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Abstract
Extensive research and clinical trials have improved our understanding of tumor immunology but despite considerable clinical

benefits, current immunotherapies only provide durable responses in a minority of patients. The challenge is to identify key
biological parameters preventing immune escape and maintaining an equilibrium state characterized by a stable subclinical
tumor mass. Based on a space and size structured partial differential equation model, we developed numerical methods to
predict the parameters of the equilibrium without running simulations of the evolution problem. By using global sensitivity
analysis methods, we identified the elimination rate of tumor cells by immune cells as the leading parameter influencing the
equilibrium size of the tumor and combined therapies that sustain and strengthen the anti-tumor immune response as most
effective. Applied to the biological parameters that define a cancer type, such numerical investigation can provide hints for the
design and optimization of cancer treatments.
Significance: Based on a space and size structured PDE model, the analyses of the equilibrium phase in immune surveillance
of cancer provide numerical methods to evaluate the influence of immune response and tumor growth parameters and hints for
the design and optimization of cancer treatments.
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3

Introduction4

The immune system plays a major role in the control of tu-5

mor growth. This has led to the concept of immune surveil-6

lance and cancer immunoediting composed of three phases7

[1]: the elimination, when tumors are rapidly eradicated by8

the immune system, the equilibrium, a latency period when9

tumors can survive but remain on a controlled state, and the10

escape, the final outgrowth of tumors that have outstripped11

immunological restraints. In this later phase, immune sup-12

pression is prevailing and immune cells are also subverted13

to promote tumor growth. Numerous cancer immunother-14

apy strategies have been designed and assessed to counter-15

act cancer immune evasion and restore effective and durable16

elimination of tumors [2–6] They show improved efficacy over17
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conventional anticancer treatments but only a minority of18

patients respond. The challenge to face now is to identify19

key biological parameters which will convert a fatal outcome20

into a chronic, manageable state, the durable maintenance of21

cancer in a viable equilibrium phase controlled by immunity.22

Reaching an equilibrium stage in immune-controlled tumors23

is indeed the first key step for successful control of tumor24

growth and a goal for immunotherapy. It is however diffi-25

cult to apprehend experimentally because the tumor mass at26

equilibrium is below detectable limits [7]. Mathematical mod-27

eling of the tumor-immune system interactions offers useful28

information about the features of the equilibrium phase dur-29

ing primary tumor development, and can guide the design of30

optimal anticancer therapies [8–11].31

We previously [8] introduced a specific mathematical model32

based on partial differential equations, intended to describe33

the earliest stages of tumor-immune system interactions. The34

originality of the model is to introduce size-space structured35

quantities, providing new perspectives compared to mere or-36

dinary differential systems [9, 12–14]. The model thus ac-37

counts for both the growth of the tumor, by natural cell38
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growth and cell divisions, and the displacement of the im-39

mune cells towards the tumor, by means of activation pro-40

cesses and chemotaxis effects. The most notable finding is41

that an equilibrium state, with residual tumor and active im-42

mune cells, can be observed. Thus, mathematical analysis43

provides a basis for the explanation of the formation of the44

equilibrium. Indeed, the equilibrium can be mathematically45

interpreted by means of an eigenproblem coupled to a sta-46

tionary diffusion equation with constraint. This observation47

permits us to develop an efficient numerical strategy to de-48

termine a priori the shape of the equilibrium — namely, the49

size distribution of the tumor cells and the residual tumor50

mass — for a given set of biological tumor and immune cell51

parameters. Consequently, the equilibrium state can be com-52

puted at low numerical cost since we can avoid the resolution53

of the evolution problem on a long time range. The use of this54

simple and fast algorithm allows us to address the question55

of the sensitivity of the residual mass to the parameters and56

to discuss the impact of treatments. This information can57

be decisive to design clinical studies and choose therapeu-58

tic strategies. Our work therefore provides a tool for cancer59

treatment management.60

Quick guide to equations: A coupled PDE61

model for tumor-immune system interactions62

The principles of the modeling adopted in [8] led to couple63

an evolution equation for the size-distribution of the tumor64

cells, and a convection-diffusion equation for the activated65

immune cells. The two-way coupling arose by the death term66

induced by the action of the immune cells on the tumor cells,67

and by the activation and the attraction of immune cells to-68

wards the tumor, which are determined by the total mass of69

the tumor. The unknowns are70

• the size density of tumor cells (t, z) 7→ n(t, z) so that71

the integral
´ b
a
zn(t, z) dz gives the volume of the tumor72

occupied at time t by cells having their size z in the73

interval (a, b);74

• the concentration of activated immune cells which are75

fighting against the tumor (t, x) 7→ c(t, x);76

• the concentration of chemical signal that attracts the im-77

mune cells towards the tumor microenvironment (t, x) 7→78

φ(t, x).79

The model assumes that the tumor is located at the center of80

a domain Ω, and it distinguishes two distinct length scales.81

The size of the tumor cells z ≥ 0 is considered as “infinitely82

small” compared to the scale of displacement of the immune83

cells, described by the space variable x ∈ Ω. Immune cells,84

once activated, are subjected to natural diffusion and to a85

chemotactic drift, induced by the presence of the tumor. The86

strength of this drift, as well as the activation of immune cells,87

directly depends on the total mass of the tumor, proportional88

to the quantity89

µ1(t) =
ˆ ∞

0
zn(t, z) dz.

The immune system-tumor competition is described by the
following system of PDEs

∂tn+ ∂z(V n) = Q(n)−m(n, c), (1a)

∂tc+∇x · (cχ∇xφ−D∇xc) = µ1R− γc, (1b)

−K∆xφ = µ1

(
σ(x)− 1

|Ω|

ˆ
Ω
σ(y) dy

)
, (1c)

n(t, 0) = 0, c
∣∣
∂Ω = 0, K∇xφ · ν(·)

∣∣
∂Ω = 0, (1d)

n(t = 0, z) = n0(z), c(t = 0, x) = c0(x). (1e)

The growth-division dynamics for the tumor cells (1a) in-90

volves the (possibly size-dependent) growth rate z 7→ V (z) ≥91

0 and the cell division mechanism is embodied into the op-92

erator Q(n). What is crucial for modeling purposes is the93

principle that cell-division does not change the total mass:94

the operator Q satisfies
´∞

0 zQ(n) dz = 0. However, the total95

number of cells in the tumor increases since
´∞

0 Q(n) dz ≥ 096

(we refer the reader to [8] for further details). In what follows,97

we restrict to the mere symmetric binary division operator98

Q(n)(t, z) = a
(
4n(t, 2z)− n(t, z)

)
, (2)

with a > 0 the division rate. Further relevant examples of99

division operators can be found in [15]. The boundary condi-100

tion for n in (1d) means that no tumor cells are created with101

size 0.102

In the right hand side of (1b), (t, x) 7→ R(t, x) stands for103

the space distribution of the influx rate of activated tumor104

antigen specific effector immune cells. It takes into account105

the sources of naive immune cells, namely T-cells and NK106

cells, that can be activated in the tumor microenvironment107

or in the draining lymph nodes into cells fighting the tumor.108

The rate of the activation process is supposed to be directly109

proportional to µ1. The Dirichlet boundary condition for c110

in (1d) means that the immune cells far from the tumor are111

non-activated. Immune cells are directed towards the tumor112

by a chemo-attractive potential φ, induced by the presence of113

the tumor cells. Through (1c), the strength of the signal is114

proportional to the total mass of the tumor, and it is shaped115

by a form function x 7→ σ(x). Finally, the activated immune116

cells are able to destroy tumor cells, as described by the death117

term in (1a)118

m(c, n)(t, z) =
ˆ

Ω
δ(y)c(t, y) dy︸ ︷︷ ︸

:=µc(t)

×n(t, z), (3)

where δ ≥ 0 is another form function. For the numerical119

experiments, we shall work with the Gaussian profiles120

δ(x) = A

θ
√

2π
exp

(
−|x|

2

2θ2

)
, σ(x) = Aσ

θσ
√

2π
exp

(
−|x|

2

2θ2
σ

)
.

(4)
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We refer the reader to [8] for further details and comments121

about the model.122

Results123

Identification of biological parameters124

In order to go beyond the qualitative discussion of [8], the125

model should be challenged with biological data. The PDE126

system is governed by the set of parameters collected in Ta-127

ble 1: most parameter values were retrieved from previously128

published experimental results. We propose an estimation of129

the parameters R, a, V based on the experimental study per-130

formed in [16] where the development of chemically-induced131

cutaneous squamous cell carcinoma (cSCC) is investigated.132

To estimate the parameter R, we used a simple linear re-133

gression, by using 34 data points from an in vivo exper-134

imental cutaneous squamous cell carcinoma (cSCC) tumor135

growth mouse model [16]: R is predicted from the “influx136

rate of effector immune cell”, denoted by Y and expressed137

in cellc · day−1, given as a function, assumed to be linear, of138

the volume of the tumor µ1 in µm3, see Fig. 1-(a). The139

determination coefficient and the p-value are respectively,140

r2 = 0.705 and p = 2.84 · 10−10, the slope of the regression141

line is R = 7.92 ·10−7. It is measured in cellc·mm−3

µm3 ·day−1 as-142

suming homogeneity with respect to the unit mm3. Table 1143

gives the 95% confidence interval. This interval is quite small,144

but it already shows a sensitive impact of variations of this145

parameter; since the variability due to the biological model is146

likely important and we wished to investigate the impact of147

treatments that directly affect this parameter, we also made148

some simulations with a larger range of values (see for in-149

stance Fig.6)150

We then determined the tumor growth parameters a and151

V . Neglecting the immune response, the tumor growth is152

driven by153

∂tn+ ∂z(V n) = Q(n). (5)

As explained below, this leads to an exponential growth of154

the tumor mass, see [15, 29–31]. Let t 7→ µ0 =
´∞

0 n(t, z) dz155

and t 7→ µ1(t) =
´∞

0 zn(t, z) dz. We thus get156

d
dtµ0 = aµ0,

d
dtµ1 = V µ0. (6)

We now aim at estimating the division rate a and the growth157

rate V from the experimental data, Fig. 1-(b,c). We158

denote Θ = (a, V ) the parameters to be identified. We159

have at hand some experimental noisy data (Y (0)
1 , · · · , Y (0)

n ),160

(Y (1)
1 , · · · , Y (1)

n ) representing respectively µ0 and µ1 at sev-161

eral times. Hence, we have162

Y
(j)
i = µj,Θ(ti) + εi, i ∈ {1, · · · , n}, j ∈ {0, 1} (7)

where t 7→ (µ0,Θ, µ1,Θ)(t) stands for the solution of (6) de-163

fined with the parameters Θ. Forgetting for a while the dis-164

creteness of the observed data, the approach can be expressed165

as a cost minimization problem where the cost function is de-166

fined by167

C
(j)
λ (Θ) =

ˆ T

0
|µj,Θ(t)− Y (j)(t)|2 dt. (8)

We finally set168

Θ̂ = argmin{C(j)
λ (Θ), Θ = (a, V ), a > 0, V > 0}. (9)

We fit the data that give the number of cells in the tumor169

and the volume of the tumor for several times by using a170

non-linear least square algorithm, the Levenberg-Marquardt171

algorithm [32], [33], Fig. 1-(d,e).172

Development of numerical methods predict-173

ing parameters of the equilibrium in immune-174

controlled tumors175

Based on the space and size structured PDE model (1a)-176

(1e), we studied the equilibrium phase in immune-controlled177

tumors. We wished to predict, for given biological parame-178

ters, see Table 1, the total mass of the residual tumor and179

its size distribution. To this end, we developed specific nu-180

merical procedures based on the mathematical interpretation181

of the equilibrium.182

Equilibrium states183

The definition of the equilibrium relies on the following ar-184

guments. The cell-division equation admits a positive eigen-185

state: in absence of immune response, see (5), the tumor186

population grows exponentially fast, with a rate λ > 0, and187

its size repartition obeys a certain profile N . The equilib-188

rium occurs when the immune response counterbalances the189

growth rate of this equation. To be more specific, we look for190

λ > 0 and a non negative function z ≥ 0 7→ N(z) satisfying191  ∂z(V N)−Q(N) + λN = 0 for z ≥ 0

N(0) = 0, N(z) > 0 for z > 0,
ˆ +∞

0
N(z) dz = 1.

(10)
The existence-uniqueness of the eigenpair (λ,N) can be found192

in [15, 29]. When the tumor does not interact with the im-193

mune system, the large time behavior is precisely driven by194

the eigenpair: the solution of (5) behaves like n(t, z) ∼t→∞195

ν0e
λtN(z) where ν0 is a constant determined by the initial196

condition, see [29, 30]. In the specific case where V is con-197

stant and Q is the binary division operator (2), we have λ = a198

and the profile N is explicitly known, [31, 34].However, for199

general growth rates and division kernels the solution should200

be determined by numerical approximations.201

Coming back to the coupled model, we infer that the equi-202

librium phase corresponds to the situation where the death203

rate precisely counterbalances the natural exponential growth204

of the tumor cell population. In other words, the equilibrium205

is defined by the stationary equation206

γC−∇x·(D∇xC)−µ1∇x·(χC∇xΦ) = g(µ1)R, C
∣∣
∂Ω=0 = 0,

(11)

3
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(a) influx rate of effector immune cell

(b) tumor cell number (c) tumor volume

(d) curve fit of tumor cell number (e) curve fit of tumor volume

Figure 1. (a): Regression on the “influx rate of effector immune cell” Y (in cellc · day−1) as a function of the tumor volume
µ1 in µm3 (b) and (c): Tumor evolution kinetics from in vivo experimental cSCC tumor growth in mice. (d) and
(e): Illustration of the estimation of the parameters a and V : a = 0.283 day−1 and V = 786.280 µm3 · day−1 using
3 data points of a typical tumor evolution kinetic, from the dataset depicted in (b) and (c)

4
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Symbol Description Value and unit References

χ chemotactic coefficient 8.64 × 101 − 8.64 × 106

mm2 ·mmol−1 · day−1
(Macrophages) [17]

D natural space diffusion coef. of the cytotoxic effector
cells population

8.64× 10−5 − 10−3 mm2 ·
day−1

(CD8+ T-cells) [18], [19]

R the normal rate of influx of effector immune cells 6.11 × 10−7, 9.74 × 10−7

cellc·mm−3

µm3 · day−1
estimated

γ natural death rate of the tumor antigen-specific cy-
totoxic effector cells

2× 10−2 − 1 day−1 [20], [21], [12], [22]

A strength of the immune response 2− 57.6 cell−1
c · day−1 [23], [24], [25], [26]

K natural space diffusion of the attractive potential φ 10−2 − 1 mm2 · day−1 [27], [19]

Aσ strength of the chemical signal induced by each tu-
mor cell

5 · 10−17 − 0.625 × 10−16

mmol ·−1 µm3 · day−1
[28]

a division rate of the tumor cells 0.103− 0.351 day−1 estimated

V growth rate of the tumor cells 308.526 − 2521.975 µm3 ·
day−1

estimated

Table 1. Key model parameters and their biophysical meaning

where Φ is the solution of

−K∆xΦ = σ − 1
|Ω|

ˆ
Ω
σ(y) dy,

endowed with the homogeneous Neumann boundary condi-207

tion, together with the constraint208

ˆ
Ω
δ(x)C(x) dx = λ. (12)

This can be interpreted as an implicit definition of the total209

mass µ1, to be the value such that the solution of the bound-210

ary value problem (11) satisfies (12). The existence of an equi-211

librium state defined in this way is rigorously justified in [8,212

Theorem 2]. Fig. 2 illustrates how the equilibrium establishes213

in time: as time becomes large, the concentration of active214

immune cells in the neighborhood of the tumor tends to the215

eigenvalue of the cell-division equation, the total mass tends216

to a constant and the size distribution of tumor cells takes the217

profile of the corresponding eigenstate. This result has been218

obtained by using the lower bounds of the parameters in Ta-219

ble 1 for the immune system and (a, V ) = (0.351, 713.608)220

for the tumor growth. We observe a non symmetric shape,221

peaked about a diameter of 13 µm, which is consistent with222

observational data reporting the mean size distribution of223

cancer cells [35].224

Numerical experiments show that the model (1a)–(1e) is225

able to reproduce, in the long-time range, cancer-persistent226

equilibrium, but the features of the equilibrium, and its abil-227

ity to establish, are highly sensitive to the parameters in Ta-228

ble 1 . To discuss this issue further, we focus here on the mass229

at equilibrium considered as a critical quantity that evaluates230

the efficacy of the immune response. Indeed, it is known that231

a tumor gains in malignancy when its mass reaches certain232

thresholds [36, 37]. The smaller the tumor mass at equilib-233

rium, the better the vital prognosis of the patient. In doing234

so, we do not consider transient states and time necessary for235

the equilibrium to establish (see Fig. 4-(a-c)).236

The determination, on numerical grounds, of the equilib-237

rium state relies on a two-step process. First, we compute the238

normalized eigenstate of the tumor cell equation, second, we239

find the tumor mass which makes the coupled death rate fit240

with the eigenvalue. To this end, we have developed a specific241

numerical approach.242

5
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Figure 2. Left: Time evolution of the diameter of the tumor (bold black line) and concentration of active immune cells
(dotted gray line). Right: Comparison of the tumor cell-size distribution at t = 1000 days with the positive
eigenstate of the cell division equation (x-axis: size of the tumor cells, y-axis: number of tumor cells at the final
time)

The eigen-elements of the growth-division equation243

The numerical procedure is inspired from the spectral anal-244

ysis of the equation: λ is found as the leading eigenvalue of a245

conveniently shifted version of the growth-division operator.246

In practice, we work with a problem where the size variable is247

both truncated and discretized. Hence, the problem recasts248

as finding the leading eigenvalue of a shifted version of the249

underlying matrix, which can be addressed by using the in-250

verse power method [38, Section 1.2.5]. We refer the reader251

to [39, 40] for a thorough analysis of the approximation of252

eigenproblems for differential and integral operators, which253

provides a rigorous basis to this approach. It is also impor-254

tant to check a priori, based on the analysis of the equation255

[15], how large the shift should be, and that it remains in-256

dependent on the numerical parameters, see Suppl. Material.257

For some specific fragmentation kernels and growth rates, the258

eigenpair (λ,N) is explicitly known, see [15]. We used these259

formula to validate the ability of the algorithm to find the260

expected values and profiles, see Suppl. Material.261

Computation of the equilibrium mass262

Having at hand the eigenvalue λ, we go back to the263

convection-diffusion equation (11) and the constraint (12)264

that determine implicitly the total mass µ1 of the residual265

tumor. For a given value of µ1, we numerically solve (11) by266

using a finite volume scheme, see [8, Appendix C]. Then, we267

use the dichotomy algorithm to fit the constraint:268

• The chemo-attractive potential Φ is computed once for269

all.270

• Pick two reference values 0 < µa < µb; the mass we are271

searching for is expected to belong to (µa, µb).272

• Set µ1 = µa + µb
2 and compute the associated solu-273

tion Cµ1 of (11). Evaluate the discrete version of I =274 ´
δCµ1 dx− λ.275

• If I < 0, then replace µa by µ1, otherwise replace µb by276

µ1.277

• We stop the algorithm when the relative error µb−µa

µa
< ε278

is small enough.279

It is also possible to design an algorithm based on the Newton280

method. However, this approach is much more numerically281

demanding (it requires to solve more convection-diffusion282

equations) and does not provide better results.283

For the evaluation of the residual mass, we do not know284

explicit solutions, even for the simplest model. Nevertheless,285

we can compare the results of the inverse power-dichotomy286

procedure that predicts the residual mass, to the large time287

simulations as performed in [8].288

Therefore, we adopt the same framework as in [8]: the tu-
mor is located at the origin of the computational domain Ω,
which is the two-dimensional unit disk. We work with the
lower bound of the parameters collected in Table 1 . We
compare the asymptotic value of the total mass µf1 given by
the large time simulation of the evolution problem (and check-
ing that the variation of the total mass has become negligible)
to the total mass µpd1 predicted by the power-dichotomy pro-
cedure; let

Eµ1 = |µ
f
1 − µ

pd
1 |

µf1
.

The results for several cell division rates a are collected in289

Table 2: the numerical procedures finds the same equilib-290

rium mass as the resolution of the evolution problem, which291

is another validation of the method.292

Numerical simulations show how parameters293

influence equilibrium294

The numerical methods were next used to assess how the295

parameters influence the equilibrium. In particular, we wish296

6
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a µf1 (mm3) at final time T = 500 µpd1 (mm3) Eµ1

0.103 7.67271875× 10−5 7.67271872× 10−5 4.10× 10−9

0.15 1.11701535× 10−4 1.11701543× 10−4 7.97× 10−8

0.20 1.48924575× 10−4 1.48924641× 10−4 4.40× 10−7

0.3 2.23420663× 10−4 2.23420562× 10−4 4.53× 10−7

0.351 2.61368442× 10−4 2.61367974× 10−4 1.80× 10−6

Table 2. Comparison of the large time tumor mass and the predicted tumor mass for several values of a

to assess the evolution of the tumor mass at equilibrium ac-297

cording to immune response and tumor growth parameters.298

For the numerical simulations presented here, we thus work299

on the eigenproblem (10) and on the constrained system (11)-300

(12). Unless precisely stated, the immune response parame-301

ters are fixed to the lower bounds in Table 1 . The tumor302

growth parameters are set to a = 0.3 day−1 and V = 469.545303

µm3 · day−1. When necessary, the initial values of the un-304

knowns are respectively µ0(0) = 1 celln, µ1(0) = 4188 µm3,305

c(0, x) = 0.306

The main features of the solutions follow the observations307

made in [8], which were performed with arbitrary “academic”308

values for the parameters. We observe that
´

Ω δ(y)c(t, y) dy309

tends to the division rate a, which in this case corresponds310

to the leading eigenvalue of the cell-division equation. It is311

remarkable that the predicted diameter of the tumor at equi-312

librium — see Fig. 2 — is significantly below modern clini-313

cal PET scanners resolution limit, which could detect tumors314

with a diameter larger than 7 mm [41]. This is consistent315

with the standard expectations about the equilibrium phase316

[7], but, of course, it makes difficult further comparison of the317

prediction with data.318

The aggressiveness of the tumor is characterized by the319

division rate, the variations of which impact the size of the320

tumor at equilibrium: the larger a, the larger the residual321

tumor, see Fig. 3-(a). Increasing the immune strength A322

increases the efficacy of the immune response, reducing the323

size of the residual tumor see Fig. 3-(b). Similarly, increas-324

ing the mean rate of influx of effector immune cells in the325

tumor microenvironment R, decreases the tumor size at equi-326

librium, see Fig. 3-(c). On the contrary, increasing the death327

rate of the immune cells γ reduces the efficacy of the immune328

response and increases the equilibrium tumor size see Fig. 3-329

(d).330

Moreover, as mentioned above, not only the parameters de-331

termine the equilibrium mass, but they also impact how the332

equilibrium establishes. Fig. 4-(a-c) shows what happens by333

making the tumor cell division rate a vary. There are more334

oscillations along time, with larger amplitude, as a increases.335

Similar observations can be made when reducing the strength336

of the immune system A (likely out of its realistic range), see337

Fig 4-(d-f). The smaller A, the weaker the damping of the338

oscillations and the longer the periods. We notice that the339

decay of the maximal tumor radius holds at a polynomial340

rate. In extreme situations, the equilibrium does not estab-341

lish on reasonable observation times, and the evolution can342

be confounded with a periodic alternance of growing and re-343

mission phases. Such scenario illustrates that the relevance of344

the equilibrium can be questionable depending on the value345

of the parameters. In what follows, we focus on the details of346

the equilibrium itself, rather than on the transient states.347

Global sensitivity analysis on the equilibrium348

mass identifies the key parameters to target349

in cancer therapy350

Since the equilibrium state can be computed for a reduced351

numerical cost (it takes about 1/4 of a second on a standard352

laptop), we can perform a large number of simulations, sam-353

pling the range of the parameters. This allows us to discuss in354

further details the influence of the parameters on the residual355

mass and, by means of a global sensitivity analysis, to make a356

hierarchy appear according to the influence of the parameters357

on this criterion. Ultimately, this study can help in proposing358

treatments that target the most influential parameters.359

Details on the applied methods for the sensitivity analysis360

can be found in the Suppl. Material. Among the parameters,361

we distinguish:362

• the tumor cell division rate a which drives the tumor363

aggressiveness,364

• the efficacy of the immune system, governed by the mean365

influx rate of activated effector immune cells R, the366

strength of the immune response A, the chemotactic sen-367

sitivity χ, the death rate γ of the immune cells, and the368

strength of the chemical signal induced by each tumor369

cell Aσ370

• environmental parameters such as the diffusion coeffi-371

cients D (for the immune cells) and K (for the chemokine372

concentration).373

We assume that the input parameters are independent ran-374

dom variables. Due to the lack of knowledge on the specific375

distribution of these parameters and according to the con-376

straints on the parameter bounds (Table 1), the most suit-377

able probability distribution is the one which maximizes the378

continuous entropy ([42]), more precisely, the uniform distri-379

bution. Therefore, the uncertainty in the parameter values380

is represented by uniform distributions U(pmin, pmax) where381
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(a) division rate a (b) immune strength A

(c) influx rate R (d) death rate γ of the effector cells

Figure 3. Evolution of the tumor diameter at equilibrium, with respect to the division rate a, the strength of the effector
immune cells A, the influx rate of effector immune cells R, the natural death rate γ of the effector cells

(a) a = 0.1 day−1 (b) a = 0.3 day−1 (c) a = 0.4 day−1

(d) A = 1 cell−1
c · day−1 (e) A = 1 · 10−3 cell−1

c · day−1 (f) A = 5 · 10−5 cell−1
c · day−1

Figure 4. Large-time simulation of the PDE system: evolution of the tumor diameter (bold black line, left axis), and of the
concentration of immune cells µ̄c (dotted grey line, right axis), for several values of the division rate a (top) and for
several values of the immune strength A (bottom). The equilibrium needs more time to establish as the strength of
the immune system decreases

8



Equilibrium phase in immune-controlled tumors

pmin and pmax are respectively the lower and upper bound382

of each uncertain input parameter (see Table 1). In what383

follows, the total mass at equilibrium, µ1, given by the power-384

dichotomy algorithm, is seen as a function of the uncertain385

parameters:386

µ1 = f(a,A,R, χ,D,Aσ, γ,K). (13)

To measure how the total variance of the output µ1 of the387

algorithm is influenced by some subsets i1 · · · ip of the input388

parameters i1 · · · ik (k ≥ p being the number of uncertain in-389

put parameters), we compute the so-called Sobol’s sensitivity390

indices. The total effect of a specific input parameter i is391

evaluated by the total sensitivity index S(i)
T , the sum of the392

sensitivity indices which contain the parameter i. (Details393

on the computed Sobol indices can be found in Suppl. Ma-394

terial). The computation of these indices is usually based395

on a Monte Carlo (MC) method (see [43, 44]) which requires396

a large number of evaluations of the model due to its slow397

convergence rate (O(1/
√
N) where N is the size of the ex-398

perimental sample). To reduce the number of model evalu-399

ations, we use instead the so-called generalized Polynomial400

Chaos (gPC) method (see [45]). The backbone of the method401

is based on building a surrogate of the original model by de-402

composing the quantity of interest on a basis of orthonormal403

polynomials depending on the distribution of the uncertain404

input parameters θ(ω) = (a,A,R, χ,D,Aσ, γ,K), where ω405

represents an element of the set of possible outcomes. Further406

details on the method can be found in [46]. For uniform dis-407

tributions, the most suitable orthonomal polynomial basis is408

the Legendre polynomials. The analysis of the distribution of409

µ1 after a suitable sampling of the parameters space indicates410

that µ1 follows a log-normal distribution. This distribution411

is not uniquely determined by its moments (the Hamburger412

moment problem) and consequently cannot be expanded in a413

gPC (see [47]). Based on this observation, to obtain a better414

convergence in the mean square sense, we apply the gPC al-415

gorithm on the natural logarithm of the output µ1. Typically,416

ln(µ1) is decomposed as follows:417

ln(µ1(ω)) =
∑

α∈Ik,p

qαLα(θ(ω)) + ε, (14)

where ε corresponds to the approximation error, Ik,p = {α ∈418

Nk :
∑k
i=1 αi ≤ p} and p represents the highest degree of the419

expansion. Hence, the dimension of the polynomial basis is420

given by (k+p)!
k!p! . We reduce the number of model evaluations421

to 642 runs by constraining also the parameters interaction422

order to 2. For our purpose, a degree p = 5 gives a bet-423

ter fit (see Fig. 5-Top) to the original model and the good-424

ness of fit of the gPC algorithm is measured by a Leave One425

Out Cross Validation (LOOCV) technique [48]. The result-426

ing LOO error indicates 0.4% prediction error. The Sobol’s427

sensitivity indices are then computed from the exponential of428

the surrogate model (14) by using Monte Carlo simulations429

combined with a careful space-filling sampling of the param-430

eters space (see [43, 49]). For the computations, a sample431

with N = 1.8 × 106 points has been used in order to get432

stable second order Sobol indices. Indeed, the sensitivity in-433

dices that are needed to discriminate the impact of the input434

parameters are the first and total Sobol’ sensitivity indices.435

Here, the analysis revealed a significant difference between436

some first order Sobol’ indices and their corresponding total437

Sobol indices, which indicated the importance of computing438

also the second order Sobol’ indices.439

It is important to stress that the obtained results, and440

the associated conclusions, could be highly dependent on the441

range of the parameter values. This observation makes the442

measurement / estimation of the parameters a crucial issue443

which can be dependent on the type of cancer analyzed.444

Efficacy of the immune response The first order Sobol445

indices represented in Fig. 5-bottom-left indicate that the446

parameters which impact the most the variability of the447

immune-controlled tumor mass at equilibrium are respec-448

tively,449

• the strength of the lethal action of the immune cells on450

the tumor cells A,451

• the natural death rate γ of the effector immune cells,452

• the division rate a of the tumor cells,453

• the influx rate of activated effector immune cells into the454

tumor microenvironment R.455

This is consistent with the observations made from the nu-456

merical experiments above and in [8]: the immune response457

is enhanced by increasing either A or R, and decreasing γ.458

Surprisingly, the chemotactic sensitivity χ, like the strength459

of the chemical signal induced by each tumor cell Aσ, the460

space diffusion coefficient of the effector immune cells D and461

the diffusion coefficient of the chemokines K, have a neg-462

ligible influence on the immune-controlled tumor mass, see463

Fig. 5-bottom-left, whether individually or in combination464

with other parameters. This result can be explained by the465

fact that despite the capacity of the cells of the immune sys-466

tem to infiltrate the tumor, this ability has a reduced effect467

when these cells are not able to effectively kill the tumor cells.468

The second order Sobol’ indices indicate that the leading469

interactions are the pairs (A, γ), (a,A), (a, γ) and (A,R).470

Accordingly, in order to enhance the immune response, an ef-471

ficient strategy can be to act simultaneously on the immune472

strength A together with the natural death rate γ or together473

with tumor division rate a. Increasing the influx rate of acti-474

vated effector immune cells into the tumor microenvironment475

R, by enhancing the activation / recruitment processes lead-476

ing to the conversion of naive immune cells into tumor antigen477

specific effector immune cells, can also be efficient when com-478

bined with an action on A.479
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Figure 5. Top-Left: comparison between the pdf of ln(µ1) from the gPC approximation and the pdf from the original model.
Top-Right: Comparison between the value of µ1 generated by the power-dichotomy algorithm and the gPC approximation.
Bottom-Left: First (empty) and total (dashed) order Sobol indices for µ1. Bottom-Right: Second order Sobol indices for µ1

The tumor aggressiveness The tumor aggressiveness is480

mainly described by the cell division rate a. The first order481

Sobol indice indicates that a influences significantly the tu-482

mor mass at equilibrium, and we observe that the total Sobol483

index of a is higher than the individual one. This indicates484

that this parameter has strong interactions with the others.485

By taking a look at Fig. 5-bottom-right we remark that a in-486

teracts significantly with the parameters A, γ. However, the487

most significant interaction is the one with A. This is con-488

sistent with recent successes of combined therapies targeting489

tumor and immune cells [50].490

Towards optimized treatments Because equilibrium491

state can be computed for a reduced numerical cost, it al-492

lows a large number of simulation to be performed in a min-493

imal time, so that an extensive sampling of the range of the494

parameters can be tested. The flexibility of the numerical495

simulations provides valuable tools to assess the efficiency of496

a variety of therapeutic strategies.497

Fig. 6 illustrates how the equilibrium mass is impacted498

when combining variations of two parameters, namely the499

immune strengthA combined to the tumor cell division rate a,500

the mean rate of influx of effector immune cells R or the death501

rate of effector immune cells γ; and the tumor cell division502

rate a with the death rate γ. Interestingly, a reduction of the503

tumor mass at equilibrium can be obtained significantly more504

easily by acting on two parameters than on a single one. For505

instance, reducing the tumor cell division rate a from 0.35 to506

0.1 cannot reduce the diameter of the tumor below .025 mm,507

with A = 1; while the final size is always smaller when A =508

3.95. This observation highlights the interest of combined509

treatments having such complementary actions. The interest510

is two-fold: either smaller residual tumors can be obtained511

by pairing two actions, or the same final tumor size can be512

obtained with a combined treatment having less toxicity than513

a mono-therapy.514

Conclusion and Discussion515

Controlling parameters that maintain cancer-immune equi-516

librium is key to the successful development of future cancer517

therapies. To understand how equilibrium establishes and518

how it is influenced by immune, environmental and tumor-519

related parameters, we evaluate the tumor mass which tends520

to a constant at equilibrium. In this study, we make use of the521

space and size structured mathematical model developed in522

[8] to provide innovative, efficient methods to predict, at low523

numerical cost, the residual tumor mass at equilibrium. By524

means of numerical simulations and global sensitivity anal-525

ysis, we identify the elimination rate A of tumor cells by526

immune cells as the most influential factor. Therefore, the527

most efficient therapeutic strategy is to act primarily on the528

immune system rather than on the tumor itself. We also529

demonstrate the need to develop combined cancer treatments,530
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(a) different values for the pair (a,A) (b) different values for the pair (A, γ)

(c) different values for the pair (A,R) (d) different values for the pair (a, γ)

Figure 6. Evolution of the tumor diameter at equilibrium, with respect to the division rate a for several values of the immune
strength A (a), with respect to the immune strength A for several values of the death rate γ (b), with respect to
the immune strength A for several values of the influx rate of effector immune cells R (c), and with respect to the
division rate a for several values of the death rate γ (d).

boosting the immune capacity to kill tumor cells (increase531

A), reducing natural death rate of effector immune cells (de-532

crease γ), boosting the conversion into efficient immune cells533

(increase R) and reducing the ability of tumor cells to divide534

(decrease a). The combination of such approaches definitely535

outperforms the performances of a single action; it permits536

to maintain the tumor in a long-lasting equilibrium state, far537

below measurement capabilities.538

Generally, therapeutic strategies are designed to target pre-539

formed, macroscopic cancers. Indeed, patients are diagnosed540

once their tumor is established and measurable, thus at the541

escape phase of the cancer immunoediting process [1]. The542

goal of successful treatments is to revert to the equilibrium543

phase and ultimately to tumor elimination. Experimental544

and clinical evidence indicate that equilibrium exists but it545

is difficult to measure, being below detection limit. It is re-546

garded as “a tumor mass dormancy” when the rate of cancer547

cell proliferation matches their rate of elimination by immune548

cells. In human, cancer recurrence after therapy and long pe-549

riods of remission or detection of low number of tumor cells550

in remission phases are suggestive of such equilibrium phase.551

Mathematical models can also be used to provide evidence of552

such state. The system of partial differential equations pro-553

posed in [8] is precisely intended to describe the earliest stages554

of immune control of tumor growth. Remarkably, while be-555

ing in the most favorable condition, only taking into account556

the tumor antigen-specific cytotoxic immune cells and no im-557

munosuppressive mechanisms, the model reproduces the for-558

mation of an equilibrium phase with maintenance of residual559

tumor cells rather than their complete elimination. Besides560

suggesting that elimination may be difficult to reach, this561

finding also brings out the role of leading parameters that562

shape the equilibrium features and opens new perspectives to563

elaborate cancer therapy strategies that reach this state of564

equilibrium.565

To decipher tumor-immune system dynamics leading to566
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equilibrium state, we have developed here computational567

tools. The total mass of the tumor is a critical criterion of568

the equilibrium and was used to predict parameters that con-569

tribute the most to the establishment of the equilibrium. By570

means of global sensitivity analysis, we identified four pa-571

rameters that affect the most the variability of the immune-572

controlled tumor mass. Three of them are related to immune573

cells, A, R and γ and one to tumor cells, a. Moreover, the574

influence of the leading parameters is significantly increased575

when they are paired. This observation validates the devel-576

opment of combined therapeutic treatments which would be577

more efficient at reducing tumor growth and reduce toxic-578

ity. Because the pair (a,A) is among the most influential, we579

predict that a combination of drugs enhancing anti-tumor im-580

mune response with drugs diminishing tumor aggressiveness581

will be the most efficient. This is confirmed by the clinical582

benefit obtained when chemotherapies reducing the tumor583

cell division rate a are combined with immunotherapies in-584

creasing A and R, [50]. The parameter A which governs the585

efficacy of the immune system to eliminate tumor cells, is the586

most influential. This finding correlates with the observation587

that “hot” tumors infiltrated with immune cells have bet-588

ter prognostic than “cold” tumors [51] and that the immune589

cells with the strongest positive impact on patient’s survival590

are the cytotoxic CD8+ T cells [52]. It is also in line with the591

success of immune checkpoint inhibitors which revert immune592

tolerance triggered by chronic activation and upregulation of593

exhaustion markers on effector T and NK cells, thus not only594

increasing the parameter A but also R [53]. The leading role595

of the parameter A is also validated by experimental studies596

and clinical trials, including adoptive transfer of CAR-T and597

CAR-NK cells engineered to attack cancer cells, immunomod-598

ulating antibody therapies or cancer vaccines which boost the599

anti-tumor immune response [50, 54, 55]. Finally, our finding600

that the parameter γ is highly influential is validated by the601

administration of cytokines that stimulate and increase effec-602

tor T and NK cell survival which are efficient at controlling603

tumor growth [55]. Thus, altogether, these experimental and604

clinical data validate the numerical method.605

Interestingly, besides the dominant role of the parameter A,606

only two additional parameters related to immune cells R, γ607

seems to have an influence on the tumor mass at equilibrium.608

These data predict that to enhance the immune response, it609

is more efficient to increase the rate of influx and conversion610

of naive immune cells into effector cells (parameter R) or611

to increase the lifespan of immune effectors (parameter γ)612

than to increase chemotaxis as a whole (parameters χ, Aσ ,613

K). The lack of influence of chemotaxis emphasizes that the614

localization of immune cells within tumors is necessary but615

not sufficient. Indeed, the leading influence of the parameters616

A,R, γ stresses the importance of having functional immune617

cells infiltrating tumors. Overcoming immune suppression is618

therefore highly relevant in therapeutic strategies.619

In conclusion, clinical trials have been undertaken quite620

often on assumptions from acquired knowledge on tumor de-621

velopment and immune responses to cancer cells, but without622

tools to help the decision-making. The numerical methods623

developed here provide valuable hints for the design and the624

optimization of anti-tumor therapies. The approach is vali-625

dated by clinical evidence obtained so far. By adapting the626

range of the parameters to the biological values, one can more627

precisely adapt the therapeutic strategies to specific types of628

tumors. We thus conclude that mathematical modelling com-629

bined with numerical validation provide valuable information630

that could contribute to better stratify the patients eligible631

for treatments and consequently save time and lives. In ad-632

dition, it could also help to decrease the burden of treatment633

cost providing hints on optimized therapeutic strategies.634

Materials and Methods635

Mice FVB/N wild-type (WT) mice (Charles River Labo-636

ratories, St Germain Nuelles, France) were bred and housed637

in specific-pathogen-free conditions. Experiments were per-638

formed using 6-7 week-old female FVB/N, in compliance639

with institutional guidelines and have been approved by640

the regional committee for animal experimentation (refer-641

ence MESR 2016112515599520; CIEPAL, Nice Côte d’Azur,642

France).643

In vivo tumor growth mSCC38 tumor cell line was es-644

tablished from DMBA/PMA induced sSCCs and maintained645

in DMEM (Gibco-ThermoFisher Scientific, Courtaboeuf,646

France) supplemented with 10% heat-inactivated fetal bovine647

serum (FBS) (GE Healthcare, Chicago, Illinois, USA) peni-648

cillin (100 U/ml) and streptomycin (100 µg/ml) (Gibco-649

ThermoFisher Scientific, Courtaboeuf, France). 5 × 105
650

mSCC38 were intradermally injected in anesthetized mice af-651

ter dorsal skin shaving. Tumor volume was measured man-652

ually using a ruler and calculated according to the ellipsoid653

formula: Volume=Length (mm) × Width (mm) × Height654

(mm) ×π/6.655

Tissue preparation and cell count mSCC38 were ex-656

cised and enzymatically treated twice with collagenase IV657

(1 mg/ml) (Sigma-Aldrich, St Quentin Fallavier, France),658

and DNase I (0.2 mg/ml) (Roche Diagnostic, Meylan,659

France) for 20 minutes at 37◦ C. Total cell count was660

obtained on a Casy cell counter (Ovni Life Science, Bre-661

men, Germany). Immune cell count was determined from662

flow cytometry analysis. Briefly, cell suspensions were incu-663

bated with anti-CD16/32 (2.4G2) to block Fc receptors and664

stained with anti-CD45 (30-F11)-BV510 antibody and the 7-665

Aminoactinomycin D (7-AAD) to identify live immune cells666

(BD Biosciences, Le Pont de Claix, France). Samples were667

acquired on a BD LSR Fortessa and analyzed with DIVA V8668
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and FlowJo V10 software (BD Biosciences, Le Pont de Claix,669

France).670

Mathematical and statistical analysis Computations671

were realized in Python and we made use of dedicated li-672

braries, in particular the gmsh library for the computational673

domain mesh generation, the packages optimize (for the the674

optimization methods using the Levenberg-Marquard mean675

square algorithm; similar results have been obtained with676

the CMA-ES algorithm of the library cma) from the library677

scipy, the library Pygpc for the generalized Polynomial678

Chaos approximation [56] and the library Salib for the sen-679

sitivity analysis [57].680
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Supplementary material953

Cell division operator954

The binary division operator (2) is a particular case, and955

for applications it is relevant to deal with more general ex-956

pressions. Namely, we have957

Q(n)(t, z) = −a(z)n(t, z) +
ˆ ∞
z

a(z′)k(z|z′)n(t, z′) dz′. (15)

In (15), a(z′) is the frequency of division of cells having size958

z′, and k(z|z′) gives the size-distribution that results from959

the division of a tumor cell with size z′. What is crucial for960

modeling purposes is the requirement961

ˆ z

0
z′k(z′|z) dz′ = z,

which is related to the principle that cell-division does not962

change the total mass963

ˆ ∞
0

zQ(n) dz = 0.

We refer the reader to [15] for examples of such cell-division964

operators.965

Equilibrium states966

The equilibrium state is characterized by means of an eigen-967

problem: we look for λ > 0 and a non negative function968

z ≥ 0 7→ N(z) satisfying (10) The analysis of the existence-969

uniqueness of the eigenpair (λ,N) can be found in [29], the970

textbook [58, Theorem 4.6], and, for extension to cases with971

non constant growth rate V , in [15].972

Coming back to the coupled model, we infer that the equi-
librium phase corresponds to the situation where the death
rate precisely counterbalances the natural exponential growth
of the tumor cell population. Let Φ be the solution of

−∆xΦ = σ − 1
|Ω|

ˆ
Ω
σ(y) dy,

endowed with the homogeneous Neumann boundary condi-973

tion. Note that this quantity is a priori defined; it does not974

depend on the coupling between tumor cells and immune cells.975

In a computational perspective, it can thus be pre-computed976

once for all. The equilibrium mass µ1 is implicitely defined by977

the fact that the solution of the stationary equation (11) sat-978

isfies the constraint (12). This implicit definition is clarified979

by the following statement, see [8].980

Theorem .1 Let g : [0,∞) → [0,∞] be a non decreasing981

function such that g(0) = 0, and let x 7→ pS(x) ∈ L2(Ω) be a982

non negative function. If ` > 0 is small enough, there exists a983

unique µ̄1(`) > 0 such that Cµ̄1(`), solution of the stationary984

equation (11) satisfies
´

Ω δC dx = `.985

Theorem .1 requires a smallness assumption; for (2) with986

a constant division rate a, this is a smallness assumption on987

a. Numerical experiments have shown different large time988

behaviors for the evolution problem (1a)-(1e):989

• when the source term S is space-homogeneous, the ex-990

pected behavior seems to be very robust. The immune991

cell concentration tends to fulfill the constraint (12) as992

time becomes large, and the size repartition of tumor993

cells tends to the eigenfunction N . The total mass µ1994

tends to a constant; however the asymptotic value can-995

not be predicted easily. We again refer the reader to996

Fig. 2 for an illustration of these facts.997

• When S has spacial variations, the asymptotic behavior998

seems to be much more sensitive to the smallness condi-999

tion. On short time scale of simulations, we observe alter-1000

nance of growth and remission phases, and the damping1001

to the equilibrium could be very slow.1002

These observations bring out the complementary roles of dif-1003

ferent type of cytotoxic cells [36]. The NK cells could be seen1004

as a space-homogenous source of immune cells, immediately1005

available to fight against the tumor, at the early stage of tu-1006

mor growth. In contrast, T -cells need an efficient priming1007

which occurs in the draining lymph nodes, and their sources1008

is therefore non-homogeneously distributed. Eventually, NK1009

and CD8+ T -cells cooperate to the anti-tumor immune re-1010

sponse.1011

Computation of the eigen-elements of1012

the growth-fragmentation equation1013

It is important to bear in mind the main arguments of1014

the proof of the existence-uniqueness of the eigenpair (λ,N)1015

for the growth-fragmentation equation. Namely, for Λ large1016

enough we consider the shifted operator1017

TΛN = ΛN + ∂z(V N) + aN −
ˆ ∞
z

a(z′)k(z|z′)N(z′) dz′.

Then, we check that the operator SΛ which associates to a1018

function f the solution n of TΛn = f fulfills the requirements1019

of the Krein-Rutman theorem (roughly speaking, positivity1020

and compactness), see [59]. Accordingly, the quantity of in-1021

terest λ is related to the leading eigenvalue of SΛ. In fact, this1022

reasoning should be applied to a somehow truncated and reg-1023

ularized version of the operator, and the conclusion needs fur-1024

ther compactness arguments; nevertheless this is the essence1025

of the proof. In terms of numerical method, this suggests1026

to appeal to the inverse power algorithm, applied to a dis-1027

cretized version of the equation. However, we need to define1028

appropriately the shift parameter Λ. As far as the continuous1029

problem is considered, Λ can be estimated by the parameters1030

of the model [15], but it is critical for practical issues to check1031

whether or not this condition is impacted by the discretiza-1032

tion procedure. This information will be used to apply the1033
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inverse power method to the discretized and shifted version1034

of the problem.1035

Analysis of the discrete problem1036

The computational domain for the size variable is the inter-1037

val [0, R] where R is chosen large enough: due to the division1038

processes, we expect that the support of the solution remains1039

essentially on a bounded interval, and the cut-off should not1040

perturb too much the solution. In what follows, the size step1041

h = zi+1 − zi is assumed to be constant. The discrete un-1042

knowns Ni, with i ∈ {1, ..., I} and h = R/I, are intended1043

to approximate N(zi) where zi = ih. The integral that de-1044

fines the gain term of the division operator is approximated1045

by a simple quadrature rule. For the operator (2) the kernel1046

involves Dirac masses which can be approached by peaked1047

Gaussian. We introduce the operator T h
Λ : RI → RI defined1048

by1049 
(T h

Λ N)i = Fi − Fi−1 + h(Λ + ai)Ni

−h2
I∑
j=i

a(zj)k(zi|zj)Nj ,

N1 = 0

(16)

where Fi = Vi+1/2Ni represents the convective numerical flux1050

on the grid point zi+1/2 = (i+1/2)h, i ∈ {1, ..., I}. This defi-1051

nition takes into account that the growth rate is non negative,1052

and applies the upwinding principles. Note that the step size1053

h should be small enough to capture the division of small1054

cells, if any. The following statement provides the a priori es-1055

timate which allows us to determine the shift for the discrete1056

problem.1057

Theorem .2 We suppose that1058

i) z 7→ V (z) is a continuous function which lies in L∞ and1059

it is bounded from below by a positive constant,1060

ii) h
∑I
j=1 a(zj)k(zi|zj) remains bounded uniformly with re-1061

spect to h,1062

iii) for any i ∈ {1, ..., I − 1}, there exists j ∈ {i + 1, ..., I}1063

such that a(zj)k(zi|zj) > 0,1064

iv) there exists Z0 ∈ (0,∞) such that, setting N̄ (z) =1065

h
∑I
j=2 k(zj |z), we have a(z)(N̄ (z) − 1) ≥ ν0 > 0 for1066

any z ≥ Z0.1067

Let1068

Λ >
‖V ‖L∞

minj∈{1,...,I} |Vj+1/2|
maxk∈{1,...,I}

(
h

I∑
j=k

ajk(zk|zj)
)

−minj∈{1,...,I} |aj |,
(17)

and we suppose that R > Z0 is large enough. Then, T h
Λ1069

is invertible and there exists a pair µ > 0, N ∈ RI with1070

positive components, such that Ker
(
(T h

Λ )−1−µ
)

= Span{N}.1071

Moreover λ = Λ− 1
µ > 0.1072

Note that the sum that defines N̄ (z) is actually reduced1073

over the indices such that jh ≤ z; this quantity is interpreted1074

as the expected number of cells produced from the division of1075

a cell with size z so that the forth assumption is quite natural.1076

1077

Proof. Let f ∈ RI . We consider the equation1078

T h
Λ N = f.

We denote N = S h
Λ f the solution. We are going to show1079

that S h
Λ is well defined and satisfies the assumptions of the1080

Perron-Frobenius theorem, see e. g. [38, Theorem 1.37 &1081

Corollary 1.39] or [60, Chapter 5].1082

It is convenient to introduce the change of unknown Ui =1083

NiVi+1/2, ∀i ∈ {1, · · · , I}. The problem recasts as1084 

(T̃ h
Λ U)i = h

fi
Vi+1/2

, with

(T̃ h
Λ U)i = Ui − Ui−1 + h

Λ + ai
Vi+1/2

Ui

−h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)Uj ,

U1 = 0.

(18)

The solution is interpreted as the fixed point of the mapping

ξ 7−→ U = Ahξ

where U is given by U1 = 0 and

Ui = Ui−1 + h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)ξj + h
fi

Vi+1/2
.

We are going to show that Ah is a contraction: ‖Ahξ‖`∞ ≤
k‖ξ‖`∞ for some k < 1. Multiplying (18) by sign(Ui), we
obtain(

1 + h
Λ + ai
Vi

)
sign(Ui)Ui =

(
1 + h

Λ + ai
Vi

)
|Ui|

= sign(Ui)Ui−1 + h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)sign(Ui)ξj

≤ |Ui−1|+ h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |.

We multiply this by the weight
∏i−1
l=1
[
1 + h Λ+al

Vl+1/2

]
, where all1085

factors are ≥ 1. We get1086

|Ui|
i∏
l=1

[
1 + h

Λ + al
Vl+1/2

]
≤ |Ui−1|

i−1∏
l=1

[
1 + h

Λ + al
Vl+1/2

]
+h2

i∏
l=1

[
1 + h

Λ + al
Vl+1/2

] I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |.
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Then, summing over i ∈ {2, ...,m} yields1087

|Um|
m∏
l=1

[
1 + h

Λ + al
Vl+1/2

]
≤ |U1|

[
1 + h

Λ + a1

V3/2

]
+h2

m∑
i=2

i∏
l=1

[
1 + h

Λ + al
Vl+1/2

] I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |

where actually U1 = 0. It follows that1088

|Um| ≤ h2
m∑
i=2

m∏
l=i

[
1 + h

Λ + al
Vl+1/2

]−1 I∑
j=i

aj
Vj+1/2

k(zi|zj)|ξj |

≤ h2‖ξ‖`∞
minj∈{1,...,I} Vj+1/2

m∑
i=2

m∏
l=i

[
1 + h

Λ + al
Vl+1/2

]−1 I∑
j=i

ajk(zi|zj)

≤ h2‖ξ‖`∞
minj∈{1,...,I} Vj+1/2

∥∥∥∥∥∥
I∑
j=i

ajk(zi|zj)

∥∥∥∥∥∥
`∞

m∑
i=2

[
1 + h

Λ + minl∈{1,...,I} al
‖V ‖L∞

]i−m+1

≤ h‖ξ‖`∞
minj∈{1,...,I} Vj+1/2

∥∥∥∥∥∥
I∑
j=i

ajk(zi|zj)

∥∥∥∥∥∥
`∞[Λ + minl∈{1,...,I} al

‖V ‖L∞

]−1

.

Therefore, Ah is a contraction provided (17) holds. This es-1089

timate is similar to the condition obtained for the continuous1090

problem, see [15, Proof of Theorem 2, Appendix B]; the dis-1091

cretization does not introduce further constraints.1092

We are now going to show that T h
Λ is a M -matrix when1093

(17) holds. Let f ∈ RI \ {0} with non negative components.1094

Let U ∈ RI satisfy (T̃ h
Λ U)i = h fi

Vi+1/2
. Let i0 be the index1095

such that Ui0 = min
{
Ui, i ∈ {2, ..., I}

}
. We have1096

Ui0

(
1 + h

Λ + ai0
Vi0+1/2

)
= Ui0−1 + h2

I∑
j=i0

aj
Vj+1/2

k(zi0 |zj)Uj + h
fi0

Vi0+1/2

≥ Ui0

1 + h2
I∑

j=i0

aj
Vj+1/2

k(zi0 |zj)

+ h
fi0

Vi0+1/2
.

(19)

Since fi0 ≥ 0, we get1097

Ui0

Λ + ai0
Vi0+1/2

− h
I∑

j=i0

aj
Vj+1/2

k(zi0 |zj)


︸ ︷︷ ︸

>0 by (17)

≥ 0,

which tells us that Ui0 ≥ 0. Suppose Ui0 = 0 for some i0 > 1.1098

Coming back to (19), we deduce that Ui0−1 vanishes too,1099

and so on and so forth, we obtain U1 = ... = Ui0 = 0.1100

Finally, we use the irreductibility assumption iii): we can1101

find j0 > i0 such that aj0
Vj0+1/2

k(zi0 |zj0) > 0 and (19) implies1102

aj0
Vj0+1/2

k(zi0 |zj0)Uj0 = 0, so that Uj0 = 0. We deduce that1103

U = 0, which contradicts f 6= 0. Therefore the components1104

of U are positive, but U1.1105

We conclude by applying the Perron-Froebenius theorem to
(T h

Λ )−1, [60, Chapter 5]. It remains to prove that λ = Λ− 1
µ

is positive, with µ the spectral radius of (T h
Λ )−1. To this

end, we make use of assumption iv). We set Z0 = i0h. We
argue by contradiction, supposing that λ = Λ − 1/µ < 0.
We consider the eigenvector with positive components and
normalized by the condition h

∑I
i=1 Ui = 1. We have

(T̃ h
0 U)i = Ui − Ui−1 + ai

Vi+1/2
hUi

−h2
I∑
j=i

aj
Vj+1/2

k(zi|zj)Uj = −λUi ≥ 0.

It follows that, for m ≥ i0,

Um ≥ −h
m∑
i=2

ai
Vi+1/2

Ui + h2
m∑
i=2

I∑
j=i

aj
Vj+1/2

k(zi|zj)Uj

≥ −h
m∑
i=2

ai
Vi+1/2

Ui + h

m∑
j=2

(
h

j∑
i=2

k(zi|zj)
)

aj
Vj+1/2

Uj

≥ −h
m∑
i=2

ai
Vi+1/2

Ui + h

m∑
j=2
N̄ (zj)

aj
Vj+1/2

Uj

≥ h

m∑
i=2

(N̄ (zi)− 1) ai
Vi+1/2

Ui

≥ h

m∑
i=i0

(N̄ (zi)− 1) ai
Vi+1/2

Ui ≥
ν0

‖V ‖L∞
h

m∑
i=i0

Ui.

It implies1106

1 = h

I∑
m=1

Um ≥ h
I∑

m=i0

Um ≥ h(I − i0) ν0

‖V ‖L∞
h

m∑
i=i0

Ui.

We arrive at1107

1 ≥ (R− Z0) ν0

‖V ‖L∞
,

a contradiction when R is chosen large enough (but how large1108

R should be does not depend on h). Therefore, we conclude1109

that λ > 0.1110

Numerical approximation of (λ,N)1111

We compute (an approximation of) the eigenpair (λ,N) by1112

using the inverse power method which finds the eigenvalue of1113

(T h
Λ )−1 with largest modulus:1114

• We pick Λ verifying (17).1115

• We compute once for all the LU decomposition of the1116

matrix T h
Λ .1117

• We choose a threshold 0 < ε� 1.1118

• We start from a random vector N (0) and we construct1119

the iterations1120

– LUq(k+1) = N (k),1121
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– N (k+1) = q(k+1)

‖q(k+1)‖1122

until the relative error ‖N
(k+1)−N(k)‖
‖N(k)‖ ≤ ε is small enough.1123

Then, given the last iterate N (K), we set LUq = N (K),1124

µ̃ = q·N(K)

N(K)·N(K) , and λ̃ = Λ− 1/µ̃.1125

This approach relies on the ability to approximate correctly1126

the eigenpair of the growth-fragmentation operator. In par-1127

ticular, it is important to preserve the algebraic multiplicity.1128

This issue is quite subtle and it is known that the point-1129

wise convergence of the operator is not enough to guarantee1130

the convergence of the eigenelements and the consistency of1131

the invariant subspaces, see [39] for relevant examples. This1132

question has been thoroughly investigated in [39, 40] which1133

introduced a suitable notion of stability. It turns out that1134

one needs a uniform convergence of the operators. Namely,1135

here, we should check that ‖(T I
Λ )−1 − (TΛ)−1‖ −→ 0 as1136

I −→ ∞. In the present framework, a difficulty relies on1137

the fact that the size variable lies in an unbounded domain,1138

which prevents for using usual compactness arguments. For1139

this reason, we introduce a truncated version of the prob-1140

lem, which has also to be suitably regularized. Let us denote1141

by T R,ε
Λ the corresponding operator, where ε represents the1142

regularization parameter. This truncated and regularized op-1143

erator appeared already in [15]. Indeed, we know from [15]1144

that ‖T R,ε
Λ − TΛ‖ −→ 0 as R −→ ∞ and ε −→ 0, hence,1145

this implies that ‖(T R,ε
Λ )−1 − (TΛ)−1‖ −→ 0 as R −→ ∞1146

and ε −→ 0 by continuity of the map Π : TΛ 7→ (TΛ)−1.1147

Moreover, (T R,ε
Λ )−1 is well-defined, continuous and com-1148

pact, see [15, Appendix. B]. The discrete operators (T I
Λ )−1

1149

converge pointwise to (T R,ε
Λ )−1, and the compactness of1150

(T R,ε
Λ )−1 ensures that the discrete operator converges uni-1151

formly to (T R,ε
Λ )−1, for 0 < R < ε and 0 < ε < 1 fixed1152

(see [40] for more details on this fact). Following [40], we de-1153

duce that the numerical eigenelements (λI , N I) converges to1154

(λR,ε, NR,ε), the eigenelements of (T R,ε
Λ )−1, while preserving1155

their algebraic multiplicity. Finally the uniform convergence1156

‖(T R,ε
Λ )−1 − (TΛ)−1‖ −→ 0 as R −→∞ and ε −→ 0 ensures1157

the convergence of (λR,ε, NR,ε) to (λ,N), [15].1158

Numerical results1159

For some specific fragmentation kernels and growth rates,
the eigenpair (λ,N) is explicitly known, see [15]. We can use
these formula to check that the algorithm is able to find the
expected values and profiles. To this end, we introduce the
relative errors

Ehλ = |λ− λ̃|
λ̃

and EhV = h

I∑
i=1
|N (K)

i −N(ih)|

where N (K) and N are both normalized by h
∑I
i=1N

(K)
i =1160

h
∑I
i=1N(ih) = 1.1161

Mitosis fragmentation kernel. We start with the binary1162

division kernel:1163

k(z|z′) = δz′=2z. (20)

The associated division operator is described by (2). We as-1164

sume that a and V are constant. In this specific case the1165

eigenpair is given by1166

λ = a, N(z) = N̄

∞∑
n=0

(−1)nαn exp
(
−2n+1 a

V
z
)
, (21)

with N̄ > 0 an appropriate normalizing constant and
(
αn
)
n∈N

is the sequence defined by the recursion

α0 = 1, αn = 2
2n − 1αn−1.

In practice we shall use a truncated version of the series that1167

defines N . For the numerical tests, we use the parameters1168

collected in Table 31169

a V R ε

4 0.6 5 10−6

Table 3. Data for the numerical tests: binary division
kernel

Number of cells Eλ EV
1000 3.73× 10−5 3.83× 10−2

2000 5.68× 10−8 1.93× 10−2

4000 6.77× 10−7 9.69× 10−3

8000 6.84× 10−7 4.85× 10−3

Table 4. Binary division kernel: errors for several number
of grid points

With this threshold ε, the approached eigenpair is reached in1170

43 iterations, independently of the size step. Fig. 7 represents1171

the evolution of the error EhV as a function of h in a log-log1172

scale: N (K) approachesN at order 1. The rate improves when1173

using a quadrature rule with a better accuracy. For this test,1174

the approximation of the eigenvalue is already accurate with1175

a coarse grid; it is simply driven by the threshold ε and EhL1176

does not significantly change with h.1177

Uniform fragmentation. The uniform fragmentation ker-
nel is defined by:

k(z|z′) = 1
z′
10≤z≤z′ .

We apply the algorithm for the following two cases:1178

1. V (z) = V0 and a(z) = a0z. We have λ =
√
a0V0 and

N(z) = 2
√
a0

V0

(
Z + Z2

2

)
exp

(
−Z − Z2

2

)
.
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(a) The rate of convergence to the exact eigenfunction
with respect to h

(b) The rate of convergence to the exact eigenvalue with
respect to h

Figure 7. Binary division kernel: convergence rates of (λ(K), N (K)) with respect to h

We still use the values in Table 3 (especially, a0 = a and1179

V0 = V ). The approximated eigenpair is obtained in 841180

iterations and, as in the previous test, it does not change1181

with the size step. In this case, both the eigenvalue and1182

the eigenfunction are approached at order 1, see Table 51183

and Fig. 8.1184

Number of cells Eλ EV
1000 1.30× 10−2 8.89× 10−3

2000 6.43× 10−3 4.50× 10−3

4000 3.23× 10−3 2.24× 10−3

8000 1.62× 10−3 1.13× 10−3

Table 5. Uniform fragmentation, ex. 1: errors for several
number of grid points

Figure 8. Uniform fragmentation, ex. 1: rate of
convergence to the exact eigenpair with respect
to h

2. V (z) = V0z and a(z) = a0z
n with n ∈ N \ {0}. The1185

eigenpair is defined by the following formula:1186

n = 1 λ = V0 N(z) = a0

V0
exp
(

−a0

V0
z
)

n = 2 λ = V0 N(z) = 2a0

πV0
exp
(

− a0

2V0
z2
)

n λ = V0 N(z) =
(
a0

nV0

) 1
n n

Γ( 1
n

)
exp
(

− a0

nV0
zn
)

1187

Note that the growth rate V vanishes and Theorem .21188

does not apply as such. Nonetheless, the algorithm works1189

well and still captures the eigenpair. We perform the1190

test for n = 1 and n = 2 and the results are recorded in1191

Table 6, Fig. 9 and Table 7, Fig. 10, respectively.1192

Number of cells Eλ EV
1000 4.70× 10−2 2× 10−2

2000 2.43× 10−2 1.06× 10−2

4000 1.25× 10−2 5.5× 10−3

8000 6.39× 10−3 2.81× 10−3

Table 6. Uniform fragmentation, ex. 2, case n = 1: errors
for different number of cells
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Figure 9. Uniform fragmentation, ex. 2 case n = 1: rate of
convergence to the exact eigenpair with respect
to h

Number of cells Eλ EV
1000 2.39× 10−2 8.81× 10−2

2000 1.23× 10−3 4.53× 10−3

4000 6.41× 10−3 2.35× 10−3

8000 3.41× 10−3 1.24× 10−3

Table 7. Uniform fragmentation, ex. 2, case n = 2: errors
for different number of cells

Figure 10. Uniform fragmentation, ex. 2: rate of
convergence to the exact eigenpair with respect
to h

Sensitivity analysis on the equilibrium1193

mass1194

Having an efficient procedure to predict the residual mass1195

of the equilibrium phase also opens perspectives to discuss the1196

influence of the parameters. This can provide useful hints for1197

the design and the optimization of anti-tumor therapies. We1198

address this issue by performing a global sensitivity analysis1199

on the immune-controlled tumor mass. Sensitivity analysis1200

also provides information on the quantification of uncertainty1201

in the model output with respect to the uncertainties in the1202

input parameters. We remind the reader that the equilbrium1203

mass is seen as a function of the parameters in Table 1:1204

µ1 = f(a,A, p, χ,D, γ). (22)

We consider that the input parameters are independent ran-1205

dom variables uniformly distributed in an interval [x1, x2] ⊂1206

(0,∞):1207

M = (a,A, p, χ,D, γ) with Mi ∼ U(x1, x2). (23)

The pillar of the Sobol sensitivity analysis is the decompo-1208

sition of f into 2n − 1 summands of increasing dimensions:1209

1210

f(M) = f0 +
∑n
i=1 fi(Mi)

+
∑

1≤i<j≤n
fij(Mi,Mj) + · · ·+ f1···n(M1, · · · ,Mn),

(24)
where1211

1
x2 − x1

ˆ
[x1,x2]

fi1···ip(Mi1···ip) dMik = 0 for k ∈ {1, ..., p},

(25)
1212

f0 = 1
(x2 − x1)n

ˆ
[x1,x2]n

f(M) dM, (26)

1213 ˆ
[x1,x2]n

fi1···ip(Mi1···ip)fj1···jp
(Mj1···jp

) dM = 0, (27)

and Mi1···ip = (Mi1 , · · ·Mip). The existence and uniqueness1214

of the above decomposition has been proven in [44], given1215

f a square integrable function. Owing to the orthogonality1216

condition (27), the total variance of f reads:1217

V = Var(f(M)) = 1
(x2 − x1)n

ˆ
[x1,x2]n

f(M)2 dM−f2
0 . (28)

Given (24), V can be decomposed as follows:1218

V =
n∑
i=1
Vi +

∑
1≤i<j≤n

Vij + · · ·+ V1···n, (29)

where the terms Vi1···ip , called partial variances read:1219

Vi1···ip = 1
(x2 − x1)n

ˆ
[x1,x2]n

f2
i1···ip dMi1 · · · dMip . (30)

Following the description in [44], the Sobol’ sensitivity indices1220

are defined as follows:1221

Si1···ip =
Vi1···ip
V

. (31)

They verify1222

n∑
i=1

Si +
∑

1≤i<j≤n
Sij + · · ·+ S1···n = 1. (32)
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Each index Si1···ip measures how the total variance of f is af-1223

fected by uncertainties in the set of input parameters i1 · · · ip.1224

An equivalent definition of the above indices is given by (see1225

[43]):1226

Vi = Var(E(Y |Mi)), Vij = Var(E(Y |Mi,Mj))− Vi − Vj , ...
(33)

The total effect of a specific input parameter i is evaluated1227

by the so-called total sensitivity index S
(i)
T , the sum of the1228

sensitivity indices which contain i:1229

S
(i)
T =

∑
Ci

Si1···ip (34)

where Ci = {(i1 · · · ip) : ∃m ∈ {1, ..., p}, im = i}. In practice,1230

the sensitivity indices that are needed to discriminate the1231

impact of the parameters are the first, second and total Sobol’1232

sensitivity indices. The above indices are computed using1233

Monte Carlo simulations combined with a careful sampling1234

of the parameters space in order to reduce the computational1235

load and the number of model evaluations. For this purpose,1236

the following estimators can be derived using two different N1237

samples A and B, see [43, 49],1238

f̂0 = 1
N

N∑
l=1

f(Ml), (35)

1239

V̂ = 1
N

N∑
l=1

f2(Ml)− f̂2
0 , (36)

1240

V̂i = 1
N

N∑
l=1

f(M (A)
(−i)l,M

(A)
il )f(M (B)

(−i)l,M
(A)
il )− f̂2

0 , (37)

1241

V̂ij
= 1
N

∑N
l=1 f(M (A)

−(i,j)l,M
(A)
il ,M

(A)
jl )f(M (B)

−(i,j)l,M
(A)
il ,M

(A)
jl )

−f̂2
0 − V̂i − V̂j .

(38)
Here the notation M−(i1···ip)l stands for the l-th sample line1242

where we get rid of the points corresponding to the indices1243

i1, · · · , ip. The total sensitivity [61] is given by:1244

STi
= 1− S−i (39)

where S−i is the sum of all the sensitivity indices that do1245

not contain the index i. Hence, the total sensitivity index1246

estimator reads:1247

ŜTi = 1− V̂−i
V̂

(40)

where

V̂−i = 1
N

N∑
l=1

f(M (A)
(−i)l,M

(A)
il )f(M (A)

(−i)l,M
(B)
il )− f̂2

0 .
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