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Introduction

The immune system plays a major role in the control of tumor growth. This has led to the concept of immune surveillance and cancer immunoediting composed of three phases [START_REF] Dunn | Cancer immunoediting: from immuno-713 surveillance to tumor escape[END_REF]: the elimination, when tumors are rapidly eradicated by the immune system, the equilibrium, a latency period when tumors can survive but remain on a controlled state, and the escape, the final outgrowth of tumors that have outstripped immunological restraints. In this later phase, immune suppression is prevailing and immune cells are also subverted to promote tumor growth. Numerous cancer immunotherapy strategies have been designed and assessed to counteract cancer immune evasion and restore effective and durable elimination of tumors [START_REF] Boon | Human T -cell responses against 717 melanoma[END_REF][START_REF] Dranoff | Cytokines in cancer pathogenesis and cancer 722 therapy[END_REF][START_REF] Rabinovich | Immunosuppressive strategies that are medi-725 ated by tumor cells[END_REF][START_REF] Smyth | A fresh 730 look at tumor immunosurveillance and immunotherapy[END_REF][START_REF] Whiteside | Immune suppression in cancer: Effects 733 on immune cells, mechanisms and future therapeutic in-734 tervention[END_REF] They show improved efficacy over growth and cell divisions, and the displacement of the immune cells towards the tumor, by means of activation processes and chemotaxis effects. The most notable finding is that an equilibrium state, with residual tumor and active immune cells, can be observed. Thus, mathematical analysis provides a basis for the explanation of the formation of the equilibrium. Indeed, the equilibrium can be mathematically interpreted by means of an eigenproblem coupled to a stationary diffusion equation with constraint. This observation permits us to develop an efficient numerical strategy to determine a priori the shape of the equilibrium -namely, the size distribution of the tumor cells and the residual tumor mass -for a given set of biological tumor and immune cell parameters. Consequently, the equilibrium state can be computed at low numerical cost since we can avoid the resolution of the evolution problem on a long time range. The use of this simple and fast algorithm allows us to address the question of the sensitivity of the residual mass to the parameters and to discuss the impact of treatments. This information can be decisive to design clinical studies and choose therapeutic strategies. Our work therefore provides a tool for cancer treatment management.

Quick guide to equations: A coupled PDE model for tumor-immune system interactions

The principles of the modeling adopted in [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF] • the concentration of activated immune cells which are fighting against the tumor (t, x) → c(t, x);

• the concentration of chemical signal that attracts the immune cells towards the tumor microenvironment (t, x) →

φ(t, x).

The model assumes that the tumor is located at the center of a domain Ω, and it distinguishes two distinct length scales.

The size of the tumor cells z ≥ 0 is considered as "infinitely small" compared to the scale of displacement of the immune cells, described by the space variable x ∈ Ω. Immune cells, once activated, are subjected to natural diffusion and to a chemotactic drift, induced by the presence of the tumor. The strength of this drift, as well as the activation of immune cells, directly depends on the total mass of the tumor, proportional to the quantity 89 µ 1 (t) = ˆ∞ 0 zn(t, z) dz.

The immune system-tumor competition is described by the following system of PDEs

∂ t n + ∂ z (V n) = Q(n) -m(n, c), ( 1a 
)
∂ t c + ∇ x • (cχ∇ x φ -D∇ x c) = µ 1 R -γc, ( 1b 
)
-K∆ x φ = µ 1 σ(x) - 1 |Ω| ˆΩ σ(y) dy , ( 1c 
)
n(t, 0) = 0, c ∂Ω = 0, K∇ x φ • ν(•) ∂Ω = 0, ( 1d 
)
n(t = 0, z) = n 0 (z), c(t = 0, x) = c 0 (x). ( 1e 
)
The growth-division dynamics for the tumor cells (1a) in- (we refer the reader to [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF] for further details). In what follows,

97

we restrict to the mere symmetric binary division operator

98 Q(n)(t, z) = a 4n(t, 2z) -n(t, z) , (2) 
with a > 0 the division rate. 

118 m(c, n)(t, z) = ˆΩ δ(y)c(t, y) dy :=µc(t) ×n(t, z), (3) 
where δ ≥ 0 is another form function. For the numerical 119 experiments, we shall work with the Gaussian profiles

120 δ(x) = A θ √ 2π exp - |x| 2 2θ 2 , σ(x) = A σ θ σ √ 2π exp - |x| 2 2θ 2 σ . ( 4 
)
We refer the reader to [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF] for further details and comments about the model.

Results

Identification of biological parameters

In order to go beyond the qualitative discussion of [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF], the model should be challenged with biological data. The PDE system is governed by the set of parameters collected in Ta- • day -1 assuming homogeneity with respect to the unit mm 3 . Table 1 gives the 95% confidence interval. This interval is quite small, but it already shows a sensitive impact of variations of this parameter; since the variability due to the biological model is likely important and we wished to investigate the impact of treatments that directly affect this parameter, we also made some simulations with a larger range of values (see for instance Fig. 6)

We then determined the tumor growth parameters a and V . Neglecting the immune response, the tumor growth is driven by

∂ t n + ∂ z (V n) = Q(n). ( 5 
)
As explained below, this leads to an exponential growth of the tumor mass, see [15,[START_REF] Michel | Existence of a solution to the cell division 839 eigenproblem[END_REF][30][31]. Let t → µ 0 = ´∞ 0 n(t, z) dz and t → µ 1 (t) = ´∞ 0 zn(t, z) dz. We thus get

d dt µ 0 = aµ 0 , d dt µ 1 = V µ 0 . ( 6 
)
We now aim at estimating the division rate a and the growth rate V from the experimental data, Fig. 1-(b,c). We denote Θ = (a, V ) the parameters to be identified. We have at hand some experimental noisy data (Y

(0) 1 , • • • , Y (0) n ), (Y (1) 1 , • • • , Y (1) 
n ) representing respectively µ 0 and µ 1 at several times. Hence, we have

Y (j) i = µ j,Θ (t i ) + i , i ∈ {1, • • • , n}, j ∈ {0, 1} (7) 
where t → (µ 0,Θ , µ 1,Θ )(t) stands for the solution of (6) defined with the parameters Θ. Forgetting for a while the discreteness of the observed data, the approach can be expressed as a cost minimization problem where the cost function is de-

166 fined by 167 C (j) λ (Θ) = ˆT 0 |µ j,Θ (t) -Y (j) (t)| 2 dt. (8) 
We finally set

168 Θ = argmin{C (j) λ (Θ), Θ = (a, V ), a > 0, V > 0}. ( 9 
)
We fit the data that give the number of cells in the tumor 

   ∂ z (V N ) -Q(N ) + λN = 0 for z ≥ 0 N (0) = 0, N (z) > 0 for z > 0, ˆ+∞ 0 N (z) dz = 1.
(10) The existence-uniqueness of the eigenpair (λ, N ) can be found 192 in [15,[START_REF] Michel | Existence of a solution to the cell division 839 eigenproblem[END_REF]. When the tumor does not interact with the im-193 mune system, the large time behavior is precisely driven by 194 the eigenpair: the solution of (5) behaves like n(t, z) ∼ t→∞ 195 ν 0 e λt N (z) where ν 0 is a constant determined by the initial 196 condition, see [START_REF] Michel | Existence of a solution to the cell division 839 eigenproblem[END_REF]30]. In the specific case where V is con- 

γC-∇ x •(D∇ x C)-µ 1 ∇ x •(χC∇ x Φ) = g(µ 1 )R, C ∂Ω=0 = 0, (11) 
ˆΩ δ(x)C(x) dx = λ. ( 12 
)
This can be interpreted as an implicit definition of the total mass µ 1 , to be the value such that the solution of the boundary value problem [START_REF] Lai | Modeling combination therapy for breast 755 cancer with BET and immune checkpoint inhibitors[END_REF] satisfies [START_REF] De Pillis | A 758 validated mathematical model of cell-mediated immune 759 response to tumor growth[END_REF]. The existence of an equilibrium state defined in this way is rigorously justified in [8, Theorem 2]. Fig. 2 illustrates how the equilibrium establishes in time: as time becomes large, the concentration of active immune cells in the neighborhood of the tumor tends to the eigenvalue of the cell-division equation, the total mass tends to a constant and the size distribution of tumor cells takes the profile of the corresponding eigenstate. This result has been obtained by using the lower bounds of the parameters in Table 1 for the immune system and (a, V ) = (0. The eigen-elements of the growth-division equation

The numerical procedure is inspired from the spectral analysis of the equation: λ is found as the leading eigenvalue of a conveniently shifted version of the growth-division operator.

In practice, we work with a problem where the size variable is both truncated and discretized. Hence, the problem recasts as finding the leading eigenvalue of a shifted version of the underlying matrix, which can be addressed by using the inverse power method [38, Section 1.2.5]. We refer the reader to [39,40] for a thorough analysis of the approximation of eigenproblems for differential and integral operators, which provides a rigorous basis to this approach. It is also important to check a priori, based on the analysis of the equation

[15], how large the shift should be, and that it remains independent on the numerical parameters, see Suppl. Material.

For some specific fragmentation kernels and growth rates, the eigenpair (λ, N ) is explicitly known, see [15]. We used these formula to validate the ability of the algorithm to find the expected values and profiles, see Suppl. Material.

Computation of the equilibrium mass

Having at hand the eigenvalue λ, we go back to the convection-diffusion equation ( 11) and the constraint [START_REF] De Pillis | A 758 validated mathematical model of cell-mediated immune 759 response to tumor growth[END_REF] that determine implicitly the total mass µ 1 of the residual tumor. For a given value of µ 1 , we numerically solve (11) by using a finite volume scheme, see [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF]Appendix C]. Then, we use the dichotomy algorithm to fit the constraint:

• The chemo-attractive potential Φ is computed once for all.

• Pick two reference values 0 < µ a < µ b ; the mass we are searching for is expected to belong to (µ a , µ b ). procedure that predicts the residual mass, to the large time 287 simulations as performed in [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF].

• Set µ 1 = µ a +
288 Therefore, we adopt the same framework as in [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF]: the tumor is located at the origin of the computational domain Ω, which is the two-dimensional unit disk. We work with the lower bound of the parameters collected in Table 1 . We compare the asymptotic value of the total mass µ f 1 given by the large time simulation of the evolution problem (and checking that the variation of the total mass has become negligible) to the total mass µ pd 1 predicted by the power-dichotomy procedure; let

E µ1 = |µ f 1 -µ pd 1 | µ f 1 .
The results for several cell division rates a are collected in 289 to assess the evolution of the tumor mass at equilibrium according to immune response and tumor growth parameters.

For the numerical simulations presented here, we thus work on the eigenproblem [START_REF] Konstorum | Addressing current challenges in can-751 cer immunotherapy with mathematical and computa-752 tional modelling[END_REF] and on the constrained system ( 11)- [START_REF] De Pillis | A 758 validated mathematical model of cell-mediated immune 759 response to tumor growth[END_REF]. Unless precisely stated, the immune response parameters are fixed to the lower bounds in Table 1 . The tumor growth parameters are set to a = 0.3 day -1 and V = 469.545

µm 3 • day -1 .
When necessary, the initial values of the un-

knowns are respectively µ 0 (0) = 1 cell n , µ 1 (0) = 4188 µm 3 , c(0, x) = 0.
The main features of the solutions follow the observations made in [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF], which were performed with arbitrary "academic" values for the parameters. We observe that ´Ω δ(y)c(t, y) dy tends to the division rate a, which in this case corresponds to the leading eigenvalue of the cell-division equation. It is remarkable that the predicted diameter of the tumor at equilibrium -see Fig. 2 -is significantly below modern clinical PET scanners resolution limit, which could detect tumors with a diameter larger than 7 mm [41]. This is consistent with the standard expectations about the equilibrium phase [START_REF] Koebel | Adaptive immunity maintains occult 739 cancer in an equilibrium state[END_REF], but, of course, it makes difficult further comparison of the prediction with data.

The aggressiveness of the tumor is characterized by the division rate, the variations of which impact the size of the tumor at equilibrium: the larger a, the larger the residual tumor, see Moreover, as mentioned above, not only the parameters determine the equilibrium mass, but they also impact how the equilibrium establishes. Fig. 4-(a-c) shows what happens by making the tumor cell division rate a vary. There are more oscillations along time, with larger amplitude, as a increases.

Similar observations can be made when reducing the strength of the immune system A (likely out of its realistic range), see The equilibrium needs more time to establish as the strength of the immune system decreases of each uncertain input parameter (see Table 1). In what 383 follows, the total mass at equilibrium, µ 1 , given by the power-384 dichotomy algorithm, is seen as a function of the uncertain 385 parameters:

(d) A = 1 cell -1 c • day -1 (e) A = 1 • 10 -3 cell -1 c • day -1 (f) A = 5 • 10 -5 cell -1 c • day -1
µ 1 = f (a, A, R, χ, D, A σ , γ, K). ( 13 
)
To measure how the total variance of the output µ 1 of the 387 algorithm is influenced by some subsets i 1 

417 ln(µ 1 (ω)) = α∈I k,p q α L α (θ(ω)) + ε, ( 14 
)
where ε corresponds to the approximation error, I k,p = {α ∈ By taking a look at Fig. 5-bottom-right we remark that a interacts significantly with the parameters A, γ. However, the most significant interaction is the one with A. This is consistent with recent successes of combined therapies targeting tumor and immune cells [START_REF] Bailly | Combined cytotoxic 916 chemotherapy and immunotherapy of cancer: modern 917 times[END_REF].

Towards optimized treatments Because equilibrium state can be computed for a reduced numerical cost, it allows a large number of simulation to be performed in a minimal time, so that an extensive sampling of the range of the parameters can be tested. The flexibility of the numerical simulations provides valuable tools to assess the efficiency of a variety of therapeutic strategies. predict that a combination of drugs enhancing anti-tumor immune response with drugs diminishing tumor aggressiveness will be the most efficient. This is confirmed by the clinical benefit obtained when chemotherapies reducing the tumor cell division rate a are combined with immunotherapies increasing A and R, [START_REF] Bailly | Combined cytotoxic 916 chemotherapy and immunotherapy of cancer: modern 917 times[END_REF]. The parameter A which governs the efficacy of the immune system to eliminate tumor cells, is the most influential. This finding correlates with the observation that "hot" tumors infiltrated with immune cells have better prognostic than "cold" tumors [START_REF] Galon | Approaches to treat immune hot, 919 altered and cold tumours with combination immunother-920 apies[END_REF] and that the immune cells with the strongest positive impact on patient's survival are the cytotoxic CD8 + T cells [START_REF] Galon | Type, density, and location of immune 922 cells within human colorectal tumors predict clinical out-923 come[END_REF]. It is also in line with the success of immune checkpoint inhibitors which revert immune tolerance triggered by chronic activation and upregulation of exhaustion markers on effector T and NK cells, thus not only increasing the parameter A but also R [START_REF] Sharma | The future of immune check-925 point therapy[END_REF]. The leading role of the parameter A is also validated by experimental studies and clinical trials, including adoptive transfer of CAR-T and CAR-NK cells engineered to attack cancer cells, immunomodulating antibody therapies or cancer vaccines which boost the anti-tumor immune response [START_REF] Bailly | Combined cytotoxic 916 chemotherapy and immunotherapy of cancer: modern 917 times[END_REF][START_REF] Champiat | Intratumoral immunotherapy: from 927 trial design to clinical practice[END_REF][START_REF] Shekarian | Paradigm shift in oncology: targeting the im-930 mune system rather than cancer cells[END_REF]. Finally, our finding that the parameter γ is highly influential is validated by the administration of cytokines that stimulate and increase effector T and NK cell survival which are efficient at controlling tumor growth [START_REF] Shekarian | Paradigm shift in oncology: targeting the im-930 mune system rather than cancer cells[END_REF]. Thus, altogether, these experimental and clinical data validate the numerical method.

Interestingly, besides the dominant role of the parameter A, only two additional parameters related to immune cells R, γ seems to have an influence on the tumor mass at equilibrium. These data predict that to enhance the immune response, it is more efficient to increase the rate of influx and conversion of naive immune cells into effector cells (parameter R) or to increase the lifespan of immune effectors (parameter γ) than to increase chemotaxis as a whole (parameters χ, A σ , K). The lack of influence of chemotaxis emphasizes that the localization of immune cells within tumors is necessary but not sufficient. Indeed, the leading influence of the parameters A, R, γ stresses the importance of having functional immune cells infiltrating tumors. Overcoming immune suppression is therefore highly relevant in therapeutic strategies.

In conclusion, clinical trials have been undertaken quite 620 often on assumptions from acquired knowledge on tumor de- 

972

Coming back to the coupled model, we infer that the equilibrium phase corresponds to the situation where the death rate precisely counterbalances the natural exponential growth of the tumor cell population. Let Φ be the solution of

-∆ x Φ = σ - 1 |Ω| ˆΩ σ(y) dy,
endowed with the homogeneous Neumann boundary condi-

973

tion. Note that this quantity is a priori defined; it does not 974 depend on the coupling between tumor cells and immune cells.

975

In a computational perspective, it can thus be pre-computed 976 once for all. The equilibrium mass µ 1 is implicitely defined by 977 the fact that the solution of the stationary equation ( 11) sat-978 isfies the constraint [START_REF] De Pillis | A 758 validated mathematical model of cell-mediated immune 759 response to tumor growth[END_REF]. This implicit definition is clarified 979 by the following statement, see [START_REF] Atsou | A 742 size and space structured model describing interactions 743 of tumor cells with immune cells reveals cancer persistent 744 equilibrium states in tumorigenesis[END_REF]. 

T Λ N = ΛN + ∂ z (V N ) + aN - ˆ∞ z a(z )k(z|z )N (z ) dz .
Then, we check that the operator S Λ which associates to a 

Analysis of the discrete problem

The computational domain for the size variable is the interval [0, R] where R is chosen large enough: due to the division processes, we expect that the support of the solution remains essentially on a bounded interval, and the cut-off should not perturb too much the solution. In what follows, the size step h = z i+1 -z i is assumed to be constant. The discrete unknowns N i , with i ∈ {1, ..., I} and h = R/I, are intended to approximate N (z i ) where z i = ih. The integral that defines the gain term of the division operator is approximated by a simple quadrature rule. For the operator (2) the kernel involves Dirac masses which can be approached by peaked Gaussian. We introduce the operator T h Λ : R I → R I defined by

           (T h Λ N ) i = F i -F i-1 + h(Λ + a i )N i -h 2 I j=i a(z j )k(z i |z j )N j , N 1 = 0 ( 16 
)
where 

F i = V i+1/2 N i
                       ( T h Λ U ) i = h f i V i+1/2
, with

( T h Λ U ) i = U i -U i-1 + h Λ + a i V i+1/2 U i -h 2 I j=i a j V j+1/2 k(z i |z j )U j , U 1 = 0. ( 18 
)
The solution is interpreted as the fixed point of the mapping

ξ -→ U = A h ξ
where U is given by U 1 = 0 and

U i = U i-1 + h 2 I j=i a j V j+1/2 k(z i |z j )ξ j + h f i V i+1/2 .
We are going to show that A h is a contraction: A h ξ ∞ ≤ k ξ ∞ for some k < 1. Multiplying [START_REF] Friedman | The role of exosomes in 788 pancreatic cancer microenvironment[END_REF] by sign(U i ), we obtain

1 + h Λ + a i V i sign(U i )U i = 1 + h Λ + a i V i |U i | = sign(U i )U i-1 + h 2 I j=i a j V j+1/2 k(z i |z j )sign(U i )ξ j ≤ |U i-1 | + h 2 I j=i a j V j+1/2 k(z i |z j )|ξ j |.
We multiply this by the weight

i-1 l=1 1 + h Λ+a l V l+1/2
, where all 1085 factors are ≥ 1. We get

1086 |U i | i l=1 1 + h Λ + a l V l+1/2 ≤ |U i-1 | i-1 l=1 1 + h Λ + a l V l+1/2 +h 2 i l=1 1 + h Λ + a l V l+1/2 I j=i a j V j+1/2 k(z i |z j )|ξ j |.
Then, summing over i ∈ {2, ..., m} yields 1087

|U m | m l=1 1 + h Λ + a l V l+1/2 ≤ |U 1 | 1 + h Λ + a 1 V 3/2 +h 2 m i=2 i l=1 1 + h Λ + a l V l+1/2 I j=i a j V j+1/2 k(z i |z j )|ξ j |
where actually U 1 = 0. It follows that

1088 |U m | ≤ h 2 m i=2 m l=i 1 + h Λ + a l V l+1/2 -1 I j=i a j V j+1/2 k(z i |z j )|ξ j | ≤ h 2 ξ ∞ min j∈{1,...,I} V j+1/2 m i=2 m l=i 1 + h Λ + a l V l+1/2 -1 I j=i a j k(z i |z j ) ≤ h 2 ξ ∞ min j∈{1,...,I} V j+1/2 I j=i a j k(z i |z j ) ∞ m i=2 1 + h Λ + min l∈{1,...,I} a l V L ∞ i-m+1 ≤ h ξ ∞ min j∈{1,...,I} V j+1/2 I j=i a j k(z i |z j ) ∞ Λ + min l∈{1,...,I} a l V L ∞ -1 .
Therefore, A h is a contraction provided (17) holds. This es- We are now going to show that T h Λ is a M -matrix when 1093 (17) holds. Let f ∈ R I \ {0} with non negative components.

1094

Let U ∈ R I satisfy ( T h Λ U ) i = h fi V i+1/2 . Let i 0 be the index 1095 such that U i0 = min U i , i ∈ {2, ..., I} . We have 1096 U i0 1 + h Λ + a i0 V i0+1/2 = U i0-1 + h 2 I j=i0 a j V j+1/2 k(z i0 |z j )U j + h f i0 V i0+1/2 ≥ U i0   1 + h 2 I j=i0 a j V j+1/2 k(z i0 |z j )   + h f i0 V i0+1/2 . ( 19 
) Since f i0 ≥ 0, we get 1097 U i0   Λ + a i0 V i0+1/2 -h I j=i0 a j V j+1/2 k(z i0 |z j )   >0 by (17)
≥ 0, which tells us that U i0 ≥ 0. Suppose U i0 = 0 for some i 0 > 1.

1098

Coming back to [START_REF] Matzavinos | Mathematical modelling of the spatio-temporal response 793 of cytotoxic T -lymphocytes to a solid tumour[END_REF], we deduce that U i0-1 vanishes too, 1099 and so on and so forth, we obtain U 1 = ... = U i0 = 0.

1100 Finally, we use the irreductibility assumption iii): we can

1101 find j 0 > i 0 such that aj 0 V j 0 +1/2 k(z i0 |z j0 ) > 0 and (19) implies 1102 aj 0 V j 0 +1/2 k(z i0 |z j0
)U j0 = 0, so that U j0 = 0. We deduce that 1103 U = 0, which contradicts f = 0. Therefore the components 1104 of U are positive, but U 1 .

1105

We conclude by applying the Perron-Froebenius theorem to (T h Λ ) -1 , [60, Chapter 5]. It remains to prove that λ = Λ -1 µ is positive, with µ the spectral radius of (T h Λ ) -1 . To this end, we make use of assumption iv). We set Z 0 = i 0 h. We argue by contradiction, supposing that λ = Λ -1/µ < 0. We consider the eigenvector with positive components and normalized by the condition h

I i=1 U i = 1. We have ( T h 0 U ) i = U i -U i-1 + a i V i+1/2 hU i -h 2 I j=i a j V j+1/2 k(z i |z j )U j = -λU i ≥ 0. It follows that, for m ≥ i 0 , U m ≥ -h m i=2 a i V i+1/2 U i + h 2 m i=2 I j=i a j V j+1/2 k(z i |z j )U j ≥ -h m i=2 a i V i+1/2 U i + h m j=2 h j i=2 k(z i |z j ) a j V j+1/2 U j ≥ -h m i=2 a i V i+1/2 U i + h m j=2 N (z j ) a j V j+1/2 U j ≥ h m i=2 ( N (z i ) -1) a i V i+1/2 U i ≥ h m i=i0 ( N (z i ) -1) a i V i+1/2 U i ≥ ν 0 V L ∞ h m i=i0 U i . It implies 1106 1 = h I m=1 U m ≥ h I m=i0 U m ≥ h(I -i 0 ) ν 0 V L ∞ h m i=i0 U i .
We arrive at • We choose a threshold 0 < 1.

1107 1 ≥ (R -Z 0 ) ν 0 V L ∞ , a contradiction

1118

• We start from a random vector N (0) and we construct

1119 the iterations 1120 -LU q (k+1) = N (k) , 1121 -N (k+1) = q (k+1) q (k+1)
until the relative error

N (k+1) -N (k) N (k)
≤ is small enough.

Then, given the last iterate N (K) , we set LU q = N (K) , μ = q•N (K) N (K) •N (K) , and λ = Λ -1/μ. This approach relies on the ability to approximate correctly the eigenpair of the growth-fragmentation operator. In particular, it is important to preserve the algebraic multiplicity.

This issue is quite subtle and it is known that the pointwise convergence of the operator is not enough to guarantee the convergence of the eigenelements and the consistency of converge pointwise to (T R, Λ ) -1 , and the compactness of (T R, Λ ) -1 ensures that the discrete operator converges uniformly to (T R, Λ ) -1 , for 0 < R < and 0 < < 1 fixed (see [40] for more details on this fact). Following [40], we deduce that the numerical eigenelements (λ I , N I ) converges to (λ R, , N R, ), the eigenelements of (T R, Λ ) -1 , while preserving their algebraic multiplicity. Finally the uniform convergence (T R, Λ ) -1 -(T Λ ) -1 -→ 0 as R -→ ∞ and -→ 0 ensures the convergence of (λ R, , N R, ) to (λ, N ), [15].

Numerical results

For some specific fragmentation kernels and growth rates, the eigenpair (λ, N ) is explicitly known, see [15]. We can use these formula to check that the algorithm is able to find the expected values and profiles. To this end, we introduce the relative errors

E h λ = |λ -λ| λ and E h V = h I i=1 |N (K) i -N (ih)|
where N (K) and N are both normalized by h

I i=1 N (K) i = h I i=1 N (ih) = 1.
Mitosis fragmentation kernel. We start with the binary 1162 division kernel:

1163 k(z|z ) = δ z =2z . ( 20 
)
The associated division operator is described by [START_REF] Boon | Human T -cell responses against 717 melanoma[END_REF]. We as-1164 sume that a and V are constant. In this specific case the (-1) n α n exp -2 n+1 a V z , [START_REF] Chaplain | Spatio-temporal dynamics of 800 the immune system response to cancer[END_REF] with N > 0 an appropriate normalizing constant and α n n∈N is the sequence defined by the recursion

α 0 = 1, α n = 2 2 n -1 α n-1 .
In practice we shall use a truncated version of the series that 

k(z|z ) = 1 z 1 0≤z≤z .
We apply the algorithm for the following two cases: 1. V (z) = V 0 and a(z) = a 0 z. We have λ = √ a 0 V 0 and We still use the values in Table 3 (especially, a 0 = a and V 0 = V ). The approximated eigenpair is obtained in 84 iterations and, as in the previous test, it does not change with the size step. In this case, both the eigenvalue and the eigenfunction are approached at order 1, see Table 5 and Fig. 8. 

N (z) = 2 a 0 V 0 Z + Z 2 2 exp -Z - Z 2 2 .

Number of cells

  led to couple an evolution equation for the size-distribution of the tumor cells, and a convection-diffusion equation for the activated immune cells. The two-way coupling arose by the death term induced by the action of the immune cells on the tumor cells, and by the activation and the attraction of immune cells towards the tumor, which are determined by the total mass of the tumor. The unknowns are • the size density of tumor cells (t, z) → n(t, z) so that the integral ´b a zn(t, z) dz gives the volume of the tumor occupied at time t by cells having their size z in the interval (a, b);

90

  volves the (possibly size-dependent) growth rate z → V (z) ≥ 91 0 and the cell division mechanism is embodied into the op-92 erator Q(n). What is crucial for modeling purposes is the 93 principle that cell-division does not change the total mass: 94 the operator Q satisfies ´∞ 0 zQ(n) dz = 0. However, the total 95 number of cells in the tumor increases since ´∞ 0 Q(n) dz ≥ 0 96

  Further relevant examples of 99 division operators can be found in [15]. The boundary condi-100 tion for n in (1d) means that no tumor cells are created with 101 size 0. 102 In the right hand side of (1b), (t, x) → R(t, x) stands for 103 the space distribution of the influx rate of activated tumor 104 antigen specific effector immune cells. It takes into account 105 the sources of naive immune cells, namely T-cells and NK 106 cells, that can be activated in the tumor microenvironment 107 or in the draining lymph nodes into cells fighting the tumor. 108 The rate of the activation process is supposed to be directly 109 proportional to µ 1 . The Dirichlet boundary condition for c 110 in (1d) means that the immune cells far from the tumor are 111 non-activated. Immune cells are directed towards the tumor 112 by a chemo-attractive potential φ, induced by the presence of 113 the tumor cells. Through (1c), the strength of the signal is 114 proportional to the total mass of the tumor, and it is shaped 115 by a form function x → σ(x). Finally, the activated immune 116 cells are able to destroy tumor cells, as described by the death 117 term in (1a)

ble 1 :

 1 most parameter values were retrieved from previously published experimental results. We propose an estimation of the parameters R, a, V based on the experimental study performed in [16] where the development of chemically-induced cutaneous squamous cell carcinoma (cSCC) is investigated. To estimate the parameter R, we used a simple linear regression, by using 34 data points from an in vivo experimental cutaneous squamous cell carcinoma (cSCC) tumor growth mouse model [16]: R is predicted from the "influx rate of effector immune cell", denoted by Y and expressed in cell c • day -1 , given as a function, assumed to be linear, of the volume of the tumor µ 1 in µm 3 , see Fig. 1-(a). The determination coefficient and the p-value are respectively, r 2 = 0.705 and p = 2.84 • 10 -10 , the slope of the regression line is R = 7.92 • 10 -7 . It is measured in cellc•mm -3 µm 3

169

  and the volume of the tumor for several times by using a 170 non-linear least square algorithm, the Levenberg-Marquardt 171 algorithm [32], [33], Fig.1-(d,e).

  the equilibrium relies on the following ar-184 guments. The cell-division equation admits a positive eigen-185 state: in absence of immune response, see (5), the tumor 186 population grows exponentially fast, with a rate λ > 0, and 187 its size repartition obeys a certain profile N . The equilib-188 rium occurs when the immune response counterbalances the 189 growth rate of this equation. To be more specific, we look for 190 λ > 0 and a non negative function z ≥ 0 → N (z) satisfying 191

197

  stant and Q is the binary division operator (2), we have λ = a 198 and the profile N is explicitly known, [31, 34].However, for 199 general growth rates and division kernels the solution should 200 be determined by numerical approximations. 201 Coming back to the coupled model, we infer that the equi-202 librium phase corresponds to the situation where the death 203 rate precisely counterbalances the natural exponential growth 204 of the tumor cell population. In other words, the equilibrium 205 is defined by the stationary equation 206

Figure 1 .

 1 Figure 1. (a): Regression on the "influx rate of effector immune cell" Y (in cell c • day -1 ) as a function of the tumor volume µ 1 in µm 3 (b) and (c): Tumor evolution kinetics from in vivo experimental cSCC tumor growth in mice. (d) and (e): Illustration of the estimation of the parameters a and V : a = 0.283 day -1 and V = 786.280 µm 3 • day -1 using 3 data points of a typical tumor evolution kinetic, from the dataset depicted in (b) and (c)

Figure 2 .

 2 Figure 2. Left: Time evolution of the diameter of the tumor (bold black line) and concentration of active immune cells (dotted gray line). Right: Comparison of the tumor cell-size distribution at t = 1000 days with the positive eigenstate of the cell division equation (x-axis: size of the tumor cells, y-axis: number of tumor cells at the final time)

µ b 2 1 . 277 •

 21277 and compute the associated solution C µ1 of (11). Evaluate the discrete version of I = ´δC µ1 dx -λ. • If I < 0, then replace µ a by µ 1 , otherwise replace µ b by 276 µ We stop the algorithm when the relative error µ b -µa µa < 278 is small enough.279 It is also possible to design an algorithm based on the Newton 280 method. However, this approach is much more numerically 281 demanding (it requires to solve more convection-diffusion 282 equations) and does not provide better results. 283 For the evaluation of the residual mass, we do not know 284 explicit solutions, even for the simplest model. Nevertheless, 285 we can compare the results of the inverse power-dichotomy 286

Fig. 3 -

 3 (a). Increasing the immune strength A increases the efficacy of the immune response, reducing the size of the residual tumor see Fig.3-(b). Similarly, increasing the mean rate of influx of effector immune cells in the tumor microenvironment R, decreases the tumor size at equilibrium, see Fig.3-(c). On the contrary, increasing the death rate of the immune cells γ reduces the efficacy of the immune response and increases the equilibrium tumor size see Fig.3-(d).

Figure 3 .

 3 Figure 3. Evolution of the tumor diameter at equilibrium, with respect to the division rate a, the strength of the effector immune cells A, the influx rate of effector immune cells R, the natural death rate γ of the effector cells

Figure 4 .

 4 Figure 4. Large-time simulation of the PDE system: evolution of the tumor diameter (bold black line, left axis), and of the concentration of immune cells μc (dotted grey line, right axis), for several values of the division rate a (top) and for several values of the immune strength A (bottom). The equilibrium needs more time to establish as the strength of the immune system decreases

Fig. 5 -Figure 5 .

 55 Fig. 5-bottom-left, whether individually or in combination 464

Fig. 6 [ 8 ]Figure 6 .

 686 Fig. 6 illustrates how the equilibrium mass is impacted when combining variations of two parameters, namely the immune strength A combined to the tumor cell division rate a, the mean rate of influx of effector immune cells R or the death rate of effector immune cells γ; and the tumor cell division rate a with the death rate γ. Interestingly, a reduction of the tumor mass at equilibrium can be obtained significantly more easily by acting on two parameters than on a single one. For

621( 1

 1 velopment and immune responses to cancer cells, but without 622 tools to help the decision-making. The numerical methods 623 developed here provide valuable hints for the design and the 624 optimization of anti-tumor therapies. The approach is vali-625 dated by clinical evidence obtained so far. By adapting the 626 range of the parameters to the biological values, one can more 627 precisely adapt the therapeutic strategies to specific types of 628 tumors. We thus conclude that mathematical modelling com-629 bined with numerical validation provide valuable information 630 that could contribute to better stratify the patients eligible 631 for treatments and consequently save time and lives. In ad-632 dition, it could also help to decrease the burden of treatment 633 cost providing hints on optimized therapeutic strategies. 634 Materials and Methods 635 Mice FVB/N wild-type (WT) mice (Charles River Labo-636 ratories, St Germain Nuelles, France) were bred and housed 637 in specific-pathogen-free conditions. Experiments were per-638 formed using 6-7 week-old female FVB/N, in compliance 639 with institutional guidelines and have been approved by 640 the regional committee for animal experimentation (refer-641 ence MESR 2016112515599520; CIEPAL, Nice Côte d'Azur, 642 France). 643 In vivo tumor growth mSCC38 tumor cell line was es-644 tablished from DMBA/PMA induced sSCCs and maintained 645 in DMEM (Gibco-ThermoFisher Scientific, Courtaboeuf, 646 France) supplemented with 10% heat-inactivated fetal bovine 647 serum (FBS) (GE Healthcare, Chicago, Illinois, USA) peni-648 cillin (100 U/ml) and streptomycin (100 µg/ml) (Gibco-649 ThermoFisher Scientific, Courtaboeuf, France). 5 × 10 5 650 mSCC38 were intradermally injected in anesthetized mice af-651 ter dorsal skin shaving. Tumor volume was measured man-652 ually using a ruler and calculated according to the ellipsoid 653 formula: Volume=Length (mm) × Width (mm) × Height 654 (mm) ×π/6. 655 Tissue preparation and cell count mSCC38 were ex-656 cised and enzymatically treated twice with collagenase IV 657 mg/ml) (Sigma-Aldrich, St Quentin Fallavier, France), 658 and DNase I (0.2 mg/ml) (Roche Diagnostic, Meylan, 659 France) for 20 minutes at 37 • C. Total cell count was 660 obtained on a Casy cell counter (Ovni Life Science, Bre-661 men, Germany). Immune cell count was determined from 662 flow cytometry analysis. Briefly, cell suspensions were incu-663 bated with anti-CD16/32 (2.4G2) to block Fc receptors and 664 stained with anti-CD45 (30-F11)-BV510 antibody and the 7-665 Aminoactinomycin D (7-AAD) to identify live immune cells 666 (BD Biosciences, Le Pont de Claix, France). Samples were 667 acquired on a BD LSR Fortessa and analyzed with DIVA V8 668 between the immune system and cancer: A brief review 765 of non-spatial mathematical models. Bull. Math. Biol. entropy inequality: an illustration on growth models. J. 843 Math. Pures et Appl. 84, 1235-1260 (2005).844 [31] Perthame, B. & Ryzhik, L. Exponential decay for the 845 fragmentation or cell-division equation. J. Differ. Eq. 846 210, 155-177 (2005).

847[ 32 ]

 32 Moré, J. J. The Levenberg-Marquardt algorithm: Imple-848 mentation and theory. In Watson, G. A. (ed.) Numerical 849 Analysis, 105-116 (Springer Berlin Heidelberg, Berlin, 850 Heidelberg, 1978). 851 [33] Ramadasan, D., Chevaldonné, M. & Chateau, T. LMA: 852 A generic and efficient implementation of the Levenberg-853 Marquardt algorithm. Software: Practice and Experi-854 ence 47, 1707-1727 (2017).855 [34] Baccelli, F., McDonald, D. & Reynier, J. A mean field 856 model for multiple TCP connections through a buffer 857 Q(n)(t, z) = -a(z)n(t, z) + ˆ∞ z a(z )k(z|z )n(t, z ) dz . (15) In (15), a(z ) is the frequency of division of cells having size 958 z , and k(z|z ) gives the size-distribution that results from 959 the division of a tumor cell with size z . What is crucial for 960 modeling purposes is the requirement 961 ˆz 0 z k(z |z) dz = z, which is related to the principle that cell-division does not 962 change the total mass 963 ˆ∞ 0 zQ(n) dz = 0. We refer the reader to [15] for examples of such cell-division is characterized by means of an eigen-967 problem: we look for λ > 0 and a non negative function 968 z ≥ 0 → N (z) satisfying (10) The analysis of the existence-969 uniqueness of the eigenpair (λ, N ) can be found in [29], the 970 textbook [58, Theorem 4.6], and, for extension to cases with 971 non constant growth rate V , in [15].

980Theorem . 1 Fig. 2 1013

 12 Fig.2for an illustration of these facts.

1018 function f

  the solution n of T Λ n = f fulfills the requirements 1019 of the Krein-Rutman theorem (roughly speaking, positivity 1020 and compactness), see[START_REF] Krein | Linear operator leaving in-943 variant a cone in a Banach space[END_REF]. Accordingly, the quantity of in-1021 terest λ is related to the leading eigenvalue of S Λ . In fact, this 1022 reasoning should be applied to a somehow truncated and reg-1023 ularized version of the operator, and the conclusion needs fur-1024 ther compactness arguments; nevertheless this is the essence 1025 of the proof. In terms of numerical method, this suggests 1026 to appeal to the inverse power algorithm, applied to a dis-1027 cretized version of the equation. However, we need to define 1028 appropriately the shift parameter Λ. As far as the continuous 1029 problem is considered, Λ can be estimated by the parameters 1030 of the model [15], but it is critical for practical issues to check 1031 whether or not this condition is impacted by the discretiza-1032 tion procedure. This information will be used to apply the 1033 inverse power method to the discretized and shifted version of the problem.

1089

  timate is similar to the condition obtained for the continuous 1090 problem, see [15, Proof of Theorem 2, Appendix B]; the dis-1091 cretization does not introduce further constraints.

  1092

  the invariant subspaces, see[39] for relevant examples. This question has been thoroughly investigated in[39, 40] which introduced a suitable notion of stability. It turns out that one needs a uniform convergence of the operators. Namely, here, we should check that (TI Λ ) -1 -(T Λ ) -1 -→ 0 as I -→ ∞.In the present framework, a difficulty relies on the fact that the size variable lies in an unbounded domain, which prevents for using usual compactness arguments. For this reason, we introduce a truncated version of the problem, which has also to be suitably regularized. Let us denote by T R, Λ the corresponding operator, where represents the regularization parameter. This truncated and regularized operator appeared already in [15]. Indeed, we know from [15] that T R, Λ -T Λ -→ 0 as R -→ ∞ and -→ 0, hence, this implies that (T R, Λ ) -1 -(T Λ ) -1 -→ 0 as R -→ ∞ and -→ 0 by continuity of the map Π : T Λ → (T Λ ) -1 . Moreover, (T R, Λ ) -1 is well-defined, continuous and compact, see [15, Appendix. B]. The discrete operators (T I Λ ) -1

  1167defines N . For the numerical tests, we use the parameters 1168 collected in Table3

  1178

( a )Figure 7 .

 a7 Figure 7. Binary division kernel: convergence rates of (λ (K) , N (K) ) with respect to h

  × 10 -2 8.89 × 10 -3 2000 6.43 × 10 -3 4.50 × 10 -3 4000 3.23 × 10 -3 2.24 × 10 -3 8000 1.62 × 10 -3 1.13 × 10 -3

Figure 8 .1187

 8 Figure 8. Uniform fragmentation, ex. 1: rate of convergence to the exact eigenpair with respect to h

Figure 9 .

 9 Figure 9. Uniform fragmentation, ex. 2 case n = 1: rate of convergence to the exact eigenpair with respect to h

Figure 10 .Sensitivity analysis on the equilibrium 1193 mass 1194

 101194 Figure 10. Uniform fragmentation, ex. 2: rate of convergence to the exact eigenpair with respect to h

172 Development of numerical methods predict- 173 ing parameters of the equilibrium in immune- 174 controlled tumors

  

175

Based on the space and size structured PDE model (1a)-176 (1e), we studied the equilibrium phase in immune-controlled 177 tumors. We wished to predict, for given biological parame-178 ters, see Table

1

, the total mass of the residual tumor and 179 its size distribution. To this end, we developed specific nu-180 merical procedures based on the mathematical interpretation 181 of the equilibrium.

Table 1 .

 1 Key 

	Symbol	Description	Value and unit	References
	χ	chemotactic coefficient	8.64 × 10 1 -8.64 × 10 6	(Macrophages) [17]
					mm 2 • mmol -1 • day -1
	D	natural space diffusion coef. of the cytotoxic effector	8.64 × 10 -5 -10 -3 mm 2 •	(CD8 + T-cells) [18], [19]
		cells population	day -1
	R	the normal rate of influx of effector immune cells	6.11 × 10 -7 , 9.74 × 10 -7	estimated
					cellc•mm -3 µm 3	• day -1
	γ	natural death rate of the tumor antigen-specific cy-	2 × 10 -2 -1 day -1	[20], [21], [12], [22]
		totoxic effector cells
	A	strength of the immune response	2 -57.6 cell -1 c • day -1	[23], [24], [25], [26]
	K	natural space diffusion of the attractive potential φ	10 -2 -1 mm 2 • day -1	[27], [19]
	A σ	strength of the chemical signal induced by each tu-	5 • 10 -17 -0.625 × 10 -16	[28]
		mor cell		mmol • -1 µm 3 • day -1
	a	division rate of the tumor cells	0.103 -0.351 day -1	estimated
	V	growth rate of the tumor cells	308.526 -2521.975 µm 3 •	estimated
					day -1
				model parameters and their biophysical meaning
	where Φ is the solution of			
	-K∆ x Φ = σ -	1 |Ω|	ˆΩ σ(y) dy,
	endowed with the homogeneous Neumann boundary condi-
	tion, together with the constraint	

see Fig. 4-(a-c)).

  

	223	observational data reporting the mean size distribution of
	224	cancer cells [35].
	225	Numerical experiments show that the model (1a)-(1e) is
	226	able to reproduce, in the long-time range, cancer-persistent
	227	equilibrium, but the features of the equilibrium, and its abil-
	228	ity to establish, are highly sensitive to the parameters in Ta-
	229	ble 1 . To discuss this issue further, we focus here on the mass
	230	at equilibrium considered as a critical quantity that evaluates
	231	the efficacy of the immune response. Indeed, it is known that
	232	a tumor gains in malignancy when its mass reaches certain
	233	thresholds [36, 37]. The smaller the tumor mass at equilib-
	234	rium, the better the vital prognosis of the patient. In doing
	235	so, we do not consider transient states and time necessary for
	the equilibrium to establish (236
	237	The determination, on numerical grounds, of the equilib-
	238	rium state relies on a two-step process. First, we compute the
	239	normalized eigenstate of the tumor cell equation, second, we
	351, 713.608)	find the tumor mass which makes the coupled death rate fit
	for the tumor growth. We observe a non symmetric shape,	
	peaked about a diameter of 13 µm, which is consistent with	

240

with the eigenvalue. To this end, we have developed a specific 241 numerical approach.

242

Table 2 :

 2 the numerical procedures finds the same equilib-

290 rium mass as the resolution of the evolution problem, which 291 is another validation of the method. 292 Numerical

simulations show how parameters 293 influence equilibrium

  10 -5 7.67271872 × 10 -5 4.10 × 10 -9 0.15 1.11701535 × 10 -4 1.11701543 × 10 -4 7.97 × 10 -8 0.20 1.48924575 × 10 -4 1.48924641 × 10 -4 4.40 × 10 -7 0.3 2.23420663 × 10 -4 2.23420562 × 10 -4 4.53 × 10 -7 0.351 2.61368442 × 10 -4 2.61367974 × 10 -4 1.80 × 10 -6

	a	µ f 1 (mm 3 ) at final time T = 500	µ pd 1 (mm 3 )	E µ1
	0.103	7.67271875 ×		
		296		

294

The numerical methods were next used to assess how the 295 parameters influence the equilibrium. In particular, we wish

Table 2 .

 2 Comparison of the large time tumor mass and the predicted tumor mass for several values of a

analysis on the equilibrium 348 mass identifies the key parameters to target 349 in cancer therapy

  

	341	
	342	lish on reasonable observation times, and the evolution can
	343	be confounded with a periodic alternance of growing and re-
	344	mission phases. Such scenario illustrates that the relevance of
	345	the equilibrium can be questionable depending on the value
		of the parameters. In what follows, we focus on the details of
	368	
	369	strength of the chemical signal induced by each tumor
	370	cell A σ
	371	• environmental parameters such as the diffusion coeffi-
	372	cients D (for the immune cells) and K (for the chemokine
		concentration).

Fig 4-(d-f

). The smaller A, the weaker the damping of the oscillations and the longer the periods. We notice that the decay of the maximal tumor radius holds at a polynomial rate. In extreme situations, the equilibrium does not estab-346 the equilibrium itself, rather than on the transient states. 347 Global sensitivity 350 Since the equilibrium state can be computed for a reduced 351 numerical cost (it takes about 1/4 of a second on a standard 352 laptop), we can perform a large number of simulations, sam-353 pling the range of the parameters. This allows us to discuss in 354 further details the influence of the parameters on the residual 355 mass and, by means of a global sensitivity analysis, to make a 356 hierarchy appear according to the influence of the parameters 357 on this criterion. Ultimately, this study can help in proposing 358 treatments that target the most influential parameters. 359 Details on the applied methods for the sensitivity analysis 360 can be found in the Suppl. Material. Among the parameters, 361 we distinguish: 362 • the tumor cell division rate a which drives the tumor 363 aggressiveness, 364 • the efficacy of the immune system, governed by the mean 365 influx rate of activated effector immune cells R, the 366 strength of the immune response A, the chemotactic sen-367 sitivity χ, the death rate γ of the immune cells, and the 373 We assume that the input parameters are independent ran-374 dom variables. Due to the lack of knowledge on the specific 375 distribution of these parameters and according to the con-376 straints on the parameter bounds (

Table 1), the most suit-377 able probability distribution is the one which maximizes the 378 continuous entropy ([42]), more precisely, the uniform distri-379 bution. Therefore, the uncertainty in the parameter values 380 is represented by uniform distributions U(p min , p max ) where 381

  represents the convective numerical flux on the grid point z i+1/2 = (i + 1/2)h, i ∈ {1, ..., I}. This definition takes into account that the growth rate is non negative, Note that the sum that defines N (z) is actually reduced 1073 over the indices such that jh ≤ z; this quantity is interpreted 1074 as the expected number of cells produced from the division of 1075 a cell with size z so that the forth assumption is quite natural.

					1076
					1077
					1078	Proof. Let f ∈ R I . We consider the equation
						T h Λ N = f.
					1079	We denote N = S h Λ f the solution. We are going to show
					1080	that S h Λ is well defined and satisfies the assumptions of the
					1081	Perron-Frobenius theorem, see e. g. [38, Theorem 1.37 &
					1082	Corollary 1.39] or [60, Chapter 5].
					1083	It is convenient to introduce the change of unknown U i =
					1084	N i V i+1/2 , ∀i ∈ {1, • • • , I}. The problem recasts as
	and applies the upwinding principles. Note that the step size
	h should be small enough to capture the division of small
	cells, if any. The following statement provides the a priori es-
	timate which allows us to determine the shift for the discrete
	problem.			
	Theorem .2 We suppose that		
	i) z → V (z) is a continuous function which lies in L ∞ and
	it is bounded from below by a positive constant,
	ii) h	I j=1 a(z j )k(z i |z j ) remains bounded uniformly with re-
	spect to h,			
	iii) for any i ∈ {1, ..., I -1}, there exists j ∈ {i + 1, ..., I}
	such that a(z j )k(z i |z j ) > 0,		
	iv) there exists Z 0 ∈ (0, ∞) such that, setting N (z) =
	h	I j=2 k(z j |z), we have a(z)( N (z) -1) ≥ ν 0 > 0 for
	any z ≥ Z 0 .			
	Let				
	Λ >	V L ∞ min j∈{1,...,I} |V j+1/2 |	max k∈{1,...,I} h	I j=k	a j k(z k |z j )
			-min j∈{1,...,I} |a j |,
					(17)
	and we suppose that R > Z 0 is large enough. Then, T h Λ
	is invertible and there exists a pair µ > 0, N ∈ R I with
	positive components, such that Ker (T h		

Λ ) -1 -µ = Span{N }. Moreover λ = Λ -1 µ > 0.

Table 3 .

 3 Data for the numerical tests: binary division kernel 10 -5 3.83 × 10 -2 2000 5.68 × 10 -8 1.93 × 10 -2 4000 6.77 × 10 -7 9.69 × 10 -3 8000 6.84 × 10 -7 4.85 × 10 -3

	Number of cells	E λ	E V
	1000	3.73 ×	

Table 4 .

 4 Binary division kernel: errors for several number of grid points With this threshold , the approached eigenpair is reached in 1170 43 iterations, independently of the size step. Fig. 7 represents 1171 the evolution of the error E h V as a function of h in a log-log 1172 scale: N (K) approaches N at order 1. The rate improves when 1173 using a quadrature rule with a better accuracy. For this test, 1174 the approximation of the eigenvalue is already accurate with 1175 a coarse grid; it is simply driven by the threshold and E h

	L

Table 5 .

 5 Uniform fragmentation, ex. 1: errors for several number of grid points

Table 6 .

 6 Uniform

fragmentation, ex. 2, case n = 1: errors for different number of cells

Table 7 .

 7 Uniform fragmentation, ex. 2, case n = 2: errors for different number of cells
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Supplementary material 953

Cell division operator 954

The binary division operator (2) is a particular case, and 955 for applications it is relevant to deal with more general ex-956 pressions. Namely, we have address this issue by performing a global sensitivity analysis 1199 on the immune-controlled tumor mass. Sensitivity analysis 1200 also provides information on the quantification of uncertainty 1201 in the model output with respect to the uncertainties in the 1202 input parameters. We remind the reader that the equilbrium 1203 mass is seen as a function of the parameters in Table 1:

We consider that the input parameters are independent ran- 

The pillar of the Sobol sensitivity analysis is the decompo-1208 sition of f into 2 n -1 summands of increasing dimensions: [START_REF] Cazaux | Single-cell imaging of CAR T -cell ac-818 tivity in vivo reveals extensive functional and anatomical 819 heterogeneity[END_REF] where

and 

Given ( 24), V can be decomposed as follows:

where the terms V i1•••ip , called partial variances read:

Following the description in [44], the Sobol' sensitivity indices 1220 are defined as follows:

1221

They verify

Each index S i1•••ip measures how the total variance of f is affected by uncertainties in the set of input parameters i

An equivalent definition of the above indices is given by (see [43]):

) The total effect of a specific input parameter i is evaluated by the so-called total sensitivity index S (i) T , the sum of the sensitivity indices which contain i:

where [START_REF] Homma | Importance measures in 948 global sensitivity analysis of nonlinear models[END_REF] is given by:

where S -i is the sum of all the sensitivity indices that do not contain the index i. Hence, the total sensitivity index estimator reads:

where