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Abstract
We investigate the existence and stability of ground states for a model coupling

the Schrödinger equation to the wave equation in transverse directions. The model is
intended to describe complex interactions between quantum particles and their environ-
ment. The result can be interpreted as a dissipation statement, induced by the energy
exchanges with the environment. The proofs use either concentration-compactness ar-
guments or spectral analysis of the linearized energy. Difficulties arise related to the
fact the model does not satisfy scale invariance properties.
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1 Introduction
This paper is concerned with the study of the following system of PDEs, hereafter referred to as
the Schrödinger-Wave equation(

i∂tu+ 1
2∆xu

)
(t, x) =

(ˆ
Rd×Rn

σ1(x− y)σ2(z)ψ(t, y, z) dy dz
)
u(t, x), t ∈ R, x ∈ Rd

(1a)

(∂2
ttψ − c2∆zψ)(t, x, z) = −c2σ2(z)

(ˆ
Rd
σ1(x− y)|u(t, y)|2 dy

)
, t ∈ R, x ∈ Rd, z ∈ Rn

(1b)
∗thierry.goudon@inria.fr
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endowed with the initial data

u(0, x) = u0(x), (ψ(0, x, z), ∂tψ(0, x, z)) = (ψ0(x, z), ψ1(x, z)). (2)

Here u represents the wave function of a quantum particle, which interacts with the vibrational
field ψ, and c > 0 is a fixed parameter. A key feature of the model is the fact that the particle
motion holds in the space Rd, but the vibrations hold in a transverse direction Rn. We are mainly
interested in finding particular solitary wave solutions of the system, with the specific form

u(t, x) = eiωtQ(x), ψ(t, x, z) = Ψ(x, z) (3)

where ω ∈ R, and Q,Ψ are real valued, and to investigate the stability of such solutions.

1.1 Motivation
This work is motivated by the modeling of dissipative systems. As suggested by A. Caldeira and
A. Legget [4] the dissipation arising on a physical system might come from a coupling with a
complex environment. In this approach, dissipation is interpreted as the transfer of energy from
the single degree of freedom characterising the system to the more complex set of degrees of freedom
describing the environment; the energy is then evacuated into the environment and does not come
back to the system. There are many possible descriptions of the environment: the case in which the
environmental variables are vibrational degrees of freedom is particularly appealing. The system
(1a)-(1b) belongs to this class of models.

This system is nothing but a quantum version of a model introduced by L. Bruneau and S. de
Bièvre in [3] for describing a classical particle interacting with its environment seen as a bath
of oscillators. Roughly speaking in each space position x ∈ Rd there is a membrane oscillating
on a transverse direction z ∈ Rn. When the particle hits a membrane, its kinetic energy activates
vibrations and the energy is evacuated at infinity in the Rn directions. In particular, the coordinates
(z1, ..., zn) ∈ Rn need not have the specific dimension of a length (but adopting this language might
definitely help the intuition). These energy transfer mechanisms eventually act as a sort of friction
force on the particle, an intuition rigorously justified in [3, Theorem 2 and Theorem 4]. The system
for the position of the particle t 7→ q(t) and the state of the vibrational environment (t, z) 7→ ψ(t, z)
reads

..
q(t) = −

ˆ
∇σ1(q(t)− y)σ2(z)ψ(t, y, z) dz dy, t ∈ R (4a)

(∂2
ttψ − c2∆zψ)(t, z) = −σ2(z)σ1(x− q(t)), t ∈ R, x ∈ Rd, z ∈ Rn (4b)

completed by the initial data

(q(0), .q(0)) = (q0, p0), (ψ(0, x, z), ∂tψ(0, x, z)) = (ψ0(x, z), ψ1(x, z)). (5)

The functions σ1 : Rd → [0,∞) and σ2 : Rn → [0,∞) are form functions encoding the interaction
domain between the particle and the environment. The model can be extended by considering P -
interacting particles, and the mean-field regime P →∞ leads to the following Vlasov-Wave system

2



[12]

∂tf + v · ∇xf −∇x
(
σ1 ?x

ˆ
σ2ψ dz

)
· ∇vf = 0, t ∈ R, x ∈ Rd, v ∈ Rd (6a)

∂2
ttψ − c2∆zψ = −σ2(z)

(
σ1 ?x

ˆ
f dv

)
, t ∈ R, x ∈ Rd, z ∈ Rn (6b)

f(0, x, v) = f0(x, v), (ψ(0, x, z), ∂tψ(0, x, z)) = (ψ0(x, z), ψ1(x, z)), (6c)

where f stands for the particle distribution function in phase space. This system is thoroughly
investigated in [1, 9, 38]. In [8], it is proposed to rescale the wave equation (6b) as follows

∂2
ttψ − c2∆zψ = −c2σ2

(
σ1 ?x

ˆ
f dv

)
. (7)

As c goes to +∞, the solutions of the rescaled system (6a), (7) tend to solutions of

∂tf̃ + v · ∇xf̃ −∇x
(
σ1 ?x

ˆ
σ2ψ̃ dz

)
· ∇vf̃ = 0, t ∈ R, x ∈ Rd, v ∈ Rd (8a)

−∆zψ̃ = −σ2

(
σ1 ?x

ˆ
f̃ dv

)
, t ∈ R, x ∈ Rd, z ∈ Rn (8b)

(Without the rescaling the regime c→∞ would simply lead to the free transport equation for the
particle distribution function f̃ .) We can write

ψ̃(t, x, z) = Γ(z)
(
σ1 ?

ˆ
f̃ dv

)
(x)

where Γ denotes the unique solution of

−∆zΓ = −σ2, Γ ∈ H1(Rnz ). (9)

This observation allows us to express (8a)-(8b) as a standard Vlasov equation

∂tf̃ + v · ∇xf̃ + κ∇x
(

Σ ?x

ˆ
f̃ dv

)
· ∇vf̃ = 0, t ∈ R, x ∈ Rd, v ∈ Rd, (10)

where the potential is defined by a convolution with the macroscopic density, with

κ = ‖∇zΓ‖2L2
z
, Σ = σ1 ? σ1. (11)

Quite surprisingly – mind the sign κ > 0 – this corresponds to an attractive dynamics. This
unexpected connection guides the intuition to establish further features of the solutions of the
Vlasov-Wave system; it particular, they exhibit Landau damping phenomena [13, 14]. The analysis
of these models, either for a single particle or the kinetic description, brings out the critical role of
the wave speed c > 0 and the dimension n of the space for the wave equation.

The system (1a)-(1b) then appears as the quantum version of the L. Bruneau and S. de Bièvre
model. This intuition can be justified by the semi-classical analysis à la P.-L. Lions-T. Paul [26],
which makes a natural connection between the Vlasov-Wave system and (1a)-(1b), see Appendix B
and [39]. Note that here we have adopted from the beginning the rescaling where the coupling term
in the wave equation (1b) is of the order of c2. We will motivate this choice below. According to
the framework introduced in [3], throughout this article we assume:
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(H1) n ≥ 3,

(H2) The form functions σ1 and σ2 are non-negative, smooth, compactly supported and radially
symmetric.

As said above the role of the dimension n for the wave equation is critical in these models. Indeed,
the evacuation of energy in the environment relies on the dispersion properties of the wave equation,
which are strong enough when n is sufficiently large [13]. By the way, notice that the definition
of κ in (11) makes sense when assuming n ≥ 3. The case n = 3 also plays a specific role in the
theory presented in [3]. The assumptions (H1) and (H2) on the form functions are very natural in
the modeling framework of [3]. In what follows, we use the abuse of notation to mix up a radially
symmetric function of x ∈ Rd with the underlying function of the scalar quantity |x|, and we will
equally refer to the monotonicity of this function. Following the observations made for classical
particles, it is instructive to consider the regime where c goes to +∞ in (1a)–(1b). We are led to

i∂tũ+ 1
2∆xũ =

(
σ1 ?x

ˆ
σ2ψ̃ dz

)
ũ, t ∈ R, x ∈ Rd, (12a)

−∆zψ̃ = −σ2(z)
(
σ1 ?x |ũ|2

)
(x), t ∈ R, x ∈ Rd, z ∈ Rn (12b)

which can be cast in the usual form of an Hartree type equation

i∂tũ+ 1
2∆xũ = −κ

(
Σ ?x |ũ|2

)
ũ, t ∈ R, x ∈ Rd. (13)

This remark will be helpful for the analysis.
The conservation of the total energy is a remarkable property of all these models. For the

particle equation (4a)-(4b), we set

Epart(t) =
.
q(t)

2 + 1
2

ˆ (
|∂tψ|2 + c2|∇zψ|2

)
(t, x, z) dz dx+

ˆ
σ1(q(t)− y)σ2(z)ψ(t, y, z) dy dz

and for for the kinetic equation (6a), with (7) (mind the rescaling for the wave equation), we set

Ekin(t) = 1
2

ˆ
v2f(t, x, v) dv dx+ 1

2

ˆ ( |∂tψ|2
c2 + |∇zψ|2

)
(t, x, z) dz dx

+
ˆ
σ1(x− y)σ2(z)ψ(t, y, z)f(t, x, v) dv dx dy dz.

Then, we have
Epart(t) = Epart(0), Ekin(t) = Ekin(0).

For the quantum model, (1a)–(1b), it becomes

ESchr(t) = 1
2

ˆ
|∇xu(t, x)|2 dx+ 1

2

ˆ ( |∂tψ|2
c2 + |∇zψ|2

)
(t, x, z) dz dx

+
ˆ
σ1(x− y)σ2(z)ψ(t, y, z)|u(t, x)|2 dz dy dx

= ESchr(0).

(14)

For the asymptotic Hartree equation (13), we get similarly

H(t) = 1
2

ˆ
|∇xũ(t, x)|2 dx− κ

2

ˆ
Σ(x− y)|ũ(t, y)|2|ũ(t, x)|2 dx dy = H(0). (15)
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Moreover, both quantum equations are invariant by translation and phase and conserve the mass
of the wave function:

M (t) =
ˆ
|u(t, x)|2 dx = M (0), M̃ (t) =

ˆ
|ũ(t, x)|2 dx = M̃ (0). (16)

However, there are fundamental differences between the two equations. Let

p(t) = Im
ˆ
∇xu(t, x)ū(t, x) dx, p̃(t) = Im

ˆ
∇xũ(t, x)ũ(t, x) dx

be the momentum associated to (1a)–(1b) and (13), respectively. We have, for (13),

d
dt p̃ = 0,

but
d
dtp(t) = −

ˆ
Rd
∇x

(
σ1 ?

ˆ
Rn
σ2(z)ψ(t, x, z) dz

)
|u(t, x)|2 dx

for (1a)–(1b). We also introduce the center of mass

q(t) =

ˆ
Rd
x |u(t, x)|2 dx

ˆ
Rd
|u(t, x)|2 dx

= 1
M (0)

ˆ
Rd
x |u(t, x)|2 dx

associated to (1a)–(1b) and a similar definition q̃(t) for (13). We have

M (0) d
dtq(t) = p(t), M̃ (0) d

dt q̃(t) = p̃(t).

Therefore, the momentum conservation for (13) implies that the center of mass follows a straight
line at constant speed. For (1a)–(1b), the analogy with the case of a single classical particle would
lead to conjecture that the center of mass will stop exponentially fast. Numerical experiments shed
some light on this issue [15]. Finally, we note that (13) is also Galilean invariant: if ũ is a solution
of (13), then v(t, x) = ũ(t, x− tp0)eip0·(x−t p02 ) still is a solution of (13). This property is not fulfilled
by the system (1a)–(1b), which leads to a specific behavior of the solutions, consistently with the
previous remark.

1.2 Scaling properties
It is well-known that scaling invariance plays a central role in the analysis of non linear Schrödinger
equations. Here, let (u, ψ) be a solution of (1a)–(1b), and, for given λ, µ > 0, let us set(

uλ,µ(t, x), ψλ,µ(t, x, z)
)

=
(
µu(λ2t, λx), µ λn−1ψ(λ2t, λx, λ2z)

)
.

It turns out that uλ,µ is a solution of (1a)–(1b) but with the rescaled form functions

σλ,µ1 (x) = µ−1λd+1σ1(λx) and σλ2 (z) = λn+2σ2(λ2z).
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Since σ1 and σ2 are not homogeneous functions, (u, ψ) and (uλ,µ, ψλ,µ) are solutions of the same
Schrödinger-Wave system if and only if λ = 1 = µ. The same conclusion applies to the limiting
system: if ũ is a solution of (13) then ũλ,µ(t, x) = µũ(λ2t, λx) is a solution of (13) with the rescaled
potential Σλ,µ(x) = σλ,µ1 ? σλ,µ1 (x) = µ−2λd+2Σ(λx). Therefore, in contrast to the usual non
linear Schrödinger or Hartree equations, we cannot find a relation between λ and µ such that the
(uλ,µ, ψλ,µ)’s are solutions of the same equation than (u, ψ); this lack of scale invariance will have
an important role in the sequel of this paper.

Nevertheless, the scaling property implies that any result valid for the Hartree equation with a
given potential Σ equally applies to the equations with the modified potentials Σλ,µ. Considering
the case where λ = µ = ε−1 and letting ε go to 0, up to a suitable renormalization, allows us to
consider the regime Σ → δ0 which formally leads to the standard cubic non linear Schrödinger
equation

i∂tU + 1
2∆xU = −κ

∣∣U ∣∣2U. (17)

This equation is L2-sub-critical in the case d = 1, it is L2-critical in the case d = 2 and L2-super-
critical in the case d ≥ 3. Hence, this formal limit suggests different behaviors for the Hartree
equation (when a smooth potential is considered), depending on the dimension d. Even if the
continuity with respect to Σ as Σ → δ0 is certainly wrong when d ≥ 2 – (17) admits solutions
which blow up in finite time while solutions of (13) are globally defined when Σ is smooth – our
analysis shows several differences between the case d = 1 and d ≥ 2, which can be understood from
the formal asymptotic to (17). It is thus not surprising that our main results, Theorem 2.8 and
Proposition 2.10, require some additional assumptions on the form function σ1. Namely, in the case
d = 3, we shall consider Σ = σ1 ? σ1 such that the rescaled potentials Σλ,µ, with λ, µ > 0, are close
enough to | · |−1 (note that when d = 3 and Σ = | · |−1, the Hartree equation is L2-sub-critical).
When d = 1 we do not require any additional assumption on σ1: see Proposition 2.15, obtained
precisely by using the L2 sub-critical feature of (17) when d = 1.

1.3 Solitary waves
The system (1a)–(1b) can be shown to be well-posed, in natural functional spaces associated to the
energy conservation.

Theorem 1.1 Let (H1)–(H2) be fulfilled. For all u0 ∈ H1(Rdx), ψ0 ∈ L2(Rdx;
.
H1(Rnz )) and

ψ1 ∈ L2(Rdx;L2(Rnz )), the system (1a)–(1b) and (2) admits a unique global solution (u, ψ) such
that u ∈ C0([0,+∞);H1(Rdx)) and

ψ ∈ C0
(
[0,+∞);L2

(
Rdx;

.
H1(Rnz )

))
∩ C1

(
[0,+∞);L2

(
Rdx;L2(Rnz )

))
.

The proof is detailed in Appendix A. The local well-posedness is based on Strichartz’ estimates,
which rely on the dispersive properties of the Schrödinger and the wave equations in the coupling.
The difficulty comes from the fact that Strichartz’ estimates for (1a) lead to estimates of u in LqtLrx
norms whereas Strichartz’ estimates for (1b) lead to estimates on ψ in LrxL

q
tL

p
z norms. Then, in

order to gather these estimates, it is necessary to manage with permutations of Lebesgue-norms in
time and space. For this purpose, assumption (H2) allows us to apply Hölder and Young inequal-
ities in order to always obtain estimates in LqtL

q
x-norms. Eventually, that solutions are globally
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defined comes from the Hamiltonian structure of the system.

The main purpose of this article is to show the existence and the orbital stability of solitary
waves for the Schrödinger-Wave system. Namely, we are going to study solutions of (1a)–(1b) with
the form (3). The existence of such non dispersive solutions is the translation of the presence of
some attractive dynamics induced by the model. The rescaling (7) is important in the discussion.
We start by observing that if (u, ψ) = (Q(x)eiωt,Ψ(x, z)) is a solution of (1a)–(1b), then (Q,Ψ) is
a solution of

− 1
2∆xQ+ ωQ+

(
σ1 ?x

ˆ
σ2Ψ dz

)
Q = 0, x ∈ Rd (18a)

− c2∆zΨ = −c2σ2(z)
(
σ1 ?x Q

2
)

(x), x ∈ Rd, z ∈ Rn, (18b)

which is in fact independent of the parameter c. In turn, the profiles (Q,Ψ) do not depend on c.
Moreover these particular solutions (Q(x)eiωt,Ψ(x, z)) are also solutions of the asymptotic system
(12a)–(12b). It is therefore relevant to compare the behavior of the solutions of (1a)–(1b) and the
solutions of (12a)–(12b) around the state (Q(x)eiωt,Ψ(x, z)): this comparison provides information
on the action of the environment on the quantum particle.

According to the previous discussion, the expected behavior for the Schrödinger wave system
can be summarized as follows.

Conjecture 1.2 Let (Q,Ψ) be a solution of (18a)–(18b) orbitally stable under the dynamic (1a)–
(1b). If u0(x) = Q(x)ei

p0
2 ·x for some sufficiently small p0 and if (ψ0, ψ1) = (Ψ, 0), then there exists

two functions x = x(t) and γ = γ(t) such that

• the unique solution (u, ψ) of (1a)–(1b) associated to these initial conditions remains close
(uniformly in time in some norms that have to be precised) to (Q(·−x(t))eiγ(t),Ψ(·−x(t), ·));

• |.x(t)| ≤ Ce−λ
t
c and |x(t)− x̄| ≤ Ce−λ

t
c .

Even if the orbital stability of solitary waves of non linear Schrödinger equations is a classical
result for many years, see for instance [6, 40, 41], there are several difficulties to justify it in
the present context. Firstly, we are dealing with a system and not with a mere scalar equation.
Secondly, the nonlinearity is non local. Nevertheless, we can expect that structure properties of the
simpler problem (13) still apply to the system (1a)–(1b). At first sight, assumption (H2) can be
expected to make the problem easier than the case where Σ is replaced by the kernel of the Poisson
equation in dimension d = 3, that is Σ0(x) = 1

|x| . This specific case (13) – the Schrödinger-Newton
equation — has been investigated in detail by E. Lenzmann [19]. However, as reported above, while
Σ = σ1 ? σ1 has better regularity and support properties, it does not satisfy any scale invariance.
It turns out that the analysis of the Schrödinger-Newton equation exploits, in a quite crucial way,
either explicit formula or the scale invariance which are very specific to the kernel 1

|x| . For this
reason, we shall use a quite indirect approach, that relies on the perturbative arguments developed
in [19] for establishing spectral properties for the non relativistic Hartree equation. The second
part of the conjecture justifies that the environment acts on the quantum particle as a friction force
and will be the object of future investigations [15, 39].
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2 Main results
As said above, the main objective is to discuss the existence and the stability of non trivial solutions
(with finite mass and energy) of (1a)–(1b) with the form (3). In order to establish the existence,
we start by observing that (Q,Ψ) has to be a solution of (18a)–(18b). Then we can express Ψ in
term of Q as follows:

Ψ(x, z) = Γ(z)σ1 ? Q
2(x),

where Γ stands for the unique solution of (9). Coming back to (18a), we deduce that Q satisfies

− 1
2∆xQ+ ωQ− κ(Σ ? Q2)Q = 0 (19)

with the definition (11). This equation is known as the Choquard equation and it has been intensively
studied (see for example [27], [20] or [19] and the references therein). In particular, we already know
from [27] that there exists infinitely many solitary waves.

2.1 Ground states
Nevertheless, we are only interested in stable solitary waves: for this reason, we consider solitary
waves that minimize the energy of the system under a mass constraint, a quantity conserved by the
evolution equation. Such solitary waves are called ground states. The specific case of the Newtonian
potential Σ0(x) = 1

|x| in dimension d = 3 has been studied in [20] which establishes the existence
and uniqueness (up a change of phase and translation) of ground states for (13). The existence part
of [20] still applies in the case where Σ is a smooth, compactly supported, radially symmetric, non
increasing and non negative function. However, the arguments for proving the uniqueness part of
the statement rely strongly on the specific form of the Newtonian potential. Besides, the definition
of the energy functional for the system (1a)–(1b) differs from those of (13). Therefore, one has to
check that (1a)–(1b) admits ground states. For that purpose we will need the following additional
assumption on the form function σ1.

(H3) The form function σ1 is non increasing.

We interpret the energy functional (14) as depending on u, ψ and χ = ∂tψ. Namely, for
u : Rd → C, ψ, χ : Rd × Rn → R, we set

E(u, ψ, χ) = 1
2

ˆ
|∇xu(x)|2 dx+ 1

2

ˆ ( |χ|2
c2 + |∇zψ|2

)
(x, z) dz dx

+
ˆ
σ1(x− y)σ2(z)ψ(y, z)|u(x)|2 dz dy dx,

so that ESch(t) = E(u, ψ, ∂tψ)(t). Similarly, we set

H(u) = 1
2

ˆ
|∇xu(x)|2 dx− κ

2

ˆ
Σ(x− y)|u(y)|2|u(x)|2 dx dy, (20)
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see (15). In order to establish the existence of ground states we will study the following three
minimization problems.

IM := inf
{
E(u, ψ, χ) s.t. (u, ψ, χ) ∈ H1

x × L2
x

.
H1
z × L2

xL
2
z and ‖u‖2L2

x
≤M

}
, (21a)

JM := inf
{
E(u, ψ, χ) s.t. (u, ψ, χ) ∈ H1

x × L2
x

.
H1
z × L2

xL
2
z and ‖u‖2L2

x
= M

}
, (21b)

KM := inf
{
E(u,Γσ1 ? |u|2, 0) s.t. u ∈ H1

x and ‖u‖2L2
x

= M
}
. (21c)

The interest of (21c) comes from the fact that E(u,Γσ1 ? |u|2, 0) = H(u) since σ1 is odd and
therefore ‖σ1 ? |u|2‖2L2

x
=
˜
|u|2(x)Σ(x−y)|u|2(y) dx dy. Then, if KM is reached at u, u is a ground

state of (13) too and we will be able to compare ground states of (1a)–(1b) with ground states of
(13). Section 3 is devoted to the proof of the following theorem.

Theorem 2.1 Let (H1)–(H3) be fulfilled.
(i) For every M ≥ 0, IM is reached.
(ii) For every M ≥ 0, IM = JM = KM .
(iii) There exists a mass threshold M0 ≥ 0 such that for every M ∈ [0,M0], JM = 0 and for every
M > M0, JM < 0 is reached on (u, ψ, χ) = (u, ψ, 0) with u non negative, radially symmetric and
non increasing. Moreover (u, ψ) is a solution of (18a)–(18b) for a certain ω > 0. In particular
ψ = Γσ1 ? |u|2 is non positive, u is an element of the Schwartz class S(Rd) and KM = JM is
reached at u.
(iv) If d ≥ 2, then M0 > 0.

Note that we do not know whether the minimizer in item (iii) is uniquely defined, up to a possible
change of phase and translation. Applying Lieb’s method [20], we cannot even conclude whether
or not the minimizer of JM are radially symmetric, a preliminary step to establish uniqueness,
and strictly positive. The alternative approach of L. Ma and L. Zhao [28, Section 5] provides a
positive answer to the strict positivity and radial symmetry of the minimizer, though. Note also
that the fourth item of this theorem is reminiscent to the fact that (1a)–(1b) does not have a scale
invariance. We will see in the sequel that M0 = 0 when d = 1, and this difference with the cases
d ≥ 2 can be related with the discussion of Section 1.2.

2.2 Orbital stability
The variational characterization will be used in Section 4 to establish the following orbital stability
result for these ground states. In this statement, for a given mass M > 0, we denote by SM the
space of all possible ground states

SM =
{

(Q̃, Ψ̃) ∈ H1
x × L2

x

.
H1
z such that ‖Q̃‖2L2

x
= M and E(Q̃, Ψ̃, 0) = JM

}
.

Theorem 2.2 Let M > M0 and (Q,Ψ) be in SM . For every ε > 0 there exists δε > 0 such that if
u0 ∈ H1

x, ψ0 ∈ L2
x

.
H1
z and χ0 ∈ L2

xL
2
z with

‖u0 −Q‖2H1
x

+ ‖ψ0 −Ψ‖2
L2
x

.
H1
z

+ ‖χ0‖2L2
xL

2
z
< δε,

then the unique solution (u, ψ, χ = ∂tψ) of (1a)–(1b) with initial data (u0, ψ0, χ0) satisfies

sup
t≥0

inf
(Q̃,Ψ̃)∈SM

(
‖u(t)− Q̃‖2H1

x
+ ‖ψ(t)− Ψ̃‖2

L2
x

.
H1
z

+ ‖χ(t)‖2L2
xL

2
z

)
< ε.
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The proof is classical and based on the concentration-compactness lemma, see for instance [6, 23, 24]
and the references therein. Since we do not know whether the ground states are unique (up to the
equation invariants), the statement only tells us that a perturbation of a ground state stay close
(uniformly in time) to the manifold of all the possible ground states. This is weaker than the
expected conclusion which would assert that “a perturbation of a given ground state stay close
(uniformly in time) to the manifold generated by this ground state and the equation invariants
(phase and translation)”.

2.3 Strengthened orbital stability
A strengthened result can be obtained by using an alternative approach, based on the study of the
linearization of the energy around a ground state (see [30, 40, 41]; we also refer the reader to the
lecture notes [29, Section 2.6] and the references therein). To be more specific, we fix M > M0 and
we consider a ground state (Q,Ψ) of JM such that Q is positive, radially symmetric and decreasing
and such that ‖Q‖2L2

x
= M . We introduce

W (u, ψ, χ) = E(u, ψ, χ) + ω‖u‖2L2
x
.

Next, we linearize this quantity around (Q,Ψ, 0): for every u ∈ H1
x, ψ ∈ L2

x

.
H1
z and χ ∈ L2

xL
2
z, we

have
W (Q+ u,Ψ + ψ, χ) = W (Q,Ψ, 0)

+1
2

ˆ
Rd
∇xQ · (∇xu+∇xū) dx+ ω

ˆ
Rd
Q(u+ ū) dx+

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2Ψ dz

)
Q(u+ ū) dx

+
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
Q2 dx+ 1

2

¨
Rd×Rn

∇zΨ · ∇zψ dx dz

+1
2

ˆ
Rd
|∇xu|2 dx+ ω

ˆ
Rd
|u|2 dx+

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2Ψ dz

)
|u|2 dx

+
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
Q(u+ ū) dx+ 1

2c2

¨
Rd×Rn

|χ|2 dx dz + 1
2

¨
Rd×Rn

|∇zψ|2 dx dz

+
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
|u|2 dx.

We write this as W (Q+u,Ψ +ψ, χ) = W (Q,Ψ, 0) + I1 + ...+ I12. Thanks to (18a), I1 + I2 + I3 = 0
and thanks to (18b), I4 + I5 = 0. Let us denote

u = f + ig, f, g ∈ R.

We can rewrite

I6 + ...+ I11 =
〈
L+

(
f
ψ

)
,

(
f
ψ

)〉
L2
x×L2

xL
2
z

+ 〈L−g, g〉L2
x

+ 1
2c2 ‖χ‖

2
L2
xL

2
z

where

L+ =

−
1
2∆x + ω +

(
σ1 ?

ˆ
Rn
σ2Ψ dz

)
M1

M2 −1
2∆z

 (22)
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with
M1ψ =

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
Q, M2f = σ2 (σ1 ? Qf),

and
L− = −1

2∆x + ω +
(
σ1 ?

ˆ
Rn
σ2Ψ dz

)
. (23)

Let us also introduce the operator L+ defined by

L+f = −1
2∆xf + ωf − κ(Σ ? Q2)f − 2κ(Σ ? Qf)Q, (24)

which will have an important role in the sequel: it is the analog to L+ for W̃ (u) = H(u) +ω‖u‖2L2
x
.

We eventually obtain the following decomposition

W (Q+ u,Ψ + ψ, χ) = W (Q,Ψ, 0) +
〈
L+

(
f
ψ

)
,

(
f
ψ

)〉
L2
x×L2

xL
2
z

+ 〈L−g, g〉L2
x

+ 1
2c2 ‖χ‖

2
L2
xL

2
z

+
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
|u|2 dx. (25)

Remark 2.3 Relation (25) holds true when replacing, for some α ∈ R,M1 andM2 in the definition
of L+ by αM1 and (2− α)M2. However, L+ is self-adjoint only in the particular case α = 1.

The key argument to prove an orbital stability result is to characterize the kernel of L− and L+
and to prove that these operators are coercive under some orthogonality conditions. The operator
L− is a local operator, and we already have at hand the following statement, see for example [40].

Lemma 2.4 We have Ker(L−) = Span{Q} and there exists a universal constant µ > 0 such that
for every g ∈ H1

x,
〈L−g, g〉L2

x
≥ µ‖g‖2H1

x
− 1
µ

∣∣∣〈g,Q〉H1
x

∣∣∣2 . (26)

The difficult part is to obtain an analogous statement for L+. The method consists in working
on the operator L+: the knowledge of the kernel of L+ will allow us to identify the kernel of L+ and
a coercivity property for L+ will provide a coercivity property for L+ too. By direct inspection, it
can be checked that Span{∂xjQ , j = 1, . . . , d} ⊂ Ker(L+); we shall work further to establish the
reverse inclusion and characterize Ker(L+). Since L+ is a non-local operator, classical arguments
based on Sturm-Liouville theory are not applicable. We shall need to develop alternative approaches
and perturbative arguments, inspired form [19].

We are going to exploit results known for some limiting cases, depending on the dimension d.
Namely, in the case d = 1 we will consider the case of the delta function

Σ0 = δ0, (27)

while in dimension d = 3 we will consider the case of the Newtonian potential

Σ0(x) = 1
|x|
. (28)

Indeed, for these specific situations the following statement holds.

11



Lemma 2.5 Let d = 1 with the potential (27) or d = 3 with the potential (28). We have Ker(L+) =
Span{∂xjQ , j = 1, . . . , d}. Moreover, there exists a universal constant ν > 0 such that for every
f ∈ H1

x,

〈L+f, f〉L2
x
≥ ν‖f‖2H1

x
− 1
ν

∣∣∣〈f,Q〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQ〉L2
x

∣∣∣2
 . (29)

In the case d = 1, the result is well known since the paper of M. Weinstein [40]. The analysis
of the case d = 3 is quite recent: the characterization of the kernel of L+ has been obtained by
E. Lenzmann in [19] and then, based on this characterization, P. D’Avenia and M. Squassina [7]
established the coercivity property (29). We need to extend such a property to potentials with the
form Σ = σ1 ? σ1: we denote by Ad the set of admissible form functions σ1 such that Lemma 2.5
applies in dimension d when Σ = σ1 ? σ1. This is made clear by the following Definition.

Definition 2.6 We say that σ1 is an admissible form function if it satisfies (H2)–(H3) and if
there exists a mass interval I of non empty interior such that for every M ∈ I and every positive
and radially symmetric minimizer QM of KM , Lemma 2.5 applies.

That Ad is non empty is highly non trivial: in [19] the characterization in Lemma 2.5 relies
strongly on the specific form of the Newtonian potential and the scale invariance property of
equation (19) in this specific case. We let this question open for a while and state the following
lemma which links the properties of the operator L+ to the properties of the operator L+. Note
that from now on we denote

H =
{
(u, ψ) ∈ H1

x × L2
x

.
H1
z

}
which is a Hilbert space when endowed with the norm defined by

‖(u, ψ)‖2H = ‖u‖2H1
x

+ ‖ψ‖2
L2
x

.
H1
z

.

Lemma 2.7 Assume (H1)–(H3). Let σ1 ∈ Ad be an admissible form function and assume that
the mass M of the considered ground state Q is in the interval I of Definition 2.6. Then Ker(L+) =
Span{(∂xjQ, ∂xjΨ)t , j = 1, . . . , d} and there exists a universal constant ν̃ > 0 such that for every
(f, ψ) ∈H ,〈

L+

(
f
ψ

)
,

(
f
ψ

)〉
L2
x×L2

xL
2
z

≥ ν̃‖f, ψ‖2H −
1
ν̃

∣∣∣〈f,Q〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQ〉L2
x

∣∣∣2
 . (30)

This lemma is the key ingredient to prove the following orbital stability theorem that strengthens
Theorem 2.2. The proof is detailed in Section 5.

Theorem 2.8 Assume (H1)–(H3). Let σ1 ∈ Ad be an admissible form function and assume that
‖Q‖2L2

x
∈ I. For every (u0, ψ0, χ0) ∈ H1

x ×L2
x

.
H1
z ×L2

xL
2
z let us denote by (u, ψ, χ = ∂tψ) the unique

solution of (1a) and (1b) associated to the initial data (u0, ψ0, χ0). Let us assume ‖u0‖L2
x

= ‖Q‖L2
x
.

There exists ε0 > 0 such that for every ε ∈ (0, ε0) we can find η(ε) > 0 and δ(ε) > 0 such that, if

‖u0 −Q,ψ0 −Ψ‖2H + 1
c2 ‖χ0‖2L2

xL
2
z
≤ η(ε)2 and W (u0, ψ0, χ0)−W (Q,Ψ, 0) ≤ δ(ε),
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then there exists two functions x(t) and γ(t), continuous in time, such that for every t ≥ 0, v =
e−iγ(t)u(t, ·+ x(t)) satisfies the following orthogonality conditions〈

Re v, ∂xjQ
〉
L2
x

= 0, j = 1, . . . , d, (31a)

〈Im v,Q〉H1
x

= 0 (31b)

and
sup
t≥0

∥∥∥u(t)− eiγ(t)Q(· − x(t)), ψ(t)−Ψ(· − x(t))
∥∥∥2

H
+ 1
c2 ‖χ(t)‖2L2

xL
2
z
≤ ε2.

Remark 2.9 Note that in the regime c � 1/ε2, the theorem still applies if the perturbation χ0 is
not close to zero. It is also worth remarking that η(ε) and δ(ε) are uniform with respect to c.

It is worth commenting the assumption on the mass of u0 which did not appear in Theorem 2.2.
Usually, assuming ‖u0‖L2

x
= ‖Q‖L2

x
is not a restriction. Indeed, as soon as the definition of the

map M 7→ QM is meaningful (i.e. when ground states are unique or at least locally unique)
and defines a continuous map, any small perturbation u0 of a ground state QM is also a small
perturbation of the ground state Q‖u0‖L2

x

. Here, relaxing this assumption requires to justify, first,
that the ground states are (at least locally) unique and, second, their continuity with respect to
the mass M . We decided not to focus on the uniqueness issues in this work; nevertheless we can
provide some hints. Our approach to find admissible form functions σ1 is inspired by the strategy
developed by E. Lenzmann [19] in order to prove the uniqueness of ground states (for almost every
sufficiently small mass M) for the non relativistic Hartree equation. Therefore, it is likely that a
similar result applies here for almost every M ∈ I. Working in this direction may probably allow
us to justify that the assumption on the mass of the perturbation u0 is indeed not a restriction.

Theorem 2.8 becomes fully meaningful if we are able to characterize the set of admissible form
function Ad, or at least to justify that Ad contains physically relevant form functions σ1. This is
the purpose of the following sections which contain the most original insights of the paper. Our
results cover the three-dimensional case d = 3, which is the most relevant physically, and the one-
dimensional case d = 1 for which numerical investigations is more affordable [15]. It is worthwhile
to see the role of the space dimension in the analysis, and we also provide some hints on the case
d = 2.

2.4 The case d = 3
Section 8 is devoted to the construction of admissible form functions σ1 in dimension d = 3. The
difficulty in identifying the class of admissible form functions σ1 is a weakness of the method
compared to the approach by concentration-compactness. Nevertheless this additionnal restriction
allows us to obtain the more precise orbital stability result of Theorem 2.8 and we shall see in
Section 8 that we can find many form functions σ1 that fit the physical framework introduced in
[3]. We proceed in two steps. The idea is to boil down a perturbative approach for potentials Σ
close, in an appropriate sense, to | · |−1, and then to push this result by suitable rescalings which
allow us to identify physically relevant potentials Σ = σ1 ? σ1 not necessarily close to | · |−1. An
important issue in this approach is to clarify the role of the mass constraint: Theorem 2.2 applies
to any ground state of massM > M0. Hence, we expect stability results that apply to a continuum
of possible masses M , as stated in Definition 2.6.
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Proposition 2.10 The set A3 of admissible form functions is non empty.

We will indeed see in Section 8 that the set A3 contains at least every form function σ1 satisfying
(H2)-(H3) and such that Σλ,µ(x) = µΣ(λx) is close enough to Σ0 = | · |−1 for suitable rescaling
parameters λ, µ > 0. As explained above, our strategy to identify admissible form functions and to
establish the orbital stability for the Schrödinger-Wave system is based on a perturbative analysis
from Σ0. For this purpose let us introduce the following more precise notations.

Definition 2.11 For a given potential Σ we denote HΣ and KΣ
M the corresponding energy defined

by (20), and the minimization problem (21c), respectively. Then we denote by QΣ
M a positive

and radially symmetric minimizer of KΣ
M and by ω(Σ, QΣ

M ) the constant ω > 0 such that QΣ
M is

a solution of (19) with Σ and ω = ω(Σ, QΣ
M ). Note that the notation QΣ

M could design several
minimizers since a priori we do not get the uniqueness of the minimizers of KΣ

M . Moreover we
make precise how the operator L+ defined by (22) depends on Σ, Q and ω. Since we will only
consider cases where ω = ω(Σ, Q) we will use the notation L+ = L+(Σ, Q).

We consider a sequence (Σε)ε>0 of smooth potentials satisfying the following assumption:

(H4) For every ε there exists σε1 satisfying (H2)–(H3) such that Σε = σε1 ? σ
ε
1 and the sequence

(Σε)ε>0 converges to Σ0 = | · |−1 in the following sense: for every R > 0,

‖(Σε − Σ0)1|x|≤R‖L3/2
x

+ ‖(Σε − Σ0)1|x|>R‖L∞x −→ε→0
0. (32)

For such family we know that for each ε > 0, there exists a mass threshold M ε
0 > 0 such that KΣε

M

is achieved for every M > M ε
0 . In order to work with a fixed mass M > 0 we will also assume that

sup0<ε≤1(M ε
0 ) < +∞ and we will consider a mass M such that M > sup(M ε

0 ). This assumption
is quite reasonable since Σε → Σ0 and there is no mass threshold in the case Σ = Σ0. We refer
the reader to Lemma 7.1 which insures that this assumption is indeed always valid in the previous
context.

Then we consider a sequence (Qε)ε>0 of smooth, positive, radially symmetric and decreasing
functions and a sequence (ωε)ε>0 of positive numbers such that Qε = QΣε

M and ωε = ω(Σε, QΣε
M ). In

particular each Qε is a solution of (19) with Σ = Σε and ω = ωε. We also consider Q0, the unique
positive and radially symmetric minimizer of KΣ0

M . Note that Q0 is also decreasing and we can find
ω0 > 0 such that Q0 is a solution of (19) with Σ = Σ0 and ω = ω0. Hence, the cornerstone of the
analysis is given by the following result, established in Section 7.

Proposition 2.12 With the previous notations and assuming moreover (H4), the following prop-
erties hold.
(i) Convergence. For every δ > 0 there exists ε0 > 0 such that for every 0 < ε < ε0,

‖Qε −Q0‖H1
x

+ |ωε − ω0| < δ.

(ii) Coercivity. There exists ε̄0 > 0 such that for every ε ∈ (0, ε̄0), Qε = QΣε
M and ωε = ω(Σε, QΣε

M )
there exists ν(Σε, Qε, ωε) > 0 satisflying, for every f ∈ H1

x,

〈L+(Σε, Qε, ωε)f, f〉L2
x
≥ ν(Σε, Qε, ωε)‖f‖2H1

x
− 1
ν0

∣∣∣〈f,Qε〉L2
x

∣∣∣2 +
3∑
j=1

∣∣∣〈f, ∂xjQε〉L2
x

∣∣∣2
 ,
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where ν0 is the best constant possible in Lemma 2.5. Moreover, ν(Σε, Qε, ωε) ↗ ν0 when ε → 0.
This coercivity inequality insures that the kernel of L+(Σε, Qε, ωε) is spanned by the ∂xjQε and
Lemma 2.5 applies to the kernel Σε as well.

Remark 2.13 In point (i), ε0 depends on the chosen sequence (Qε)ε>0 whereas in point (ii), ε̄0 is
the same for every sequence (Qε)ε>0. However, how the coercivity constant ν(Σε, Qε, ωε) converges
to ν0 depends on the considered sequence.

In this proposition, how small ε̄0 has to be depends on M ; hence the result cannot be extended
to consider, for a fixed potential Σε close to Σ0, a continuum of possible masses M . The statement
applies for a given mass M but it is not sufficient to justify that A3 is non empty. This issue is
addressed in Section 8.

Remark 2.14 Our approach can be adapted to treat many problems involving a non local definition
of the potential, without scale invariance. A relevant example is the case of the Hartree equation
with the Yukawa potential Σ(x) = e−µ|x|

|x| , which corresponds to a coupling between the Schrödinger
equation and the screened Poisson equation µ2Φ − ∆xΦ = |u|2 for the potential. The stability
analysis for this problem is performed by a variational approach in [43] and an improved statement
has been obtained in [17] by using a perturbative approach next to µ = 0.

2.5 The case d = 1
The characterization of A1 is much more easier. This is related to the remarks made in Section 1.2.
Indeed, we can adapt the same strategy than developed for d = 3, but now considering perturbations
around δ0, and using the fact that the cubic non linear Schrödinger equation is L2-sub-critical for
d = 1. We obtain the following result.

Proposition 2.15 If σ1 satisfies (H2)-(H3), then σ1 ∈ A1. Moreover there exists a massM∗ > 0
such that (0,M∗) ⊂ I. As a consequence, we obtain M0 = 0.

Let σ1 satisfy (H2)-(H3) and consider the sequence (Σε)ε>0 of smooth potentials defined by

Σε(x) = ε−1Σ(ε−1x), Σ = σ1 ? σ1.

This sequence converges to δ0. We know that for each ε > 0, there exists a mass threshold M ε
0 ≥ 0

such that KΣε
M is achieved for every M > M ε

0 . As in the case d = 3, we can prove (thanks to an
easy adaptation of Lemma 7.1) that supε(M ε

0 ) < +∞.

Remark 2.16 Thanks to the scaling relations of Section 1.2, applied with µ = λ = ε−1, we can
express M ε

0 in terms of ε and M1
0 : M ε

0 = ε−1M1
0 . Combining this relation to the boundedness of

supε(M ε
0 ) implies M1

0 = 0 and then M ε
0 = 0.

Hence, for a given mass M > 0 we can consider a sequence of ground states Qε = QΣε
M and

Lagrange multipliers ωε = ω(Σε, QΣε
M ) and we can justify that the conclusions of Proposition 2.12

(where Q0 is now the unique positive and even minimizer of Kδ0
M and ω0 is the corresponding

Lagrange multiplier) also hold in this case. We refer the reader to Example 3 in Section 8 where
we briefly justify how the conclusions of Proposition 2.12 allow us to obtain Proposition 2.15.
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Remark 2.17 There is no major difficulty in order to adapt the proof of Proposition 2.12 to the
case d = 1. The compact embedding H1

rad(Rd)→ Lp(Rd), p ∈ (2, pc) holds in dimension d ≥ 2, but
we can exploit the fact that each Qε is decreasing in order to recover some compactness result (as
in the proof of Theorem 2.1-(i)).

2.6 The case d = 2
One may naturally wonder what happens in dimension d = 2. The discussion in Section 1.2 supports
the intuition that the case d = 2 is likely more intricate than d = 1 and studying this situation
can shed some light on the restrictions on σ1 adopted when d = 3 (compare the characterization
of the set of admissible form functions for d = 1 in Proposition 2.15 to the weaker statement in
Proposition 2.10).

The role of the dimension d appears in the analysis of the minimisation problem for KM : for
d = 1, the mass threshold M0 is zero, while it is strictly positive in higher dimensions. We can thus
expect to obtain useful information by studying more precisely the value of M0 and considering
ground states having a mass close to M0. Going back to the proof of M0 > 0 (see the proof of
Lemma 3.1-f)), we are led to study the best constant C > 0 in the inequality∣∣∣∣ˆ (

Σ ? |u|2
)
|u|2 dx

∣∣∣∣ ≤ C‖∇xu‖2L2
x
‖u‖2L2

x
.

This yields to the minimization problem

aΣ := inf
u∈H1

x
u6=0

AΣ(u), AΣ(u) =
‖∇xu‖2L2

x
‖u‖2L2

xˆ (
Σ ? |u|2

)
|u|2 dx

.

Indeed, we can prove that M0 = aΣ/κ and we are thus led to compute aΣ. Coming back to the
scaling relations discussed in Section 1.2, we set Σε(x) = ε−2Σ(ε−1x), uε(x) = ε−1u(ε−1x) and we
check that AΣε(uε) = AΣ(u). Accordingly, we have aΣε = aΣ for every ε > 0. Passing formally
to the limit ε → 0 in this relation, which amounts to saying Σε → δ0 (note that up to change the
value of κ, we can always assume that ‖Σ‖L1

x
= 1), would lead to identify aΣ and aδ0 where aδ0

stands for the best constant in the Gagliardo-Nirenberg inequality

‖u‖4L4
x
≤ 1
aδ0
‖∇xu‖2L2

x
‖u‖2L2

x
, aδ0 = inf

u∈H1
x

u6=0

Aδ0(u).

It is well known that Aδ0 admits minimizers, see the pioneering work [42] which points out the
connection to the non linear Schrödinger equation, and the recent reviews [2, 10] ; these minimizers
are of arbitrary mass (thanks to the relation AΣ(θu) = AΣ(u) for every θ 6= 0) and solution of the
equation

−1
2∆xQ+ 1

2
‖∇xQ‖2L2

x

‖Q‖2L2
x

Q− aδ0

‖Q‖2L2
x

Q3 = 0.

By considering a minimizer of mass aδ0 and thanks to the rescaling Qλ(x) = λQ(λx) (which leaves
both the equation and the mass of the minimizer invariant) we can simply consider the equation

−1
2∆xQ+Q−Q3 = 0.
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It is well known that this equation admits a unique positive and radially symmetric solution,
see [18, 31]. By denoting Qδ0 this unique solution we eventually obtain M0 = ‖Qδ0‖2L2

x
/κ. This

discussion makes formally a bridge appear with the asymptotic system (17) when Σ → δ0; this
intuition might be a guide for further analysis, which relies on the following known results for
the cubic non linear Schrödinger equation in dimension d = 2, where we keep the notations of
Definition 2.11. Details can be found in the seminal paper [32], and in the in-depth review [34]
which contains complete references.

Theorem 2.18 Let d = 2 and M0 = ‖Qδ0‖2L2
x
/κ. The following assertion hold:

i) For every 0 ≤M ≤M0, Kδ0
M = 0 while Kδ0

M = −∞ when M > M0.

ii) If u ∈ H1
x is such that 0 < ‖u‖2L2

x
≤ M0 and Hδ0(u) = 0, then there exists λ0 > 0, x0 ∈ R2

and γ0 ∈ R such that
u(x) = λ0√

κ
Qδ0(λ0x− x0)eiγ0 .

As a consequence ‖u‖2L2
x

= M0.

iii) Let Lδ0+ := L+(δ0, Q
δ0/
√
κ). There exists a universal constant ν > 0 such that for every

f ∈ H1
x,

〈
Lδ0+ f, f

〉
L2
x

≥ ν‖f‖2H1
x
−1
ν

∣∣∣〈f,Qδ0〉L2
x

∣∣∣2 +
2∑
j=1

∣∣∣〈f, ∂xjQδ0〉L2
x

∣∣∣2 +
∣∣∣〈f, x · ∇xQδ0 +Qδ0〉L2

x

∣∣∣2
 .

(33)

iv) If ‖u0‖2L2
x
< M0, then the unique solution u of (17) with initial data u0 satisfies the following

scattering estimate: there exists u∞ ∈ H1
x such that

‖u(t)− S(t)u∞‖H1
x
−→
t→+∞

0,

where S(t)u∞ stands for the unique solution of the linear Schrödinger equation with initial
data u∞.

v) If ‖u0‖2L2
x

= M0, then there are only three possible scenario for the unique solution u of (17)
associated to the initial data u0:

– u is a solitary wave (up to the equation’s invariants),
– u blows up in finite time,
– u is globally defined in time and satisfies the scattering property.

Here, we have obtained the analogue of point (i) when a smooth potential Σ replaces the delta
function δ0: in this case the only difference is that KΣ

M is finite and strictly negative whenM > M0.
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Point (ii) gives the characterization of the manifold of all possible ground states of mass M0. Com-
pared to the case d = 1, here the manifold is parametrized by an additional parameter (λ0 ∈ R∗+)
which is the translation of the L2-criticality of this case. Hence the coercivity relation in (iii) nat-
urally involves an additional orthogonality condition, compared to (29). From this discussion, we
can address the following questions for future investigations.

Question 1. Does AΣ admit minimizers ? If it is so, what is the dimension of the manifold
of all minimizers ? It involves at least three free parameters (one for the phase and two for
the translation), but does it need an additional parameter λ0 ? In other words, does it exist a
transformation Tλ0 , continuous with respect to the one-dimensional parameter λ0, which does not
correspond to a translation or a change of phase, and such that if Q is a ground state then Tλ0Q
is a ground state too ? Moreover, if such a transformation exists, does it conserve the L2-norm of
its argument (for every λ0, ‖Tλ0Q‖L2

x
= ‖Q‖L2

x
) ?

Depending on the answers, it will be possible to obtain a coercivity relation of the form (29)
or with an additional orthogonality relation as in (33). Then, such results will allow us to justify
the (un-)stability of ground states of mass M0. Note that the existence of a transformation Tλ0

is quite natural. Indeed, the continuity of the ground states with respect to their mass is at least
expected in any dimension d. The main issue is to determine whether or not the transformation
also preserves the mass, as it does for the formal limit case δ0.

Question 2. Is it possible to extend the conclusions for ground states of massM0 (if they do exist)
to ground states of mass M > M0 close to M0 ?

Question 3. Does the analogue of point (iv) still hold true when u is a solution of (13) ?

Thanks to the smoothness of the potential Σ, we already know that every solution of (13) is
globally defined in time. This excludes the scenario where solutions blow up in finite time. This
is a major difference between the dynamics of (17) and (13). Nevertheless, the similar structure
of the infimum of their energy when M < M0 suggests that solutions of (13) with a mass strictly
less than M0 obey the scattering property. If it is so, this major difference with the case d = 1
(for which ground states exist for any mass) would indicate that dynamics specific to L2-critical or
L2-super-critical equations also hold when d ≥ 2 and (13) is considered with a smooth potential Σ.
As a consequence, obtaining positive results of stability when d ≥ 2 seems much more challenging
than in the case d = 1.

In this paper this difficulty is treated at the price of restricting to potentials Σ close to | · |−1

(instead of being close to δ0). This viewpoint takes advantage of the fact that (13) is L2-sub-critical
when d = 3 and Σ = | · |−1, which allows us to proceed with a pertubative analysis. Equation (13)
is equally L2-sub-critical when Σ = | · |−α with 1 ≤ α < 2 (the case α = 2 being L2-critical): up
to the knowledge of stability results for these cases, the strategy developed in the paper could be
adapted to any potential Σ close to | · |−α, when 1 ≤ α < 2.

3 Existence of ground states: proof of Theorem 2.1
Let us gather the basic properties of IM , JM and KM in the following lemma, which is further
illustrated by Fig. 1.
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Lemma 3.1 Let (H1)–(H2) be fulfilled. The following assertions hold:
a) M 7→ IM is non increasing.
b) I0 = J0 = 0 are reached at (u, ψ, χ) = (0, 0, 0) and K0 = 0 is reached at u = 0.
c) For every M ≥ 0, −∞ < IM ≤ JM ≤ KM ≤ 0.
d) There exists a mass threshold M0 ≥ 0 such that IM = 0 for M ∈ [0,M0] and IM < 0 for
M > M0.
e) If IM < 0 is reached at (u, ψ, χ), then ‖u‖2L2

x
= M and JM = IM is reached at (u, ψ, χ).

Moreover χ = 0, ψ = Γσ1 ? |u|2 and u ∈ S(Rd) is a solution of (19) for a certain ω > 0. In
particular KM = JM is reached at u.
f) If d ≥ 2, then M0 > 0.

Before proving this lemma let us make several remarks

• Points c) and e) coupled with Theorem 2.1-(i) imply KM = JM = IM for every M ≥ 0.

• Points d) and e) coupled with Theorem 2.1-(i) imply that JM is reached for M > M0 and
improve also point a): IM = 0 for M ∈ [0,M0] and M 7→ IM is strictly decreasing on
(M0,+∞).

• The proof of point f) will give us the following additional information on M0:

0 < 1
κC2‖Σ‖

L
d
2
x

≤M0. (34)

M

IM = JM = KM

M0

0

Figure 1: A possible graph representing IM , JM , KM as a function of the mass M . Note that
nothing ensures that these functions are differentiable as the picture might indicate.

Proof. Items a) and b) are direct consequences of the definition of IM , JM and KM . The non
trivial parts of c) are to prove that E(u, ψ, χ) is bounded from below under the mass constrain
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‖u‖2L2
x

= M and that KM ≤ 0. Since for every (u, ψ, χ),

E(u, ψ, χ) ≥ 1
2‖∇xu‖

2
L2
x
−
∣∣∣∣ˆ

Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
|u|2 dx

∣∣∣∣+ 1
2‖∇zψ‖

2
L2
xL

2
z

+ 1
2c2 ‖χ‖

2
L2
xL

2
z

≥ 1
2‖∇xu‖

2
L2
x
−M ‖σ1‖L2

x
‖σ2‖L2n/(n+2)

z
‖ψ‖

L2
xL

2n/(n−2)
z

+ 1
2‖∇zψ‖

2
L2
xL

2
z

+ 1
2c2 ‖χ‖

2
L2
xL

2
z
, (35)

the Sobolev inequality ‖f‖
L

2n/(n−2)
z

. ‖∇zf‖L2
z
, see e.g. [33, Theorem, p. 125] allows us to conclude

that IM > −∞. In order to prove KM ≥ 0 we use the immediate estimate H(u) ≤ ‖∇xu‖2L2
x
/2.

Then, for every u ∈ H1
x, by setting uλ(x) = λd/2u(λx) we get ‖uλ‖L2

x
= ‖u‖L2

x
and

H(uλ) ≤ 1
2‖∇xuλ‖

2
L2
x

= λ2

2 ‖∇xu‖
2
L2
x
−→
λ→0

0.

Item d). For every (u, ψ) such that supp(u)∩ supp(σ1) and supp(ψ)∩ supp(σ1)× supp(σ2) are
non empty and for every a ∈ R, we have

E(au, a|ψ|, 0) = a2
(1

2‖∇xu‖
2
L2
x
− a
ˆ (

σ1 ?

ˆ
σ2|ψ|dz

)
|u|2 dx+ 1

2‖∇z|ψ|‖
2
L2
xL

2
z

)
−→
a→+∞

−∞

and ‖au‖2L2
x

= a2‖u‖2L2
x
. We conclude by using that IM ≤ 0 and M 7→ IM is non increasing.

Item e). We argue by contradiction: we suppose that E(u, ψ, χ) = IM with ‖u‖2L2
x

= m and
0 < m < M (note that IM < 0 implies m 6= 0). We first remark that IM < 0 impliesˆ (

σ1 ?

ˆ
σ2ψ dz

)
|u|2 dx < 0.

Then, by considering v = (M/m)1/2u, ϕ = (M/m)1/2ψ and ζ = (M/m)1/2χ we get

IM ≤ E(v, ϕ, ζ)

= M

m

1
2‖∇xu‖

2
L2
x

+

√
M

m︸ ︷︷ ︸
>1

ˆ (
σ1 ?

ˆ
σ2ψ dz

)
|u|2 dx︸ ︷︷ ︸

<0

+ 1
2c2 ‖χ‖

2
L2
xL

2
z

+ 1
2‖∇zψ‖

2
L2
xL

2
z


<
M

m
E(u, ψ, χ) = M

m
IM < IM ,

which is a contradiction. Since (u, ψ, χ) is a minimizer of JM , the Euler-Lagrange relations imply the
existence of a Lagrange multiplier λu,ψ,χ such that ∇u,ψ,χE(u, ψ, χ) = λu,ψ,χ∇u,ψ,χ(u 7→ ‖u‖2L2

x
) =

2λu,ψ,χ(u, 0, 0)t. The first two components of this vectorial relation imply that (u, ψ) is a solution
of (18a)–(18b) with ω = −λu,ψ,χ and the third component implies that χ = 0. Then ψ = Γσ1 ? |u|2
(which implies that KM = JM is reached at u) and u is a solution of (19) with ω = −λu,ψ,χ.
Moreover, by multiplying (19) by u and integrating over Rd we get

1
2‖∇xu‖

2
L2
x

+ ω‖u‖2L2
x
− κ
¨
|u|2(x)Σ(x− y)|u|2(y) dx dy = 0.
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It follows that

0 > JM = KM = 1
2‖∇xu‖

2
L2
x
− κ

2

¨
|u|2(x)Σ(x− y)|u|2(y) dx dy

= −ω‖u‖2L2
x

+ κ

2

¨
|u|2(x)Σ(x− y)|u|2(y) dx dy

and thus ω > 0. Eventually, thanks to the fact that ω is a positive number, one can prove by
standard arguments that u is in the Schwartz class (we refer the reader to [20, Theorem 8] and its
proof in [27, Remark 1]).

Item f). Let us denote by C the optimal constant of the homogeneous Sobolev embedding
‖f‖

L
2d/(d−2)
x

≤ C‖∇xf‖L2
x
(note that this estimate requires d ≥ 3). Since E(u,Γσ1 ? |u|2, 0) = H(u)

and by using the estimate¨
|u|2(x)Σ(x− y)|u|2(y) dx dy ≤ ‖Σ ? |u|2‖L∞x ‖u‖

2
L2
x

≤ ‖Σ‖
L
d
2
x

‖ |u|2 ‖
L

d
d−2
x

‖u‖2L2
x

= ‖Σ‖
L
d
2
x

‖u‖2
L

2d
d−2
x

‖u‖2L2
x
≤ C2‖Σ‖

L
d
2
x

‖∇xu‖2L2
x
‖u‖2L2

x
,

we eventually obtain

E(u,Γσ1 ? |u|2, 0) ≥ 1
2

(
1− κC2‖Σ‖

L
d
2
x

‖u‖2L2
x

)
‖∇xu‖2L2

x
,

and KM is non negative as soon as 1 − κC2‖Σ‖
L
d/2
x
M > 0. The case of the dimension d = 2 can

be treated as follows:¨
|u|2(x)Σ(x− y)|u|2(y) dx dy ≤ ‖Σ ? |u|2‖L2

x
‖ |u|2‖L2

x

≤ ‖Σ‖L1
x
‖ |u|2 ‖L2

x
‖ |u|2‖L2

x
= ‖Σ‖L1

x
‖u‖4L4

x
≤ C̃2‖Σ‖L1

x
‖∇xu‖2L2

x
‖u‖2L2

x
,

where the last estimate is obtained thanks to the Gagliardo-Nirenberg inequality.

Thanks to the previous arguments, Theorem 2.1-(iii) follows from Theorem 2.1-(i): in the proof
we will construct a minimizer such that u is non negative, radially symmetric and non increasing.
We are thus left with the task of proving Theorem 2.1-(i).

Proof of Theorem 2.1-(i). We fixM > 0 and we consider a minimizing sequence (uν , ψν , χν)ν∈N
of IM . We start by constructing from this sequence another minimizing sequence with specific
properties. Since E(uν , ψν , 0) ≤ E(uν , ψν , χν), we can take χν = 0 for every ν. Moreover, owing
to convexity properties, we have E(|uν |,−|ψν |, 0) ≤ E(uν , ψν , 0) and we can suppose uν ≥ 0 and
ψν ≤ 0. Finally, the density of linear combinations of tensor product in L2

x

.
H1
z allows us to assume

that every ψν can be written as

ψν(x, z) = −
Nν∑
i=0

fνi (x)gνi (z),

where fνi ∈ L2
x and gνi ∈

.
H1
z are positive functions. Possibly at the price of decomposing the gνi ’s

on a Hilbert basis of
.
H1
z , we can suppose that for each ν, (gνi )i∈N forms an orthogonal family and
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we obtain

E(uν , ψν , 0) = 1
2‖∇xuν‖

2
L2
x

−
Nν∑
i=0

(ˆ
Rn
σ2(z)gνi (z) dz

)(¨
Rd×Rd

|uν(x)|2σ1(x− y)fνi (y) dx dy
)

+
Nν∑
i=0
‖fνi ‖2L2

x
‖gνi ‖2.H1

z

.

From here we can apply the symmetric decreasing rearrangement theory in order to obtain, see [21,
chapter 3], ‖u∗ν‖2L2

x
= ‖uν‖2L2

x
, ‖∇xu∗ν‖2L2

x
≤ ‖∇xuν‖2L2

x
, ‖fν,∗i ‖2L2

x
= ‖fνi ‖2L2

x
and

¨
Rd×Rd

|uν(x)|2σ1(x− y)fνi (y) dx dy ≤
¨

Rd×Rd
|u∗ν(x)|2σ∗1(x− y)fν,∗i (y) dx dy,

where ·∗ stands for the symmetric decreasing rearrangement of a given function. Since σ1 is assumed
non negative, radially symmetric and non increasing, σ∗1 = σ1 and since

Nν∑
i=0
‖fν,∗i ‖

2
L2
x
‖gνi ‖2.H1

z

=
∥∥∥∥∥
Nν∑
i=0

fν,∗i gνi

∥∥∥∥∥
2

L2
x

.
H1
z

,

we eventually obtain E(u∗ν , ψ̃ν , 0) ≤ E(uν , ψν , 0), where ψ̃ν =
∑Nν
i=0 f

ν,∗
i gνi . From now on, we will

use the abuse of notation uν = u∗ν and ψν = ψ̃ν .
Having disposed of these preliminaries, we enter into the heart of the proof. Thanks to (35)

we know that (uν)ν∈N is bounded in H1
x and (ψν)ν∈N is bounded in L2

x

.
H1
z . Hence we can suppose,

possibly at the price of extracting subsequences, that (uν)ν∈N converges weakly to u in H1
x, (ψν)ν∈N

converges weakly to ψ in L2
x

.
H1
z . We have ‖u‖2L2

x
≤ M , ‖∇xu‖2L2

x
≤ lim infν→∞ ‖∇xuν‖2L2

x
and

‖ψ‖2
L2
x

.
H1
z

≤ lim infν→∞ ‖ψν‖2
L2
x

.
H1
z

. In order to conclude the proof it only remains to prove that
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)
|uν(x)|2 dx −→

ν→+∞

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
|u(x)|2 dx. (36)

Indeed, (36) now implies E(u, ψ, 0) ≤ lim infν→∞E(uν , ψν , 0) = IM and we eventually conclude
that IM is reached at (u, ψ, 0).

We turn to (36). On the one hand, in the case d ≥ 2 we can use the symmetry property of
the functions uν ∈ H1

rad in order to justify the strong convergence of uν to u in Lpx for 2 < p < pc
(where pc = 2d/(d−2) if d ≥ 3 and pc = +∞ if d = 2), see [22, 36] for such compactness statements
based on symmetry properties. On the other hand, in the case d = 1, by using a diagonal argument
and extracting further subsequences if necessary, we know that (uν)ν∈N converges also pointwise to
u. Since for every ν, uν is a non negative even function with a non increasing profile, for almost
every x ∈ Rd we get

2|x| |uν(x)|2 ≤
ˆ |x|
−|x|
|uν(y)|2 dy ≤M and then |uν(x)| ≤

√
M

2|x| . |x|
−1/2.

Thanks to this uniform estimate with respect to ν, we can justify that the sequence (|uν |p)ν∈N is
tight for every 2 < p < +∞. Combining this property with the compact embedding H1(Rx) →
Lploc(Rx) for every 1 ≤ p < +∞ allows us to justify that the sequence (uν)ν∈N converges strongly
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to u in any Lpx with 2 < p < +∞. We can now conclude the proof as follows:
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)
|uν |2 dx =

ˆ
Rd

(σ1 ? |uν |2)
(ˆ

Rn
σ2ψν dz

)
dx

=
ˆ
Rd

[
(σ1 ? |uν |2)− (σ1 ? |u|2)

] (ˆ
Rn
σ2ψν dz

)
dx+

ˆ
Rd

(σ1 ? |u|2)
(ˆ

Rn
σ2ψν dz

)
dx,

where∣∣∣∣ˆ
Rd

[
(σ1 ? |uν |2)− (σ1 ? |u|2)

] (ˆ
Rn
σ2ψν dz

)
dx
∣∣∣∣

.
∥∥∥(σ1 ? |uν |2)− (σ1 ? |u|2)

∥∥∥
L2
x

‖ψν‖L2
x

.
H1
z
.

Note that the weak convergence of ψν to ψ in L2
x

.
H1
z implies the convergence of the second term of

the right hand side to
´

(σ1 ?
´
σ2ψ dz)|u|2 dx. Indeed

ˆ
Rd

(σ1 ? |u|2)
(ˆ

Rn
σ2ψν dz

)
dx

=
¨

Rd×Rn
(σ1 ? |u|2)σ2 ψν dx dz =

¨
Rd×Rn

|ζ|(σ1 ? |u|2)(x) σ̂2(ζ)
|ζ|2

|ζ|ψ̂ν(x, ζ) dx dζ

−→
ν→+∞

¨
Rd×Rn

|ζ|(σ1 ? |u|2)(x) σ̂2(ζ)
|ζ|2

ψ̂(x, ζ) dx dζ =
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
|u|2 dx,

where we used n ≥ 3 in order to justify that ζ 7→ σ̂2(ζ)/|ζ| is an element of L2
ζ . Thus, it only

remains to prove that σ1 ? |uν |2 converges strongly to σ1 ? |u|2 in L2
x. To this end, we remark that

σ1 ? |uν |2 − σ1 ? |u|2 = σ1 ?
(
|uν − u+ u|2 − |u|2

)
= σ1 ?

(
|uν − u|2 + 2Re (uν − u)ū

)
.

By using Young’s inequalities we obtain for every 1 ≤ p, q ≤ +∞ with 1/p+ 1/q = 1 + 1/2∥∥∥(σ1 ? |uν |2)− (σ1 ? |u|2)
∥∥∥
L2
x

≤ ‖σ1‖Lpx
∥∥∥ |uν − u|2 + 2Re (uν − u)ū

∥∥∥
Lqx

≤ ‖σ1‖Lpx
(
‖uν − u‖2L2q

x
+ 2‖uν − u‖L2q

x
‖u‖

L2q
x

)
.

Then, since q can be chosen arbitrarily in [1, 2], we can always pick q such that 2q ∈ (2, pc) and the
strong convergence of uν to u in Lqx for every q ∈ (2, pc) allows us to conclude.

Let us complete this Section with some comments on the uniqueness issue for the minimization
problem JM and complementary properties of the solutions. As soon as JM is reached at (u, ψ, χ),
we have χ = 0, ψ = Γσ1 ? |u|2 and KM = JM is reached at u. Hence JM admits a unique minimizer
if and only if KM admits a unique minimizer. In [20] E. Lieb fully answers the question of the
uniqueness of the minimizer of KM for the Newtonian kernel Σ0(x) = 1

|x| in dimension d = 3. A
first step of the proof consists in proving that if KM is reached at u then, up to a translation
and a change of phase, u is positive, radially symmetric and decreasing. The proof uses the fact
that r 7→ 1/r is decreasing, see [20, Lemma 3 and Corollary 4]. Here, we suppose that σ1 is non
increasing (σ1 strictly decreasing is not compatible with σ1 compactly supported) and we cannot
apply this reasoning. Nevertheless, the recent result of L. Ma-L. Zhao [28, Section 5] tells us that
any non negative solution of (19) is strictly positive, radially symmetric and decreasing. This
justifies that, if KM is reached at u then, up to a translation and a change of phase, u is positive,
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radially symmetric and decreasing. The idea in [28] consists in writing (19) as a system(
ω − 1

2∆
)
Q = QX, X = κΣ ? Q2.

The operator (ω − 1
2∆) is indeed invertible, and its inverse can be expressed by means of a convo-

lution with the Bessel potential [35, Chapter V, Sect. 3]

J (x) = 1
4π

ˆ ∞
0

e−πx
2/te−t/(4π)t−(d−2)/2 dt

t

(this kernel corresponds to the operator (I−∆)). Therefore Q appears as the solution of an integral
equation

Q = J ? (QX), X = κΣ ? Q2.

The operator (ω − 1
2∆)−1 is positive in the sense that the solution u of (ω − 1

2∆)u = f , with
f ≥ 0, f 6≡ 0 is strictly positive. This reflects in the fact that J (x) > 0 for any x ∈ Rd. Since
we already know that Q is non negative, we deduce that actually Q is positive. Moreover J is
decreasing, Σ is non increasing, which allows us to adapt the moving plane strategy of [28]: we
conclude that Q is radially symmetric, and monotone decreasing in the radial direction. The second
step in Lieb’s approach shows that KM admits a unique positive, radially symmetric and decreasing
minimizer [20, Theorem 10]. However, the proof relies strongly on the specific properties of the
kernel Σ0(x) = 1/|x|; the proof cannot be adapted to the present framework.

4 Orbital stability: concentration-compactness approach
Theorem 2.2 is a consequence of the following lemma.

Lemma 4.1 Let M > M0. If (uν , ψν , χν)ν∈N ⊂ H1
x × L2

x

.
H1
z × L2

xL
2
z is a sequence such that

‖uν‖2L2
x
−→
ν→+∞

M and E(uν , ψν , χν) −→
ν→+∞

JM ,

then there exists a sequence (xν)ν∈N of elements of Rd and (Q̃, Ψ̃) ∈ SM such that, up to a sub-
sequence,

‖uν(· − xν)− Q̃‖2H1
x

+ ‖ψν(· − xν , ·)− Ψ̃‖2
L2
x

.
H1
z

+ ‖χν‖2L2
xL

2
z
−→
ν→+∞

0.

Let us first explain how this lemma implies Theorem 2.2. We argue by contradiction. Let us
assume the existence of ε > 0 and a sequence of initial data (uν0 , ψν0 , χν0)ν∈N satisfying

‖uν0 −Q‖2H1
x

+ ‖ψν0 −Ψ‖2
L2
x

.
H1
z

+ ‖χν0‖2L2
xL

2
z
−→
ν→+∞

0,

and such that for any ν ∈ N, the unique solution (uν , ψν , χν) of (1a)-(1b) with initial data
(uν0 , ψν0 , χν0) satisfies for some tν > 0,

inf
(Q̃,Ψ̃)∈SM

(
‖uν(tν)− Q̃‖2H1

x
+ ‖ψν(tν)− Ψ̃‖2

L2
x

.
H1
z

+ ‖χν(tν)‖2L2
xL

2
z

)
> ε.
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The strong convergence of uν0 to Q in H1
x implies ‖uν0‖2L2

x
→ M while the continuity of the energy

functional E with respect to u ∈ H1
x, ψ ∈ L2

x

.
H1
z and χ ∈ L2

xL
2
z implies

E(uν0 , ψν0 , χν0) −→
ν→+∞

E(Q,Ψ, 0) = JM .

By using the mass and energy conservations we check that the sequence (uν(tν), ψν(tν), χν(tν))ν∈N
fulfils the assumptions of Lemma 4.1 and we eventually obtain the required contradiction.

The proof of Lemma 4.1 is based on the concentration compactness lemma. In order to apply
this lemma let us state and prove the following result on JM .

Lemma 4.2 (i) For every M > M0 and for every θ > 1, JθM < θJM .
(ii) For every M > M0 and for every α ∈ (0, 1),

JM < JαM + J(1−α)M . (37)

Proof. Item (i). The proof follows the strategy of proof of Lemma 3.1-item e). Since M > M0
there exists (u, ψ, χ) such that ‖u‖2L2

x
= M and JM = E(u, ψ, χ). Hence, defining for θ > 1,

v =
√
θu, ϕ =

√
θψ and ζ =

√
θχ and following the proof of Lemma 3.1-item e) we are led to

JθM ≤ E(v, ϕ, ζ) < θE(u, ψ, χ) = θJM .

Item (ii). Let us distinguish two cases. The first case is αM ≤ M0 or (1 − α)M ≤ M0. The
case where these two conditions are satisfied is obvious:

JM < 0 = JαM + J(1−α)M .

Hence let us assume, without loss of generality, that αM ≤M0 and (1−α)M > M0. SinceM 7→ JM
is strictly decreasing on (M0,+∞) (see the remarks after the statement of Lemma 3.1) we obtain

JM < J(1−α)M = JαM + J(1−α)M .

The second case is αM > M0 and (1− α)M > M0. In this case we apply the previous item (with
θ = 1/α and θ = 1/(1− α)) as follows:

JM = αJM + (1− α)JM = αJ 1
α
αM + (1− α)J 1

1−α (1−α)M

< α
1
α
JαM + (1− α) 1

1− αJ(1−α)M = JαM + J(1−α)M .

Proof of Lemma 4.1. First of all, let us notice that we can consider, without loss of generality,
that the sequence (uν)ν∈N is such that for every ν ∈ N, ‖uν‖2L2

x
= M . Indeed, by considering the

new sequence

ũν =
√
M

‖uν‖L2
x

uν ,

and since ‖uν‖2L2
x
→ M implies ‖ũν − uν‖H1

x
→ 0, if the conclusion of Lemma 4.1 holds for the

sequence (ũν)ν∈N, then it equally holds with the sequence (uν)ν∈N.
From now on we will consider that the sequence (uν)ν∈N is such that ‖uν‖2L2

x
= M . Since

JM ≤ E(uν , ψν , 0) ≤ E(uν , ψν , χν) and E(uν , ψν , χν)→ JM when ν → +∞ we obtain
1
2c‖χν‖

2
L2
xL

2
z

= E(uν , ψν , χν)− E(uν , ψν , 0) −→
ν→+∞

0.
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Then, owing to (35), (uν)ν∈N is bounded inH1
x and (ψν)ν∈N is bounded in L2

x

.
H1
z . The concentration

compactness lemma [23, 24] — here we use the version that can be found in [5, Prop. 1.7.6] —
insures that there are only three different possible scenarii for the behavior of the sequence (uν)ν∈N.

Scenario 1: Evanescence. Up to a sub-sequence, for every 2 < q < 2∗, (uν)ν∈N converges
strongly to 0 in Lqx, where 2∗ = +∞ if d = 1 or 2 and 2∗ = 2d/(d − 2) if d ≥ 3. Let us assume
d ≥ 3; we have∣∣∣∣ˆ

Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)
|uν |2 dx

∣∣∣∣ ≤ ∥∥∥∥σ1 ?

ˆ
Rn
σ2ψν dz

∥∥∥∥
Ld−1
x

‖ |uν |2‖L(d−1)/(d−2)
x

≤ ‖σ1‖L2(d−1)/(d+1)
x

‖σ2‖L2n/(n+2)
z

‖ψν‖L2
xL

2n/(n−2)
z

. ‖ψν‖L2
x

.
H1
z
‖uν‖2

L
2(d−1)/(d−2)
x

.

Since (ψν)ν∈N is bounded in L2
x

.
H1
z and 2 < 2(d− 1)/(d− 2) < 2∗, we eventually obtainˆ

Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)
|uν |2 dx −→

ν→+∞
0.

Then
JM = lim

ν→+∞
E(uν , ψν , 0) = lim

ν→+∞

(1
2‖∇xuν‖

2
L2
x

+ 1
2‖∇zψν‖

2
L2
xL

2
z

)
≥ 0,

which contradicts JM < 0.
Scenario 2: Dichotomy. Up to possible extraction, there exists two sequences (vν)ν∈N and

(wν)ν∈N, bounded in H1
x and such that the following assertions hold

(i) ∃α ∈ (0, 1) such that ‖vν‖2L2
x
−→
ν→+∞

αM and ‖wν‖2L2
x
−→
ν→+∞

(1− α)M,

(ii) ∀ 2 ≤ q < 2∗, ‖uν‖qLqx − ‖vν‖
q
Lqx
− ‖wν‖qLqx −→ν→+∞

0,

(iii) lim inf
ν→+∞

(
‖∇xuν‖2L2

x
− ‖∇xvν‖2L2

x
− ‖∇xwν‖2L2

x

)
≥ 0.

With (ii), we infer∣∣∣∣ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)(
|uν |2 − |vν |2 − |wν |2

)
dx
∣∣∣∣

≤ ‖σ1‖L2
x
‖σ2‖L2n/(n+2)

z
‖ψν‖L2

x

.
H1
z

(ˆ
Rd

∣∣∣|uν |2 − |vν |2 − |wν |2∣∣∣ dx
)
−→
ν→+∞

0. (38)

Note that we can apply (ii) because in the proof of the concentration compactness lemma [5] vν
and wν are built in such way that |uν |2 − |vν |2 − |wν |2 ≥ 0. Since

E(uν , ψν , 0) = 1
2
(
‖∇xuν‖2L2

x
− ‖∇xvν‖2L2

x
− ‖∇xwν‖2L2

x

)
+
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)(
|uν |2 − |vν |2 − |wν |2

)
dx

+ E(vν , ψν , 0) + E(wν , ψν , 0),

combining (38), (iii) and (i) yields

JM = lim
ν→+∞

E(uν , ψν , 0) ≥ lim inf
ν→+∞

(E(vν , ψν , 0) + E(wν , ψν , 0))

≥ lim inf
ν→+∞

E(vν , ψν , 0) + lim inf
ν→+∞

E(wν , ψν , 0) ≥ JαM + J(1−α)M ,
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which is a contradiction with (37), satisfied for M ∈ (M0, 2M0).
Scenario 3: Compactness. Up to a sub-sequence, there exists a sequence (xν)ν∈N in Rd such

that vν(x) = uν(x− xν) converges weakly to u in H1
x and strongly to u in Lqx for any 2 ≤ q < 2∗.

The sequence ϕν(x, z) = ψν(x − xν , z) is bounded in L2
x

.
H1
z (note that ‖ϕν‖L2

x

.
H1
z

= ‖ψν‖L2
x

.
H1
z
)

and then, up to a subsequence, (ϕν)ν∈N converges weakly to ψ in L2
x

.
H1
z . Since (vν)ν∈N converges

strongly to u in L2
x we have ‖u‖2L2

x
= M and then E(u, ψ, 0) ≥ JM . Moreover, reasoning as in (36)

we get ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ϕν dz

)
|vν |2 dx −→

ν→+∞

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ dz

)
|u|2 dx, (39)

which allows us to justify that (u, ψ) lies in SM :

JM = lim
ν→+∞

E(vν , ϕν , 0) ≥ lim inf
ν→+∞

(1
2‖∇xvν‖

2
L2
x

)
+ lim inf

ν→+∞

(ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ϕν dz

)
|vν |2 dx

)
+ lim inf

ν→+∞

(1
2‖∇zϕν‖

2
L2
xL

2
z

)
≥ E(u, ψ, 0).

In order to conclude the proof it only remains to justify the strong convergence of (vν , ϕν)ν∈N to
(u, ψ) in H1

x × L2
x

.
H1
z . We already know that this convergence holds weakly. We combine

E(u, ψ, 0) = JM = lim
ν→+∞

E(vν , ϕν , 0)

and (39) to deduce that
1
2‖∇xvν‖

2
L2
x

+ 1
2‖∇zϕν‖

2
L2
xL

2
z
−→
ν→+∞

1
2‖∇xu‖

2
L2
x

+ 1
2‖∇zψ‖

2
L2
xL

2
z
,

holds, which allows us to conclude.

5 Strengthened orbital stability: approach by lineariza-
tion

In this Section, we explain how Lemma 2.4 and Lemma 2.7 imply Theorem 2.8.
Step 1. The first step of the proof consists in checking that, up to the invariants of the equation,

any v ∈ H1
x close enough to Q satisfies the orthogonality conditions (31a)–(31b). For that purpose,

let us introduce the function F : H1
x × Rd+1 → Rd+1 defined by

Fj (v, (y, θ)) =
〈

Re e−iθv(·+ y) , ∂xjQ
〉
L2
x

, j = 1, . . . , d

Fd+1 (v, (y, θ)) =
〈

Im e−iθv(·+ y) , Q
〉
H1
x

.

Direct computations show that F (Q, (0, 0)) = 0 and Dy,θ F (Q, (0, 0)) is an invertible diagonal ma-
trix (indeed ∂yjFj (Q, (0, 0)) = ‖∂xjQ‖2L2

x
and ∂θFd+1 (Q, (0, 0)) = −‖Q‖2H1

x
). The implicit function

theorem provides the existence of ε0 > 0 and a C1-diffeomorphism G : BH1
x
(Q, 2ε0)→ Uε0 ⊂ Rd+1,

G(v) = (x, γ) such that for every v ∈ BH1
x
(Q, 2ε0) and every (y, θ) ∈ Uε0 , F (v, (y, θ)) = 0 if and

only if (y, θ) = G(v). Moreover, since

|(x, γ)| = |G(v)−G(Q)| ≤ (sup ‖DvG‖) ‖v −Q‖H1
x
,
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for every ε ∈ (0, ε0) there exists η(ε) > 0 such that

‖v −Q,ϕ−Ψ‖2H + 1
c2 ‖χ‖

2
L2
xL

2
z
≤ η(ε)2

implies for (x, γ) = G(v),∥∥∥e−iγv(·+ x)−Q,ϕ(·+ x)−Ψ
∥∥∥2

H
+ 1
c2 ‖χ‖

2
L2
xL

2
z
≤ ε2.

Step 2. In this second step we show that, if for a given time t0 ∈ [0,+∞), there exists
(x0, γ0) ∈ Rd+1 such that v = e−iγ0u(t0, · + x0) satisfies the orthogonality conditions (31a)–(31b)
and the estimate∥∥∥e−iγ0u(t0, ·+ x0)−Q,ψ(t0, ·+ x0)−Ψ

∥∥∥2

H
+ 1
c2 ‖χ(t0)‖2L2

xL
2
z
≤ ε2 < ε2

0,

then there exists a time T ? > t0 and two functions x(t) and γ(t) continuous in time such that
(x(t0), γ(t0)) = (x0, γ0) and, for every t ∈ [t0, T ?),

i) (x(t)− x0, γ(t)− γ0) ∈ Uε0 ,

ii) v = e−iγ(t)u(t, ·+ x(t)) satisfies the orthogonality conditions (31a)–(31b),

iii)
∥∥∥e−iγ(t)u(t, ·+ x(t))−Q,ψ(t, ·+ x(t))−Ψ

∥∥∥2

H
+ 1
c2 ‖χ(t)‖2L2

xL
2
z
≤ ε2.

First, thanks to the time continuity of t 7→ (e−iγ0u(t, ·+ x0), ψ(t, ·+ x0)) ∈H , there exists a time
T ? > t0 such that for every t ∈ [t0, T ?)∥∥∥e−iγ0u(t, ·+ x0)−Q,ψ(t, ·+ x0)−Ψ

∥∥∥2

H
≤ 4ε2 < 4ε2

0.

Next, for every t ∈ [t0, T ?) we can apply the first step to v = e−iγ0u(t, · + x0) and we obtain the
existence of x(t) and γ(t) such that (x(t0), γ(t0)) = (x0, γ0) and such that i) and ii) hold. Moreover
the continuity of t 7→ e−iγ0u(t, · + x0) implies the continuity of t 7→ x(t) and t 7→ γ(t). We notice
also that we can extend by continuity x(t) and γ(t) at time T ? and this extension is such that
v = e−iγ(T ?)u(T ?, ·+ x(T ?)) still satisfies the orthogonality conditions (31a)–(31b).

We can now apply Lemma 2.4 and 2.7 as follows. Thanks to the conservation of mass and
energy and to the invariance by translation and phase of these quantities we get

W (u0, ψ0, χ0) = W (u(t), ψ(t), χ(t))

= W
(
e−iγ(t)u(t, ·+ x(t)), ψ(t, ·+ x(t)), χ(t)

)
= W (Q+ uε(t),Ψ + ψε(t), χ(t)),

where
uε(t) = e−iγ(t)u(t, ·+ x(t))−Q and ψε(t) = ψ(t, ·+ x(t))−Ψ.

We make use of the decomposition (25) combined with Lemma 2.4 and 2.7; we obtain

ν̄‖Reuε, ψε‖2H + µ‖Im uε‖2H1
x

+ 1
2c2 ‖χ(t)‖2L2

xL
2
z

≤W (u0, ψ0, χ0)−W (Q,Ψ, 0) + 1
ν̄

∣∣∣〈Reuε, Q〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈Reuε, ∂xjQ〉L2
x

∣∣∣2


+ 1
µ

∣∣∣〈Im uε, Q〉H1
x

∣∣∣2 − ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ

ε(t) dz
)
|uε(t)|2 dx.
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Since e−iγ(t)u(t, · + x(t)) and Q satisfy the orthogonality conditions (31a)–(31b) we know that uε
also satisfies these conditions. Moreover ‖Q‖L2

x
= ‖u(t)‖L2

x
= ‖uε +Q‖L2

x
leads to

‖Q‖2L2
x

= ‖uε‖2L2
x

+ ‖Q‖2L2
x

+ 2〈Reuε, Q〉L2
x

and then 〈Reuε, Q〉L2
x

= −1
2‖u

ε‖2L2
x
,

which implies ∣∣∣〈Reuε, Q〉L2
x

∣∣∣2 ≤ 1
4‖u

ε‖4L2
x
≤ 4 ε4.

We also get∣∣∣∣ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ

ε(t) dz
)
|uε(t)|2 dx

∣∣∣∣ ≤ ‖σ1‖L2
x
‖σ2‖L2n/(n+2)

z
‖ψε(t)‖

L2
x

.
H1
z
‖uε(t)‖2L2

x

≤ ‖σ1‖L2
x
‖σ2‖L2n/(n+2)

z
‖uε(t), ψε(t)‖3H ≤ 8 ‖σ1‖L2

x
‖σ2‖L2n/(n+2)

z
ε3.

Gathering these estimates leads eventually to (we recall that W (u0, ψ0, χ0)−W (Q,Ψ, 0) ≤ δ(ε))

‖Reuε, ψε‖2H + ‖Im uε‖2H1
x

+ 1
c2 ‖χ(t)‖2L2

xL
2
z

≤ 1
min

(
ν̄, µ, 1

2
) (δ(ε) + 4

ν̄
ε4 + 8 ‖σ1‖L2

x
‖σ2‖L2n/(n+2)

z
ε3
)
.

By taking

δ(ε) = ε2

2 min
(
ν̄, µ, 1

2
) ,

and possibly at the price of picking a smaller ε0, we eventually obtain iii) for every t ∈ [t0, T ?].

Conclusion. We apply the first step with v = u0, which insures the existence of x(0) and γ(0)
such that we can apply the second step at time t = 0. Thus, since T ? > 0 and since we took care
to justify that the conclusions of second step is also valid at time t = T ?, a classical argument on
connected space allows us to conclude that T ? = +∞.

6 Coercivity of L+: proof of Lemma 2.7
This section is dedicated to the proof of Lemma 2.7, which is a key ingredient of the proof of
Theorem 2.8. The kernel of L+ can be identified by using Lemma 2.5. Indeed, since (f, ψ)t ∈
Ker(L+) implies

−1
2∆zψ + σ2 (σ1 ? Qf) = 0,

we can express ψ in term of f as follows: ψ = 2Γ (σ1 ? Qf). Moreover the relation

L+

(
f

2Γ (σ1 ? Qf)

)
=
(
L+f

0

)
(40)

allows us to identify the kernel of L+ to the kernel of L+: we eventually get

Ker(L+) = Span{(∂xjQ, ∂xjΨ)t, j = 1, . . . , d}.

In order to prove the coercivity relations (30), we need the following two lemmas.
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Lemma 6.1 For every (f, ψ) ∈H such that 〈f,Q〉L2
x

= 0, we have〈
L+

(
f
ψ

)
,

(
f
ψ

)〉
L2
x×L2

xL
2
z

≥ 0.

Moreover, since Ker(L+) = {(∂xjQ, ∂xjΨ)t, j = 1, . . . , d} and 〈∂xjQ,Q〉L2
x

= 0, we know that this
inequality cannot be strict.

Lemma 6.2 Let (fν , ψν)ν∈N be a bounded sequence of H which converges weakly to (f̄, ψ̄) in H .
Then, up to a sub-sequence if needed, we have the following two convergences:

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2Ψ dz

)
|fν |2 dx −→

ν→+∞

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2Ψ dz

)
|f̄ |2 dx (41)

and ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψν dz

)
Qfν dx −→

ν→+∞

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ̄ dz

)
Qf̄ dx. (42)

Proof of Lemma 6.1. Let f be a real valued function of H1
x such that 〈f,Q〉L2

x
= 0, let ψ be a

function of L2
x

.
H1
z and let u be the function defined on R by

u(s) =
‖Q‖L2

x

‖Q+ sf‖L2
x

(Q+ sf).

One can check that u(s) is a real valued function of H1
x and ‖u(s)‖L2

x
= ‖Q‖L2

x
for every s ∈ R, u

is smooth, u(0) = Q and

u′(0) = f −
〈f,Q〉L2

x

‖Q‖2L2
x

Q = f.

Since (Q,Ψ, 0) is a minimizer of JM , we know that for every s ∈ R,W (Q,Ψ, 0) ≤W (u(s),Ψ+sψ, 0).
Moreover (25) leads to

0 ≤W (u(s),Ψ + sψ, 0)−W (Q,Ψ, 0) =
〈
L+

(
u(s)−Q

sψ

)
,

(
u(s)−Q

sψ

)〉
L2
x×L2

xL
2
z

+
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2sψ dz

)
|u(s)−Q|2 dx.

Since u(s)−Q = u(s)− u(0) = sf + o(s) (when s goes to 0), we eventually obtain

0 ≤ s2
〈
L+

(
f
ψ

)
,

(
f
ψ

)〉
L2
x×L2

xL
2
z

+ o(s2),

which concludes the proof.

Proof of Lemma 6.2. The proof uses in several places a basic result of integration theory,
consequence of Egoroff’s theorem [37, Proposition 3.9]: if a sequence (gν)ν∈N ⊂ Lp(Rd) converges
weakly to some ḡ in Lp(Rd) where 1 ≤ p < +∞ and if this sequence converges also a.e. to some g,
then ḡ = g.
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Here, the sequence (fν)ν∈N is bounded in H1(Rd) and the compact embedding H1(Ω)→ L2(Ω)
which holds for any bounded open set Ω ⊂ Rd implies that, up to a sub-sequence, (fν)ν∈N converges
strongly to f̄ in L2(Ω) and thus converges, up to a further sub-sequence, a.e. in Ω to f̄ . A diagonal
argument yields the a.e. convergence of (fν)ν∈N to f̄ in Rd. Moreover, by using the homogeneous
Sobolev embedding in dimension d = 3, the boundedness of (fν)ν∈N in H1

x implies its boundedness
in L2

x and L6
x and, by interpolation, in any Lpx with 2 ≤ p ≤ 6. Consequently, the sequence (|fν |2)ν∈N

is bounded in L3
x and, up to a sub-sequence, converges weakly in L3

x to some g. Since this sequence
converges also a.e. to |f̄ |2, we have indeed g = |f̄ |2.

To prove (41) we proceed as follows. Since Ψ = Γσ1 ? Q
2 with Q lying in the Schwartz class,

the weak convergence of (|fν |2)n∈N to |f |2 in L3
x yields

ˆ (
σ1 ?

ˆ
σ2Ψ dz

)
|fν |2 dx = −κ

ˆ (
Σ ? Q2

)
|fν |2 dx

−→
ν→+∞

−κ
ˆ (

Σ ? Q2
)
|f̄ |2 dx =

ˆ (
σ1 ?

ˆ
σ2Ψ dz

)
|f̄ |2 dx.

We turn to (42). We split
ˆ (

σ1 ?

ˆ
σ2ψν dz

)
Qfν dx =

¨
σ2 (σ1 ? Qfν)ψν dx dz

=
¨

σ2
(
σ1 ? Q(fν − f̄)

)
ψν dx dz +

¨
σ2
(
σ1 ? Qf̄

)
ψν dx dz.

The weak convergence of (ψν)ν∈N to ψ̄ in L2
x

.
H1
z (note that σ2 smooth and n ≥ 3 imply σ2 ∈

.
H−1
z )

directly implies that the second term of the right hand side converges to
´

(σ1 ?
´
σ2ψ̄ dz)Qf̄ dx.

It only remains to prove that the first term of the right hand side converges to 0. To this end, we
are going to show that (Qfν)ν∈N converges strongly to Qf̄ in L3/2

x . Indeed, (|fν |3/2)ν∈N is bounded
in L2

x and, up to a sub-sequence it converges weakly to g = |f̄ |3/2 in L2
x. Since Q3/2 ∈ L2

x, we get
‖Qfν‖L3/2

x
→ ‖Qf̄‖

L
3/2
x

as ν →∞. Moreover the sequence (Qfν)ν∈N is also bounded in L3/2
x and, up

to a further sub-sequence if needed, it converges weakly to Qf̄ in L3/2
x . Thus we get the announced

strong convergence. We combine this strong convergence with the boundedness of (ψν)n∈N in L2
x

.
H1
z

and we conclude as follows:∣∣∣∣¨ σ2
(
σ1 ? Q(fν − f̄)

)
ψν dx dz

∣∣∣∣ ≤ ‖σ2‖L2n/(n+2)
z

‖ψν‖L2
x

.
H1
z
‖σ1 ? Q(fν − f̄)‖L2

x

≤ ‖σ2‖L2n/(n+2)
z

‖ψν‖L2
x

.
H1
z
‖σ1‖L6/5

x
‖Qfν −Qf̄‖L3/2

x
−→
ν→+∞

0.

We are now able to prove the coercivity relation (30).
Proof of (30). We argue by contradiction, assuming the existence of a sequence of positive
numbers (ν̃k)k∈N which converges to 0 and the existence of a sequence (fk, ψk)k∈N in H such that
for every k,〈

L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z

< ν̃k‖fk, ψk‖2H −
1
ν̃k

∣∣∣〈fk, Q〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈fk, ∂xjQ〉L2
x

∣∣∣2
 . (43)

We can assume that ‖(fk, ψk)‖H = 1 and thus, that there exists f̄ ∈ H1
x and ψ̄ ∈ L2

x

.
H1
z such that

(fk)k∈N converges weakly to f̄ in H1
x and (ψk)k∈N converges weakly to ψ̄ in L2

x

.
H1
z . On the one

31



hand, thanks to the weak convergence of (fk)k∈N, we get

〈fk, Q〉L2
x
−→
k→+∞

〈f̄, Q〉L2
x

and 〈fk, ∂xjQ〉L2
x
−→
k→+∞

〈f̄, ∂xjQ〉L2
x
,

while on the other hand (43) implies

0 ≤
∣∣∣〈fk, Q〉L2

x

∣∣∣2 +
d∑
j=1

∣∣∣〈fk, ∂xjQ〉L2
x

∣∣∣2 < ν̄2
k − ν̄k

〈
L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z

−→
k→+∞

0,

bearing in mind that 〈L+h, h〉 ≤ K‖h‖2H . We eventually obtain 〈f̄, Q〉L2
x

= 0 and 〈f̄, ∂xjQ〉L2
x

= 0.
Knowing that f̄ is orthogonal to Q, we can apply Lemma 6.1 in order to obtain〈

L+

(
f̄

ψ̄

)
,

(
f̄

ψ̄

)〉
L2
x×L2

xL
2
z

≥ 0.

On the other hand, the relation〈
L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z

= 1
2‖∇xfk‖

2
L2
x

+ ω‖fk‖2L2
x

+
ˆ (

σ1 ?

ˆ
σ2Ψ dz

)
|fk|2 dx

+ 2
ˆ (

σ1 ?

ˆ
σ2ψk dz

)
Qfk dx+ 1

2‖∇zψk‖
2
L2
xL

2
z
,

coupled with Lemma 6.2 and (43) leads to〈
L+

(
f̄

ψ̄

)
,

(
f̄

ψ̄

)〉
L2
x×L2

xL
2
z

≤ lim inf
k→+∞

〈
L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z

≤ lim sup
k→+∞

〈
L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z

≤ lim sup
k→+∞

 1
ν̄k

∣∣∣〈fk, Q〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈fk, ∂xjQ〉L2
x

∣∣∣2
+

〈
L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z


≤ lim sup

k→+∞
ν̄k = 0.

We eventually deduce

lim
k→+∞

〈
L+

(
fk
ψk

)
,

(
fk
ψk

)〉
L2
x×L2

xL
2
z

=
〈
L+

(
f̄

ψ̄

)
,

(
f̄

ψ̄

)〉
L2
x×L2

xL
2
z

= 0 (44)

and thus (f̄, ψ̄) is a minimizer of

inf
〈f,Q〉

L2
x

=0

〈
L+

(
f
ψ

)
,

(
f
ψ

)〉
L2
x×L2

xL
2
z

. (45)

We can now conclude as follows. First of all, the relation (44) coupled with Lemma 6.2 leads to
the norm convergence

1
2‖∇xfk‖

2
L2
x

+ ω‖fk‖2L2
x

+ 1
2‖ψk‖

2
L2
x

.
H1
z

−→
k→+∞

1
2‖∇xf̄‖

2
L2
x

+ ω‖f̄‖2L2
x

+ 1
2‖ψ̄‖

2
L2
x

.
H1
z

.

It implies the strong convergence of (fk, ψk)k∈N to (f̄, ψ̄) in H . In particular we know that
‖(f̄, ψ̄)‖H = 1. Second of all, (f̄, ψ̄) is a minimizer of (45) and the Euler Lagrange relation
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insures the existence of a real number λ such that

L+

(
f̄

ψ̄

)
= λ

(
Q
0

)
.

The second component of this vectorial relation leads to ψ̄ = 2Γ (σ1 ? Qf̄). From this relation we
obtain the contradiction as follows: owing to (40), Lemma 2.5 and since f̄ is orthogonal to Q and
∂xjQ, we get

0 =
〈
L+

(
f̄

ψ̄

)
,

(
f̄

ψ̄

)〉
L2
x×L2

xL
2
z

=
〈(

L+f̄
0

)
,

(
f̄

ψ̄

)〉
L2
x×L2

xL
2
z

=
〈
L+f̄, f̄

〉
L2
x

≥ ν‖f̄‖2H1
x
− 1
ν

∣∣∣〈f̄, Q〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f̄, ∂xjQ〉L2
x

∣∣∣2
 = ν‖f̄‖2H1

x
.

Thus (f̄, ψ̄) = (0, 0), which contradicts ‖f̄, ψ̄‖H = 1.

7 Perturbation analysis: proof of Proposition 2.12
In this section, since there is no ambiguity, we will use the following shorthand notations, see
Definition 2.11, Hε = HΣε , Kε

M = KΣε
M , Lε+ = L+(Σε, Qε), H0 = HΣ0 , K0

M = KΣ0
M and L0

+ =
L+(Σ0, Q0). Before proving Proposition 2.12 let us check that sup(M ε

0 ) < +∞. We remind the
reader that the sequence of ground states (Qε)ε>0 is well defined only if this supremum is finite.

Lemma 7.1 Let (H4) be fulfilled. For every M > 0 there exists ε0 > 0 such that for every
ε ∈ (0, ε0), M ε

0 < M .

Proof. We start by showing that for every u ∈ H1
x,

Hε(u) −→
ε→0

H0(u).

Indeed, thanks to the Cauchy-Schwarz inequality we have∣∣∣Hε(u)−H0(u)
∣∣∣ =

∣∣∣∣ˆ |u|2 ? (Σε − Σ0)(x) |u|2(x) dx
∣∣∣∣ ≤ ‖|u|2 ? (Σε − Σ0)‖L∞x ‖u‖

2
L2
x
,

and thanks to the homogeneous Sobolev embedding in dimension d = 3 we get

‖|u|2 ? (Σε − Σ0)‖L∞x
≤ ‖(Σε − Σ0)1|x|≤R‖L3/2

x
‖ |u|2‖L3

x
+ ‖(Σε − Σ0)1|x|>R‖L∞x ‖ |u|

2‖L1
x

≤ C‖(Σε − Σ0)1|x|≤R‖L3/2
x
‖∇xu‖2L2

x
+ ‖(Σε − Σ0)1|x|>R‖L∞x ‖u‖

2
L2
x
.

Thus, assumption (32) leads to the required convergence. We conclude as follows. By using the
results of E. Lieb in [20] we know that K0

M < 0 is achieved at a unique positive and radially
symmetric function Q0. Then Hε(Q0) → H0(Q0) = K0

M < 0 implies Kε
M < 0 as soon as ε is

sufficiently small. Eventually Lemma 3.1-(d) and (e) allows us to conclude.

We turn to the proof of Proposition 2.12.
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Proof of (i) Convergence. Step 1. We prove that for every u ∈ H1
x and for every δ,R > 0,

there exists ε0 > 0 such that for every 0 < ε < ε0,

Hε(u) ≥ 1
2‖∇xu‖

2
L2
x
− κC

2 (δ + cR) ‖u‖2L2
x
‖∇xu‖2L2

x
− κ

2

(
δ + 1

R

)
‖u‖4L2

x
(46)

where C denotes the best constant in the homogeneous Sobolev embedding in dimension d = 3 and
c > 0 is a constant. Since

Hε(u) = 1
2‖∇xu‖

2
L2
x
− κ

2

¨
|u|2(x)Σε(x− y)|u|2(y) dx dy

≥ 1
2‖∇xu‖

2
L2
x
− κ

2

∣∣∣∣¨ |u|2(x)Σε(x− y)|u|2(y) dx dy
∣∣∣∣

we only have to estimate the last term of the right hand side. Again, we use the Cauchy-Schwarz
inequality and the homogeneous Sobolev embedding and we obtain∣∣∣∣¨ |u|2(x)Σε(x− y)|u|2(y) dx dy

∣∣∣∣ ≤ C‖Σε1|x|≤R‖L3/2
x
‖u‖2L2

x
‖∇xu‖2L2

x
+ ‖Σε1|x|>R‖L∞x ‖u‖

4
L2
x

≤ C
(
‖(Σε − Σ0)1|x|≤R‖L3/2

x
+ ‖Σ01|x|≤R‖L3/2

x

)
‖u‖2L2

x
‖∇xu‖2L2

x

+
(
‖(Σε − Σ0)1|x|>R‖L∞x + ‖Σ01|x|>R‖L∞x

)
‖u‖4L2

x
.

The quantities ‖Σ01|x|≤R‖L3/2
x

and ‖Σ01|x|>R‖L∞x can be evaluated explicitly. Combined with the
convergence (32), it allows us to obtain (46) for every δ > 0 provided ε > 0 is sufficiently small.

Step 2. Estimate (46) has two consequences: firstly, the sequence (Qε)ε>0 is bounded in H1
x

and, secondly, the sequence (Kε
M )ε>0 is bounded from below (at least for ε > 0 sufficiently small)

by −κ(δ + 1/R)M2/2. Indeed we already know that ‖Qε‖2L2
x

= M and for δ + cR > 0 sufficiently
small (that means ε > 0 is also sufficiently small), we have κC(δ + cR)M/2 ≤ 1/4. Hence, (46)
with u = Qε becomes

Hε(Qε) ≥ 1
4‖∇xQ

ε‖2L2
x
− κ

2

(
δ + 1

R

)
M2.

Since Hε(Qε) = Kε
M < 0 is negative for every ε > 0 we eventually deduce that ‖∇xQε‖L2

x
is

bounded. Moreover, it is clear that the sequence (Kε
M )ε>0 is bounded from below by −κ(δ +

1/R)M2/2, as soon as ε > 0 is sufficiently small.
Therefore, we know that (Qε)ε>0 is bounded in H1

x, and we also know the existence of two
constant a,A > 0 such that for every ε > 0 sufficiently small, −A ≤ JεM ≤ −a (the existence of a
comes from the proof of Lemma 7.1 where we proved that Kε

M ≤ Hε(Q0)→ H0(Q0) = K0
M < 0).

Moreover, since Qε is a solution of (19) with Σ = Σε and ω = ωε, by multiplying this equation by
Qε and integrating over R3 we get

ωεM = −1
2‖∇xQ

ε‖2L2
x

+ κ

¨
|Qε|2(x)Σε(x− y)|Qε|2(y) dx dy.

In turn, the sequence (ωε)ε>0 is bounded:

0 < a

M
≤ ωε = −K

ε
M

M
+ κ

2M

¨
|Qε|2(x)Σε(x− y)|Qε|2(y) dx dy

≤ A

M
+ κC

2M (δ + cR) ‖Qε‖2L2
x
‖∇xQε‖2L2

x
+ κ

2M

(
δ + 1

R

)
‖Qε‖4L2

x
.
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There exists Q̃ ∈ H1
x and ω̃ > 0 such that, up to a subsequence, (Qε)ε>0 converges weakly to Q̃

in H1
x and (ωε)ε>0 converges to ω̃. Since the functions Qε are positive and radially symmetric, we

also know that Q̃ is positive and radially symmetric, and (Qε)ε>0 converges strongly to Q̃ in Lpx
for 2 < p < 6, see [22, 36] for such compactness statements based on symmetry properties.

Step 3. We are going to prove that Q̃ = Q0 and ω̃ = ω0. To this end, it is sufficient to prove
that Q̃ is a solution of the Choquard equation (19) with Σ = Σ0, ω = ω̃ and ‖Q̃‖2L2

x
= M . Indeed,

we know that the Choquard equation with Σ = Σ0 admits a unique positive, radially symmetric
solution for ω = 1 (see for instance [20] or [19]). This result can extended by a scaling argument for
every ω > 0. Hence, we can justify the following assertion: if two positive and radially symmetric
solutions Q1 and Q2 of (19) with Σ = Σ0, ω = ω1 and ω = ω2 have the same mass, then Q1 = Q2
and λ1 = λ2.

For every ε > 0 and for every ϕ ∈ C∞c (R3
x), we have

1
2

ˆ
∇xQε · ∇xϕ dx+ ωε

ˆ
Qεϕ dx− κ

¨
Qεϕ(x)Σε(x− y)|Qε|2(y) dx dy = 0.

It is obvious that the first two terms converge respectively to (
´
∇xQ̃ · ∇xϕ dx)/2 and ω̃

´
Q̃ϕdx

(note that for the second term we use the fact that ‖Qε‖L2
x
is bounded with respect to ε). Let us

now show that the third term converges to −κ
˜
Q̃ϕ(x)Σ0(x − y)|Q̃|2(y) dx dy. For that purpose

we decompose the difference as follows∣∣∣∣¨ Qεϕ(x)Σε(x− y)|Qε|2(y) dx dy −
¨

Q̃ϕ(x)Σ0(x− y)|Q̃|2(y) dx dy
∣∣∣∣

≤
∣∣∣∣¨ Qεϕ(x)

(
Σε(x− y)− Σ0(x− y)

)
|Qε|2(y) dx dy

∣∣∣∣︸ ︷︷ ︸
=I

+
∣∣∣∣¨ (

Qε(x)− Q̃(x)
)
ϕ(x)Σ0(x− y)|Qε|2(y) dx dy

∣∣∣∣︸ ︷︷ ︸
=II

+
∣∣∣∣¨ Q̃ϕ(x)Σ0(x− y)

(
|Qε|2 − |Q0|2

)
(y) dx dy

∣∣∣∣︸ ︷︷ ︸
=III

.

The convergence of I follows from the boundedness of (Qε)ε>0 in H1
x together with the convergence

(32):

I ≤ ‖Qεϕ‖L1
x
‖(Σε − Σ0) ? |Qε|2‖L∞x

≤ ‖Qε‖L2
x
‖ϕ‖L2

x

(
C‖(Σε − Σ0)1|x|≤R‖L3/2

x
‖∇xQε‖2L2

x
+ ‖(Σε − Σ0)1|x|>R‖L∞x ‖Q

ε‖2L2
x

)
.

The boundedness of (Qε)ε>0 in L2
x and the strong convergence of Qε to Q̃ in Lpx for 2 < p < 6 with

p = 4 and p = 8/3 imply the convergence of II (we use that Σ01|x|≤R lies in Lqx for 1 ≤ q < 3 and
Σ01|x|>R lies in Lqx for q > 3):

II ≤ ‖Σ0 ? (Qε − Q̃)ϕ‖L∞x ‖Q
ε‖2L2

x

≤
(
‖Σ01|x|≤R‖L2

x
‖(Qε − Q̃)ϕ‖L2

x
+ ‖Σ01|x|>R‖L4

x
‖(Qε − Q̃)ϕ‖

L
4/3
x

)
‖Qε‖2L2

x

≤
(
‖Σ01|x|≤R‖L2

x
‖Qε − Q̃‖L4

x
‖ϕ‖L4

x
+ ‖Σ01|x|>R‖L4

x
‖Qε − Q̃‖

L
8/3
x
‖ϕ‖

L
8/3
x

)
‖Qε‖2L2

x
.
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For the last term we use almost the same strategy than for II. We write

III ≤ ‖Q̃ϕ‖L1
x
‖Σ0 ? (|Qε|2 − |Q̃|2)‖L∞x

≤ ‖Q̃‖L2
x
‖ϕ‖L2

x

(∥∥∥Σ01|x|≤R
∥∥∥
L2
x

∥∥∥ |Qε|2 − |Q̃|2∥∥∥
L2
x

+
∥∥∥Σ01|x|>R

∥∥∥
L4
x

∥∥∥ |Qε|2 − |Q̃|2∥∥∥
L

4/3
x

)
.

Since |Qε|2 − |Q̃|2 = |Qε − Q̃|2 + 2(Qε − Q̃)Q̃ we eventually obtain∥∥∥ |Qε|2 − |Q̃|2∥∥∥
L2
x

≤
∥∥∥ |Qε − Q̃|2∥∥∥

L2
x

+ 2
∥∥∥(Qε − Q̃)Q̃

∥∥∥
L2
x

≤
∥∥∥Qε − Q̃∥∥∥2

L4
x

+ 2
∥∥∥Qε − Q̃∥∥∥

L4
x

∥∥∥Q̃∥∥∥
L4
x

and∥∥∥ |Qε|2 − |Q̃|2∥∥∥
L

4/3
x

≤
∥∥∥ |Qε − Q̃|2∥∥∥

L
4/3
x

+ 2
∥∥∥(Qε − Q̃)Q̃

∥∥∥
L

4/3
x

≤
∥∥∥Qε − Q̃∥∥∥2

L
8/3
x

+ 2
∥∥∥Qε − Q̃∥∥∥

L
8/3
x

∥∥∥Q̃∥∥∥
L

8/3
x

.

These convergences allow us to obtain that Q̃ is a solution of (19) with Σ = Σ0 and ω = ω̃. It only
remains to prove that ‖Q̃‖2L2

x
= M : the weak-L2

x convergence of Qε already implies ‖Q̃‖2L2
x
≤M .

We multiply by Qε the Choquard equation satisfied by Qε and we integrate over R3
x; it yields

−ωεM = 1
2‖∇xQ

ε‖2L2
x
− κ
¨
|Qε|2(x)Σε(x− y)|Qε|2(y) dx dy.

Taking lim infε→0 leads to

−ω̃M ≥ 1
2‖∇xQ̃‖

2
L2
x
− κ lim sup

ε→0

¨
|Qε|2(x)Σε(x− y)|Qε|2(y) dx dy.

We justify as before that the last term converges to
˜
|Q̃|2(x)Σ0(x− y)|Q̃|2(y) dx dy. Since Q̃ is a

solution of (19) with Σ = Σ0 and ω = ω̃ we obtain

−ω̃M ≥ 1
2‖∇xQ̃‖

2
L2
x
− κ
¨
|Q̃|2(x)Σ0(x− y)|Q̃|2(y) dx dy = −ω̃‖Q̃‖2L2

x
.

Since ω̃ > 0, we eventually obtain M ≤ ‖Q̄‖2L2
x
and thus Q̃ = Q0 and ω̃ = ω0.

Step 5. In order to conclude the proof it only remains to justify that the weak convergence of
(a sub-sequence of) (Qε)ε>0 to Q0 in H1

x actually holds strongly (then, thanks to the uniqueness of
Q0, one can extend this convergence to the entire sequence). We already know that ‖Q0‖2L2

x
= M =

‖Qε‖2L2
x
, which implies the strong convergence of (Qε)ε>0 in L2

x. We turn to the strong convergence
of (∇xQε)ε>0 in L2

x. Thanks to the end of the previous step we have

lim
ε→0
‖∇xQε‖2L2

x
= 2

(
−ω0M + κ

¨
|Q0|2(x)Σ0(x− y)|Q0|2(y) dx dy

)
= ‖∇xQ0‖2L2

x
,

which finishes the proof.

Proof of (ii) Coercivity. We fix ε > 0 and we consider a positive and radially symmetric
minimizer Qε of Kε

M . Proposition 2.5 gives

〈
L0

+f, f
〉
L2
x

≥ ν0‖f‖2H1
x
− 1
ν0

∣∣∣〈f,Q0〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQ0〉L2
x

∣∣∣2
 .
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Next, we compute 〈Lε+f, f〉 as follows:〈
Lε+f, f

〉
L2
x

=
〈
L0

+f, f
〉
L2
x

+
〈

(Lε+ − L0
+)f, f

〉
L2
x

≥ ν0‖f‖2H1
x
− 1
ν0

∣∣∣〈f,Q0〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQ0〉L2
x

∣∣∣2
− ∣∣∣∣〈(Lε+ − L0

+)f, f
〉
L2
x

∣∣∣∣
≥ ν0‖f‖2H1

x
− 1
ν0

∣∣∣〈f,Qε〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQε〉L2
x

∣∣∣2
− 1

ν0R
ε −

∣∣∣∣〈(Lε+ − L0
+)f, f

〉
L2
x

∣∣∣∣ ,
where

Rε =
∣∣∣〈f,Q0 −Qε〉L2

x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQ0 − ∂xjQε〉L2
x

∣∣∣2
+ 2

∣∣∣〈f,Q0 −Qε〉L2
x

∣∣∣ ∣∣∣〈f,Qε〉L2
x

∣∣∣+ 2
d∑
j=1

∣∣∣〈f, ∂xjQ0 − ∂xjQε〉L2
x

∣∣∣ ∣∣∣〈f, ∂xjQε〉L2
x

∣∣∣ .
Then we infer the following estimate: Rε ≤ α(Qε)‖f‖2H1

x
where α(Q) > 0 and α(Q) → 0 when

‖Q−Q0‖H1
x
→ 0. Moreover〈

(Lε+ − L0
+)f, f

〉
L2
x

=
(
ωε − ω0

)
‖f‖2L2

x
− κ
ˆ (

Σε ? |Qε|2 − Σ0 ? |Q0|2
)
|f |2 dx

− 2κ
¨ (

Qεf(x)Σε(x− y)Qεf(y)−Q0f(x)Σ0(x− y)Q0f(y)
)

dx dy,

and from this expression we can obtain (thanks to a similar reasoning than in the proof of point
(i)) the following estimate ∣∣∣∣〈(Lε+ − L0

+)f, f
〉
L2
x

∣∣∣∣ ≤ β(Σε, Qε, ωε)‖f‖2H1
x
,

where β(Σ, Q, ω) > 0 and β(Σ, Q, ω)→ 0 when

‖(Σ− Σ0)1|x|≤R‖L3/2
x

+ ‖(Σ− Σ0)1|x|>R‖L∞x + ‖Q−Q0‖H1
x

+ |ω − ω0| → 0.

This assertion applies for any R > 0; here R is fixed once for all (not necessarily small as in the
proof of convergence). Gathering these two estimates leads to

〈
Lε+f, f

〉
L2
x
≥
(
ν0 − α(Qε)

ν0 − β(Σε, Qε, ωε)
)
‖f‖2H1

x
− 1
ν0

∣∣∣〈f,Qε〉L2
x

∣∣∣2 +
d∑
j=1

∣∣∣〈f, ∂xjQε〉L2
x

∣∣∣2
 .

The announced coercivity property holds for the ground stateQε provided α(Qε)/ν0+β(Σε, Qε, ωε) <
ν0. Since α(Q) and β(Σ, Q, ω) converge to zero when ‖(Σ−Σ0)1|x|≤R‖L3/2

x
+‖(Σ−Σ0)1|x|>R‖L∞x +

‖Q−Q0‖H1
x
+|ω−ω0| → 0, there exists δ > 0 such that ‖(Σ−Σ0)1|x|≤R‖L3/2

x
+‖(Σ−Σ0)1|x|>R‖L∞x +

‖Q−Q0‖H1
x

+ |ω−ω0| < δ implies α(Q)/ν0 +β(Σ, Q, ω) < ν0. Thanks to (H4) we can find ε̄0 > 0
such that for every ε ∈ (0, ε̄0),

‖(Σ− Σ0)1|x|≤R‖L3/2
x

+ ‖(Σ− Σ0)1|x|>R‖L∞x <
δ

2 .

Therefore, possibly by choosing a smaller ε̄0 if necessary, for every ε ∈ (0, ε̄0) and every positive
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and radially symmetric minimizer Qε of Kε
M , we get

‖Qε −Q0‖H1
x

+ |ωε − ω0| < δ

2 .

We argue by contradiction to justify this. If this were not the case there would be a sequence
εk → 0 and a sequence of positive and radially symmetric minimizer (Qεk)n∈N such that for every
n,

‖Qεk −Q0‖H1
x

+ |ωεk − ω0| ≥ δ

2 .

However we can apply point (i) to this sequence which insures that

‖Qεk −Q0‖H1
x

+ |ωεk − ω0| −→
k→+∞

0,

a contradiction.

8 Admissible form functions: proof of Proposition 2.10
The general strategy relies on the application of Proposition 2.12; hence we have to construct a
sequence of potentials (Σε)ε>0, with the specific form Σε = σε1 ? σ

ε
1, which converges to Σ0 in

the sense of (32). This requires some care beyond the classical “regularization and truncature”
approach. A similar difficulty arises, but in a different manner, when justifying the asymptotic
regime of the Vlasov-Wave system (6a), (7) towards the Vlasov-Poisson equation [8]. The following
simple examples are quite illuminating on the strategy.

Toy example 1. Let χ : Rd → [0, 1] be a C∞c function which satisfies χ(x) = 1 for |x| ≤ 1 and
χ(x) = 0 for |x| ≥ 2. Let

Σε(x) = χ(εx)
|x|

.

The analysis of this kernel is simple: due to the scale invariance of 1
|x| , we have

Σε(x) = ε
χ(εx)
|εx|

= εΣ1(εx).

As a matter of fact, we have

i) HΣε(u) = ε3HΣ1(uε) where uε(x) = ε−2u(ε−1x),

ii) Qε is a minimizer of KΣε
M ⇐⇒ Q(x) = ε−2Qε(ε−1x) is a minimizer of KΣ1

ε−1M ,

iii) KΣε
M = ε3KΣ1

ε−1M ,

iv) if Qε is a minimizer of KΣε
M , then ω(Σε, Qε) = ε2ω(Σ1, Q) where Q(x) = ε−2Qε(ε−1x),

v) 〈L+(Σε, Qε)f ε, fε〉L2
x

= ε3 〈L+(Σ1, Q)f, f
〉
L2
x
where f(x) = ε−2f ε(ε−1x) and still Q(x) =

ε−2Qε(ε−1x).

38



These relations proviode several useful information. For example, since for any fixed ε > 0, Σε lies
in L3/2

x , Lemma 3.1 applies and justifies the existence of the mass threshold MΣε
0 , which, in turn,

can be expressed by means of MΣ1
0 : MΣε

0 = εMΣ1
0 → 0. Furthermore, Σε converges to Σ0 in the

sense of (32), and the conclusions of Proposition 2.12 hold. Then, relation v) allows us to extend
the coercivity estimate to any radially symmetric minimizer of KΣ1

m associated to a mass m larger
than M/ε̄0, as illustrated by Fig. 2. Indeed ii), v) and Proposition 2.12-(ii) yield〈

L+(Σ1, Q)f, f
〉
L2
x

= ε−3 〈L+(Σε, Qε)f ε, fε〉L2
x

≥ ε−3νε‖f ε‖2H1
x
− ε−3

ν0

∣∣∣〈f ε, Qε〉L2
x

∣∣∣2 +
3∑
j=1

∣∣∣〈f ε, ∂xjQε〉L2
x

∣∣∣2


= νε‖∇xf‖2L2
x

+ ε−2νε‖f‖2L2
x
− 1
ν0

ε−2
∣∣∣〈f,Q〉L2

x

∣∣∣2 + ε−1
3∑
j=1

∣∣∣〈f ε, ∂xjQε〉L2
x

∣∣∣2


which implies the announced coercivity property.
This example can be compared to the case of the Yukawa potential seen as a perturbation of

the Newtonian potential in [17].

1

ε̄0

M

ε

MassM/ε̄0

Figure 2: Illustration of the strategy: for the given mass M , the stability of the ground
states is proved for the potentials Σε, with 0 ≤ ε < ε̄0. By rescaling, we can go back to the
potentials Σ1, and ground states with a mass larger that M/ε̄0 are stable.

Toy example 2. Let α : Rd → [0,∞) be a C∞ function such that
´
α dx = 1. We consider

Σε(x) = ε−3
ˆ
α(ε−1y)
|x− y|

dy.
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Now, we have the scaling relation: Σε(x) = ε−1Σ1(ε−1x), where

Σ1(x) =
ˆ

α(y)
|x− y|

dy.

We deduce that

Qε is a minimizer of KΣε
M ⇐⇒ Q(x) = ε2Qε(εx) is a minimizer of KΣ1

εM .

Reasoning as in the previous example, we obtain that, for M sufficiently small, every positive and
radially symmetric minimizer of KΣ1

M satisfies the coercivity relation (29). In particular there is no
mass threshold: MΣ1

0 = 0. Since Σ1 /∈ L3/2
x , this is not a contradiction with Lemma 3.1.

Toy example 3. We go back to the case of the dimension d = 1. In this case for any σ1 satisfying
(H2)-(H3) we consider the sequence of potential (Σε) defined by

Σε(x) = ε−1Σ(ε−1x), Σ = σ1 ? σ1.

Hence we obtain the equivalence

Qε is a minimizer of KΣε
M ⇐⇒ Q(x) = εQε(εx) is a minimizer of KΣ1

εM .

Reasoning as above, we justify the existence of some M∗ > 0 such that for every M ∈ (0,M∗),
every positive and even minimizer of KΣ1

M satisfies the coercivity relation (29).

Main strategy. The toy examples 1 and 2 do not fit with our framework, where we are dealing
with smooth and compactly supported potentials Σ. Then, in order to handle such a potential, the
idea is (as usual) to combine the truncature and the regularization by setting

Σε(x) = ε−3χ(εx)
ˆ
α(ε−1y)
|x− y|

dy.

However, the scaling for the truncature and for the regularization are not the same, and the
properties deduced from the scale invariance of 1

|x| break down. Instead, we consider a doubly
indexed sequence of potentials

Σλ,µ(x) = λ−3χ(µx)
ˆ
α(λ−1y)
|x− y|

dy

with λ, µ > 0. We also introduce

Σ̃ε(x) = ε−3χ(x)
ˆ
α(ε−1y)
|x− y|

dy.

We have the scaling relation Σλ,µ(x) = µΣ̃λµ(µx) which leads to the following lemma.

Lemma 8.1 The following assertions hold:

i) HΣλ,µ(u) = µ3HΣ̃ε(uµ) where uµ(x) = µ−2u(µ−1x) and ε = λµ,
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ii) Qλ,µ is a minimizer of KΣ̃λ,µ
M ⇐⇒ Q(x) = µ−2Qλ,µ(µ−1x) is a minimizer of KΣ̃ε

µ−1M with
ε = λµ,

iii) KΣλ,µ
M = µ3KΣ̃ε

µ−1M with ε = λµ,

iv) if Qλ,µ is a minimizer of KΣλ,µ
M , then ω(Σλ,µ, Qλ,µ) = µ2ω(Σ̃ε, Q) where Q(x) = µ−2Qλ,µ(µ−1x)

and ε = λµ,

v)
〈
L+(Σλ,µ, Qλ,µ)fλ,µ, fλ,µ

〉
L2
x

= µ3
〈
L+(Σ̃ε, Q)f, f

〉
L2
x

where Q(x) = µ−2Qλ,µ(µ−1x), f(x) =

µ−2fλ,µ(µ−1x) and ε = λµ.

Let us suppose for a while that the sequence (Σλ,µ)λ,µ>0 converges to Σ0 in the sense of (32) as
λ and µ tend to 0. Then there exists λ0 > 0 and µ0 > 0 such that for any (λ, µ) ∈ (0, λ0)× (0, µ0),
the conclusions of Proposition 2.12 hold. Based on Lemma 8.1, we infer the following statement.

Proposition 8.2 (i) For every (λ, µ) ∈ (0, λ0) × (0, µ0) and for every positive and radially sym-
metric minimizer Q of KΣ̃ε

µ−1M with ε = λµ, the operator L+(Σ̃ε, Q) satisfies Lemma 2.5.
(ii) In particular, for ε ∈ (0, λ0µ0) fixed, applying (i) to any (λ, µ) ∈ (0, λ0)×(0, µ0) such that λµ = ε
implies that for any m ∈ (µ−1

0 M,λ0ε
−1M) and any positive and radially symmetric minimizer Q

of KΣ̃ε
m , the operator L+(Σ̃ε, Q) satisfies Lemma 2.5.

Item (ii) implies, up to the fact that Σ̃ε can be cast under the form Σ̃ε = σ̃1
ε ? σ̃1

ε, that the set
of admissible form function A is non empty. Then, to conclude the proof it only remains to slightly
adapt the previous construction in order to obtain a sequence Σλ,µ satisfying (H4). We proceed
as follows. Let α, χ be two C∞c (R3), non negative, radially symmetric, compactly supported and
non increasing functions, with χ(x) = 1 in a neighborhood of the origin. Let us set

σλ,µ1 (x) = λ−3
ˆ
R3
α(λ−1y)χ(µ[x− y])

|x− y|2
dy = αλ ?

(
χµ

| · |2
)

(x) and Σλ,µ = σλ,µ1 ? σλ,µ1 ,

where
αλ(x) = λ−3α(λ−1x) and χµ(x) = χ(µx).

Then each σλ,µ1 satisfies (H2)–(H3). Moreover we can check that

σλ,µ1 (x) = µ2σ̃1
λµ(µx), Σλ,µ(x) = µΣ̃ε(µx),

where
σ̃1
ε(x) =

ˆ
αε(x− y)χ(y)

|y|2
dy, Σ̃ε = σ̃1

ε ? σ̃1
ε.

Then Lemma 8.1 applies to this new sequence as well and Proposition 8.2 holds provided we can
show that it converges to Σ0 in the sense of (32). Such a form function appeared in [8]. The
construction is based on the following two observations:

1
| · |2

?
1
| · |2

(x) = C

|x|
= C Σ0(x) where C =

ˆ
R3

dy
|y|2|e1 − y|2
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(e1 being the first vector of the canonical basis), and

Σλ,µ = (αλ ? αλ) ?
(
χµ

| · |2
?
χµ

| · |2
)
.

Then, at least formally, αλ ? αλ → (
´
α ? α dx)δ0 when λ → 0 and (χµ/| · |2) ? (χµ/| · |2) →

(1/| · |2) ? (1/| · |2) = C Σ0 when µ → 0 and we can expect that Σλ,µ looks like Σ0 when λ, µ → 0
provided

´
α dx = 1/

√
C. The intuition is confirmed by the following claim.

Lemma 8.3 If
´
α dx = 1/

√
C, then the sequence (Σλ,µ)λ,µ>0 converges to Σ0 in the sense of (32)

when (λ, µ)→ (0, 0).

This approach allows us to construct a large class of admissible form functions, not necessarily
close de Σ0 in the sense of (32), by using suitable rescalings that preserve the coercivity estimate
as we did with the toy example 1. Indeed, for any α and χ defined as before, if the form function
σ1 = α ? (χ/| · |2) is not in A we know, at least that up to rescaling α into αε(x) = ε−3α(ε−1x),
that the form functions σ̃1

ε = αε ? (χ/| · |2) belong to A provided ε is sufficiently small. With
the previous notation the non empty mass interval I associated to the form function σ̃1

ε is given
by I = (µ−1

0 M,λ0ε
−1M). It is also possible to rescale χ into χε(x) = χ(εx) and obtain that form

functions σ̌ε1 = α?(χε/|·|2) equally belong to A provided ε is sufficiently small (this second example
uses the scaling relation σλ,µ1 (x) = λ−2σ̌λµ1 (λ−1x)). Moreover given an admissible function σ1, we
observe that σλ,µ1 (x) = λσ1(µx) is admissible too. We obtain this way form functions with arbi-
trary support size and L∞x -norm, which are non negative, non increasing, radially symmetric and
concentrated around the origin. Such form functions are physically meaningful in the framework
defined in [3]. Since they are simply derived by rescaling, we can check that the necessary coercivity
estimate still holds, with constants that keep track of the rescaling, and they also provide stable
ground states.

Proof of Lemma 8.3. Let 0 < R < ∞ be fixed once for all. We decompose the difference
Σλ,µ − Σ0 as follows

Σλ,µ(x)− Σ0(x) =
(
αλ ? αλ

)
?

(
χµ

| · |2
?
χµ

| · |2
− 1
| · |2

?
1
| · |2

)
(x)

+ C

ˆ (
αλ ? αλ

)
(y)

(
Σ0(x− y)− Σ0(x)

)
dy = I1(x) + I2(x).

Bearing in mind that αλ ? αλ(x) = λ−3α ? α(λ−1x), we readily obtain the convergence of I21|x|≤R
to 0 in the L3/2

x -norm. Moreover, since the support of αλ ?αλ shrinks to {0} when λ→ 0 and since
the function x 7→ 1/|x| is a Lipschitz function on every set of the form {B(0, R) (with a Lipschitz
constant L(R) which blows up when R→ 0) we get

‖I21|x|>R‖L∞x . meas
(
supp

(
αλ ? αλ

))
−→
λ→0

0.
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Next, for y ∈ supp(αλ ? αλ) with λ sufficiently small, |x| > R implies |x− y| > R/2; it follows that

‖I11|x|>R‖L∞x

≤
∥∥∥∥( χµ

| · |2
?
χµ

| · |2
− 1
| · |2

?
1
| · |2

)
1|x|>R/2

∥∥∥∥
L∞x

= sup
|x|>R/2

∣∣∣∣ˆ χµ(x− y)χµ(y)− 1
|x− y|2|y|2

dy
∣∣∣∣

≤ sup
|x|>R/2

∣∣∣∣ˆ χµ(x− y)(χµ(y)− 1)
|x− y|2|y|2

dy
∣∣∣∣+ sup
|x|>R/2

∣∣∣∣ˆ χµ(z)− 1
|z|2|x+ z|2

dz
∣∣∣∣ .

Since 0 ≤ χ ≤ 1 and χµ(x) = 1 when |x| ≤ µ−1 this estimate yields

‖I11|x|>R‖L∞x ≤ 4 sup
|x|>R/2

ˆ
{B(0,µ−1)

1
|x− y|2|y|2

dy −→
µ→0

0.

It remains to prove that I11|x|≤R converges to 0 in L3/2
x -norm as λ, µ→ 0. For r ∈ (0, R) we split

this quantity as follows

‖I11|x|≤R‖L3/2
x
≤ ‖I11|x|≥r‖L3/2

x
+ ‖I11r<|x|≤R‖L3/2

x
.

We have ∣∣∣∣(αλ ? αλ) ? ( χµ

| · |2
?
χµ

| · |2
− 1
| · |2

?
1
| · |2

)
1|x|≤r

∣∣∣∣ ≤ 2C
(
αλ ? αλ

)
? Σ01|x|≤r

and we have already seen that C(αλ ? αλ) ? Σ01|x|≤r converges to Σ01|x|≤r in the L3/2
x -norm for

any 0 < r < ∞. Let η > 0. We can choose r = r(η) > 0 small enough and, next, find λ(η) small
enough so that for any 0 < λ < λ(η), we get

‖I11|x|≤r‖L3/2
x
≤ 2‖(C(αλ ? αλ) ? Σ0 − Σ0)1|x|≤r‖L3/2

x
+ 2‖Σ01|x|≤r‖L3/2

x
≤ η.

Finally, the L3/2
x -norm of I11r<|x|≤R can be estimated as we did for the L∞x -norm of I11|x|>R.

Possibly at the price of taking λ(η) smaller, if |x| > r we have |x−y| > r/2 for any y ∈ supp(aλ?aλ).
It follows that

‖I11r<|x|≤R‖L3/2
x
≤ meas (B(0, R))2/3 sup

r/2<|x|≤R

ˆ
{B(0,µ−1)

1
|x− y|2|y|2

dy,

which can be made ≤ η for 0 < µ < µ(η), with µ(η) small enough. This ends the proof.

A Cauchy theory
From an energetic point of view, the natural functional spaces for the Cauchy theory of the
Schrodinger-Wave equation are C0([0, T ], H1(Rdx)) for the wave function u and

ET = C0
(
[0, T ];L2

(
Rdx;

.
H1(Rnz )

))
∩ C1

(
[0, T ];L2

(
Rdx;L2(Rnz )

))
for the vibrational environment ψ. We are going to prove the global existence of solutions to (1a)–
(1b), with Cauchy data (2), in these spaces, see Theorem 1.1. Throughout this appendix, we work,
without loss of generality, with c = 1.

The proof of this theorem is quite classical: the most important part consists in applying
Strichartz’ estimates to the Schrödinger and the wave equation. In fact the main difficulty comes

43



from the fact that Strichartz’ estimates for (1a) lead to estimates of u in LqtL
r
x norms whereas

Strichartz’ estimates for (1b) lead to estimates of ψ in LrxL
q
tL

p
z norms. In order to combine these

two estimates of different type, we need to permute Lebesgue-norms in time and space. For that
purpose we will use Hölder and Young inequalities (and the fact that σ1 and σ2 are in any Lp space
for 1 ≤ p ≤ +∞) in order to work with LqtLqx norms.

Let us introduce some notation that we will use until the end of this section. First we denote by
S the linear Schrödinger’s group and by (W,

.
W ) the free wave group: for any u0 ∈ L2(Rdx), S(t)u0

is the unique solution at time t of {
i∂tu+ ∆xu = 0
u(0, x) = u0(x)

and for any (ψ0, ψ1) ∈ L2(Rdx;
.
H1(Rnz ))× L2(Rdx;L2(Rnz )),

.
W (t)ψ0 +W (t)ψ1 is the unique solution

at time t of {
∂2
ttψ −∆zψ = 0

(ψ(0, x, z), ∂tψ(0, x, z)) = (ψ0(x, z), ψ1(x, z))

With these notation we can now define (at least formally) the functions L, K and Φ by
L(u, ψ) : t 7−→ S(t)u0 +

ˆ t

0
S(t− s)

[(
σ1 ?x

ˆ
σ2ψ(s) dz

)
u(s)

]
ds

K(u, ψ) : t 7−→
.
W (t)ψ0 +W (t)ψ1 +

ˆ t

0
W (t− s)

[
−σ2σ1 ?x |u(s)|2

]
ds

Φ = (L,K)

where u0 ∈ H1(Rdx) and (ψ0, ψ1) ∈ L2(Rdx;
.
H1(Rnz ))×L2(Rdx;L2(Rnz )) are now fixed until the end of

this section. From here it is obvious that any fixed point (u, ψ) of Φ defines a solution of (1a)–(1b)
and (2). In order to apply the Banach-Picard fixed point theorem we have to specify on which
space we define the function Φ. As already mentioned, since we wish to apply Strichartz estimates,
we need that Φ is defined on a well adapted space for this approach. We introduce the following
notations and spaces for that purpose. First let us define the Lebesgue exponent p0 by

p0 = 2n
n− 2 . (47)

Then, for any final time T > 0 we introduce the following Banach spaces: XT = L∞(0, T ;H1(Rdx)),
YT = L2(Rdx;L∞(0, T ;Lp0(Rnz ))) and ZT = XT × YT endowed with the norm ‖u, ψ‖ZT = ‖u‖XT +
‖ψ‖YT .

We introduce these spaces because (∞, 2) is a Schrödinger-admissible pair and (∞, p0) is a
wave-admissible pair for n ≥ 3. Let us briefly recall what are the definition of Schrödinger and
wave-admissible pairs and what are Strichartz’ estimates (we follow [16] and the interested reader
can find further information about Strichartz’ estimates in [11] and the references therein).

Definition A.1 i) We say that the exponent pair (q, r) is Schrödinger-admissible if d ≥ 1, q, r ≥ 2,
(q, r, d) 6= (2,∞, 2) and

1
q

+ d

2r = d

4 .
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ii) We say that the exponent pair (q, p) is wave-admissible if n ≥ 2, q, p ≥ 2, (q, p, n) 6= (2,∞, 3)
and

1
q

+ n− 1
2p ≤ n− 1

4 .

From now on for any exponent a ≥ 1, a′ will denote its conjugate exponent: 1/a+ 1/a′ = 1.

Proposition A.2 (Strichartz estimates) i) Let (q, r) and (q̄, r̄) be Schrödinger-admissible pairs,
u0 ∈ L2(Rdx), F ∈ Lq̄′(0, T ;Lr̄′(Rdx)) and let us denoted by u the unique solution of i∂tu+ ∆xu = F
with initial data u0. Then there exists a constant C > 0 independent of T such that

‖u‖LqtLrx ≤ C
(
‖u0‖L2

x
+ ‖F‖

Lq̄
′
t L

r̄′
x

)
(48)

ii) Let (q, p) and (q̄, p̄) be wave-admissible pairs with p, p̄ < +∞, (ψ0, ψ1) ∈
.
Hs(Rnz ) ×

.
Hs−1(Rnz ),

G ∈ Lq̄′(0, T ;Lp̄′(Rnz )) and let us denoted by ψ the unique solution of ∂2
ttψ −∆zψ = G with initial

data (ψ0, ψ1). Then, under the additional condition

1
q

+ n

p
= n

2 − s = 1
q̄′

+ n

p̄′
− 2, (49)

there exists a constant K > 0 independent of T such that

‖ψ‖LqtLpz + ‖ψ‖
L∞t

.
Hs
z

+ ‖∂tψ‖L∞t
.
Hs−1
z
≤ K

(
‖ψ0‖ .Hs

z
+ ‖ψ1‖ .Hs−1

z
+ ‖G‖

Lq̄
′
t L

p̄′
z

)
(50)

Remark A.3 We will apply (50) with the Sobolev regularity s = 1. With this regularity the ex-
ponent pairs (q, p) = (∞, p0) and (∞, 2) are wave-admissible and satisfies the additional condition
(49).

The following two Lemma justify that the application Φ is well defined on ZT , sends ZT into
itself and admits a fixed point on it.

Lemma A.4 There exists a constant C > 0 independent of T such that

‖L(u, ψ)‖L∞t L2
x
≤ C

(
‖u0‖L2

x
+ |T |‖ψ‖YT ‖u‖L∞t L2

x

)
, (51a)

‖∇xL(u, ψ)‖L∞t L2
x
≤ C

(
‖∇xu0‖L2

x
+ |T |‖ψ‖YT

[
‖u‖L∞t L2

x
+ ‖∇xu‖L∞t L2

x

])
, (51b)

‖K(u, ψ)‖YT + ‖ψ‖
L2
xL
∞
t

.
H1
z

+ ‖∂tψ‖L2
xL
∞
t L

2
z

≤ C
(
‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

+ |T |‖u‖2L∞t L2
x

)
,

(51c)

and

‖L(u, ψ)− L(v, ϕ)‖L∞t L2
x
≤ C |T |

(
‖ψ‖YT ‖u− v‖L∞t L2

x
+ ‖ψ − ϕ‖YT ‖v‖L∞t L2

x

)
, (52a)

‖∇x(L(u, ψ)− L(v, ϕ))‖L∞t L2
x
≤ C |T |

(
‖ψ‖YT

[
‖u− v‖L∞t L2

x
+ ‖∇x(u− v)‖L∞t L2

x

]
+ ‖ψ − ϕ‖YT

[
‖v‖L∞t L2

x
+ ‖∇xv‖L∞t L2

x

] ) (52b)

‖K(u, ψ)−K(v, ϕ)‖YT ≤ C|T |
(
‖u‖L∞t L2

x
+ ‖v‖L∞t L2

x

)
‖u− v‖L∞t L2

x
. (52c)
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Lemma A.5 There exists a universal constant C1 > 0 such that for any final time T > 0 small
enough, Φ : BT → BT , where

BT =
{

(u, ψ) ∈ ZT : ‖u, ψ‖ZT ≤ C1(‖u0‖H1
x

+ ‖ψ0‖L2
z

.
H1
z

+ ‖ψ1‖L2
xL

2
z
)
}
.

Moreover, considering smaller T if necessary, Φ is indeed a contraction on BT .

We postpone the proof of Lemma A.4 to the end of this section and we start by proving
Lemma A.5 and Theorem 1.1.
Proof of Lemma A.5. We can summarize the estimates (51a)–(51c) as follows:

‖Φ(u, ψ)‖ZT ≤ C
[
‖u0‖H1

x
+ ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

+ |T | ‖u, ψ‖2ZT
]
.

Next, let C1 = 2C; we thus obtain that for any (u, ψ) ∈ BT ,

‖Φ(u, ψ)‖ZT ≤ C
[
1 + C2

1 |T |
(
‖u0‖H1

x
+ ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

)]
×
(
‖u0‖H1

x
+ ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

)
.

Since for T small enough,

C2
1 |T |

(
‖u0‖H1

x
+ ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

)
< 1,

we obtain that Φ sends BT into BT for T small enough. As previously, we can recast (52a)–(52c)
as follows:

‖Φ(u, ψ)− Φ(v, φ)‖ZT ≤ C |T | (‖(u, ψ)‖ZT + ‖v, φ‖ZT ) ‖(u, ψ)− (v, φ)‖ZT .

Therefore, for any (u, ψ), (v, φ) ∈ BT ,

‖Φ(u, ψ)− Φ(v, φ)‖ZT ≤ 2C C1
(
‖u0‖H1

x
+ ‖ψ0‖L2

z

.
H1
z

+ ‖ψ1‖L2
xL

2
z

)
|T |‖(u, ψ)− (v, φ)‖ZT ,

holds and Φ is a contraction as soon as T is small enough.

Proof of Theorem 1.1. Step 1: Local existence. For T small enough Φ is a contraction
on BT , we thus know that (1a)–(1b) has a solution in ZT . Then it is clear that for any solution
(u, ψ) ∈ ZT of (1a)–(1b), u ∈ L∞

(
0, T ;H1(Rdx)

)
, ψ ∈ L2

(
Rdx;L∞

(
0, T ;

.
H1(Rnz )

))
and ∂tψ ∈

L2
(
Rdx;L∞

(
0, T ;L2(Rnz )

))
(for ψ its come from the Strichartz estimate (51c)). Moreover, using

the fact that (u, ψ) is a fixed point of Φ and the expressions of L and K in terms of S and (W,
.
W ),

one can prove that indeed u ∈ C0
(
[0, T ];H1(Rdx)

)
, for almost every x ∈ Rd, (t, z) 7→ ψ(t, x, z) ∈

C0
(
[0, T ];

.
H1(Rnz )

)
and (t, z) 7→ ∂tψ(t, x, z) ∈ C0 ([0, T ];L2(Rnz )

)
. We finish the proof by applying

the following lemma (proved at the end of this section) to ψ and ∂tψ in order to obtain that ψ ∈ ET .

Lemma A.6 If f ∈ L2
xL
∞
t and for almost every x ∈ Rd, t 7→ f(t, x) ∈ C0([0, T ]), then f ∈

C0
(
[0, T ];L2(Rdx)

)
.

Step 2: Uniqueness. The uniqueness in BT comes from the fixed point theorem and we can
extend this uniqueness statement to the entire space ZT . Then the uniqueness in C0

tH
1
x×ET comes
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from the fact that any fixed point (u, ψ) ∈ C0
tH

1
x ×ET of Φ is also an element of ZT (thanks to the

estimate (51c), we get that ψ is in YT ).
Step 3: Global existence. Since the time T in Lemma A.5 depends only on universal

constants and on
‖u0‖H1

x
+ ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z
,

the first two steps of this proof allow us to obtain the following proposition.

Proposition A.7 Let n ≥ 3. Then for any u0 ∈ H1(Rdx) and (ψ0, ψ1) ∈ L2(Rdx;
.
H1(Rnz )) ×

L2(Rdx;L2(Rnz )), there exists T ? > 0 such that for any 0 < T < T ?, the problem (1a)–(1b) and
(2) admits a unique solution (u, ψ) ∈ C0

(
[0, T ];H1(Rdx)

)
× ET on [0, T ]. Moreover, if for some

0 < T ≤ T ?,
lim sup
t↗T

‖u(t)‖H1
x

+ ‖ψ(t)‖
L2
x

.
H1
z

+ ‖∂tψ(t)‖L2
xL

2
z
< +∞,

then, actually, T < T ?.

Then in order to obtain the global existence we have to justify that the quantity

‖u(t)‖H1
x

+ ‖ψ(t)‖
L2
x

.
H1
z

+ ‖∂tψ(t)‖L2
xL

2
z

does not blow up in finite time. Thanks to the mass conservation of the wave function u (M =
‖u(t)‖L2

x
is constant in time) and thanks to (51c) we get

‖u(t)‖H1
x

+ ‖ψ(t)‖
L2
x

.
H1
z

+ ‖∂tψ(t)‖L2
xL

2
z
.M + ‖∇xu(t)‖L2

x
+ ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

+ |t|M,

and it only remains to control ‖∇xu(t)‖L2
x
. For that purpose we use the energy conservation (14)

in order to obtain
1
2‖∇xu(t)‖L2

x
+
ˆ (

σ1 ?

ˆ
σ2ψ(t) dz

)
|u(t)|2 dx ≤ ESchr(t) = ESchr(0).

Then if ‖∇xu(t)‖L2
x
blows up in finite time, |

´
(σ1 ?

´
σ2ψ(t) dz)|u(t)|2 dx| has to blows up in finite

time too. But∥∥∥∥ˆ (σ1 ?

ˆ
σ2ψ dz)|u|2 dx

∥∥∥∥
L∞t

≤M2
∥∥∥∥σ1 ?

ˆ
σ2ψ dz

∥∥∥∥
L∞t L

∞
x

= M2
∥∥∥∥σ1 ?

ˆ
σ2ψ dz

∥∥∥∥
L∞x L

∞
t

≤M2‖σ2‖
L
p′0
z

∥∥∥σ1 ? ‖ψ‖Lp0z
∥∥∥
L∞x L

∞
t

≤M2‖σ2‖
L
p′0
z

∥∥∥σ1 ? ‖ψ‖L∞t Lp0z
∥∥∥
L∞x
≤M2‖σ2‖

L
p′0
z

‖σ1‖L2
x
‖ψ‖L2

xL
∞
t L

p0
z
, (53)

and eventually estimate (51c) tells us that |
´

(σ1 ?
´
σ2ψ(t) dz)|u(t)|2 dx| grows at most linearly in

time.

Remark A.8 In fact the proof of the global existence gives us the additional information that the
quantities ‖∇xu(t)‖L2

x
, ‖ψ(t)‖

L2
x

.
H1
z

+ ‖∂tψ(t)‖L2
xL

2
z
and |

´
(σ1 ?

´
σ2ψ(t) dz)|u(t)|2 dx| grow at most

linearly in time.

We finish this section with the proofs of Lemma A.4 and Lemma A.6.
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Proof of Lemma A.4. Estimate (51a). We apply apply the Strichartz estimate (48) to L(u, ψ)
with the Schrödinger-admissible pair (∞, 2) on both side to obtain

‖L(u, ψ)‖L∞t L2
x
. ‖u0‖L2

x
+
∥∥∥∥(σ1 ?x

ˆ
σ2ψ dz

)
u

∥∥∥∥
L1
tL

2
x

.

Then, thanks to the following estimate∥∥∥∥(σ1 ?x

ˆ
σ2ψ dz

)
u

∥∥∥∥
L1
tL

2
x

≤ |T |
∥∥∥∥(σ1 ?x

ˆ
σ2ψ dz

)
u

∥∥∥∥
L∞t L

2
x

≤
∥∥∥∥σ1 ?x

ˆ
σ2ψ dz

∥∥∥∥
L∞t L

∞
x

‖u‖L∞t L2
x
,

and thanks to (53), we eventually obtain

‖L(u, ψ)‖L∞t L2
x
. ‖u0‖L2

x
+ |T | ‖ψ‖YT ‖u‖L∞t L2

x
.

Estimate (51b). Since

∇xL(u, ψ)(t) = S(t)∇xu0

+
ˆ t

0
S(t− s)

[(
∇xσ1 ?

ˆ
σ2ψ(s) dz

)
u(s) +

(
σ1 ?

ˆ
σ2ψ(s) dz

)
∇xu(s)

]
ds,

we just apply the same estimates as before.
Estimate (51c). We apply for almost every x ∈ Rd the Strichartz estimate (50) to K(u, ψ)(x)

with the wave-admissible pair (∞, p0) on the left hand side and (∞, 2) on the right hand side

‖K(u, ψ)(x)‖L∞t Lp0z + ‖ψ(x)‖
L∞t

.
H1
z

+ ‖∂tψ(x)‖L∞t L2
z

. ‖ψ0(x)‖ .
H1
z

+ ‖ψ1(x)‖L2
z

+
∥∥∥σ2 σ1 ? |u|2(x)

∥∥∥
L1
tL

2
z

.

Then, since ∥∥∥σ2 σ1 ? |u|2(x)
∥∥∥
L1
tL

2
z

= ‖σ2‖L2
z
‖σ1 ? |u|2(x)‖L1

t
≤ ‖σ2‖L2

z
|σ1| ? ‖u‖2L2

t
(x)

we can pass in L2
x-norm to obtain∥∥∥σ2 σ1 ? |u|2

∥∥∥
L2
xL

1
tL

2
z

≤ ‖σ2‖L2
z

∥∥∥|σ1| ? ‖u‖2L2
t

∥∥∥
L2
x

.

Here, thanks to the Young inequality we have∥∥∥|σ1| ? ‖u‖2L2
t

∥∥∥
L2
x

≤ ‖σ1‖L2
x

∥∥∥‖u‖2L2
t

∥∥∥
L1
x

= ‖σ1‖L2
x
‖u‖2L2

tL
2
x
≤ ‖σ1‖L2

x
|T | ‖u‖2L∞t L2

x
,

and we eventually obtain

‖K(u, ψ)‖L2
xL
∞
t L

p0
z

+ ‖ψ‖
L2
xL
∞
t

.
H1
z

+ ‖∂tψ‖L2
xL
∞
t L

2
z
. ‖ψ0‖L2

x

.
H1
z

+ ‖ψ1‖L2
xL

2
z

+ |T | ‖u‖2L∞t L2
x
.

Estimates (52a), (52b) and (52c). Since

L(u, ψ)(t)− L(v, ϕ)(t) =ˆ t

0
S(t− s)

[(
σ1 ?x

ˆ
σ2ψ(s) dz

)
(u(s)− v(s)) +

(
σ1 ?x

ˆ
σ2(ψ(s)− ϕ(s)) dz

)
v(s)

]
ds
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and

K(u, ψ)(t)−K(v, ϕ)(t) = ˆ t

0
W (t− s) [−σ2σ1 ?x ([u(s)− v(s)]ū(s) + v(s)[ū(s)− v̄(s)])] ds,

we just follow closely the proof of (51a), (51b) and (51c).

Proof of Lemma A.6. Let us fix ε > 0 and t ∈ [0, T ]. We know that for all x ∈ Rd and for all
η > 0, there exists δ(η, t, x) ≥ 0 such that if |t − s| ≤ δ(η, t, x), then |f(t, x) − f(s, x)| ≤ η. Note
that in fact δ(η, t, x) is positive for almost every x ∈ Rd. Moreover, since f ∈ L2

xL
∞
t we now thatˆ

Rd
1|x|≥R‖f(x)‖2L∞t dx −→

R→∞
0.

Let δ > 0. Let us also introduce the following subset of Rdx
BR,η
t,δ =

{
x ∈ Rd such that |x| ≤ R and δ(η, t, x) ≤ δ

}
.

Note that meas(BR,η
t,δ )→ 0 when δ → 0. Then for all R, η, δ > 0 and for all s such that |t− s| ≤ δ,

‖f(t)− f(s)‖L2
x
≤ ‖1|x|≥R(f(t)− f(s))‖L2

x
+ ‖1|x|≤R(f(t)− f(s))‖L2

x

≤ 2 ‖1|x|≥Rf‖L2
xL
∞
t

+ ηmeas (B(0, R))1/2 + 2 meas
(
BR,η
t,δ

)
‖f‖L2

xL
∞
t
.

We can pick R large enough to obtain

2 ‖1|x|≥Rf‖L2
xL
∞
t
≤ ε

3 ,

then we fix η small enough to get

ηmeas (B(0, R))1/2 ≤ ε

3 ,

and we eventually fix δ small enough to get

2 meas
(
BR,η
t,δ

)
‖f‖L2

xL
∞
t
≤ ε

3 .

B Semi-classical analysis
In this section we rescale the Schrödinger-Wave system as follows

ih ∂tuh + h2

2 ∆xuh =
(
σ1 ?x

ˆ
σ2ψh(t) dz

)
uh, t ∈ R, x ∈ Rd (54a)

∂tψh = χh, t ∈ R, x ∈ Rd, z ∈ Rn (54b)

∂tχh = c2∆zψh − c2σ2(z)
(
σ1 ?x |uh(t)|2

)
(x), t ∈ R, x ∈ Rd, z ∈ Rn (54c)

where h > 0 denotes (a dimensionless version of) the Planck constant. We wish to investigate the
behavior of this rescaled system when h → 0. This is expected to establish a connection between
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the classical and quantum models, see [26]. More precisely for every h > 0 we consider the Wigner
transform of uh

Wh(t, x, ξ) = 1
(2π)d

ˆ
Rd
e−iξ·yuh(t, x+ h

2 y) ūh(t, x− h

2 y) dy

and we address the question of the asymptotic behavior of (Wh, ψh, χh) when h goes to 0. Our goal
is to prove that (Wh, ψh, χh) admits a limit and this limit is a solution of the Vlasov-Wave system
(6a)–(6b). For that purpose let us introduce some notations and assumptions.

We consider a sequence of initial data (uh0)h>0 ⊂ H1
x, (ψh0 )h>0 ⊂ L2

x

.
H1
z and (χh0)h>0 ⊂ L2

xL
2
z

such that

(H5) the quantities ‖uh‖L2
x
and

E h
0,+ = h2

2

ˆ
Rd
|∇xuh0 |2 dx+

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψ

h
0 dz

)
+
|uh0 |2 dx

+ 1
2c2

¨
Rd×Rn

|χh0 |2 dx dz + 1
2

¨
Rd×Rn

|∇zψh0 |2 dx dz

are uniformly bounded with respect to h.

Remark B.1 i) Assumption (H5) guarantees us that the sequences (ψh0 ) and (χh0) are uniformly
bounded with respect to h respectively in L2

x

.
H1
z and L2

xL
2
z. Hence, there exists ψ0 ∈ L2

x

.
H1
z and

χ0 ∈ L2
xL

2
z such that, sub-sequencse still labelled (ψh0 )h>0 and (χh0)h>0 converge respectively to ψ0

in L2
x

.
H1
z−weakly and χ0 in L2

xL
2
z−weakly.

ii) Moreover, since the rescaled Hamiltonian

E h(t) = h2

2

ˆ
Rd
|∇xuh(t)|2 dx+

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψh(t) dz

)
|uh(t)|2 dx

+ 1
2c2

¨
Rd×Rn

|χh(t)|2 dx dz + 1
2

¨
Rd×Rn

|∇zψh(t)|2 dx dz

is conserved by the system (54a)–(54c), we have

0 ≤ h2

2

ˆ
Rd
|∇xuh(t)|2 dx+ 1

2c2

¨
Rd×Rn

|χh(t)|2 dx dz + 1
2

¨
Rd×Rn

|∇zψh(t)|2 dx dz

= E h(0)−
ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψh(t) dz

)
|uh(t)|2 dx

≤ E h
0,+ −

ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψh(t) dz

)
|uh(t)|2 dx.

Then thanks to (53) coupled with the mass conservation of the wave function uh and (51c) we have∥∥∥∥ˆ
Rd

(
σ1 ?

ˆ
Rn
σ2ψh(t) dz

)
|uh(t)|2 dx

∥∥∥∥
L∞t

.
(
‖ψh0‖L2

x

.
H1
z

+ ‖χh0‖L2
xL

2
z

+ |T |‖uh0‖L2
x

)
‖uh0‖2L2

x
,

that means h2‖∇xuh(t)‖2L2
x
, ‖χh(t)‖L2

xL
2
z
and ‖ψh(t)‖

L2
x

.
H1
z
are uniformly bounded with respect to h

and t ∈ [0, T ].
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One can easily check that the Wigner transformWh associated to a solution uh of (54a) satisfies
the following equation

∂tWh + ξ · ∇xWh +Kh ?ξ Wh = 0, (55)

where
Kh(t, x, ξ) = i

(2π)d

ˆ
Rd
e−iξ·y

1
h

(
Φh(t, x+ h

2 y)− Φh(t, x− h

2 y)
)

dy. (56)

This follows by direct inspection when uh is a strong solution of (54a), which is the case if uh0 is
regular enough; dealing with weak solutions requires a step by regularization and approximation.

According to [26], we introduce the separable Banach space

A =
{
ϕ ∈ C0(Rdx × Rdξ) s.t. Fξϕ(x, y) ∈ L1

(
Rdy;C0(Rdx)

)}
equipped with the norm

‖ϕ‖A = ‖Fξϕ‖L1
yC

0
x

=
ˆ
Rd

sup
x
|Fξϕ(x, y)|dy,

and notice that the space

B =
{
ϕ ∈ S s.t. Fξϕ ∈ C∞c (Rdx × Rdy)

}
is dense in A. We also denote byM =M(Rdx × Rdξ) the space of bounded measures on Rdx × Rdξ ,
andM+ its positive cone.

Theorem B.2 Let (H1)–(H2) and (H5) be fulfilled. Up to a sub-sequence, the families (Wh)h>0,
(ψh)h>0 and (χh)h>0 converge respectively to µ ∈ C0([0, T ];M− w?), ψ ∈ C0([0, T ];L2

x

.
H1
z − w)

and χ ∈ C0([0, T ];L2
xL

2
z − w) respectively in the spaces C0([0, T ];A′ − w?), C0([0, T ];L2

x

.
H1
z − w)

and C0([0, T ];L2
xL

2
z − w). Moreover (µ, ψ, χ) is a solution of the Vlasov-Wave system

∂tµ+ divx(ξµ)− divξ
(
∇x

[
σ1 ?x

ˆ
σ2ψ(t) dz

]
µ

)
= 0, in D′

(
(0, T );B′

)
,

∂tψ = χ, in D′
(
(0, T )× Rdx × Rnz

)
,

∂tχ = c2∆zψ − σ2(z)
(
σ1 ?x

ˆ
dµ(ξ)

)
(x), in D′

(
(0, T )× Rdx × Rnz

)
.

The proof follows closely the analysis of [26]; the main difference being that here we have to
control also what happens as h→ 0 for the wave part of the system (54a)–(54c). Note that if the
sequence of initial data is supposed to converge, then, by uniqueness of the solution of the limit
equation [8, Theorem 4], the entire sequence (Wh, ψh, χh)h>0 converges.

Proof. Step 1: Convergence of (ψh)h>0. Thanks to Remark B.1 we already know that the
sequence (ψh)h>0 is bounded in L∞(0, T ;L2

x

.
H1
z ). Since any closed ball of L2

x

.
H1
z is metrizable and

compact for the weak topology, we are going to apply the Ascoli-Arzela theorem in order to justify
that (ψh)h>0 admits a converging sub-sequence in C0

t (L2
x

.
H1
z −w). For that purpose it only remains

to show that (ψh)h>0 is equi-continuous in C0
t (L2

x

.
H1
z −w). In fact, it is sufficient to prove that the
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family {t 7→ 〈ψh(t), g〉
L2
x

.
H1
z}

is equi-continuous for every g in a dense countable subset of L2
x

.
H1
z .

Details on this argument can be found e. g. in [25, Appendix C]. For any g ∈ C∞c (Rdx × Rnz ),∣∣∣∣ d
dt 〈ψh(t), g〉

L2
x

.
H1
z

∣∣∣∣ =
∣∣∣∣∣
¨

Rd×Rn
χ̂h(t, k, ζ)|ζ|2ĝ(k, ζ) dk dζ

∣∣∣∣∣ ≤ ‖χh(t)‖L2
xL

2
z
‖g‖L2

xH
2
z

is uniformly bounded in h and t ∈ [0, T ] (see Remark B.1) and the Ascoli-Arzela theorem insures us
that, up to a sub-sequence, (ψh)h>0 converges in C0([0, T ];L2

x

.
H1
z −w) to ψ ∈ C0([0, T ];L2

x

.
H1
z −w).

Step 2: Convergence of (χh)h>0. As in the previous step Remark B.1 insures us that the
sequence (χh)h>0 is bounded in L∞(0, T ;L2

xL
2
z). Moreover, for any g ∈ C∞c (Rdx × Rnz ),∣∣∣∣ d

dt 〈χh(t), g〉L2
xL

2
z

∣∣∣∣
≤ c2

∣∣∣∣∣
¨

Rd×Rn
∇zψh(t) · ∇zg dx dz

∣∣∣∣∣+ c2
∣∣∣∣∣
¨

Rd×Rn
σ2(z)σ1 ? |uh(t)|2(x) g(x, z) dx dz

∣∣∣∣∣
≤ ‖ψh‖L2

x

.
H1
z
‖g‖L2

xH
1
z

+ ‖σ1‖L2
x
‖σ2‖L2

z
‖uh(t)‖2L2

x
‖g‖L2

xL
2
z

is uniformly bounded in h and t ∈ [0, T ] (see Remark B.1). Eventually the Ascoli-Arzela theorem
insures us that, up to a sub-sequence, (χh) converges in C0([0, T ];L2

xL
2
z−w) to χ ∈ C0([0, T ];L2

xL
2
z−

w).
Step 3: Equation on ψ. Since χh converges to χ in C0([0, T ];L2

xL
2
z − w) we obtain directly

that for any g ∈ C∞c (Rdx × Rnz ),
d
dt 〈ψh(t), g〉D′,D =

¨
Rd×Rn

χh(t) g dx dz −→
h→0

〈χ(t), g〉D′,D

the convergence being uniform on [0, T ]. Note that here, since the duality product on L2
x

.
H1
z is

not compatible with the duality product in D′, we have to say something in order to justify the
following convergence

d
dt 〈ψh(t), g〉D′,D −→h→0

d
dt 〈ψ(t), g〉D′,D in D′(0, T ).

Since for any f ∈ C∞c (0, T ),〈 d
dt〈ψh, g〉D

′ , f

〉
D′(0,T )

= −
ˆ T

0
〈ψh(t), g〉D′f ′(t) dt

we have to justify the uniform convergence in time of 〈ψh(t), g〉D′ to 〈ψ(t), g〉D′ . For any g ∈
C∞c (Rdx × Rnz ), we have

〈ψh(t), g〉D′ =
¨

Rd×Rn
|ζ|ψ̂h(t, k, ζ) |ζ| ĝ(k, ζ)

|ζ|2
dk dζ.

The condition n ≥ 3 implies that F−1(ĝ(k, ζ)/|ζ|2) lies in L2
x

.
H1
z , and the convergence of ψh to ψ

in C0([0, T ];L2
x

.
H1
z − w) allows us to conclude. Eventually we have proved that ∂tψ = χ in D′.

Step 4: Equation on χ. Let us temporarily assume that |uh(t)|2 converges to a certain
ρ ∈ C0([0, T ];M− w?) (see Step 7). For any g ∈ C∞c (Rdx × Rnz ), we have

d
dt 〈χh(t), g〉D′,D = −c2

¨
Rd×Rn

∇zψh(t) · ∇zg dx dz − c2
¨

Rd×Rn
σ2 σ1 ? |uh(t)|2 g dx dz (58)
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The weak convergence of (ψh)h>0 insures us that

−c2
¨

Rd×Rn
∇zψh(t) · ∇zg dx dz −→

h→0
−c2
¨

Rd×Rn
∇zψ(t) · ∇zg dx dz

and, if we rewrite the second term of the right hand side of (58) as follows

c2
¨

Rd×Rn
σ2 σ1 ? |uh(t)|2 g dx dz = c2

ˆ
Rd
|uh(t, y)|2

(ˆ
Rn
σ2 σ1 ? g(y) dz

)
dy,

the weak convergence of |uh|2 leads to

c2
¨

Rd×Rn
σ2 σ1 ? |uh(t)|2 g dx dz −→

h→0
c2
¨

Rd×Rn
σ2 σ1 ? ρ(t) g dx dz.

These two convergences hold uniformly in time and we eventually obtain

∂tχ = c2∆zψ − c2σ2 σ1 ? ρ(t) in D′
(
(0, T )× Rdx × Rnz

)
.

Step 5: Convergence of (Wh)h>0. We first prove that the sequence (Wh)h>0 is bounded in
L∞ (0, T ;A′). Since¨

Rd×Rd
Wh(t, x, ξ)ϕ(x, ξ) dx dξ = 1

(2π)d

¨
Rd×Rd

uh(t, x+ h

2 y)ūh(t, x− h

2 y)Fξϕ(x, y) dx dy,

we obtain directly∣∣∣∣∣
¨

Rd×Rd
Wh(t, x, ξ)ϕ(x, ξ) dx dξ

∣∣∣∣∣
≤ 1

(2π)d

(
sup
y

ˆ
Rd

∣∣∣∣uh(t, x+ h

2 y)ūh(t, x− h

2 y)
∣∣∣∣ dx

)(
sup
x

ˆ
Rd
|Fξϕ(x, y)|dy

)
≤ 1

(2π)d ‖uh(t)‖2L2
x
‖ϕ‖A,

which insures us
‖Wh(t)‖A′ ≤

1
(2π)d ‖uh(t)‖2L2

x

is bounded with respect to h and t. Since any closed ball of A′ is metrizable and compact for the
weak-? topology, we will apply again the Ascoli-Arzela theorem in order to justify that (Wh)h>0
admits a converging sub-sequence in C0

t (A′ − w?). For that purpose we will prove that for any
ϕ ∈ B, the functions t 7→ 〈Wh(t), ϕ〉A′,A are equi-continuous. Direct computations yield

d
dt 〈Wh(t), ϕ〉A′,A = −

¨
Rd×Rd

Wh(t, x, ξ) ξ · ∇xϕ(x, ξ) dx dξ

+
¨

Rd×Rd
Wh(t, x, η)

(ˆ
Rd
Kh(t, x, ξ − η)ϕ(x, ξ) dξ

)
dx dη, (59)

with

Lh(t, x, η) :=
ˆ
Rd
Kh(t, x, ξ − η)ϕ(x, ξ) dξ

= i

(2π)d

ˆ
Rd
eiη·y

1
h

(
Φh(t, x+ h

2 y)− Φh(t, x− h

2 y)
)
Fξϕ(x, y) dy
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and
FηLh(t, x, y) = i

h

(
Φh(t, x+ h

2 y)− Φh(t, x− h

2 y)
)
Fξϕ(x, y).

From (59) we get for any ϕ ∈ B,∣∣∣∣ d
dt 〈Wh(t), ϕ〉A′,A

∣∣∣∣ ≤ ‖Wh(t)‖A′ (‖ξ · ∇xϕ‖A + ‖Lh(t)‖A)

and it only remains to prove that FηLh(t) is bounded in L1
yC

0
x, uniformly with respect to t ∈ [0, T ]

and h. Since Φh = σ1 ?
´
σ2ψh dz,

1
h

(
Φh(t, x+ h

2 y)− Φh(t, x− h

2 y)
)

= y

h
·
ˆ h

2

−h2
∇σ1 ?

(ˆ
Rn
σ2ψh(t) dz

)
(x+ sy) ds

and we can estimate FηLh(t) as follows

‖FηLh(t)‖L1
yC

0
x
≤ ‖yFξϕ‖L1

yC
0
x

∥∥∥∥∥1
h

ˆ h
2

−h2
∇σ1 ?

(ˆ
Rn
σ2ψh(t) dz

)
(x+ sy) ds

∥∥∥∥∥
L∞x,y

≤ ‖yFξϕ‖L1
yC

0
x

∥∥∥∥∇σ1 ?

(ˆ
Rn
σ2ψh(t) dz

)∥∥∥∥
L∞x

.

The following estimate coupled with (51c) and Remark B.1 allows us to conclude∥∥∥∥∇σ1 ?

(ˆ
Rn
σ2ψh(t) dz

)∥∥∥∥
L∞x

≤ ‖∇σ1‖L2
x
‖σ2‖

L
p′0
z

‖ψh‖L2
xL
∞
t L

p0
z
.

Step 6: Equation on µ. For any ϕ ∈ B, we have
d
dt〈Wh(t), ϕ〉B′,B = −〈Wh(t), ξ · ∇xϕ〉B′,B + 〈Wh(t), Lh(t)〉B′,B.

The weak convergence of (Wh)h>0 allows us to obtain
d
dt〈Wh(t), ϕ〉B′,B −→

h→0

d
dt〈µ(t), ϕ〉B′,B in D′(0, T ),

and
〈Wh(t), ξ · ∇xϕ〉B′,B −→

h→0
〈µ(t), ξ · ∇xϕ〉B′,B uniformly in time (t ∈ [0, T ]),

and it only remains to prove that Lh(t) converges strongly in A (uniformly with respect to t ∈ [0, T ])
to ∇x

(
σ1 ?
´
σ2ψ(t) dz

)
· ∇ξϕ, which is equivalent to prove the strong convergence of FξLh(t) to

iy · (∇σ1 ?
´
σ2ψ(t) dz)Fξϕ in L1

yC
0
x. For that purpose we decompose the difference of these two

terms as follows

FξLh(t, x, y)− iy ·
(ˆ

Rd
∇σ1(x− x̄)

[ˆ
σ2(z)ψ(t, x̄, z) dz

]
dx̄
)
Fξϕ(x, y)

= iy ·
(ˆ

Rd
∇σ1(x− x̄)

[ˆ
σ2(z)(ψ(t, x̄, z)− ψh(t, x̄, z)) dz

]
dx̄
)
Fξϕ(x, y)

+iy ·
(ˆ

Rd

1
h

[ˆ h
2

−h2
∇σ1(x− x̄)−∇σ1(x+ sy − x̄) ds

] [ˆ
σ2(z)ψh(t, x̄, z) dz

]
dx̄
)
Fξϕ(x, y)

= I(t, x, y) + II(t, x, y).
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We estimate the first term as follows (where the support of Fξϕ is supposed to be included in the
compact K1 ×K2)

‖I(t)‖L1
yC

0
x
≤ ‖yFξϕ‖L1

yC
0
x

sup
x∈K1

|∇σ1 ? (σ2(ψ(t)− ψh(t))) (x)|

and the weak convergence of (ψh)h>0 insures us that for every x ∈ K1

∇σ1 ? (σ2(ψ(t)− ψh(t))) (x)

=
¨

Rd×Rd
|ζ| ∇σ1(x− x̄) σ̂2(ζ)

|ζ|2
|ζ|
(
ψ̂(t, x̄, ζ)− ψ̂h(t, x̄, ζ)

)
dx̄ dζ −→

h→0
0.

This convergence is not a priori uniform in x ∈ K1. Nevertheless, we can combine the fact that
ψ(t) − ψh(t) is uniformly bounded with respect to t and h in L2

x

.
H1
z , K1 is compact and the

application
x ∈ Rd 7−→

(
(x̄, z) 7→ ∇σ1(x− x̄)F−1

ζ (σ̂2(ζ)/|ζ|2)(z)
)
∈ L2

x

.
H1
z

is continuous, to prove that the convergence is indeed uniform in x. For the second term, the
estimate

‖II(t)‖L1
yC

0
x
≤ ‖yFξϕ‖L1

yC
0
x
‖σ2‖

L
p′0
z

‖ψh‖L2
xL
∞
t L

p0
z

× sup
x∈K1
y∈K2

ˆ
Rd

1
h2

∣∣∣∣∣
ˆ h

2

−h2
∇σ1(x− x̄)−∇σ1(x+ sy − x̄) ds

∣∣∣∣∣
21/2

= ‖yFξϕ‖L1
yC

0
x
‖σ2‖

L
p′0
z

‖ψh‖L2
xL
∞
t L

p0
z

sup
y∈K2

ˆ
Rd

1
h2

∣∣∣∣∣
ˆ h

2

−h2
∇σ1(x)−∇σ1(x+ sy) ds

∣∣∣∣∣
2

dx

1/2

coupled with the regularity and the compactness of the support of∇σ1 and the uniform boundedness
with respect to h of ‖ψh‖L2

xL
∞
t L

p0
z
, allows us to conclude that ‖II(t)‖L1

yC
0
x
→ 0 when h→ 0.

Step 7: Final details. To conclude the proof it remains to justify that in fact the limit µ of
the sequence (Wh)h>0 defines an element of C0([0, T ],M+ −w?) and that the sequence (|uh|2)h>0
converges in C0([0, T ],M(Rdx) − w?) to ρ =

´
dµ(ξ). The first point comes from the study of the

Husimi transform of uh:

W̃h(t) = Wh(t) ? e
−(|x|2+|ξ|2)/h

(πh)d .

One can prove that, for every time t ∈ [0, T ], W̃h(t) is non negative and the sequence (W̃h(t))h>0 is
bounded in L1

xL
1
ξ . This allows us to conclude that, up to a sub-sequence, W̃h(t) converges weakly in

the sense of measures to a certain µ̃(t) ∈M+ and it is then possible to prove that indeed µ(t) = µ̃(t).
We refer the reader to [26, Section III] for details. However it is not possible yet to conclude that µ is
an element of C0([0, T ],M−w?). In the previous argument each sub-sequence depends on t (then it
is not possible to apply a diagonal argument) and we have no information about the time continuity.
The missing step can be obtained by slightly modifying the compactness argument in Step 5, in
order to obtain the compactness of the sequence (W̃h)h>0 in C0([0, T ],M−w?), and conclude that,
up to a sub-sequence, (W̃h)h>0 converges in C0([0, T ],M− w?) to µ̃ ∈ C0([0, T ],M− w?). We
eventually obtain that µ = µ̃ ∈ C0([0, T ],M− w?).

Finally, we make use of the results in the [26, Section III ] which tell us that if the sequence
(h−d|ûh(t, h−1ξ)|2)h>0 is tightly relatively compact, then (|uh(t)|2) converges weakly in the sense of
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measures to ρ(t) =
´

dµ̃(t, ξ) =
´

dµ(t, ξ). Moreover, we already know that (W̃h)h>0 converges in
C0([0, T ],M−w?) to µ̃, so that if (h−d|ûh(t, h−1ξ)|2)h>0 is tightly relatively compact, uniformly in
time, then the proof [26, Theorem III.1 point 3] can be revisited in order to obtain that (|uh|2)h>0
converges in C0([0, T ],M(Rd)− w?) to ρ =

´
dµ̃(ξ) =

´
dµ(ξ) ∈ C0([0, T ],M(Rd)− w?).

Let us conclude the proof by proving that the sequence (h−d|ûh(t, h−1ξ|2)h>0 is tightly relatively
compact uniformly in time, which can be cast as

sup
t≥0

sup
h>0

1
hd

ˆ
|ξ|≥R

∣∣∣ûh(t, h−1ξ)
∣∣∣2 dξ −→

R→∞
0.

Remark B.1, insures the existence of a constant C > 0, independent of h > 0 and t ∈ [0, T ], such
that h2‖∇xuh(t)‖2L2

x
≤ C. Then a direct computation shows that

h2
ˆ
Rd
|∇xuh(t, x)|2 dx = h2

ˆ
Rd
|ξ|2 |ûh(t, ξ)|2 dξ

= 1
hd

ˆ
Rd
|ξ|2

∣∣∣ûh(t, h−1ξ)
∣∣∣2 dξ ≥ 1

hd

ˆ
|ξ|≥R

R2
∣∣∣ûh(t, h−1ξ)

∣∣∣2 dξ,

and we eventually obtain

sup
t≥0

sup
h>0

1
hd

ˆ
|ξ|≥R

∣∣∣ûh(t, h−1ξ)
∣∣∣2 dξ ≤ C

R2 .

Acknowledgements
We are gratefully indebted to Stephan De Bièvre for many motivating discussions and warm en-
couragements. We also thank Enno Lenzmann for useful hints and kind advices. Finally, we thank
David Chiron and one of the anonymous reviewer who both indicated relevant improvements of the
arguments.

References
[1] R. Alonso, T. Goudon, and A. Vavasseur. Damping of particles interacting with a vibrating

medium. Ann. IHP. Anal. Non-Linéaire, 34(7):1727–1758, 2017.

[2] F. Bolley, D. Cordero-Erausquin, Y. Fujita, I. Gentil, and A. Guillin. New sharp Gagliardo-
Nirenberg-Sobolev inequalities and an improved Borell-Brascamp-Lieb inequality. Int. Math.
Res. Notices, 10:3042–3083, 2020.

[3] L. Bruneau and S. De Bièvre. A Hamiltonian model for linear friction in a homogeneous
medium. Comm. Math. Phys., 229(3):511–542, 2002.

[4] A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Ann. Phys.,
149:374–456, 1983.

[5] T. Cazenave. Semilinear Schrödinger Equations, volume 10 of Lecture Notes CIMS. AMS,
2003.

56



[6] T. Cazenave and P.-L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger
equations. Comm. Math. Phys., 85(4):549–561, 1982.

[7] P. D’Avenia and M. Squassina. Soliton dynamics for the Schrödinger-Newton system. Math.
Models Methods Appl. Sc., 24(03):553–572, 2014.

[8] S. De Bièvre, T. Goudon, and A. Vavasseur. Particles interacting with a vibrating medium:
existence of solutions and convergence to the Vlasov–Poisson system. SIAM J. Math. Anal.,
48(6):3984–4020, 2016.

[9] S. De Bièvre, T. Goudon, and A. Vavasseur. Stability analysis of a Vlasov–Wave system
describing particles interacting with their environmemt. J. Diff. Eq., 264(12):7069–7093, 2018.

[10] M. del Pino and J. Dolbeault. Best constants for Gagliardo-Nirenberg inequalities and appli-
cations to nonlinear diffusions. J. Math. Pures Appl., 81(9):847–875, 2002.

[11] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct.
Anal., 133(1):50–68, 1995.

[12] T. Goudon and A. Vavasseur. Mean field limit for particles interacting with a vibrating
medium. Annali Univ. Ferrara, 62(2):231–273, 2016.

[13] T. Goudon and L. Vivion. Landau damping in dynamical Lorentz gases. Technical report,
Univ. Côte d’Azur, Inria, CNRS, LJAD, 2019.

[14] T. Goudon and L. Vivion. Numerical investigation of Landau damping in dynamical Lorentz
gases. Phys. D., 403:132310, 2020.

[15] T. Goudon and L. Vivion. Numerical investigation of stability issues for quantum dissipative
systems. Technical report, Université Côte d’Azur, Inria, CNRS, LJAD, 2020.

[16] M. Keel and T. Tao. Endpoint Strichartz estimates. American J. of Math., 120:955–980, 1998.

[17] H. Kikuchi and M. Ohta. Stability of standing waves for the Klein-Gordon-Schrödinger system.
J. Math. Anal. Appl., 365:109–114, 2010.

[18] M. K. Kwong. Uniqueness of positive solutions of ∆u− u+ up = 0 in Rn. Arch. Rational
Mech. Anal., 105:243–266, 09 1989.

[19] E. Lenzmann. Uniqueness of ground states for pseudo-relativistic Hartree equations. Anal.
PDE, 2:1–27, 01 2009.

[20] E. H. Lieb. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation. Studies in Applied Mathematics, 57(2):93–105, 1977.

[21] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. AMS, 2001.
(2nd. edition).

[22] P.-L. Lions. Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal., 49:315–334,
1982.

57



[23] P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally
compact case, part 1. Ann. IHP., Non Lin. Anal., 1(2):109–145, 1984.

[24] P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally
compact case, part 2. Ann. IHP., Non Lin. Anal., 1(2):223–283, 1984.

[25] P. L. Lions. Mathematical topics in fluid mechanics; Volume 1: Incompressible models. Claren-
don Press, Oxford, 1996.

[26] P.-L. Lions and T. Paul. Sur les mesures de Wigner. Revista Matemática Iberoamericana,
9(3):553–618, 1993.

[27] P.L. Lions. The Choquard equation and related questions. Nonlinear Analysis: Theory,
Methods and Applications, 4(6):1063–1072, 1980.

[28] L. Ma and L. Zhao. Classification of positive solitary solutions of the nonlinear Choquard
equation. Arch. Rational Mech. Anal., 195:455–467, 2010.

[29] Y. Martel. Notes on the interaction of solitary waves for NLS. https://yvan_martel.wiki.
math.cnrs.fr/uploads/Bonn2017.pdf, 2017. Lectures notes for a course given in the summer
school “Dispersive Equations, Solitons, and Blow-up” in September 2017 at the Hausdorff
Center for Mathematics in Bonn.

[30] Y. Martel and F. Merle. Asymptotic stability of solitons for subcritical generalized KdV
equations. Arch. Rational Mech. Anal., 157:219–254, 2001.

[31] K. McLeod. Uniqueness of positive radial solutions of ∆u+ f(u) = 0 in Rn. II. Trans. AMS,
339:495–505, 02 1993.

[32] F. Merle. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger
equations with critical power. Duke Math. J., 69(2):427–454, 1993.

[33] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Classe
di Scienze, 13(2):115–162, 1959.

[34] P. Raphaël. Séminaire Bourbaki : concentration compacité à la Kenig-Merle. In Astérisque,
volume 352, pages 121–146. Soc. Math. France, 2013.

[35] E.M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Uni-
versity Press, 1970.

[36] W. Strauss. Existence of solitary waves in higher dimensions. Commun. Math. Phys., 55:149–
162, 1977.

[37] M. E. Taylor. Measure theory and integration, volume 76 of Graduate Studies in Math. AMS,
2006.

[38] A. Vavasseur. Some models of particles interacting with their environment. PhD thesis, Uni-
versity Nice Sophia Antipolis, 2016.

[39] L. Vivion. Particules classiques et quantiques en interaction avec leur environnement : analyse
de stabilité et problèmes asymptotiques. PhD thesis, Univ. Côte d’Azur, 2020.

58

https://yvan_martel.wiki.math.cnrs.fr/uploads/Bonn2017.pdf
https://yvan_martel.wiki.math.cnrs.fr/uploads/Bonn2017.pdf


[40] M. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations.
SIAM J. Math. Anal., 16(3):472–491, 1985.

[41] M. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations.
Comm. Pure Appl. Math., 39:51–67, 01 1986.

[42] M. I. Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm.
Math. Phys., 87(4):567–576, 1982.

[43] G. Zhang and N. Song. Travelling solitary waves for boson stars. El. J. Diff. Eq., 2019:73:
1–12, 2019.

59


	Introduction
	Motivation
	Scaling properties
	Solitary waves

	Main results
	Ground states
	Orbital stability
	Strengthened orbital stability
	The case d=3
	The case d=1
	The case d=2

	Existence of ground states: proof of Theorem 2.1
	Orbital stability: concentration-compactness approach
	Strengthened orbital stability: approach by linearization
	Coercivity of L+: proof of Lemma 2.7
	Perturbation analysis: proof of Proposition 2.12
	Admissible form functions: proof of Proposition 2.10
	Cauchy theory
	Semi-classical analysis

