L?(R) and satisfies estimate (3.2). To this end, we will make the
following choice of N:

1 1 270,

24y (por+1)? S <N <d+y(por+1)° 5 with v="2; (3.19)
T = T 02

(p2 is given in assumption (H6)).
Using (3.6) and (3.16), we have that for |z| large enough one has

1
C b3
p27r+1)1/ |z|4+C— 23 ( ](;,(;T) 2V e+ (Ar)|

V27 | fie(Ak)| [Py, (iR(Ag))]

Cn,r
1
pam + <23< 9, ) )
then G, € L?(R). In fact, thanks to assumption (3.19) the previous estimate is satisfied. Indeed, recall that
ay and C r are given in (3.14) and satisfies (3.15). So, from (3.19)

0, (Cnr\® _ 0 ((N—DT\?
— J > = | — 1.
23< 0o ) —23< 20, et

|Gr(2)] <

Observe that if

This proves Gy, € L?(R).
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In what follows, we will estimate |G| L2(R)- First, from the expression of G, (see (3.18)) and us-
ing (3.6), (3.15), (3.17) and (3.19), one has

|G (@) dar < 22+ DVIal | Py 1 (2 + S(AR))[? da

—o o7 | fi(Ag)|? —x

2021/ 2T+ (pm+1)? /2] R(A)+20 /oo

2 | fo(Ag)|? —oo
6202\/[2T+»y(p27r+1)2/2]8%(Ak)+2c

= I.
2 | fio(Ax)|?

/oo eQGQ\/CN,T%(Ak)-‘rQC /oo

62(P27f+1)\/m |Pnr(x + C\xf(Ak))lz dzx

(3.20)
Denote
Api={z eR: |z +3(Ap)| < Xy}, As:={zeR:|z+S(Ay)| > Xnr7},
where
Oo(N —1)?

XNTZZ C
N, T

)

Let us first observe that, thanks to inequalities (3.15) and (3.19), it is not difficult to see the property

1 1 por + 1)2 1 por + 1)
590 (T +7(Tz)> < Xn,r < 186 (T "'7(1172) ; (3.21)

with -y given in (3.19).
With the previous notations, we can write

I— / 2P+ DVIal | Py (1 4 S(AR))[? da +/ 2P+ DVIal | Py (1 4 S(Ag))[? da
Al AQ
= I]_ + IQ.

The next objective is to provide an estimate of I; and /5. To this end, we will use property (3.16) of
Lemma 3.5. Firstly, we estimate /;. We have:

I, < e2(p27r+1)\/‘%‘(Ak)\/ 62(p27r+1)\/\x+%‘(Ak)|e—]321 C]:U,T|$+%(Ak)\2 de
Ay

< 2o+ D) (VBA+/Xwr) |A1|:262<p2w+1>(\/\s<m\+ Xnr) x

< 2mam+) \%(Ak)m/m)/ oot L oS (A g (3.22)
Ax

N,T-
Let us now estimate I». If we denote

_ 0 [Cnr
Co22 o

—2(pem +1),
and we use again (3.20), we get
I < e2<pzn+1>\/|<s<Ak>|/ (2t DVFSE | Py (2 4+ S(AR)[? de,
A
< 2Pt DVISAR] / 2 e LVIFHSAO] gy < 9e2(pamt VISR / TenEg (23)
A 0
_ 4e2<p2w+1>\/|s<Ak)|L1:
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As before and in order to bound L, we use again (3.15) and (3.19). Thus,

0; 270p(d —1)? 2
> P R AN Pl 2 _
L_\/2590 <T+ 7 > 2 (pem 4+ 1) = 259 +2 (parm +1)° = 2 (pom + 1)

62T 02T
o 250, 2590 >0,
\/209 +22 (pom + 1)° + 2 (porr + 1) 2\/209 +22 (por + 1)
and
1 1 1
7z S\t e+ 1)? T2 (3.24)

with  given in (3.19).
Coming back to (3.20) and taking into account the inequality

z < eﬂ, Va >0,
assumption (H3), (3.22) and (3.23), with Xy and L satisfying (3.21) and (3.24), we deduce
) O (1T +p)R(A)
- | fe (M)l
3 ec(1+./(1+T+pzm(Ak))
- | (M)l
o (102t /AT 2) A )
S
| fs (M)l
Finally, the previous inequality and (3.7) provide estimate (3.2), for G (x). This ends the proof. 0

1
e O (VBT (Lt (o 17 1)

C+p) (149 (AR + 5+ 224

C(1pa) (VAR5 )

4. A lower bound for the norm of arbitrary biorthogonal families: Proof of Theorem 1.3

This section will be devoted to prove the result the second main result, Theorem 1.3, of this paper. To
this end, we will follow some ideas developed by Giiichal in [20] (see also [11]).

Let us consider a sequence A = {Ay} k>1 C C satisfying property (1.27), for » > 0, and such that
A e L(B,p,q,p0,p1, P2, ) for 8 € [0,00), p, po, 1,2, @ € (0,00) and ¢ € N. On the other hand, let us
also consider {qx }x>1 C L?(0,T; C), a biorthogonal family to {e=***}, > in L2(0,T; C).

Associated to the sequence A we introduce the spaces:

L2(0,T;C)
)

E(A,T) :=span{e, :n>1}}

2 .
Er(A,T) :=span{e, :n>1,n# k}}L (07T’C)7 vk > 1.

where ey, is the function given by (1.1). With this notation, one has:

Lemma 4.1. Assume that A = {Ay}, -, C C is a complex sequence satisfying (1.13) for a positive

constant 6. Then, the closed space E(A,T) is a proper subspace of L*(0,T;C). Moreover, the family of
exponentials {ey.} .~ is minimal in L*(0,T; C), that is to say, for every k > 1, one has

€L ¢ Ek(A, T)

The previous lemma is a well-know result for sequences that satisfy (1.13) (see for instance [36], [34],
[3], [4] and Remark 2.5).

As a consequence of Lemma 4.1, we can consider dr ;, > 0, the distance between e Mt and F, (A, T),
i.e.,

T
. _ 2
d%k:p inf Herpnizmmc):/ le M —p(t)|” dt, Vk>1,
0
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where py € Ei(A,T) is the orthogonal projection of the function e, (t) = e~*#* on Ey(A,T). Observe
that the function py, is characterized by: px € Ex(A,T) and

(ek — Dk, eiA"t)LQ(O’T;(C) =0, Vn>1:n#k.

Thus, if we consider the function s given by

) —pe(t)  e~Met—pp(t
saft) = A0 €2 MO e 01), whz

we deduce that the sequence {si},>,; C E(A,T) is biorthogonal to {e~**'}, _ in L?(0,T;C). This
biorthogonal family is optimal in the following sense: if we consider another biorthogonal family {g } E>1
to {ex};~, in L?(0,T;C), then G, — s € E(A,T)*. Since s, € E(A,T), we deduce

1
~ 112 2 ~ 2
Gkl 720,m50) = skl z20,750) + 1@k — Skll200,750) 2 skl Z20m0) = 2 Vk > 1.

The previous inequality proves the optimality of the sequence {s } k>1- In particular,

1
2
lakllz2 0,70y = Bz Vk > 1.
T,k
The goal now is to obtain an upper bound of dr j, for any £ > 1. From the definition of dr ; we clearly
have
dr < |lex *pHLZ’(o,T;(c) , Vpe Ep(AT), VE>1

Then,
1 1

qk o) = >
Joelzz0rc) 2

. Vp€ EyAT), Vk>1. A.1)
llex = Pllz20,7:0)

In order to obtain (1.28), we are going to apply the previous inequality to two appropriate functions

p € Ex(A,T). Inequality (1.28) will be a direct consequence of inequality (4.1), written for these two
functions.

4.1. A lower bound for the norm of arbitrary biorthogonal families. First part
Let us prove that, for any k£ > 3, one has

6 N
qu||L2(O,T;(C) 2 ﬁBk Pretv, 4.2)

where P}, and By, are respectively given in (1.24) and (1.29).
Following [20], the idea is to construct a particular function p in Ex(A,T). To this end, let us fix a
positive integer M > g + k, where ¢ is given in assumption (HS). On the other hand, let us take

M+1 M+1

Z Apen(t Z Ape ™t 1 e(0,7), (4.3)

with coefficients Aj, As, ..., Apr+1 € C. Observe that f; € Ei(A,T) if and only if Ay = 0 and, when
Ay, # 0 then

M+1
f1 ‘Akt+ZA” ehntp N A” et =ex(t) —p(t), te(0,T).
n=k+1
Therefore,
drp < Hﬁ k1L (44)
L2(0,T;C)
One has:
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Lemma 4.2. Let us fix k > 1 and M > q + k. Let us consider the coefficients Ay, Aa, ..., Ap+1 € C
given by

Api= g 1 , 1<n<M+1. 4.5
H (Ai - An)
iZn
Then, the function fy introduced in (4.3) satisfies
£10) = £1(0) =+ = {7V (0) = 0and ;M (0) = 1.

The previous result is due to Giiichal. For a proof we refer to [20] or [11, Lemma 4.1].
The next task will be to estimate [ f1| .2 7.c) With f1 and A, 1 <n < M + 1, respectively given
in (4.3) and (4.5). To this aim, we recall the following technical results:

Lemma 4.3. Let B := {an}1<n<r+1 C C be a set of distinct points, v > 1, and let us fix g an analytic
Sfunction in a convex domain Q) C C such that B C ). Then, there exists 0 € [—1,1] and § € Conv (B),
the convex hull of B, such that

= 6 0"g
ij H an_az) = 5. (6)
a}iB

We also have:

Lemma 4.4. The following properties hold:

T N NV 2TN+1
1. Ve VMdt < ———— N >1and \ .
/0 S N1 ,forany N > 1 an >0

1
2. N!(l—i—x) < Z .foranyx>0andN>1

Lemma 4.3 is a formula due to Jensen. On the other hand, the proof of Lemma 4.4 can be found in [11,
Lemma 4.2, Lemma 4.3].
Now, using assumption (1.27), we can provide an estimate of |Ak|71. One has:

Lemma 4.5. Let us fix k > 1 and M > q + k. Then, under the assumptions of Theorem 1.3, we have

1
M+2-q-k M+1—k(M+1+k)P ! ifk <
|A |_1 4 (q—l)'(2]€+q—1)'( + )( + + ) k lf =~ q,
Moo= 2k — q)!
pyM—2(a=1) 2k —q) (M+1—k)(M+1+E)PE ifk>q,

k(g — 11?2k +q— 1)!
(4.6)
where Ay and Py, are respectively given in (4.5) and (1.24).

Proof. The proof is a direct consequence of assumption (1.27). Indeed, let us first assume that £ > q.
From the expression of Ay, (see 4.5), we obtain,

A k=g M1
Al ™ = T 18k = Al = ] 1Ak — Anl 11 e Al T] 1Ak — Al
"Ik n=1 {(n>1: 1<[k—n|<q} it
= Sl,k :})1:1 SQJ€7
where Py, is given in (1.24). On the other hand, assumption (1.27) provides the following estimate
k—q M+1
Stk 52k < H (v]k* = n?|) H (v |k = n?))
n=1 n=q+k
— yM—2(a-1) (2k — q)! (M1 KM 414 B,

kl(g—1D? 2k +q— 1)
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Putting both inequalities together we deduce (4.6) in the case k > q.
We can reason as before in the case k& < ¢. In this case, the first product S j in the expression of

|Ak|71 does not appear. It is not difficult to deduce the following estimate:
M+1

1
Sy < ki —n?|) =pMrEah M+1-k)(M+1+Fk)!.
2 nllk v| (q—l)!(2k;+q—1)!( ) )
The previous inequality implies (4.6) for k£ < g. This ends the proof. O

Let us continue with the proof of inequality (4.2) when k£ > 3. Observe that we can apply Lemma 4.3
to fi with coefficients A,, given in (4.5), 7 = M, B = {Ay},o,prq and g(z) = e (t € [0,T] is
fixed). We obtain, T

= =M a0 Mg oM
et = ()M S ) = e,
H (An - Ai)
iZn
where 6 = 0(t) satisfies |#] < 1 and
M+1 M+1
&= Z anplN,, with «, >0 and Z a, = 1.
n=1 =
Recall that [A1]| < |Ag| < -+ < |Apr41] (see (H4)). On the other hand, we can write (see (1.13)):
M+1 M+1
§) = Z an®R(Ay) >0 Z an | An| > 6 A4,
n=1 n=1

where & > 0 is a constant only depending on /5 (0 = 1 when 8 = 0). Thus,
t () ot S| ALt
- - p 1
< e < ik , Ytel0,T].

OM o—t€
o= "5 <

Coming back to (4.4) with Ay, given in (4.5), we deduce that

1/2
1 1 ([T o osiaap
dry < m Hf1||L2(O,T;(C) < Wil | Ag| (/0 t““e o dt , VE>1.

Let us introduce the quantity

/ 1
VP2 (g — 1) (2k 4+ ¢ — 1)! 5|A1|+ﬁﬂ>k, if k<gq,

Dy = A.7)

_ k(2k +q—1)! 1 )
2(q—1) oy ey - >
v [(q—1)1] @ g \/O A1 + o7 e i k>g.

Let us first work with & > max{3, ¢}. If we use Lemma 4.5 and item 1 of Lemma 4.4, we deduce

M—2(q—1) —_ ) v/
g < 2 (212 ik (M+k+D(M—k+1 TVver o
M k(-1 (2k +q —1)! \/2M+1+26T|A1|
~2(q— 2T (2k —q)! (M —k+1)! M
< p~2a-l) Pl M+k+1)(vT
N L+ 20T M| k(g = 1)) 2k +q- 1) " ! )
_ M+ k+1)! "
=D; ! ( T
C M=) (kO -k —h 1) VD
_ 1 (M +k+1)! M
Dt T
P Tt D@ oM+ —h-gr T
M+k+1)!
=D, ! (g+3)! (M+k+1) (VT)M ,  Vk > max{3,q},

(k+g)! (M+1—Fk—q)?
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where Dy, is given in (4.7). In the previous inequalities we have used that ¥ > 3and M > k + q.
Now, if k is such that 3 < k£ < ¢, we can argue as before and deduce the same inequality. Summarizing,
for any k > 3, one has

(g+3)! (M+Fk+1)!
(k+a (M +1—k—q)?

dpy <Dt D)™, Vk >3,
where Dy, is given in (4.7).

Let us finalize the proof of inequality (4.2) when k& > 3. The previous estimate of dr j and item 2 of
Lemma 4.4 allow us to write:

16 i 1 1
dT,k 2 M—Fitq (M +1-k— q)2 dT,k

6. (k+q)! 1 1 6 i1 B+ = 1 1
> =Dy, = (W)™ Dy ]

2 " (g +3)! M§+q (M +E+D! oM 72 q ! Z !
(k+q)! 1 1 .
(q+3)! 2k + g+ 1) (14 pT)Fat!

1
vT
)

6 k1
zﬁ(uT)+ Dy,

where Dy, is given in (4.7). Coming back to (4.1), the previous inequality proves (4.2).

4.2. A lower bound for the norm of arbitrary biorthogonal families. Second part

In order to finish the proof of Theorem 1.3, let us now show that, for any k£ > 1, one has
||‘Jk||L2(o,T;<c) > Ek Pi, 4.8)

where € and Py, are respectively given in (1.30) and (1.24). The approach is close to the previous one.
Let us introduce the function

RO= > Aweat)= DA™ te(0,1), (4.9)

{n>1:|k—n|<q} {n>1:lk—n|<q}

with coefficients A, € C given by

A, = , n>1:lk—n|l<gq. (4.10)

H (Ai - An)

{i>1:|k—i|<q}
i#n

Observe that ‘ﬁk‘ = Pk # 0 (Py is given in (1.24)). As in the previous subsection, we can write

1 A, _ _
ThRO=Mr D e —at) -1, teOT).
k {n>1:0<|k—n|<q} 'k

Therefore,
dp < lex _ZBHL?(O,T;C) = 9’;1 Hf2||L2(o7T;(c) , Vk>1. 4.11)

Given k > 1, we consider the set
B={A,:|k—n|<q}.
and the number r + 1 = #B. It is not difficult to see that
T_{ k+q—2, ifl1<k<g,
S 20—, if1<k>g,
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and, therefore r > 1 (¢ > 2). Now, if we apply Lemma 4.3 to f5 with coefficients gn given by (4.10), the
set B, rand g(z) = e "* (¢t € [0, T) is fixed), we deduce

0 . &
fa(t) = Et et

where 6 = 6(t) is such that ‘5’ < 1land¢ € Conv (B), ie.,

£= Y @A, with &, >0 and Yoo a.=1
{n>1:|k—n|<q} {n>1:|k—n|<q}

The previous expression of 5 and assumption (H4) also allow us to deduce

REO= > @RA)28 Y Al 28 min A =6 |Anagiari-g]

{(n>1:|k—n|<q} {(n>1:|k—n|<q}

with § > 0 asin (1.13) (§ = 1 when 8 = 0). Summarizing, we have proved
Lo
[f2(t)] < = [t e 2 MArsialt vt € [0, 7).
7!

Let us finalize the proof of (4.8). To this end, we work with the previous inequality, inequality (4.11),
item 1 of Lemma 4.4 and the expression of r. Thus, if 1 < k < ¢, we obtain

) T 1/2
d < - - t2(k+q72) 6726|A1|t dt (Pfl
TS G- 2) </ 4 k

- 1 Tk+a=2\/2T 4
Tktq-2)! \k+q—2)+1+20[A T "

Now, if & > g, 7 = 2(¢ — 1) and a similar computation provides

72(¢=1) /9T p1
20— 2)! /A(g—1) + 1+ 20[Agy1o| T "

dr <
(

Of course, inequality (4.8) is a direct consequence of these inequalities and inequality (4.1). This finally
ends the proof of Theorem 1.3. O

5. Application to the boundary controllability problem for some parabolic systems

This section will be devoted to apply Theorems 1.2 and 1.3 to two particular parabolic systems in order
to provide some new results on the control cost of the corresponding boundary controllability problem
associated to these systems. To be precise, we will revisit the controllability problems analyzed in [31]
and [19] and we will prove new estimates of the control cost with respect to the final time of controllability
T > 0. Some results in this section have been previously announced in [18].

5.1. A 2 x 2 linear coupled parabolic system
Let us consider the one-dimensional Dirichlet-Laplace operator El := —0y, with domain D(Zl) =
H? (0,7) N H(0,7). It is well-known that (Eh D(El)> is a self-adjoint operator and admits a sequence

of eigenvalues A = {)\l(cl) }k>1 = {kzz}k>1 and normalized eigenfunctions given by
(1) 2
op (x) == —sin (kx), Vk>1, xz€(0,m).

37



On the other hand, let Q be a given function in L?(0, ) and consider the operator Ly i= —0pp + Q
with domain D(Ly) = D(Ly). Again, (Lo, D(L5)) is a self-adjoint operator and admits a sequence of

increasing eigenvalues Ay = {)\f) }k and a sequence of normalized eigenfunctions {(p](f) }k which
>1 >1

is an orthonormal basis of L?(0,1).
In this section we will revisit the boundary controllability problem of the system

aty + Loy =0 inQr = (OaT) x (Oa ﬂ-)a
y('a O) = B’U, y(a 7T) =0 on (OvT)v (51)
y(oa ) =% in (01 77)7

where yo € H~! (0,7, R?) is the initial datum, v € L?(0,T') is a scalar control, the operator (Lz, D(L2))
is given by:

—Ora 0
Ly = ( 0" 0,40 ) D(Ly) = H?(0,m;R?*) N Hy (0, 7;R?), (5.2)

and B € R? is the control vector. It is interesting to observe that we want to control system (5.1), two
variables, with a unique control function v € L?(0,T)).
For every yo € H™! (O, ; RQ), system (5.1) admits a unique solution defined by transposition, ¥,
which satisfies
yeL? (QT;RQ) nco ([O,T];H_1 (O,T{';R2>> .

It is well-known that, when @ € L?(0, ) satisfies

/ Q(z)dx =0, (5.3)
0
then one has

)\}(62) = )\,(cl) +ep =k + €k, Vk>1,

with {ex} k>1 € £2. In particular, lime, = O (see for instance [23]). Observe that in this case, the
eigenvalues of the operator L does not fulfill the gap condition (1.9) and in this case, the null controllability
of system (5.1) has a minimal time 7 of null controllability which is defined as:

—log |e|

7 € [0, oo]. (5.4

To = limsup

To be precise, one has:

Theorem 5.1. Let us consider QQ € L?(0,7), a function satisfying Q # 0 and (5.3). Given T > 0 and
B = (by,by)", one has

1. System (5.1) is approximately controllable at time T > 0 if and only if
biby 0 and AV £\ VEkon> 1. (5.5)

2. Assume that (5.5) holds and consider Ty given in (5.4). Then

(a) If T > Ty, system (5.1) is null controllable at time T'.
(b) If T < Ty, system (5.1) is not null controllable at time T. O

The previous result has been proved in [31]. In this reference, the author also shows that 7;, depends
on @ € L%(0,7) and satisfies this property: given 7 € [0, oc], there exists Q € L?(0,7) satisfying (5.3)
such that Ty = 7. Thus, the minimal time T associated to system (5.1) could reach any value in the
interval [0, oo]. Therefore, there exist coefficients Q € L?(0, ) such that the corresponding minimal time
of system (5.1) satisfies T > 0.
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Remark 5.1. The study of the controllability of system (5.1) is easier when Q € L?(0, 7) does not satisfy
condition (5.3), i.e., when

/OﬂQ(x) du £ 0.

In fact, we have the following property: system (5.1) is null controllable at time 7" > 0 if and only if the
system is approximately controllable at this time, i.e., if and only if (5.5) holds. In this case, we have that
Ty = 0 and the null controllability of the system is valid for any 7" > 0 (see [31]). On the other hand, it is
not difficult to check that we can apply Theorem 1.1 to the sequence A. As a consequence, the associated
control cost X (7') for system (5.1) can be estimated as follows:

exp (CT’O) < XK(T) < exp (%) , VT €(0,79),

for appropriate positive constants Cy, C and 7 independent of 7T'. (]

From now on, let us suppose that (5.3) and (5.5) hold. Then, when T > T}, we deduce that system (5.1)
is null controllable at time T'. So, for any yo € H (0, m; R?), the set

Cr (yo) := {v € L*(0,T) : y(T,-) = 0in (0, ), y solution of (5.1)} ,

is non empty and therefore, we can define the control cost of system (5.1) in time 7', X(7T'), when T > Tj
(see (1.5)).
The positive part of the null controllability result for system (5.1) at time 7" > 0 stated in Theorem 5.1
is proved in [31] by using the moment method. Let us briefly describe this method for system (5.1).
From the previous assumptions, we deduce that (Lo, D(Ls)) is a self-adjoint operator. Its spectrum is
given by
o(La) = A=Ay UMy = {A,(j), /\,(f)}k>1 — (R +ed,o, (5.6)

and the eigenspaces of Ly corresponding to )\g) and )\,(f) are respectively generated by

(1) 0
) = ( Pk ) and ¢ = ( . > Yk 1. (5.7)
0 Pk

Moreover, the sequence { ](€1)’ ,(f)} is an orthonormal basis of L? (O7 ;s Rz) and an orthogonal basis
E>1

of H} (O,W;Rz) and H~! (0,7‘(’; Rz).
Using the spectral properties of the operator Lo (see (5.2)) we can rewrite the null controllability prob-
lem for system (5.1) at time 7" as a moment problem. To be precise, one has:

Proposition 5.2. Under the previous assumptions, given yo € H~! (O7 ;s Rg), the control v € L?(0,T) is
such that the corresponding solution of (5.1) satisfies

y(T,-)=0 in (0,m),

ifand only if v € L*(0,T) satisfies

T
biei ) (0) / o(T = )e ™ dt = —e N Ty, 67) s,
0

T @) @) (>8)
b2<,0§€2’i(0)/ (T — t)e M tdt = —e Mk T{yo, ¢,(€2)>H_17H5.
0
forany k > 1, where )\,(;) and d),(f) are respectively given in (5.6) and (5.7). O
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For a proof of the previous property, see [31].

In fact, when (5.5) holds and T' > Tj, T given in (5.4), the corresponding null controllability problem
at time 7 for system (5.1) (or equivalently, the moment problem stated in Proposition 5.2) can be explicitly
solved as follows (see [31] for the details). The sequence A given in (5.6) satisfies (1.13). Therefore,

Lemma 4.1 can be applied to deduce the existence of a sequence {q,(cl), q,(f) }k C L*(0,T) biorthogonal
>1

to {eg), 65“2)}101 C L?(0,T), where

D)y =e N Ve (0,T), i=1,2. (5.9)
Thus, a formal solution of the moment problem (5.8) is:
o)=Y (e*AS)Tmﬁj)q,ﬁ”(T )+ e N TP (7 - t)) ., Vte (0,7), (5.10)
k>1

where
@ _ _ —1
My =0
bi@k,x (0)
Furthermore, when T' > T, with Ty given in (5.4), the series (5.10) converges absolutely in LQ(O, T) and
provides a null control v € L?(0, T) which in fact is a solution of the moment problem (5.8).

o, 8 V1, VE>1, i=1.2. (5.11)

Let us see that we can conveniently choose the sequence {q,(cl), q,(f) }k> C L*(0,T) in order to select
1

a null control for system (5.1) associated to yo € H~! (0, 7; R?) with minimal norm in L2(0, T). For that
purpose, we define (see Section 4)

4 L?(0.T)
E(AT) := span{egf) in>1, i:l,?}} ,
L?%(0,T)
E,(Cl)(A,T) = span{egll),el(z) m>1,n#£k 1> 1} , VE>1
L2%(0,T)
E@(A,T) = span{e;“,el@) n>1,0>1,14 k} L VE> L

We have:

Proposition 5.3. Under the previous assumptions, let us suppose that (5.5) holds. Let us also consider
T > Ty and the sequence of functions

et —p (1)

s (1) = .

. te(0,T), Vk>1, i=1,2
where dr i, ; and p,(j) € E,(Ci) (A, T) are defined by

d%, ;= f () ’ = ! SO dt, Vk =
= i Y = AR lt‘ t, >1, i=1,2.
Tk,i . Hek p‘ L2(0.1) /o ‘e ;. (1) ?

peE (AT)

Then, the sequence {s,(cl), s,(f)}k>l lies in E(A,T) and is biorthogonal to {e,(cl), 65“2)}101 in L*(0,T)
(the function e,(:) is given in (5.9))_. Moreover, given yo € H~1(0,m;R?), the control u € },2(0, T) given
by
u(ty =Y (e—Ai”Tm;”s;”(T 1)+ e T @D - t)) Ve (0,7), (5.12)
E>1
where m,(:) is given in (5.11), satisfies uw € Cr (yo), u € E(A,T) (U is the function u(t) = uw(T — t),
t€(0,T))and

u = inf v .
o) =, _inf vllixr)
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Proof. As said before, under assumption (5.5), the sequence A satisfies (1.13). Then, the family

{61(61), 6](3) }k>1 - LQ(O, T)

is minimal in L?(0, T'). In particular, we deduce that the functions s,(:) are well defined, live in E(A, T'), for

any k > 1 and ¢ = 1, 2, and are biorthogonal to {eg), eg)}k . These properties together with 7' > T{
>1

imply that the function u defined in (5.12) satisfies « € E(A, T') and solves the null controllability problem
at time 7T for system (5.1) and yo € H (0, m;R?), i.e., u € Cr(yo)-

Let us now consider another null control v € Cr(yp). Using the equivalence stated in Proposition 5.2
we infer that v satisfies the moment problem (5.8). Therefore,

T .
/ (T —t) —w(T — )] e ™ 'tdt =0, Vk>landi=1,2,
0

that is to say, o —u € E(A,T)~* (v and 4 are defined as 9(t) = v(T —t) and @(t) = w(T —t),t € (0,T)).
Using that uw € E(A,T), we deduce
||UHL2(0,T) = ||ﬁ||L2(o,T) = (0 —u)+ aHLz(o,T) =|v— a||L2(0,T) + ”aHL2(O,T)
2 ||aHL2(O,T) = ||7-"HL2(O,T)'

The previous inequalities prove the result. This finalizes the proof. O

Our objective is to apply Theorems 1.2 and 1.3 to system (5.1) in a particular case. To this end, let us
state a technical result of inverse spectral theory whose proof can be found in [33] (see also [31]):

Lemma 5.4. Let us consider {ey},~,, a sequence in (*>. Then, there exists a function Q € L?(0, )
satisfying (5.3) such that o
olla) = A2 = {F + e}y
where Ly := —0y + Q with domain D(Ly) = H? (0,7) N HE (0, 7). O
From now on, we will take )
€k = ek 7, k>1,

with v € (0,00), and B = (by, b)" with b1by # 0. Clearly {e)},~, € ¢* and we can apply Lemma 5.4.

We will work with the function (Q associated to the previous sequence provided by Lemma 5.4 and the

corresponding sequences of eigenvalues and orthogonal basis Aj, Ay and {90,(61)} and {(p,(f)}
E>1 E>1

associated to the operators Ly and Ly. With this choice, we consider the parabolic control system (5.1)
with Lo given in (5.2).

Observe that the sequence A of eigenvalues of the operator Ly can be rearranged as an increasing
sequence A = {Ag},~; (v € (0,00)) doing:

Aop1 = k2 Agp=k24+e®7, VE>1. (5.13)

It is clear that the functions

(1) 0
Pak—1 = ( P ) and ¢ = ( @) > , Vk>1. (5.14)
0 Pk

are an orthonormal basis of eigenfunctions of the operator Ly in L?(0, 1;R?) and an orthogonal basis of
H(0,7;R?) and H~1(0, m; R?).

The controllability properties of system (5.1) at time 7" > 0 can be deduced from Theorem 5.1. In this
case, system (5.1) is approximately controllable for any final time 7" > 0. The expression of the minimal
time is (see (5.4))

~1og (¢=") 0 ifye(0,1),
TozlimT— 1 ify=1,
oo ify> 1.

‘We deduce then
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1. If v € (0,1), system (5.1) is null controllable at any final time 7' > 0.

2. If v = 1, system (5.1) is null controllable at any final time 7" > 1 and is not controllable at time 7'
when T' < 1.

3. When v > 1, system (5.1) is never null controllable at any final time 7" > 0.

Observe that, when v € (0,1) and Q € L?(0, ) is the function provided by Lemma 5.4 associated
to e, = e_km, system (5.1) is null controllable at time 7', for any 7" > 0. We can introduce the control
cost K (T') associated to this system (see (1.5)). Our objective is to analyze the dependence of X (7T') with
respectto 7" and v € (0,1).

First, let us see that the sequence A = {A}, -, (see (5.13)) of eigenvalues of the operator L, is in the
class £(83, p, q, po, p1, P2, ) (see Definition 1.3) for appropriate parameters 3 > 0, p, po, p1, p2 € (0,00)
and ¢ € N. One has:

Proposition 5.5. Let us fix v € (0,1) and consider the sequence A = {Ay},~, with Ay, given in (5.13),
k > 1. Then, the sequence A satisfies A € L(B, p,q,po, p1,p2, ) and (1.27), with f =0, ¢ = 2,

1 1 1 1
P 16’ Po , P1=D2 , +\/g an v 2( +e)

Proof. The proof of this result is a direct consequence of Proposition 2.8 and Remark 2.9. Indeed, the
sequence A can be written as A = A; U Ay with

M=) = e, pa={AP) = (e

It is easy to see that Ay € £ (8, p1, ¢, 70, 71, T2, 1) and satisfies (1.27) with 8 =0, p; = 1, ¢ = 1,
Mg =m1 =7y = 1,a; = 1 and v = p; = 1. On the other hand,

€0 = sup |ex| = sup e F =1,

k>1 k>1
In addition, the sequence A can be explicitly defined by
A itk =201,
A2 itk =20,

(see (2.17)) for any k£ > 1. So, from Proposition 2.8 and Remark 2.9, we deduce that the sequence A lies
in £(8, p,q, 70, p1, 2, ) and satisfies (1.27) with parameters given in the statement of the result. This
finalizes the proof. O

With the previous choice, the sequence A, in particular, satisfies property (HS) for ¢ = 2. In this case,
let us see how the term P}, (see (1.24)) can be estimated. One has:

Proposition 5.6. Let us fix v € (0,1) and consider the sequence A given by (5.13). Then, P1 = e and

1 2y 1 2~
e T <Py <™ Y > 2,
2n—1° ="M= p 1) _e1¢ "=

1 2 1 2

" n " b >1’
(2n—|—1)e =02 *(2n+1)—e—1e vn 2

where Py, and the sequence A are respectively given in (1.24) and (5.13).

Proof. Let us prove the result when & = 2n, with n > 1. The case k = 2n — 1, with n > 1, is similar.
From (1.24) and (5.13), we deduce

Pol = (Aon — Aop1) (Aoni1 — Agn) =" [(2n 1) - e—"ﬂ V> 1.

The previous formula provides the proof of the result. O
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Remark 5.2. Let us take a sequence {&, } g>1 10 02 such that 0 < &, < 1 for any k > 1. From Lemma 5.4,

there exists a function Q € L?(0, 1) such that o(L2) = {7?k? + &5, },,. As before, we can consider the
operator Ly associated to system (5.1) (see (5.2)) and the corresponding sequence of eigenvalues A given
by (5.6). In this case, we can repeat the computations in Proposition 5.6 and deduce P; = 51_1 and

iPn, < ) v >27
2n—1)e, = "= 2n—2)z, "=
;S%nﬁ ! ; Vn=>1,
(2n+1)e, 2ne,

(Py is given in (1.24) with ¢ = 2). The previous estimates prove that we can construct functions @ €
L?(0,1) such that the sequence {P}, }>1 associated to o(Ly) = {72k? + sk}k21 can have any arbitrary
explosive behavior. O

The main results of this section concern the control cost X(7') associated to system (5.1). First, let us
state a bound from above of the control cost:

Theorem 5.7. Let us fix v € (0,1) and take the function Q € L*(0, ) provided by Lemma 5.4 associated
toer, = e " If we denote X(T) the control cost of system (5.1) in L2(0,T) at time T > 0, then, there
exists a positive constant C, independent of y, such that

1 ¢ 1—~

K(T) < exp {e<1+T>+(1—7)T+T1”W , VI'>0. (5.15)
Proof. Under the assumptions of the theorem, we can apply Proposition 5.5 and deduce that the se-
quence A = {Ay},~; (A given in (5.13)) of eigenvalues of the operator Ly (see (5.2)) satisfies A €
L(B, p,q,po, p1, 2, ) and (1.27), with 3, p, g, po, p1, p2 and « given in the statement of this result.

Let us now take 7" > 0. Remember that the minimal time associated to system (5.1) is 7y = O.
Therefore, without loss of generality, we can assume that 7' € (0,1). Thus, Theorem 1.2 can be applied
to A and we deduce the existence of a family of functions {qx }x>1 C L?(0,T), biorthogonal to {ey }r>1
in LQ(O, T) (for the expression of ey, see (1.1)) which satisfies (1.23). In particular, there exists a positive
constant €, independent of +y, such that

1
llarllz20,1) < exp {(‘3 <1 + V| Ak + Tﬂ P, VEk>1.

If we combine the previous inequality with Proposition 5.6 and (5.13), we get

1
lg2r—1ll22(0,7) < exp [G (1 +k+ T) + kh} . Vk>1,
(5.16)

1
||Q2k||L2(o,T) < exp {6 (1 +k+ T) 4 kQ”Y] , VkE>1,

for a new positive constant €, independent of ~.

Let us prove the result. To this end, we consider yo € H (0, m; R?) with

lyolla—1(0,mr2) < 1.
Using the moment method, in [31], the author proves that, taking
(K2 re—k
v(t) =Y <e’“2Tm§j)q2k_1(T —t)+e (k*+ )Tm§f>q2k(T - t)) . Vte(0,T), (5.17)
k>1

where mff) is given in (5.11), one has v € L?(0,T) and the corresponding solution of system (5.1),

y € C°([0,T); H1(0, m; R?)), satisfies y(T,-) = 0 in (0, 7) (q&,(f) is given in (5.7)). In [31] the author
also shows that there exists a positive constant € (independent of &) such that

e

<Cllyollz-—10mr2) <€ VE>1, i=1,2.
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Coming back to (5.17) and taking into account (5.16) and the previous estimate, we deduce

lvllzz0,m) < eC(1+7) Z e~ R T+CR+R™T

k>1

for a new positive constant C, independent of . Let us now take ¢ € (0,1/2), which will be fixed later.
Observe that Young inequality implies

2

C
Ck < ek’T+ —, Vk>1
<e +4€T, >1,

and therefore, we can write

e2 2
— k2 2’Y< 2 2 2y _ 2 v 2 >
kK*T + Ck + k kT+sk:T+4T+k hg(/c)+4€T ek®T, Vk>1,

where the function h. is given by
he(r) ==(1—-2e)Te 4+ 27, 2z € (0,00).

To summarize, the previous calculations provide the following estimate for |v||z2(o,7):

loll2m) < eC0FH)edir 3 eheh)emek® (5.18)
k>1

for any € > 0.
It is easy to see that h. possesses an absolute maximum in (0, co) at point

_1
«_ (v L\
v (1—25T> '

Thus, if we take e = (1 — )/2, we can write

1 1—7

he(z) < he(z™) = (1 =) < i > o T =—, Vz€(0,00).

1—2¢ i Ti—s

Going back to the formula (5.18), we deduce

1 62 1 — 7y 1 2
< 14 — R
[vllL20,7) < exp [G ( * T) - 2(l-7y)T " le”] 1.:>16 2

Finally, a comparison with Gauss integral gives

L wcT</°°ef%<1fw>n2dx:7m¥SQW,
E>1 0 2 /O -v)T

and then,
1 €2 +1 1—7y
< Cl1+ =
[0l L2(0,r) < exp { < + T) sy =

It is clear that, from the previous inequality, we can deduce (5.15) for a new positive constant C, independent
of . This completes the proof. O

Our second result provides an estimate from below of the control cost X (T') for system (5.1) in L?(0, T)
at the final time 7 > 0. As before, we are going to fix v € (0, 1) and take the function Q € L?(0, )

provided by Lemma 5.4 associated to €, = e~**". One has:
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Theorem 5.8. Under the assumptions of Theorem 5.7, there exists two positive constants 1y and C, inde-
pendent of vy, such that

K(T) > Cexp (; + 6;1_7)> , VT €(0,7). (5.19)

T—
Before starting the proof of Theorem 5.8, we will show a technical result that we will use in its proof:

Lemma 5.9. Let us consider T > 0 and v € (0,1) and define the function

h(z) = Tz +2", Ve (0,00).

2(1-7)
T <~ <\[\[;1> . (5.20)

Let us assume that

Then, there exists kg > 1 such that

(1+1og2) (1—1)

7 2

Proof. Under the assumptions of the lemma, it is easy to see that the function his increasing in (0, z) and
decreasing in (7, 00), where

Thus, if £y > 1 is such that

1
555 < k2 <7, (5.21)
then
~ ~ 1 v\ /v\i= _ 1 Y\15 _ (1+1og2) (1 —7)
2 > = _—— — - — - >
B03) 2@ = (5 -3) (3)7 > garroe2 - (3)77 2 HEER LD

and we would have the proof of the result.
In order the finish the proof, let us check that there exists ky > 1 such that (5.21) holds. Indeed, (5.21)
is equivalent to

J5VE<h < VE
Observe that this property occurs if
Vi-—Vis,
V2
i.e., if T' satisfies (5.20). This ends the proof. O

Proof of Theorem 5.8. As before, under the assumptions of the theorem, we know that the sequence A of
eigenvalues of the operator Lo (see (5.2)) satisfies A € L£(85, p, q, po, p1, P2, ) and (1.27), with 3, p, ¢, po,
p1, p2 and « given in the statement of Proposition 5.5.

Let us fix T > 0. The minimal time 7j for system (5.1) associated to the function @ is Ty = 0. In
addition, we can apply Proposition 5.3 and Theorem 1.3. We deduce that the optimal family {sx}r>1 C
E(A, T) biorthogonal to {ey };>1 in L?(0, T') satisfies (1.28) (e is given in (1.1)).

We will divide the proof of the result into two parts:

1. Assume that v € (0, 1/2]. In this case, it is easy to check that, for any 79 € (0, 1], one has

l>17"//-}/7
T~ 71—+

VT < 19.
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Therefore, inequality (5.19) is equivalent to prove the existence of a positive constant Cy, independent of
7, such that

K(T) > €y exp (i?) VT € (0,70). (522)

Our objective is to find €y > 0 and 7y € (0, 1], independent of +, such that one has inequality (5.22).
From inequality (1.28) written for the function s3, we deduce (v = 5 (1 + 1)):

6 N
||53||L2(0,T) > ?33 PseTv

where (see (1.29) for ¢ = 2)

(wT)* 1
BS - em |A1| + —

and C is a positive constant (3 = 0 and then § = 1). From the previous expression, it is not difficult to see
that there exist Gy > 0 and 7y € (0, 1], independent of +, such that

By Py > Goe_ﬁ, VT € (0,’7’0).
Coming back to the expression of [|s3]| 2, 7). we finally deduce:
Issll 207y = CeT™, VT € (0,70). (5.23)

Let us take yo = ¢3/ || @3]/ ;-1 (see (5.14)). Then, applying Proposition 5.3 to yj, it is possible to
construct the null control with minimal L?-norm for system (5.1) associated to yo (see (5.12)):

T 1 1 55
D15 (0) 1193l -1

u(t) =e” (T —t), vte(0,T).

From (5.23), we also have

K(T) = inf  |ollrz0,1) = lull20,r) = € ||33||L2(0 T) 2 Geﬁ, VT € (0,7o).
vECT (o) ’

This proves inequality (5.22) and inequality (5.19) when v € (0,1/2].
2. Let us now assume that v € (1/2, 1). In this case, inequality (5.19) is equivalent to

¢

K(T) > Cgexp <T3> . VYT €(0,79). (5.24)
1—v

and therefore, our goal is to prove that there exist two positive constants Cy and 7y, independent of +y, in

such a way that the previous inequality holds. As before, we are going to work with an appropriate element

Sk, of the optimal biorthogonal family {sx}r>1 C E(A,T') provided by Proposition 5.3.

Let us define 7 as
1(v2-1
== —7—1.

Observe that if T' € (0, 7p), then inequality (5.20) is valid for any v € (1/2,1). From Lemma 5.9, we can
infer the existence of kg > 1 such that
1+log2) (1—7)  €(1-9)

R () = k3T + (ko) > 12X e (5.25)

Consider yo = ¢aro—1/ || P2ko—1] -1, i.e. (see (5.14)),

yo(z) = k’O\/Z( sin (:033) ) .
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On the other hand, let us also consider the null control for system (5.1) associated to yo provided by
Proposition 5.3:

1 1 /2
u(t) = e_kng<y0,¢2ko,1)H_l7H3 soke—1(1' — 1) = bl\/;e_kgTSQkoﬂT —t), Vt € (0,T).
1¢k0,$

Using inequality (1.28), written for the function sax,—1, and taking into account Proposition 5.6 (¢ = 2
and 6 = 1) and (5.25), we deduce

_k27 C ) 1/2 — k2T
letll 2o,y = €™ szro-1ll2o,ry = 75 | o +A2mo2 ) €77 Parg—

e /5 1z ) .

> (2 LA, = —k3T+(ko)

=72 <2T+ 2ho 2) %o —1°
e /5 V2 k(K)o el —7)

= — = 4 Agy— > - hASIRPA
T2 <2T+ 2ko 2) 2k01_T2eXp< e )

where C is a constant independent of v and k.
As before,

. C C(1—
X(T)> inf ||UHL2(O,T) = ||u||L2(0,T) > ﬁeXp (W) , VT € (0,79).
Yy

- UG@T(yo)
Thus, we can conclude that inequality (5.24) holds. This ends the proof of Theorem 5.8. U

Remark 5.3. Observe that inequalities (5.15) and (5.19) are valid when « € (0, 1). In fact, these inequali-
ties are equivalent to:

1. If v € (0,1/2], then, there exist three positive constants 7, Cy and C; (independent of ) such that

1 1
exp {(‘30 (1 + T)} < X(T) < exp [@1 <1 + T)} , VT € (0,7).
Observe that the previous estimates for the control cost of system (5.1) are similar to those obtained
for the control cost of the heat equation (see for instance [20] and [17]).

2. If v € (1/2,1), again, there exist three positive constants 7y, Cy and C; (independent of ) such that

o )} < XK(T) < exp [GO (1 + Tll")} , VT € (0,7).

1—v -y

exp [Go <1 +

The previous expressions prove that the control cost blows up when v — 17. This is natural because
the minimal time for system (5.1) when v = 1 is T = 1 and the system is not null controllable at
time 7"when T < 1. O

5.2. The linear phase-field system

Let us now apply Theorem 1.2 and Theorem 1.3 to the linear version of (1.17) around the constant
trajectory (0, ¢) with ¢ = 1 or ¢ = —1. To be precise, we will work with the linear system (1.15) with
L = L3 (see (1.18)) and p, 7,£ € (0,00). As said above, the controllability properties of this system has

been analyzed in [19] under the condition £ # 712 B, for any j € N. The approximate controllability of this
-
system is given by the next result:

Theorem 5.10 (Approximate controllability). Fix T' > 0. Then, system (1.15) with L = Lg (see (1.18)) is
approximately controllable in H='(0, m; R?) at time T > 0 if and only if)\,(f’l) #+ )\%3’2) forany k,n >1
(see (1.19)), that is to say, if and only if

7202 — k5?2 —2pT(P+ k> —2p—1#0, Vk,£>1, (>k. (5.26)
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The proof of this result can be found in [19].

Now, our objective is to give a null controllability result at time 7" > 0 for this system when (5.26)
holds (which, in fact, is a necessary condition for the null controllability at time 7" of system (1.15) with
L = L) and obtain a bound for the corresponding control cost X(T"). This problem has analyzed in [19]
under additional assumptions on the parameters &, p and 7. To be precise, in [19] the authors prove:

Theorem 5.11. Let us us fix T' > 0 and consider &, p and T, positive real numbers satisfying (5.26) and
1
e+ =0 iz (5.27)
j2T

Then, system (1.15) with L = L3 (see (1.18)) is exactly controllable to zero in H_l(O,ﬂ;R2) at time
T > 0. Moreover, there exist two positive constants C and M, only depending on &, p and T, such that

K(T) < CceMT vyT >0,
where K(T') is the control cost for system (1.15) with L = Lg:

X(T) = sup ( inf ||v|L2(0,T)> , VYT >0.

llyoll gr—1(0,m2)=1 vEZT(Yo)
and

Zr(yo) = {v € L*(0,T) : y(-,T) = 0in (0,7), withy solution of (1.15) with L = Lz} .

Conditions (5.26) and (5.27) implies that the sequence AG) = {)\,(63’1), )\23’2) }k> (see (1.19)) satisfies
1

the conditions in Theorem 1.1 (see Remark 1.2). In fact, condition (5.27) provides the gap condition (1.9)
for the sequence Ag. Therefore, Theorem 5.11 is a consequence of Theorem 1.1.

As said before, our objective is to analyze the null controllability of system (1.15) with . = L3 without
imposing condition (5.27) to the sequence A3 of eigenvalues of the operator L3. Let us first see that this
sequence is in the class £(3, p, q, po, p1, P2, «) with § = 0 and appropriate parameters p, pg, p1, P2, @ €
(0, 00) (see Definition 1.3):

Proposition 5.12. Let us consider &, p and T, positive real numbers satisfying (5.26). Then, the sequence
AB®) = {)\(3’1) /\(3’2)}k> , with /\ glven in (1.19), can be rearranged as a positive increasing se-

quence AB) = {Ak}ys, satisfying AB) € £(0, p, q, po, 1,2, @) and (1.27), with

2 3p+4
po=p1=p2=—7 and o=_— +2,
o m o= (VB

and q > 2, p and v positive constants only depending on &, p and .

Proof. The proof of this result is a direct consequence of the results in [19]. Indeed, from Proposition 3.2
of [19] one has,
0< AP < AP vk > 1

Secondly, as a consequence of assumption (5.26) and Theorem 5.10, we deduce that the elements of the
sequence A®) are pairwise different. Thus, this sequence can be rearranged into a positive increasing
sequence A(®) = {Ax}r>1 that satisfies (H1) and, of course, (H2), (H3), with 5 = 0, and (H4).

On the other hand, taking into account the proof of Proposition 3.3 in [19], we also have that AB®)
satisfies condition (H6) in Definition 1.3 with parameters pg, p1, p2 and « as in the statement of the

proposition.
Finally, we deduce properties (H6) and (1.27) from Proposition 2.3 with ¢, p and v given in (2.5). This
ends the proof of the proposition. O

In the next result we will provide further properties of the sequence A(®) that will be used later. Again,
we will use some properties that has been proved in [19]. One has:
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Proposition 5.13. Let us consider &, p and 7, positive real numbers. Then,

(3,2) (3.1 _ P 9 . €k+i €k s )
A=A 5(,/& z)(k+z)+<k+i+k), Vk,i> 1, (5.28)

where )\ ) is givenin (1.19) and {e; } k>1 IS the increasing sequence given by

2
€ = (p+ 1) Vk > 1. (5.29)
§p+ p
k2

s

Proof. The proof of the result can be found in [19] but it is included here for the sake of completeness.
From the expression of r (see (1.20)), we get

2
rk:rk—w/f—pk+1/@k:m€7 1/ k_,/ k+—, Vk > 1,
T T e+ £pk

(the expression of €, is given in (5.29)). If we take into account the previous expression and (1.18), we also

deduce
1 1
R sy L BV sy L
27 T k 27 T k

and (5.28). This proves the result. ]

Let us now analyze the control cost for the linear phase-field system, i.e., the control cost for sys-
tem (1.15) with L = L3. One has:

Theorem 5.14. Let us consider &, p and T, positive real numbers satisfying (5.26). Then, system (1.15)
with L = Ls (see (1.18)) is exactly controllable to zero at any time T > 0. Moreover, there exist positive
constants Cy, C1, My and M (only depending on &, p and 7) such that

CoeMo/T < 5(T) < C1e™/T | VT e (0,1], (5.30)
where K(T') is the control cost for system (1.15) with L = L3 defined in the statement of Theorem 5.11.

Proof. The result is proved in [19] when the coefficients £, p and 7 satisfy conditions (5.26) and (5.27).
Thus, let us prove the result when these coefficients do not satisfy (5.27), that is to say, when one has

Lp
€ = 5
T
for some integer jo > 1. In this case, (5.28) becomes
AP A3 =€ (jo — i) (2k + i) + (;’jz + ?) . Vki>1, (5.31)

where )\ ) is given in (1.19) and {ex} k>1 1s the increasing sequence given by (5.29). In particular, we
can estlmate the terms € of the sequence as follows:

2
PHINT VT 1 ks,
2T 2v€p

1\2
<p+ ) —61<ek<hm € = <
27 £p Jr p+1 /
We will use the previous inequalities in what follows.
If we choose 7 such that 1 < ¢ < jo — 1, from (5.31), we infer

A = NG > €Go—i) @k +i), VR 1,

(3,2) (3, . ) . 2L . ) (5.32)
A —)\kﬂ- <§(]0—z)(2k+z)+? <&(o—1)(2k+jo—1)+2L, Vk>1.
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Now, if we take i = jg, using again (5.31), we deduce

: 261
ABD _ B Chtio | Gk — Yk >1,
b T ke Tk T Rt o

(5.33)
; 2L
AB2) B _ Cktjo | kM g
k i T ke kS kT F
Finally, if ¢ > jo + 1, equality (5.31) provides the formula
3,1 3,2 . . . €k+i €k . .
ASD A3 = ¢ (i — jo) (2K + 1) — (kﬂ +k) . VE>1, Vi>jo+ L.
If we take kg > 1 (only depending on &, p and 7) such that
2L & .
— < 2 (2k 1
o = 2 (2ko +jo+ 1),
in particular, for any k£ > kg and ¢ > jo + 1, one has
€k+41 €k 2L 2L 5 . f . . .
— < — < — < 2 (2k 1)< =(1— 2k
k+i+k<k—k0—2( o+jo+1) < 5 (i—jo) 2k +1),
and
ABD N8 Sl o) @k+i)> S @k4jotl), VE>ko Vizjo+l,
e 2 -2 - - (5.34)

ASD A3 <e(i—jo) 2k +1), VE>ko, Vi>jo+1.

The first consequence that we can obtain from (5.32)—(5.34) is the following one: for any k > kg, we
can write o) o) o o)
3,1 3,2 3,1 3,2
Metio <Ak < NG, <At <o VE 2>k,

(A,(f”i) is given in (1.19)). Thus, we can give an explicit expression of the elements of the increasing
sequence A(®) = {Ak}k21 (see Proposition 5.12): if 1 < k < 2kg + jo — 2, we define Ay, such that

A =) o Do)
dicisanotio—2 ko Ji<k<kotio—1 P S ick<ho—1]

and A, < Apy1, forany k: 1 < k < 2kg + jo — 3. From the (2ko + jo — 1)-th term, we define

_ 3D (32
Askgtjor2s—1 = Apoijors  and Aogoijoros = NV, Vs > 0.

Equivalently, in the case k > 2ky + jo — 1, we have

Ap = )\(f’(’;lrjoﬂ), if k > 2ko + jo — 1 and k + jo is odd,

2

g (5.35)
Ay = )\(f(,z)_jﬂ)7 if k > 2ko + jo — 1 and k + jg is even.

2

Our next objective will be to obtain appropriate estimates of the products Py (see (1.24)) for the se-
quence A(®), Remember that A®) € £(0, p, q, po, p1, P2, @) and satisfies (1.27), with pg, p1 and py given
in Proposition 5.12, and ¢ > 2, p and v positive constants only depending on &, p and 7. We will reason
for arbitrary k > 2kg + jo + q — 2 because if k is such that 1 < k < 2k + jo + ¢ — 2, taking into account
that |Ax, — A, | > 0 for any k # n (assumption (5.26)), we deduce the existence of two positive constants
co and ¢y (only depending on &, p and 7) such that

0<co<Pp<ecr, Vk:1<k<2ko+jotq—2. (5.36)

Let us then take k > 2ko + jo + ¢ — 2. In this case, if n > 1 is such that 1 < |k — n| < g, in particular
n > 2kg + jo — 1. This means that we can use inequalities (5.32)—(5.34) for appropriate indexes.
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We will reasoning when k + jg is odd. A similar argument will provide the proof when k + jq is even.
Indeed, if k + jo is odd, from (5.35), one has A, = /\(;’1) and Ay g = )\-(}53’2],) with & = 1 (k + jo +1).
—Jo
Thus, we can apply (5.33) for & — jo and write
261 2L
3O+ = 5k —jo+1)
On the other hand, let us take n # k + 1 with 1 < |k — n| < ¢. Using properties (5.32) and (5.34) and the

expression of A,(c37i) (see (1.19) and (1.20)) and A,, (see (5.35)), it is not difficult to check the existence of
positive constants ¢y and ¢; (as before, only depending on &, p and 7) such that

cok <Ak —Ap| <k, Yn#k+1 with 1<]k—n|<gq.

As a consequence of the previous inequalities, again, we deduce the existence of positive constants cy and
c1 (only depending on &, p and 7) such that

Cok2q74 S H ‘Ak - An‘ S Clk2q747

{n>1: 1<|k—n|<q}

or, equivalently (see (1.24)),

C
0 <9, <

C1 .
T4 SRS 11 Vk > 2ko + jo +q — 2, (5.37)

(co and ¢y are new positive constants only depending on &, p and 7). We will use this inequality later.

Let us now revisit some properties on null controllability of system (1.15) with L = L3 proved in [19]:
Given T > 0 and yg € H (0, m; R?), there exists a control v € L?(0, T) such that the solution of (1.15)
with L = Lj satisfies y(-,7) = 0 in (0, ) if and only if v € L?(0, T) solves the moment problem

T
/ e Mby(T — t)dt = e M Ty, Wk > 1. (5.38)
0

In the previous equality my only depends on y, and satisfies

Ime| < Cklyollg—, VE>1, (5.39)

with C' > 0 only depending on &, p and 7. The sequence A®) = {Arts: = {)\,(93’1), A123’2)}k>1 (/\,23’i) is

given in (1.19)) provides the eigenvalues of the operator L3 (for the expression of L, see (1.18)).

On the other hand, the real positive sequence A®) belongs to £(0, p, q, po, p1, P2, ) and satisfies (1.27)
(po, p1 and po are given in Proposition 5.12, ¢ > 2, and p and v are positive constants only depending on
€, p and 7). Then, we can apply Theorems 1.2 and 1.3 to the sequence A®). We deduce the existence
of a biorthogonal family {C]k}k>1 to the exponentials {ey } k>1 (see (1.1)) associated to the sequence A®
satisfying (1.23) and (1.28). a

Let us first prove that, under the assumptions of Theorem 5.14, system (1.15) with L = L3 is null
controllable at any time 7" > 0 and satisfies the second inequality in (5.30). To this end, we will solve the
previous moment problem for any 3o € H (0, 7; R?). An explicit solution of this problem is

v(t) = e M mpg(T —t), Vte (0,7).
E>1

Since gy, P and my, respectively satisfy (1.23), (5.36) or (5.37), and (5.39), we can prove that the previous
series is absolutely convergent in L2(0, T") and provide an estimate of the L?-norm of v. Indeed,

e ™ |lmill gkl 20,y < Ck e~ MT OVRA) /TP < Ce=MTOVERCIT ||yl

_ c2 T _T
< CeMTC/Tesr 30 = CeClTe™2 M Wk > 1,
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for a new positive constant C, only depending on &, p and 7. If we use (2.13) (p2 and « are given in the
statement of Proposition 5.12), we deduce that v € L*(0,7') and

o0 «
[0l 20y < CX/T Y e 50 < QeI Y7 i 37 emelhme
k=1

k=1 k>a

< CeC/T/ e~ ¥6@=) gy — Cy/ 8 eC/T.
R T

From this inequality we deduce the estimate from above of K(7') in (5.30).

Let us now prove the first inequality in (5.30). To this end, we will reason as in Subsection 5.1 and,
to be precise, as in Proposition 5.3 and the first point of the proof of Theorem 5.8. We first construct
the sequence {s},~, biorthogonal to the exponentials {e; },~, associated to the sequence A(®). Given
yo € H=1(0,7;R?), we know that the null control with minimal Z?-norm for system (1.15) with L = L3
(see (1.18)) associated to yo € H~1(0, 7;R?) is

u(t) =Y e M mpsp(T —1), Ve (0,T),
k>1

where my, depends on y, and appears in the corresponding moment problem (5.38).

Let us take ¢/ = max{3,q} and yo = Py, with U, the eigenvector of L3 associated to A, with
Wyl -1+ = 1 (for the expression of W, see Proposition 3.1 in [19]). In this case, the corresponding
null control with minimal L?-norm is

u(t) = e M mysy(T —t), Vit e (0,T),

and K(T') = |ull g2,y = e~ 2T my| ||se|| (¢ only depends on p, & and 7). If we use inequalies (1.28),
for the function s;, and (5.36) or (5.37) for k = ¢, we deduce the existence of a positive constant C, only
depending on p, £ and 7, such that

41
a (vT) 1 1
K(T) > CByetr = C’W [A1] + ﬁeTu, vT > 0.
Finally, there exist C' > 0, only depending on p, & and 7, such that

(vT) 1 _y
W |A1|+7>C€2TV, VTG(O,].}

2T —
Therefore, .
X(T) > Ce>™v, VT €(0,1],

for a new constant C' > 0 only depending on p, £ and 7. This proves (5.30) and finalizes the proof of
Theorem 5.14 O

Theorem 5.14 in particular provides a local boundary exact controllability result to the trajectory (0, ¢)
(¢ = %1) for the nonlinear system (1.17) under assumption (5.26). One has:

Theorem 5.15. Let us consider &, T and p three positive numbers satisfying (5.26), and let us fix T > 0
and ¢ = —1 or ¢ = 1. Then, there exists € > 0 such that, for any (69, o) € H=1(0,7) x (c + H}(0,7))

Sfulfilling ~
160l -1 + ll¢0 — cllay <e,

there exists v € L?(0,T) for which system (1.17) has a unique solution
(0.9) € [L*(Qr) N C°([0,T]; H~H(0,m; R?))] x C*(Qr)

which satisfies
0(-,T)=0 and ¢(-,T)=c in(0,m).
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In order to obtain the proof of the previous local controllability result for system (1.17), it is enough
to follow the reasoning of the reference [19] that combines inequality (5.30) with the general methodology
developed in [29]. For further details, see [19].

Remark 5.4. Theorem 5.15 is valid under the only assumption (5.26). In this sense, Theorem 5.15 gen-
eralizes the local controllability result for system (1.17) stated in [19] where the authors prove the same
result under assumptions (5.26) and (5.27). O
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Appendix A. Proof of Propositions 2.5, 2.6, 2.7 and 2.8

Appendix A.1. Proof of Proposition 2.5

Let us take A = {A;},~,; C (0,00), a sequence under the assumptions of the proposition. It is clear
that the sequence A satisfies (H1)-(H4) for 8 = 0.

Let us first see that property (1.12) implies property (H6). Indeed, given r > 0, one has N(r) = k if
and only if Ax, < rand Ag,q1 > r. Since the sequence A satisfies

Yok + VAL =7 S VAL <mk+ VA =7, VE2>1, (A1)

we can write
Yok + VA1 =70 <Vr oand Vr <yi(k+1)+ VAL -7

The previous inequalities prove condition (H6) with pg, p1, p2 and « as in the statement of the proposition.
Let us now see that we can deduce (HS) from property (1.12). First, one has

VA = VA >0 (k—n), Yhkn:k>n.
As a direct consequence, one also has
Ap = An >0 (k (\ﬁ+f) Vk,n:k>n,
that together with (A.1) provides
A = Ap =75 (K2 = n?) +2v0(k —n) (\/ITl_ ’Yo) )

forany k,n : k > n. If /A1 > 70, clearly one gets (HS5) with p as in the statement. Otherwise, A1 < 7o
and, from the previous inequality, we deduce

k% — n? 2
Ay — Ay > 5 (K* —n®) — 2y - (70 Y A1) > (7(2) — 37 (70 - \/E)) (k* —n?),

k+n

for any k,n : k > n. In this case we also deduce (HS) with p given in the statement.
Finally, let us prove (1.27). Reasoning as before, we can write

A —A (\ﬁ—\ﬁ)(\ﬁ+\/>)<m (\ﬁ+f) VEk,n k=,

that together with (A.1) gives
Ap = Ay <7 (K = n®) + 27 (k —n) (\//Tr%) 7
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for any k,n : k > n. In the case in which /A; < 7, we deduce (1.27) with p = fy%. Otherwise,

Ap = Ay <9F (K = n2) +2m(k —n) (\/AT*%) < (’Yf + %71 (\/AT%)) (k* —n?),

for any k,n : k > n. We also obtain (1.27) in this case with p given in the statement. This finalizes the
proof of Proposition 2.5. O
Appendix A.2. Proof of Proposition 2.6
Let us consider two sequences {/\,(Cl) }k> and {)\,(f) }k satisfying (1.10) and (2.14). It is clear that,
1 >1

from (2.14) and the third condition in (1.10), the sequence {)\g) }k> U {A,(f) }k>1 can be rearranged as
>1 >

an increasing sequence A = {Ay}, .
First, let us see that (1.27) holds and A € £(8, p, q, po, p1, P2, @) for appropriate positive constants p,

q, Po, P1, P2, « and v. It is clear that A satisfies (H1)—(H4). On the other hand, using that )\,(Cl) #+ )\7(12) for
any k,n > 1, we also have

N(r) = # {k A < r} +# {k ) < r} = Ni(r) + Na(r), Vr>0,
where N(r) is given in (1.22). Using the first property in (1.10) we infer

1 51 ,
K=k <A < K 4ok, VE>1, i=1,2.
ﬂ-i 7T7;

Therefore, we can follow the arguments in Remark 2.3 (see (2.8)) and deduce

1
—1- 5771261 + i/ <Ni(r) < mi/r+ ey, i=1,2.

Coming back to the expression of N(r), we finally obtain
1
-2 - P (73 +73) + (m1 4+ m2) Vr <N(r) < (m +m)Vr+e (7f+73), Vr>0.

Thus, condition (H6) holds with pg, p1, p2 and « as in the statement of Proposition 2.6. Finally, applying
Proposition 2.3, we also have that the sequence A satisfies (1.27) and A € L£(8, p, q, po, p1, P2, &) with the
parameters p, q, po, P1, P2, & and v given in the statement of Proposition 2.6.

Let us now check that the gap condition (1.9) holds. Taking into account property (2.14), we just have
to check the following property

A 22| 20> 0, VR,

and this will be deduced from the third condition in (1.10). Indeed, this condition implies

" (A0 @) s T A0
2k<\/Ak + /\n>2k AD k> 1

If k < 2¢1p?, from the previous inequality we deduce the existence of a constant ¢ > 0 such that

‘)\](61) _ /\%2)

’A}j’ —A®| >, wneN.

If k > 2¢1p?, then we can apply the first assumption in (1.10) and deduce

r T |1, T |k 9 ro k21 r
SE W ST g ep=" 5 (k- >T e -
~ k ko= k\/ﬂ% “ k\/ﬂ'%( am)z k\ 2r?  2m

This proves (1.9) and ends the proof of the result. O

’)‘Eel) _ )\7(12)
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Appendix A.3. Proof of Proposition 2.7

Let us consider the sequence A = {k?}, _ U {dk?}, _, withd > 0. Thanks to assumption v'd & Q,
it is clear that k% # dn? for any k,n > 1. So, the sequence A = {kz}k>1 U {de}k>1 can be rearranged
as an increasing sequence A = {A;} k>1 that satisfies (H1)—(H4) with 5 = 0. On the other hand,

Ny =#{k: k> <r}+#{k:dk* <r}:= V7] + L\/\EJ Vr > 0,
. -2+ (1+\}E>\/F§N(r)§ (H\}g) Vr, Vr>0.

Thus, condition (H6) holds with p; = p» = p and « given in (2.16).
As a direct consequence of Proposition 2.3 we can deduce that condition (1.27) holds and

A e L(67P7Qap0aplvp27a)’

q, p and v given in (2.5). Nevertheless, we will provide better values of parameters ¢, p and v using the
expression of the sequence A. Indeed, if we take » = Ay, with & > 1, one has k = N(Ay) and

k=N = | VA + L%J vk > L.

Observe that if A, = n? for some nj, > 1, from the previous inequality we deduce

Vd

Using that z — 1 < |z| < z, for any z > 0, the previous inequality provides,

k:nk—f—{

5

and

k< (1+ VAL <k+1, VE>1 (A2)

i)
Vd
The same property can be proved in the case in which Ay, = dn} for some nj, > 1.

Let us now prove conditions (HS), with ¢ = 2, and (1.27). If £k — n > 2, from (A.2), one has

1 12 k2 —(n+1)2 1 1
—_— — A>T = — - >
k2 —n? <1+\/E> (A = An) 2 k2 —n? <1+k—|—n) (1 k—n>

Thus, (H5) holds with p given in (2.16). On the other hand, if £ > n, we deduce (see (A.2))

1 1\° (k+1)2 —n? 1 1
i — < > 7 = [ <
k2_n2 <1+ \/g) (Ak Aﬂ) — k.2_,n2 <1+ k—f—n) <1+ k—n) >~

and property (1.27) with v given in (2.16). This ends the proof of Proposition 2.7. U

co| ot

w| oo

Appendix A.4. Proof of Proposition 2.8
Let us consider two sequences A; = {)\S)}k and Ay, = {/\](f)}k under the conditions of
' >1 ’ >1

Proposition 2.8. In particular, the sequence A; U A5 can be rearranged as a positive increasing sequence
A = {Ar}; ;. Letus see that A € £(B, p, q, po,p1,p2, ), for B = 0 and appropriate positive constants
0, ¢, Po, P1» p2 and «, and (1.27) holds for v > 0.
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First, it is clear that A satisfies (H1)-(H4) (8 = 0). As above, using that )\,(61) =+ )\512) forany k,n > 1,
we also have

N(r) = # {k AW < 7‘} 4 {k A < r} = Ni(r) + No(r), Vr > 0.
From Remark 1.4 we deduce the following property:
Nl(’f‘ — 60) S NQ(T‘) S Nl(’l’ + 50)7 Vr > 07 (AS)

(in the previous inequality we have taken Nj(r — g9) = 0 when r < g¢). Indeed, given r > 0, if
ka = Na(r), then )‘1(32) < rand )‘§c22)+1 > r. In particular,

M) —eo < AP <roand < AP <A e,

(€0 = supy>1 |ex|) and )‘z(i,) <r+egandr—¢gp < )\212)4_1 Applying item 2 of Remark 1.4, property (A.3)
can be easily deduced.
Recall that A = {)\g)}p € £(0, p1, 1,7, w1, T2, a1). Thus, from (H6), we deduce
>1

/T — a1 < Ni(r) < ma/r+ai, Vr>0.

Combining this inequality and the expression of N(r) with (A.3), we obtain

TV —ar SN(r) < mo/r + T/ + €0 + 204, if r < g,
TIVT + VT — 0 — 201 < N(1) < /1 + /T + 0 + 201, ifr > eg.

Now, from the previous property and taking into account inequalities (2.2), it is easy to deduce that N(r)

satisfies
VT — ap <N(r) < 2ma/r + m2y/E0 + 201, if r < e,

2m1y/1 — miy/Eo — 201 < N(1) < 2ma/T + may/Eg + 201, if T > e,

In particular,
211V 1 — T2 — 201 < N(r) < 2wV + may/20 + 201,  Vr > 0.
Therefore, condition (H6) holds with p1, p2 and « as in the statement of Proposition 2.8.

Let us now see that the sequence A satisfies (H5) and (1.27) with ¢ = 2 and appropriate positive pa-
rameters p and v. To this end, we will use that A; € £(0, p1, 1, 7o, 71, T2, 1) (¢ = 1) and satisfies (1.27),
for 11 € (0, 00) or, more precisely, we will use

pr (K2 =n?) <AV A0 <y (B2 —n?), VkneN:k>n (A.4)

The sequence {ci } k>1 is bounded. So, there exists kg > 1, depending on p; and &, such that

P1 P12 2 .
|ek|§ezogz(2k—1)gz(k —n?), Vkn>1:k>ky,n<k-1

With this value of kg and (A.4) written for k and n, with k > kg and n < k — 1, we obtain

)\21) . )\%1) > py (k2 7n2) > %1 (k2 . nz),

)\](62) AW > )\561) Y (kQ —n2) _ % (k‘2 —n2) > % (k;2 —n2),
)\1(61) _ )\Slz) > )\561) _ /\511) o> (kQ —n2) _ % (kQ —n2) > % (k2 —n2),

)\ECQ) A > )\’(61) AW —25 > py (k2 _ nz) _ % (k2 _ nz) > % (k2 _ nz) 7
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ie.,
AD ZA0) > %(k‘Q—n2), Vkn>1:k>ko, n<k—1, Vi je{l2} (A.5)

As a consequence of (A.5), we also obtain )\,(Cl) < )\,(f_gl and )‘1(3) < )\&21, for any k > ko. This
provides the following explicit formula for the terms of the increasing sequence A when k > 2kg — 1:

min{xy),Af)}, ifh=20—1,
Ag = (A.6)
max { A AP L, ik =2

We are going to use the previous expression of the terms A, with k& > ko, in order to prove condi-
tion (H5) with ¢ = 2. Remember that the sequence A is real and increasing. Then,

Ak_An

—nNn

Assume that, for every n € {1,...,2ko — 2} fixed, one has

A=A (A7)

lim inf —~ .
4

—_— >
k—oo k2 —n2 —

and limsup

— A, p1
4 k—o0 k% —n?

Then, there exists a positive constant p, only depending on kg and p; or, equivalently, on p; and £¢, such
that
A=Ay >p(kK*—n?), VkneN:1<n<2k—2andn < k.

In this way, we have proved condition (H5) for¢g = 1 and k,n € Nsuchthat 1 <n < 2ky—2andn < k.
We will prove (A.7) below.

Let us now see that the sequence A satisfies (HS), with ¢ = 2 and an appropriate value of the parameter
p, when k,n > 1 with k > n+ 2and n > 2kg — 1. We divide the proof into four cases:

1. Assume that k = 2¢ — 1 and n = 2m — 1, with £, m > kg and k — n > 2. In particular, { — m > 1,
Ap = A and A, = A9, with i, j € {1,2}. Thus, from (A.5)

Ak—An:A?—Ag)z%(ﬁ—mQ):%[(k+1)2—(n+1)2} :%(k+n+2)(k‘—n)
2%(k2—n2).

2. Assume now that k = 2¢—1 and n = 2m, with ¢, m > ko and k—n > 2. In particular, { —m > 3/2,
A = /\gl) and A,, = )\%), with ¢, 5 € {1, 2}, and we can apply (A.5):

A=A = A =2 > B (@ = m?) = Bk + 1)° —n?| > & (k2 = n?).

3. Ifk = 20 and n = 2m, with €,m > kg and k —n > 2, then £ —m > 1, A, = A\’ and A,, = A%,
with ¢, j € {1,2}. Applying again (A.5), we get

_ () j P1 ()2 2\ _ Pl (42 2
A — A, = _wz?(z —m?) =3 (K = n?).
4. Inthe case k = 2¢ and n = 2m — 1, with £, m > kg and k — n > 2 we will use the inequality
1
k‘2—(n+1)225(k2—n2)

which is valid for any k,n > 1 such that k > n + 2. Also, { —m > 1/2,i.e., { —m > 1 and we can
apply (A.5). As before, A, = A\ and A,, = A, with i, j € {1,2}, and

Ak—An:A,E,“_Ag)2%(62_m2):%(k2_(n+1)2) > 5 (1 —n?).
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We can conclude that property (H5) holds for the sequence A with ¢ = 2 and

= min {N &}
p LTI
Remember that the constant p only depends on p; and £y. Therefore, p only depends on p; and g.

The next task will be the proof of (A.7). To this end, let us fix n such that 1 < n < 2ky — 2 and

k>2kyg—1. Thenk = 20 or k = 2¢ — 1 with £ > kq. In both cases, A, = )\(i), with ¢ € {1,2}, and we
can write (see (A.4)):

A —Ap > )\El) —e0—Aogg—2 > p1 (= 1) + AP — €0 — Aagy—2
]{32
2 p1 <4 - 1) — €0 — Nogy—2,

A=Ay <A o= Ay <o (2= 1)+ AV 469 — Ay

k+1)2
<y <(Z)—1)+>\§1)+50—A1.

This proves (A.7).
In order to finish the proof of Proposition 2.8, let us check that the sequence A fulfills condition (1.27)
for an appropriate v > 0. The proof is very close to that of condition (HS). First, one has

lek] <ep <ep(2k—1) Sso(kQ—nQ), Ven>1:n<k-—1.
From this inequality and the second inequality in (A.4) we deduce, for instance
A =A@ <A D e < (v e) (B2 —n?), Vhn>1:n<k-l

Thus, as before, it is not difficult to show the following inequalities:

)\S) — /\;1) < (k2 - n2) < (v1+¢€p) (k2 - n2) , Vekn>1:n<k,

A A < (1) 4eg) (B2 —n?), VEn>l:n<k-1, A
AD D < () +ep) (B2 —n2), Vkn>1lin<k-1, '
AP AP < (1 +e0) (K —n?), VEn>1:n<k-1

Let us now prove condition (1.27) for the sequence A. As before, from the second property in (A.7) we
deduce the existence of a positive constant 7, only depending on kg and v4, such that

A=A, < (k*—n®), VkneN:1<n<2k—2andn <k,

Let us now see inequality (1.27) when &k, n € N are such that 2ky — 1 < n < k. Remember that, in this
case, we have an explicit formula of the terms of the sequence A (see (A.6)). Let us first consider the case
n > 2kg— 1land k = n + 1. Thus,

Api1 = Ap = Aop — A1 = [er] < o ((n +1)° - 712) ;
An+1 — An = A24+1 — AQ@ < /\é}‘_)l — )\él) < (2[ + 1) < (4£ + 1) = ((n + 1)2 - TLQ) .

In the general case, i.e., when k,n € N are such that 2ky — 1 < n < k with k¥ > n + 2, we can repeat
the arguments above and deduce inequality (1.27) . Indeed, as a consequence of (A.8), we deduce

1.Ifk=2/—1andn =2m — 1, with,m > kgand k —n > 2,then, { —m > 1, Ay, = /\gi) and
A, =AY, with 4,7 € {1,2}. (A.8) implies

Ak = Ay =29 20D < (1) +29) (2 —m2) = & 150 [(k+1)2_ (n+1)2}
_ ”1:50 (k4+n+2)(k—n) < ”1‘2”0 (k2 —n?).
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2. Assume now that k = 2¢ —1 and n = 2m, with £, m > ko and k —n > 2. In this case, { —m > 3/2,

A = /\y) and A,, = )\7(7{), with 4, 7 € {1,2}. On the other hand, it is not difficult to check that
(lc—|—1)2—n2 §2(k:2—n2), Ve,n>1:k>n+2.

Thus, from (A.8) we get:

A=Ay =AY = A9 < (1 +20) (2 —m?) = ”1150 [tk +1)”—n?] < ”1;50 (k2 — n?).

When k = 2¢ and n = 2m, with £, m > kgand k —n > 2,onehas { —m > 1, A, = )\éi) and
An =AY, with i,7 € {1,2}. Applying again (A.8), we get

Ak — Ay =2 =20 < (14 +20) (B —m?) = 2 Zso (K —n?).
Finally, let us take &k = 2¢ and n = 2m — 1, with £,m > kg and k — n > 2. Again, { — m > 1/2,

i.e., £ —m > 1 and we can apply (A.8). As in the previous cases, Ay = /\(gi) and A,, = /\gﬂ;), with
i,7 € {1,2}, and

A=A, = )‘éi) — A9 < (1) + &) (6 —m?) = - 1—80 (k2 —(n+ 1)2) < “ 1_50 (k* —n?).

Summarizing, we have prove property 1.27 for the sequence A with

(e
V =max v, 5 .

Remember again that the constant 7 only depends on kg and v, that is to say, on pi, €9 and vy.
Therefore, the paremeter v only depends on p;, v; and &p.

With the proof of property (1.27) we end the proof of Proposition 2.8. O
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