The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013)

Mobile Robot Localization: A Set-Membership Approach

Rémy GUYONNEAU - Sébastien LAGRANGE - Laurent HARDOUIN -Philippe LUCIDARME

University of Angers - LISA

January 24 2013

Liels

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

Introduction

- Robot localization is an important issue of mobile robotics
- The robotics challenge called CAROTTE¹
- The Simultaneous Localization And Mapping (SLAM) and the global localization problems
- In this presentation a set membership approach will be considered to deal with the global localization problem

1. CArtographie par ROboT d'un TErritoire (Robot Land Mapping) organized by the french ANR (National Research Agency) and the DGA (french army)

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Proposed Method

Summary

- 2 The Global Localization Problem
- 3 The Proposed Method
- 4 Experimental Results

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Proposed Method

Summary

Interval Analysis

Interval Analysis Constraint Satisfaction Problem Q-Relaxed Intersection

2 The Global Localization Problem

3 The Proposed Method

Definitions

An Interval Vector

An *interval vector*, or a *box* $[\mathbf{p}]$ is defined as a closed subset of \mathbb{R}^n

 $[\mathbf{p}] = ([x], [y], \cdots) = ([\underline{x}, \overline{x}], [y, \overline{y}], \cdots) \subset \mathbb{R}^n$

Interval Arithmetic

Definition

Any real number elementary operators such as $+, -, \times, \div$ and functions such as *exp*, *sin*, *sqr*, *sqrt*, can be easily extended to intervals

Example

Be [x] and [y] two intervals, we define $\rightarrow [x] + [y] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$ $\rightarrow [x] \times [y] = [min(\underline{xy}, \overline{xy}, \underline{x}\overline{y}, \overline{xy}), max(\underline{xy}, \overline{xy}, \underline{x}\overline{y}, \overline{xy})]$ Be $f \in \{cos, sin, exp, tan, log, sqrt, sqr\}$, we define $\rightarrow f([x]) = \{f(x) \text{ with } x \in [x]\}$

Definitions

Constraint Satisfaction Problem (CSP)

A CSP is defined by three sets. A set of **variables** \mathcal{V} , a set of **domains** \mathcal{D} for those variables and a set of **constraints** \mathcal{C} connecting the variables together

$$\mathsf{CSP}: \left\{ \begin{array}{l} \mathcal{V} = \{x_1, x_2, \cdots, x_n\} \\ \mathcal{D} = \{[x_1], [x_2], \cdots, [x_n]\} \\ \mathcal{C} = \{c_1, c_2, \cdots, c_m\} \end{array} \right\}$$

Constraint propagation

This kind of problem can be solved using **constraint propagation**. Constraint propagation consist in reducing the variable domains by using **contractors** C_{c_i} associated to each constraints c_i

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Let x_1 and x_2 be two variables with $[x_1] = [-10, 10]$ and $[x_2] = [-20, 100]$ there domains. We consider the constraints

$$c_1: x_2 = x_1^2$$
 and $c_2: x_2 = -2x_1 + 1$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

9/27

Q-Relaxed Intersection

Definition

Let be *m* interval vectors $[\mathbf{x}_1], \dots, [\mathbf{x}_m]$ of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}}([\mathbf{x}_i])$ is defined as all the $\mathbf{x} \in \mathbb{R}^n$ that are in all of the $[\mathbf{x}_i]$ excepted *q* at most

9/27

Q-Relaxed Intersection

 $[\mathbf{x}_4]$

 \mathbf{x}_2

Definition

Interval Analysis

Let be *m* interval vectors $[\mathbf{x}_1], \cdots, [\mathbf{x}_m]$ of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}}([\mathbf{x}_i])$ is defined as all the $\mathbf{x} \in \mathbb{R}^n$ that are in all of the $[\mathbf{x}_i]$ excepted q at most

We consider five interval vectors : $[\boldsymbol{x}_1], \cdots, [\boldsymbol{x}_5]$

The Proposed Method

Q-Relaxed Intersection

Definition

Let be *m* interval vectors $[\mathbf{x}_1], \dots, [\mathbf{x}_m]$ of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}}([\mathbf{x}_i])$ is defined as all the $\mathbf{x} \in \mathbb{R}^n$ that are in all of the $[\mathbf{x}_i]$ excepted q at most

 \mathbf{x}_5

 $[\mathbf{x}_1]$

 $[\mathbf{x}_4]$

 $|\mathbf{x}_2|$

 $||\mathbf{x}_3||$

9/27

The Proposed Method

Q-Relaxed Intersection

Definition

Interval Analysis

Let be *m* interval vectors $[\mathbf{x}_1], \cdots, [\mathbf{x}_m]$ of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}}([\mathbf{x}_i])$ is defined as all the $\mathbf{x} \in \mathbb{R}^n$ that are in all of the $[\mathbf{x}_i]$ excepted q at most

The Proposed Method

Q-Relaxed Intersection

Definition

Interval Analysis

Let be *m* interval vectors $[\mathbf{x}_1], \cdots, [\mathbf{x}_m]$ of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}}([\mathbf{x}_i])$ is defined as all the $\mathbf{x} \in \mathbb{R}^n$ that are in all of the $[\mathbf{x}_i]$ excepted q at most

Mobile Robot Localization: A Set-Membership Approach

Q-Relaxed Intersection

Definition

00000 Q-Relaxed Intersection

> Let be *m* interval vectors $[\mathbf{x}_1], \dots, [\mathbf{x}_m]$ of \mathbb{R}^n . The q-relaxed intersection $\bigcap^{\{q\}}([\mathbf{x}_i])$ is defined as all the $\mathbf{x} \in \mathbb{R}^n$ that are in all of the $[\mathbf{x}_i]$ excepted q at most

The Proposed Method

Summary

Interval Analysis

2 The Global Localization Problem The Robot The Environment The Objective

3 The Proposed Method

4 Experimental Results

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

Interval Analysis	The Global Localization Problem ●○○○	The Proposed Method	Experimental Results
The Robot			
The Robot			(JJCR'2013)

The considered robot

We consider a mobile wheeled robot with a LIDAR ^{*a*} sensor. Its pose is defined by $\mathbf{p} = (x, y, \theta)$, with (x, y) its localization and θ its orientation

a. Light Detection And Ranging

The measurements

The sensor provides a set of measurements :

$$\mathbb{D} = \{ \mathbf{d}_i = (d_{i_x}, d_{i_y}) \}, i = 1, \cdots, n$$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

00000					

The Robot

The Global Localization Problem

The Proposed Method

Experimental Results

The Robot

Interval Analysis	The Global Localization Problem	The Proposed Method	Experimental Results	
The Environment				
The Enviro	onment		(JJCR' 2013)	
The map)		1	
The known environment $\mathbb{E}\in\mathbb{R}^2$ is discretized with a resolution δ_x , δ_y				

The Global Localization Problem 0000

(JJCR'2013

The Objective

The Objective

Hypotheses

- Bounded error context 0
- Outliers can be considered 0

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

Experimental Results

(*JJCR*'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

Experimental Results

(*JJCR*'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Objective

The Global Localization Problem

The Proposed Method

(JJCR'2013)

Hypotheses

- Bounded error context
- Outliers can be considered

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Proposed Method

Summary

Interval Analysis

2 The Global Localization Problem

3 The Proposed Method

The Measurement CSP The Localization Algorithm

Experimental Results

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Measurement CSP

The Context

Let $[\mathbf{p}] = ([x], [y], [\theta])$ be an initial domain that encloses the robot pose (x, y, θ) and $\mathbb{D} = {\mathbf{d}_i}, i = 1, \dots, n$ a set of *n* telemeter measurements

The Measurement CSP

The Measurements Coordinates

The coordinates (w_{i_x}, w_{i_y}) of an obstacle in the map are defined by

$$\left(\begin{array}{c}w_{i_x}\\w_{i_y}\end{array}\right) = \left(\begin{array}{c}cos(\theta) & sin(\theta)\\-sin(\theta) & cos(\theta)\end{array}\right) \left(\begin{array}{c}d_{i_x}\\d_{i_y}\end{array}\right) + \left(\begin{array}{c}x\\y\end{array}\right)$$

The Global Localization Problem

The Proposed Method

The Measurement CSP

The Measurement CSP

The Robot-Measurement Distance

$$|\mathbf{d}_i||^2 = (x - w_{i_x})^2 + (y - w_{i_y})^2$$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Global Localization Problem

The Proposed Method

The Measurement CSP

The Measurement CSP

The Measurement-Measurement Distance

$$||\mathbf{d}_i - \mathbf{d}_j||^2 = (w_{i_x} - w_{j_x})^2 + (w_{i_y} - w_{j_y})^2$$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

University of Angers - LISA

The Global Localization Problem

The Proposed Method

Experimental Results

The Measurement CSP

(JJCR'2013)

The Measurement CSP

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

University of Angers - LISA

The Global Localization Problem

The Proposed Method

Experimental Results

The Measurement CSP

(JJCR'2013)

The Measurement CSP

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

University of Angers - LISA

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013

The Measurement CSP

The Measurement CSP

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

University of Angers - LISA

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013

The Measurement CSP

The Measurement CSP

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

University of Angers - LISA

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013

The Measurement CSP

The Measurement CSP

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

University of Angers - LISA

The Measurement CSP

The Proposed Method

(JJCR'2013)

The Measurement CSP

The map constraint

We define $c_{\mathbb{G}}$ the constraint which says that the measurement has to be consistent with the map.

The map contractor

We define $C_{\mathbb{G}}$ the contractor of the constraint $c_{\mathbb{G}}$

The Global Localization Problem

The Proposed Method

(JJCR'2013)

The Measurement CSP

The Measurement CSP

Considered Constraint Satisfaction Problem

$$\begin{split} \mathcal{V} &= \{x, y, \theta, \mathbf{d}_{i} = (d_{i_{x}}, d_{i_{y}}), w_{i_{x}}, w_{i_{y}}\} \\ \mathcal{D} &= \{ \\ & [x] = [-\infty, +\infty], [y] = [-\infty, +\infty], [\theta] = [0, 2\pi] \\ & [w_{i_{x}}] = [-\infty, +\infty], [w_{i_{y}}] = [-\infty, +\infty] \\ & [d_{i_{x}}] = \text{obtained from the sensor} \\ & [d_{i_{y}}] = \text{obtained from the sensor} \} \\ \mathcal{C} &= \begin{cases} c_{w_{i_{x}}} : d_{i_{x}} cos(\theta) + d_{i_{y}} sin(\theta) + x \\ c_{w_{i_{y}}} : -d_{i_{x}} sin(\theta) + d_{i_{y}} cos(\theta) + y \\ c_{d_{i}} : ||\mathbf{d}_{i}||^{2} = (x - w_{i_{x}})^{2} + (y - w_{i_{y}})^{2} \\ c_{d_{i,j}} : ||\mathbf{d}_{i} - \mathbf{d}_{j}||^{2} = (w_{i_{x}} - w_{j_{x}})^{2} + (w_{i_{y}} - w_{j_{y}})^{2} \\ c_{\mathbb{G}} : \text{to be consistent with the map (using } C_{\mathbb{G}}) \end{split}$$

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Global Localization Problem

The Proposed Method

Experimental Results

(JJCR'2013

The Localization Algorithm

The Localization Algorithm

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Proposed Method

Experimental Results

Summary

1 Interval Analysis

- 2 The Global Localization Problem
- 3 The Proposed Method
- 4 Experimental Results

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

The Proposed Method

Experimental Results

Experimental Results

Rémy Guyonneau - remy.guyonneau@univ-angers.fr

Conclusion

- During this presentation a global localization method has been presented
- This method is
 - guaranteed (interval analysis)
 - robust (consideration of outliers)
 - efficient (contractors)
- Future work : implementation of the algorithm in a MiniRex robot

The Global Localization Problem

The Proposed Method

Experimental Results

Thank you for your attention

Rémy Guyonneau - remy.guyonneau@univ-angers.fr