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Non-divisible point on a two-parameter family

of elliptic curves

Valentin Petit

Abstract

Let n be a positive integer and t a non-zero integer. We consider
the elliptic curve over Q given by

E : y2 = x3 + tx2 − n2(t+ 3n2)x+ n6.

It is a special case of an elliptic surface studied recently by Bettin,
David and Delaunay [2] and it generalizes Washington’s family. The
point (0, n3) belongs to E(Q) and we obtain some results about its non-
divisibility in E(Q). Our work extends to this two-parameter family of
elliptic curves a previous study of Duquesne (mainly stated for n = 1
and t > 0).

MSC 2020: 11G05, 11G50.
Keywords: Elliptic curves, Integral points, Heights.

1 Introduction

We are concerned with proving the non-divisibility of a point on a family
of elliptic curves defined over Q with two integer parameters. This family
generalizes Washington’s family [11] which is connected to simplest cubic
fields. Let n be a positive integer. We consider the elliptic surface over Q(T )
given by

E : y2 = x3 + Tx2 − n2(T + 3n2)x+ n6. (1)

It is a special case of an elliptic surface studied recently by Bettin, David
and Delaunay [2]. The case n = 1 is precisely Washington’s family studied
by Washington [11] and Duquesne [5]. In [2] the authors obtain a formula
for the average root numbers of the elliptic curves obtained by specializing E
at T = t ∈ Q. Another elliptic surface over Q(T ) derived from their family
is

F : y2 = x3 + Tx2 + n2(T − 3n2)x− n6. (2)
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Both elliptic surfaces E and F are related. Indeed, for all positive integers
n and all integers t, the curves E(t − 3n2) and F(t) are isomorphic over Q.
Throughout the article, we denote by E the elliptic curve E(t) over Q, where
t is a non-zero integer as in [2].

Theorem 5.7 of Duquesne in [5] asserts that if n = 1, t is positive and
t2 + 3t+ 9 is squarefree, then the point (0, 1) is not divisible. In this article,
we generalize this result to all n > 0 whenever |t| is large enough compared
to n (Theorem 21). In particular, we also take care of the case t < 0.

The strategy is similar to Duquesne’s with an additional specific and
careful treatment for the two parameters (we also notice that a small issue
seems to occur in Section 5D of [5] during the computation of the local
contribution of the height, which we can correct here). Suppose that there
exist an integer k ≥ 2 and a point P ∈ E(Q) such that kP = (0, n3).
The main idea is to minimize such an integer k. The strategy is to find a
lower bound for the canonical height ĥ(P ) of P , an upper bound for ĥ(0, n3)
(Section 4), and to obtain a contradiction. To do this, we will split the
canonical height into local contributions (Section 4) and approximate the
periods of E (Section 3).

2 Generalities about the family

Let n be a positive integer and t a non-zero integer. We consider the elliptic
curve

E : y2 = x3 + tx2 − n2(t+ 3n2)x+ n6. (3)

We set δ = t2 + 3n2t + 9n4. The discriminant and j-invariant of the elliptic
curve E are given by

∆ = 16n4δ2,

j = 256
n4 δ.

Let f(x) be the polynomial

f(x) = x3 + tx2 − n2(t+ 3n2)x+ n6.

Its discriminant is n4δ2, which is positive, so f has three real roots denoted
by α1 < α2 < α3. They satisfy α1 < 0 < α2 < n2 < α3 and the following
relations:

α2 =
n4

n2 − α1
, α3 = n2 − n4

α1
. (4)

The polynomial f is irreducible over Q if δ is squarefree. Indeed, it suffices

to see that the polynomial h(x) = 27f

(
x− t

3

)
= x3 + 3δx+ δ(2t + 3n2) is

irreducible over Q by Eisenstein’s criterion.
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We denote by E0(R) the connected component of the identity element and
by E(R) − E0(R) the bounded connected component of E(R). Recall that
E0(R) is a subgroup of E(R) and that the sum of two points in E(R)−E0(R)
lies in E0(R). The integral point (0, n3) belongs to E(Q) for all t and n.
More precisely the fact that α2 > 0 implies that the point (0, n3) belongs to
E(Q)− E0(Q) for all t ∈ Z6=0 and n ∈ N.

We note that (0, n3) is not a torsion point of E. Indeed, since (0, n3) ∈
E(Q) − E0(Q), the order of (0, n3) cannot be odd if it is finite. Moreover,
since the polynomial f(x) is irreducible over Q, there is no torsion point of
even order. Hence the point (0, n3) has infinite order.

Throughout the article we assume that δ is squarefree, which implies
that n and t are coprime. This condition will play a key role later. Moreover
we need (3) to be a minimal Weierstrass equation for E which, by Tate’s
algorithm [9, IV.9], occurs if we assume also that t is not congruent to 1
modulo 4 when 4 | n. The minimal Weierstrass equation will be necessary
to compute the non-archimedean local contributions.

For the case 4 | n and t ≡ 1 [4], write n = 4m and t = 4k + 1 with
m ∈ Z>0 and k ∈ Z. The elliptic curve E is then isomorphic over Q to the
curve

E ′ : y2 + xy = x3 + kx2 −m2(4k + 1− 48m2)x+ 64m6. (5)

Note that (5) is a minimal model for E ′. A change of variables maps the point
(0, n3) ∈ E(Q) to the point (0, 8m3) ∈ E ′(Q). Therefore, if we want to prove
the non-divisibility of (0, n3) on E(Q), it suffices to prove the non-divisibility
of (0, 8m3) on E ′(Q).

3 Approximation of periods

The goal of this section is to approximate the real period ω1 and the imagi-
nary period ω2 of E. In order to compute ω1 and ω2, the Weierstrass equa-
tion defining E does not need to be minimal. The elliptic curve E : y2 =
x3 + tx2 − n2(t+ 3n2)x+ n6 is isomorphic over Q to the curve

y2 = 4g(x),

where g(x) = x3− 1
3
δx+ 1

27
(2t+3n2)δ. The real roots e1, e2, e3 of g are given

by ei = αi +
t

3
for all i ∈ {1, 2, 3} and the periods ω1 and ω2 of E are (see

[3, 7.3.2])

ω1 =

∫ e2

e1

dx√
g(x)

∈ R, ω2 = −
∫ e3

e2

dx√
g(x)

∈ iR.
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3.1 The case t > 0

When t > 0, the real roots of g satisfy e1 < 0 < e2 < e3 because e2 = α2 +
t

3
and g

(
−2t

3
− n2

)
> 0. A straightforward study of the function g gives for

t ≥ 3n2,

−2

3
t− n2 − 2

n4

t
≤ e1 ≤ −2

3
t− n2 − n4

t
,

t

3
≤ e2 ≤

t

3
+

n4

t
,

t

3
+ n2 ≤ e3 ≤

t

3
+ n2 +

n4

t
.

(6)

Lemma 1. Let n be a fixed positive integer. As t → +∞, we have
ω2

i
∼ π√

t
.

Moreover for t ≥ 100n2, we have

3.11√
t

≤ ω2

i
≤ 3.15√

t
.

Proof. We note that
ω2

i
=

∫ e3

e2

dx√
(x− e1)(x− e2)(e3 − x)

. If x ∈ [e2, e3], we

have t + n2 +
n4

t
≤ x− e1 ≤ t+ 2n2 +

3n4

t
by (6). So

1√
t+ 2n2 + 3n4

t

≤ 1√
x− e1

≤ 1√
t+ n2 + n4

t

,

and then
∫ e3

e2

dx√
(x− e2)(e3 − x)√
t+ 2n2 + 3n4

t

≤ ω2

i
≤

∫ e3

e2

dx√
(x− e2)(e3 − x)√
t + n2 + n4

t

, (7)

where
∫ e3

e2

dx√
(x− e2)(e3 − x)

= π. Moreover, as t → +∞ the left-hand side

and the right-hand side of (7) are both equivalent to
π√
t
. Finally, when

t ≥ 100n2, we derive from (7)

3.11√
t

≤ ω2

i
≤ 3.15√

t
.
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Lemma 2. For t ≥ 100n2, we have

1.88 + 0.99 log
(

t
n2

)
√
t

≤ ω1 ≤
5.35 + 1.23 log

(
t
n2

)
√
t

.

Proof. We split the integral into two parts

ω−
1 =

∫ 0

e1

dx√
(x− e1)(e2 − x)(e3 − x)

, ω+
1 =

∫ e2

0

dx√
(x− e1)(e2 − x)(e3 − x)

.

First we consider ω−
1 . If x ∈ [e1, 0], we have t

3
≤ e2 − x ≤ t + n2 + 3n4

t
and

t
3
+ n2 ≤ e3 − x ≤ t+ 2n2 + 3n4

t
by (6). So we get the lower bound

ω−
1

√(
t + n2 +

3n4

t

)(
t + 2n2 +

3n4

t

)
≥
∫ 0

e1

dx√
x− e1

≥ 2
√−e1

≥ 2
√

2
3
t+ n2 + n4

t
.

Furthermore using (6), we get the upper bound

ω−
1 ≤

∫ 0

e1

dx√
x− e1√

t

3

(
t

3
+ n2

) ≤ 2
√−e1√

t

3

(
t

3
+ n2

) ≤ 2√
t

√
2

3
+

n2

t
+

2n4

t2√
1
9

.

Thus when t ≥ 100n2, we obtain

1.60√
t

≤ ω−
1 ≤ 4.94√

t
.

Now we consider ω+
1 . If x ∈ [0, e2], we have 2

3
t+n2+ n4

t
≤ x−e1 ≤ t+n2+ n4

t

by (6). So we have

J√
t + n2 + 3n4

t

≤ ω+
1 ≤ J√

2
3
t+ n2 + n4

t

,

with

J =

∫ e2

0

dx√
(e2 − x)(e3 − x)

= log

(√
e3 +

√
e2√

e3 −
√
e2

)
.
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Moreover by (6), we have

4
3
t+ n2

n2 + n4

t

≤
√
e3 +

√
e2√

e3 −
√
e2

≤
2
3
t+ n2 + 2n4

t
+ 2
√
( t
3
+ n2 + n4

t
)( t

3
+ n4

t
)

n2 − n4

t

,

which implies

4
3
t + n2

n2 + n4

t

≤
√
e3 +

√
e2√

e3 −
√
e2

≤
4
3
t + 4n2 + 4n4

t

n2 − n4

t

.

So we get

1√
t+ n2 + 3n4

t

log

(
4
3
t + n2

n2 + n4

t

)
≤ ω+

1 ≤ 1√
2
3
t+ n2 + n4

t

log

(
4
3
t + 4n2 + 4n4

t

n2 − n4

t

)
.

Assume now that t ≥ 100n2. We derive

ω+
1 ≤ 1√

2
3
t + n2 + n4

t

(
log(t) + log

(
4

3

)
+ log

(
1 +

3n2

t
+

3n4

t2

)
− log

(
n2 − n4

t

))

≤ 0.41 + 1.23 log
(

t
n2

)
√
t

and

ω+
1 ≥ 1√

t+ n2 + 3n4

t

log

(
4t

3(n2 + n4

t
)

)
≥ 0.28 + 0.99 log

(
t
n2

)
√
t

.

Finally we obtain

1.88 + 0.99 log
(

t
n2

)
√
t

≤ ω1 ≤
5.35 + 1.23 log

(
t
n2

)
√
t

.

Remark. A numerical analysis suggests that ω1 should be equivalent to
log
(

t
n2

)
√
t

as t → +∞.

6



3.2 The case t < 0

Once again we use the fact that E is isomorphic to the curve y2 = 4g(x). A
straightforward study of the function g gives the following estimates when
t ≤ −3n2:

t

3
+

2n4

t
≤ e1 ≤

t

3
+

n4

t
,

t

3
+ n2 +

2n4

t
≤ e2 ≤

t

3
+ n2 +

n4

t
,

−2t

3
− n2 ≤ e3 ≤ −2t

3
.

(8)

Lemma 3. Let n be a fixed positive integer. As t → −∞, we have ω1 ∼
π√
|t|

.

Moreover, for t ≤ −100n2 we have

3.14√
|t|

≤ ω1 ≤
3.15√
|t|

.

Proof. If x ∈ [e1, e2], then |t| − 2n2 + n4

|t|
≤ e3 − x ≤ |t|+ 2n4

|t|
by (8). So

1√
|t|+ 2n4

|t|

≤ 1√
e3 − x

≤ 1√
|t| − 2n2 + n4

|t|

.

We obtain
J√

|t|+ 2n4

|t|

≤ ω1 ≤
J√

|t| − 2n2 + n4

|t|

,

with

J =

∫ e2

e1

dx√
(x− e1)(e2 − x)

= π.

Since
π√

|t|+ 2n4

|t|

and
π√

|t| − 2n2 + n4

|t|

are both equivalent to
π√
|t|

as t →

−∞, we deduce ω1 ∼
t→−∞

π√
|t|

. Furthermore if t ≤ −100n2, we get

3.14√
|t|

≤ ω1 ≤
3.15√
|t|

.

Lemma 4. If t ≤ −100n2, we have

ω2

i
≥

0.39 + log
(

|t|
n2

)

√
|t|

.
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Proof. To approximate ω2, we need to split the integral into two parts:

ω2

i
=

∫ 0

e2

dx√
(x− e1)(x− e2)(e3 − x)︸ ︷︷ ︸

+

∫ e3

0

dx√
(x− e1)(x− e2)(e3 − x)︸ ︷︷ ︸

.

W− W+

We begin with estimating W−. If x ∈ [e2, 0], we get by (8)

−2

3
t− n2 ≤ e3 − x ≤ −t− n2 − 2n4

t
.

So
L√

−t− n2 − 2n4

t

≤ W− ≤ L√
−2

3
t− n2

,

with

L = −
∫ e2

0

dx√
(x− e1)(x− e2)

= − log(e2 − e1) + log
(
− e1 − e2 +

√
e1e2

)
.

Moreover by (8), we have

− log

(
n2 − n4

t

)
+ log

(
−2

3
t− n2 − 2n4

t

)
≤ L.

For t ≤ −100n2, we get

W−
√
−t− n2 − 2n4

t
≥ − log

(
n2 − n4

t

)
+ log

(
−2

3
t− n2 − 2n4

t

)

≥ −2 log(n)− log

(
1− 1

100

)
+ log(|t|) + log

(
2

3
− 1

100

)
,

from which we derive

W− ≥
log
(

|t|
n2

)
− 0.42

√
|t|

. (9)

If x ∈ [0, e3], we obtain by (8)

− t

3
− n4

t
≤ x− e1 ≤ −t− 2n4

t
,

− t

3
− n2 − n4

t
≤ x− e2 ≤ −t− n2 − n4

t
.
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Thus
W+

√(
−t− 2n4

t

) (
−t− n2 − n4

t

)
≥ √

e3,

from which we derive

W+ ≥

√
−2

3
t− n2

√
(−t− 2n4

t
)(−t− n2 − n4

t
)
≥

√
|t|
√

2
3
− n2

|t|

|t|
√
(1 + 2n4

|t|2
)2
.

So we obtain, for t ≤ −100n2

W+ ≥ 0.81√
|t|

. (10)

Finally by adding both inequalities (9) and (10), we have

ω2

i
≥

0.39 + log
(

|t|
n2

)

√
|t|

.

Remark. When t < 0, we just give a lower bound for ω2

i
since no upper

bound is required in order estimate the height.

4 Estimates on the heights

We need to estimate the heights of some points in E(Q). For this purpose,
we will decompose the heights as a sum of local contributions. Depending on
the conventions, there are different ways to split the canonical height into a
sum of local heights. However in this section, a special care was taken during
the computations of local heights to make sure that their sum agrees with
the definition of the canonical height.

4.1 Lower bound for the height

We want to prove that there does not exist a point P = (α, β) ∈ E(Q) and
an integer ℓ ≥ 2 such that ℓP = (0, n3). The goal of this part is to find,
if such a point exists, a lower bound for the canonical height of P . Since
(0, n3) ∈ E(Q) − E0(Q), the point P has to belong to E(Q) − E0(Q) and ℓ

must be odd (see Section 2).
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Lemma 5. Let F : y2+a1xy+a3y = x3+a2x
2+a4x+a6 be an elliptic curve

over Q with ai ∈ Z for all i ∈ {1, 2, 3, 4, 6}. Let P ∈ F (Q) be a point such
that nP is an integral point for some integer n ≥ 1. Then P is an integral
point on F .

Proof. The proof of [1, 4.4, p. 18] for models of the form y2 = x3 + Ax+ B

using division polynomials can be generalized for longer models of the form
y2 = x3 + a2x

2 + a4x+ a6 without any difficulty.

Lemma 5 implies that if (0, n3) is the multiple of a rational point P then
P ∈ E(Z). Moreover the point (0, n3) is singular modulo p for all primes
p | n. This implies that P is singular modulo p for all p | n since the multiple
of a non-singular point is always non-singular. If p | n, the only singular
point is (0, 0) so we have p | α. This remark will be used in Lemmas 6, 7 and
Proposition 10.

Lemma 6. Let P = (α, β) ∈ E(Z) − E0(Z) be such that there exists ℓ ≥ 2
with ℓP = (0, n3). If t ≥ n4 then |β| ≥ n

√
2t.

Proof. Assume that t ≥ n4 and n ≥ 2. Recall that α1, α2, α3 are the real roots
of the polynomial f(x) = x3+ tx2−n2(t+3n2)x+n6 with α1 < 0 < α2 < α3.
By studying the function f , we have for t ≥ n4

−n2 − t− 1 < α1 < −n2 − t and 0 < α2 < 1.

Since P ∈ E(Q)−E0(Q), we have α1 < α < α2, and then α ∈ [−n2 − t,−1].
Moreover since p | α for all prime p | n, we get α ≤ −2 and then

f(α) ≥ min(f(−n2 − t), f(−2))
≥ min

(
2n4t + 3n6, (2n2 + 4)t+ n6 + 6n4 − 8

)

≥ 2n2t.

Thus |β| ≥ n
√
2t. If n = 1, we have

f(α) ≥ min(f(−t− 1), f(−1)) = 2t + 3,

hence |β| ≥
√
2t+ 3 ≥

√
2t.

Lemma 7. Suppose that t ≤ −2n4. Then

|β| ≥
{√

2|t| if n = 2,

n
√

|t| if n ≥ 3.

Proof. We use an argument similar to the case t ≥ n4 (Lemma 6).
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Remark. Assume n = 1. If t ≤ −2, the point (0, 1) is the only integral
point in E(Q)− E0(Q) because −1 < α1 < α2. Hence (0, 1) is not divisible.
If t = −1, it is easy to prove that this point is not divisible as well. Therefore
when t is negative, we can assume that n ≥ 2.

In order to find a lower bound for the canonical height of an integral point
of E, we use the decomposition of the canonical height into local contributions
(see [7, Theorem 5.2], [4, 7.5.7]). For P ∈ E(Q) we have

ĥ(P ) =
∑

p≤∞

λp(P ),

where the sum runs through the places of Q. We recall the definitions of λp for
finite places p in Definition/Proposition 8 and λ∞ in Definition/Proposition 11.
For this, we set

A = 3α2 + 2tα− n2(t+ 3n2),

B = 2β,

C = 3α4 + 4tα3 − 6n2(t+ 3n2)α2 + 12n6α− n4(t2 + 2n2t + 9n4),

D = gcd(A,B),

c4 = 16δ.

Definition/Proposition 8. ([7, Theorem 5.2],[4, 7.5.6]) Let p be a prime
number. The local non-archimedean contribution λp(P ) is non-zero only if

p | D. If p | D, we set mp = min
(

vp(∆)
2

, vp(B)
)

and the local contribution at

p is then given by

λp(P ) =





−mp(vp(∆)− 2mp)

2vp(∆)
log(p) if p ∤ c4,

−vp(B)

3
log(p) if p | c4 and vp(C) ≥ 3vp(B),

−vp(C)

8
log(p) otherwise,

where vp is the p-adic valuation.

Lemma 9. Assume 4 ∤ n or t 6≡ 1[4]. Let P ∈ E(Q) be an integral point. If
p ∤ 2n, then λp(P ) = 0.

Proof. Let p | D. We assume that p ∤ n and p 6= 2. First we have 4A2 =
B2(9α + 3t) + 4δ(α2 − n2α + n4). Since δ is squarefree, we obtain that
p | (α2 − n2α + n4). We also have

B2 = 4(α2 − n2α+ n4)− 4n2(3α + t)

11



so p | (3α + t). Furthermore p divides the resultant of A and B2, viewed
as polynomials in Z[α], which is equal to ∆ = 16n4δ2. Therefore p | δ.
Moreover,

27B2 = 4(3α+ t)3 − 4δ(9α + t− 3n2),

which implies that p | (9α + t − 3n2). Since (9α + t − 3n2) = 3(3α + t) −
(2t + 3n2), we obtain that p | (2t + 3n2). But 4δ = (2t + 3n2)2 + 27n4. We
get p = 3 hence δ is not squarefree, which is a contradiction.

Proposition 10. Let P = (α, β) be an integral point on E such that ℓP =
(0, n3) for some integer ℓ ≥ 1. Then the following inequality holds

∑

p<∞

λp(P ) ≥ −1

2
log(n)− 1

3
log(2).

Proof. By Lemma 9, it suffices to compute the local contributions at primes
p | 2n. For p | n, we first assume p 6= 2. Let m = vp(n). Since δ is
squarefree, we have p ∤ c4 and vp(∆) = 4m. Put mp = min(2m, vp(B)). By
Definition/Proposition 8, the local contribution of P is then given by

λp(P ) = −mp(4m−mp)

8m
log(p).

We easily conclude that

λp(P ) ≥ −m

2
log(p) ≥ −1

2
log(pm).

Now we want to compute the 2-local contribution λ2(P ). Since 2 | c4, it
is given by

λ2(P ) =





−v2(B)

3
log(2) if v2(C) ≥ 3v2(B),

−v2(C)

8
log(2) otherwise.

If 2 ∤ n then v2(B) = 1, so λ2(P ) ≥ −1

3
log(2).

Suppose now that 2 | n and m = v2(n).

If m ∈ {1, 2} it is easy to check that λ2(P ) ≥ −1

2
log(2m)− 1

3
log(2). So we

may assume that m ≥ 3.

If v2(α) < m then v2(B) = 1+v2(α); in that case we have λ2(P ) ≥ −m

3
log(2)

if v2(C) ≥ 3v2(B), else λ2(P ) ≥ −m

2
log(2).
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If m ≤ v2(α) <
4m−2

3
then v2(B) = 1+ v2(α) and v2(C) = 3v2(α)+2; in that

case we have λ2(P ) = −3v2(α) + 2

8
log(2) ≥ −1

2
log(2m).

If v2(α) =
4m− 2

3
then v2(C) > 4m and v2(B) =

4m+ 1

3
; in that case we

have λ2(P ) = −4m+ 1

9
log(2) ≥ −m

2
log(2).

If v2(α) >
4m− 2

3
then v2(C) = 4m and 3v2(B) > 4m; in that case we have

λ2(P ) ≥ −1

2
log(2m).

Finally we conclude by summing all local non-archimedean contributions.

Now we study the local archimedean contribution.

Definition/Proposition 11. ([4, 7.5.7]) Let P = (α, β) ∈ E(Q). Let z be

the elliptic logarithm of P . Let µ =
2π

ω1
, s = µRe(z), q = exp

(
2iπω2

ω1

)
, and

θ =
∞∑

k=0

sin((2k + 1)s)(−1)kq
k(k+1)

2 .

Then the local archimedean contribution is given by

λ∞(P ) =
1

32
log

∣∣∣∣
∆

q

∣∣∣∣−
1

4
log |θ|+ 1

8
log

∣∣∣∣∣
α3 + b2

4
α2 + b4

2
α + b6

4

µ

∣∣∣∣∣

where b2 = a21 +4a2, b4 = a1a3 +2a4, b6 = a1a2a3 +4a6 and a1, a2, a3, a4 and
a6 are defined as in Lemma 5.

Proposition 12. Let P be an integral point on E such that ℓP = (0, n3) for
some integer ℓ ≥ 2. If t ≥ max(100n2, n4), we have

λ∞(P ) ≥ 13

80
log(t) +

3

8
log(n) + 0.30.

If t ≤ min(−100n2,−2n4), we have

λ∞(P ) ≥ 3

16
log(|t|) + 3

8
log(n) + 0.27.

Proof. We first note that

|θ| ≤
∞∑

k=0

q
k(k+1)

2 ≤ 1

1− q
. (11)
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To find a lower bound for λ∞(P ), we need to find a upper bound for q. If
t ≥ 100n2, by Lemmas 1 and 2, we have

2iπω2

ω1

≤ −3.11× 2π

5.35 + 1.23 log
(

t
n2

) ≤ −15.88

log( t
n2 )

thus

q ≤ exp

(−15.88

log( t
n2 )

)
≤ 1− 4.3

log( t
n2 )

. (12)

On the one hand, by definition of ∆ we have

1

32
log(∆) =

1

32
log
(
16n4(t2 + 3n2t+ 9n4)2

)
≥ 1

8
log(t) +

1

8
log(n) +

1

8
log(2).

On the other hand, with (12) and (11) we get

1

32
log

∣∣∣∣
1

q

∣∣∣∣ ≥
1

32
log

(
exp

(
15.88

log( t
n2 )

))
≥ 15.88

32 log( t
n2 )

,

−1

4
log |θ| ≥ −1

4
log

∣∣∣∣
1

1− q

∣∣∣∣ ≥ 1

4
log(4.3)− 1

4
log log

(
t

n2

)
,

and by Lemma 2,

−1

8
log(µ) =

1

8
log
(ω1

2π

)
≥ −1

8
log(2π) +

1

8
log

(
1.88 + 0.99 log

(
t
n2

)
√
t

)
,

≥ − 1

16
log(t)− 1

8
log(2π) +

1

8
log log

(
t

n2

)
.

Moreover, we have

1

8
log(2) +

1

4
log(4.3)− 1

8
log(2π) +

1

8
log(0.99) ≥ 0.22.

Finally using Definition/Proposition 11 and the fact that α3 + b2
4
α2 + b4

2
α+

b6
4
= β2, we obtain the lower bound for λ∞(P ):

λ∞(P ) ≥ 1

16
log(t)− 1

8
log log

(
t

n2

)
+

15.88

32 log( t
n2 )

+
1

4
log |β|+ 1

8
log(n) + 0.22.
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Moreover, by Lemma 6, for t ≥ n4 we have |β| ≥ n
√
2t. If t ≥ max(n4, 100n2),

we obtain

λ∞(P ) ≥ 13

80
log(t) +

3

8
log(n) + 0.30.

When t is negative, we proceed similarly to find a lower bound to λ∞(P ). If
t ≤ −100n2, we have by Lemmas 3 and 4

2iπω2

ω1
≤

−2π

(
0.39 + log

( |t|
n2

))

3.15
≤ − 2π

3.15
log

(
t

n2

)
,

and

q ≤ exp

(
− 2π

3.15
log
( t

n2

))
≤ 0.0002. (13)

On the one hand, by definition of ∆ we have

1

32
log(∆) ≥ 1

8
log(|t|) + 1

8
log(n) +

1

8
log(2) +

1

32
log

(
1− 3

100

)

On the other hand, with (13) and (11) we get

1

32
log

∣∣∣∣
1

q

∣∣∣∣ ≥ 1

32
log exp

(
2π

3.15
log

( |t|
n2

))
≥ 0.28,

−1

4
log |θ| ≥ −1

4
log

∣∣∣∣
1

1− q

∣∣∣∣ ≥ −1

4
log

(
1

1− 0.0002

)
,

and, by Lemma 3,

−1

8
log(µ) ≥ −1

8
log(2π) +

1

8
log

(
3.14√
|t|

)

≥ − 1

16
log (|t|)− 1

8
log(2π) +

1

8
log(3.14).

Moreover we have
1

8
log(2) +

1

8
log(3.14)− 1

8
log(2π) +

1

4
log (1− 0.0002) + 0.28 ≥ 0.27.

Then we obtain

λ∞(P ) ≥ 1

16
log(|t|) + 1

4
log |β|+ 1

8
log(n) + 0.27.

Moreover by Lemma 7, for t ≤ −2n4, we have |β| ≥ n
√

|t|. If t ≤ min(−2n4,−100n2),
we obtain

λ∞(P ) ≥ 3

16
log(|t|) + 3

8
log(n) + 0.27.
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Theorem 13. Let P be an integral point on E such that ℓP = (0, n3) for
some integer ℓ ≥ 2. If t ≥ max(100n2, n4), we have

ĥ(P ) ≥ 13

80
log(t)− 1

8
log(n) + 0.06.

If t ≤ min(−100n2,−n4), we have

ĥ(P ) ≥ 3

16
log(|t|)− 1

8
log(n).

Proof. It suffices to sum the inequalities obtained in Proposition 10 and
Proposition 12.

By similar arguments, we obtain the following statements for the case
t = 4k + 1 and n = 4m.

Proposition 14. If P = (α, β) is an integral point of E ′ such that ℓP =
(0, 8m3) for some intger ℓ ≥ 1, then the following inequality holds

∑

p<∞

λp(P ) ≥ −1

2
log(m) ≥ −1

2
log(n) + log(2).

Proposition 15. Let P ∈ E ′(Q) be an integral point such that ℓP = (0, 8m3)
for some integer ℓ ≥ 2. If t ≥ max(n4, 100n2), we have

λ∞(P ) ≥ 13

80
log(t) +

3

8
log(n)− 5

8
log(2) + 0.04.

If t ≤ min(−100n2,−2n4), we have

λ∞(P ) ≥ 3

16
log(|t|) + 3

8
log(n)− 3

4
log(2) + 0.10.

Again after summing the inequalities obtained in Propositions 14 and 15,
we obtain the following statement.

Theorem 16. Let P be an integral point on E ′ such that ℓP = (0, 8m3), for
some integer ℓ ≥ 2. If t ≥ max(100n2, n4), we have

ĥ(P ) ≥ 13

80
log(t) +

3

8
log(n) + 0.04.

If t ≤ min(−100n2,−2n4), we have

ĥ(P ) ≥ 3

16
log(|t|) + 1

4
log(n) + 0.10.
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4.2 Upper bound for the height

Proposition 17. If |t| ≥ 100n2, we have the following inequality

ĥ((0, n3)) ≤ log(|t|) + 1.57.

Proof. We use the result of Silverman [8, Theorem 1.1]. Let P ∈ E(Q). We
have

ĥ(P )− 1

2
h(P ) ≤ 1

12
h(∆) +

1

12
h∞(j) +

1

2
h∞

(
b2

12

)
+

1

2
log(2) + 1.07

where h(P ) = h(x(P )) is the logarithmic height over Q, h∞(x) = max(log |x|, 0)
and b2 is defined as in Definition/Proposition 11. Since h((0, n3)) = 0, in our
case we have

ĥ((0, n3)) ≤ 1

12
log(16n4(t2 + 3n2t + 9n4)2) +

1

12
log

(
256

n4
(t2 + 3n2t+ 9n4)

)

+
1

2
log

( |t|
3

)
+

1

2
log(2) + 1.07

≤ 1

4
log(t2 + 3n2t + 9n4) +

1

2
log(|t|) + 1.561

≤ log(|t|) + 1

4
log

(
1 +

3n2

|t| +
9n4

t2

)
+ 1.561.

Finally, if |t| ≥ 100n2, we obtain

ĥ((0, n3)) ≤ log(|t|) + 1.57.

Remark. We note that the upper bound of Proposition 17 is independent
of n. In fact, this bound is not optimal. A numerical analysis suggests that

ĥ((0, n3)) should be equivalent to 1
2
log
(

|t|
n2

)
as |t| → +∞.

By an argument similar to Proposition 17, we obtain the following state-
ment.

Proposition 18. For the case t = 4k + 1, n = 4m. If |t| ≥ 100n2, we have

ĥ((0, 8m3)) ≤ log(|t|) + 0.19.
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5 Main results

Proposition 19. Suppose that t ≥ max(100n2, n4) or t ≤ min(−100n2,−2n4).
Suppose also that the equation y2 = f(x) is a minimal Weierstrass model for
E when δ is squarefree (which occurs if t 6≡ 1 [4] when 4 | n). Then the point
(0, n3) is not divisible.

Proof. Assume that t is positive. Let P be a point in E(Q) − E0(Q) and
ℓ ≥ 2 such that ℓP = (0, n3). By Lemma 5, P must be an integral point.

By Theorem 13 we know that ĥ(P ) ≥ 13

80
log(t) − 1

8
log(n) + 0.06 and by

Proposition 17, we have ĥ((0, n3)) ≤ log(t) + 1.57. We note that P has
infinite order and then ĥ(P ) 6= 0. Since ĥ is quadratic, we have

ℓ2 =
ĥ((0, n3))

ĥ(P )
≤ log(t) + 1.57

13
80
log(t)− 1

8
log(n) + 0.06

≤ 80

13
+

2
3
log(n) + 1.21

13
80
log(t)− 1

8
log(n) + 0.06

≤ 8.6

thus ℓ ≤ 2. However we have seen at the beginning of Section 4.1 that ℓ is
odd, hence the point (0, n3) is not divisible.

Assume now that t is negative. We have by a similar argument (see
Theorem 13 and Proposition 17),

ℓ2 ≤ log(|t|) + 1.57
3
16
log(|t|)− 1

8
log(n)

≤ 5.34 +
2
3
log(n) + 1.57

3
16
log(|t|)− 1

8
log(n)

≤ 8.85.

Again we get ℓ ≤ 2 which is impossible. Thus the point (0, n3) is not divisible.

Using Theorem 16 and Proposition 18, we obtain the following statement.

Proposition 20. We assume n = 4m and t = 4k+1, for some m ∈ Z>0 and
k ∈ Z. If δ is squarefree, and t ≥ max(100n2, n4) or t ≤ min(−100n2,−2n4),
then the point (0, n3) is not divisible on E.

By combining Propositions 19 and 20 , we obtain the main result.
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Theorem 21. Suppose that t ≥ max(100n2, n4) or t ≤ min(−100n2,−2n4),
and δ is squarefree. Then the point (0, n3) is not divisible on E.

Now, to extend Theorem 21 to the case |t| < max(100n2, n4), we can use
the lower bound for the height in [6, Proposition 1.7]: for all P ∈ E(Q) we
have

ĥ(P ) ≥ 1

768C2
E

log |∆min|,

where CE is the lowest common multiple of the Tamagawa numbers of E

and ∆min is the minimal discriminant of E. Let us denote by BE this lower
bound. In our case, if n is squarefree we have

BE =
log |∆|
110592

.

So for a given t, it suffices to check that (0, n3) is not equal to ℓP for all

P ∈ E(Q) and for all primes ℓ ≤

√
ĥ(0, n3)

BE

.

We use the following method: if there exists a prime ℓ and P ∈ E(Q)
such that ℓP = (0, n3) then for all primes p ∤ ∆, the reduction of E modulo
p is an elliptic curve over Fp and ℓP = (0, n3), where P denote the reduction
of the point P . If p is a prime number such that ℓ divides the exponent of
group E(Fp) denoted by rp, we shall have

rp

ℓ
(0, n3) = O. So, if we find a

prime p such that ℓ | rp and rp

ℓ
(0, n3) 6= O, there does not exist P ∈ E(Q)

such that ℓP = (0, n3).
We obtain the following statement.

Theorem 22. If n ≤ 10 and δ is squarefree, then the point (0, n3) is not
divisible.

Proof. Assume n = 1. Theorem 21 implies that if |t| ≥ 100, the point is not
divisible. We also note that the result is true for negative t because (0, 1) is
the only integer point in E(Q) − E0(Q). For 1 ≤ t < 100, it suffices to use
the method described above with the help of PARI/GP [10]. For 2 ≤ n ≤ 10,
we use a similar method.

Remark. Let n ≥ 1. If t = 5n2, the point (0, n3) on E is divisible and
satisfies (0, n3) = 3(−4n2, 7n3). The elliptic curve E is isomorphic over Q to
the elliptic curve y2 = x3 + 5x2 − 8x+ 1. Therefore in this case, the rank of
E over Q is 1 and the point (−4n2, 7n3) is a generator of E(Q). Note that
we have not found another example where the point (0, n3) is the multiple of
some point.
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