
HAL Id: hal-03115362
https://hal.science/hal-03115362v1

Preprint submitted on 19 Jan 2021 (v1), last revised 5 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component Tree Loss Function: Definition and
Optimization

Benjamin Perret, Jean Cousty

To cite this version:
Benjamin Perret, Jean Cousty. Component Tree Loss Function: Definition and Optimization. 2021.
�hal-03115362v1�

https://hal.science/hal-03115362v1
https://hal.archives-ouvertes.fr


COMPONENT TREE LOSS FUNCTION: DEFINITION AND OPTIMIZATION

Benjamin Perret, and Jean Cousty

LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée

ABSTRACT

In this article, we propose a method to design loss functions
based on component trees which can be optimized by gra-
dient descent algorithms and which are therefore usable in
conjunction with recent machine learning approaches such
as neural networks. We show how the altitudes associated
to the nodes of such hierarchical image representations can
be differentiated with respect to the image pixel values. This
feature is used to design a generic loss function that can select
or discard image maxima based on various attributes such as
extinction values. The possibilities of the proposed method
are demonstrated on simulated and real image filtering.

Index Terms— max-tree, connected filters, topological
loss, continuous optimization, mathematical morphology

1. INTRODUCTION

Component-trees are hierarchical image representations that
are classically used to perform connected image analysis and
filtering [1, 2]. In such methods, an image is seen as the
collection of the connected components of its level sets, thus
offering a representation based on elements of higher semantic
level, connected components instead of pixels, to design new
image analysis methods. These approaches have provided
efficient solutions in many image analysis domains such as
feature detection [3, 4], segmentation [1, 2, 5, 6, 7], or object
detection and proposal [8, 9].

However, those methods, based on topological decompo-
sitions, do not play well with recent machine learning ap-
proaches such as neural networks as their combinatorial nature
is, at first sight, not well suited to optimization strategies based
on gradient descent. In this context, some authors have re-
cently proposed topological loss functions [10, 11, 12, 13] that
enables to enforce topological constraints in continuous opti-
mization frameworks using notions coming from the persistent
homology theory. It has also been shown that hierarchies
of segmentations can also be used in such context with the
introduction of an ultrametric layer [14].

In this article, we propose a novel approach to use compo-
nent trees, and more specifically max-trees, within continuous
optimization methods. This approach is based on the observa-
tion that, in such trees, the altitude of a node (the level of the
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level-set where it first appears) is directly linked to the value of
some pixels of the image. Hence, we study how we can back-
propagate any slight modification of the altitude of a node of
the tree to a slight modification of the initial image. We then
design a component tree loss function that enforces the pres-
ence of a prescribed number of maxima in the image based on
maxima measures. We study how extinction values [15], max-
ima measures notably used in mathematical morphology to
define hierarchical watersheds [16, 17], can be used to modify
the behavior of the proposed loss function. Finally, the method
has been implemented in Pytorch and we provide preliminary
results demonstrating the use of the proposed approach on
simulated and real images.

The article is organized as follows. The definition of max-
trees is recalled in Sec. 2. Then, Sec. 3 presents how max-trees
can be used in gradient descent algorithms and formalizes the
general optimization problem which we address. In Sec. 4,
we define a component tree loss function used for maxima
selection in the max-trees and we introduce different maxima
measures. The experiments are presented in Sec. 5. Finally,
Sec. 6 concludes the work and gives some perspectives.

2. MAX-TREES

In this section, we recall the definition of max-trees [1, 2]
which is based on the decomposition of every possible upper
thresholds of an image into connected components.

In the following, the image domain is represented by a
finite nonempty set V = {vi}i∈J1,nK of cardinality n. The
elements of V are called pixels. Given any vector v of Rm with
m ∈ N+, the i-th component of v is denoted vi. An image
is represented by a vector f ∈ Rn and, for any i ∈ J1, nK, fi
is called the value of the pixel vi. Note that any image can
be represented as a vector by choosing an arbitrary ordering
of the pixels (e.g., a raster scan for 2d images) and that this
choice does not change the results of the proposed method.

LetX be a subset of V , the set of connected components of
X is denoted by CC(X) where connected components may be
defined by any appropriate mean: e.g., by path connectivity in a
graph. In this article, all the examples involving 2d images are
based on a classical 8-adjacency relation on a regular square
grid of pixels. Let f ∈ Rn be an image, the set of connected
components of f , denoted by CC(f), is defined by CC(f) =⋃
λ∈R {CC([f ]λ)} where, for any λ ∈ R, [f ]λ is the upper level



set of f of level λ: [f ]λ = {vi ∈ V | fi ≥ λ}. Note that the set
CC(f) is finite and can thus be indexed by integers: CC(f) =
{Ci}i∈J1,mK, wherem is the number of connected components
of f . LetCi in CC(f), the altitude ofCi is defined as the largest
level λ in R such thatCi is a connected component of the upper
level set of f at level λ: i.e., max

{
λ ∈ R | Ci ∈ CC([f ]λ)

}
.

Let f ∈ Rn be an image. The max-tree MT(f) of f is
the pair ({Ci}i∈J1,mK ,a) where {Ci} is the set of connected
components of f and where a is a vector of Rm such that ai
is equal to the altitude of Ci. The first element of the pair,
denoted by MT1(f), is called the hierarchy of MT(f). The
second element of the pair, denoted by MT2(f), is called the
altitude vector of MT(f). An example is given in Fig. 1. An
element of the hierarchyH of MT(f) is called a node ofH. A
node Ci ofH is called a leaf if there does not exists any other
node included in it. There is a bijection between the leaf nodes
of the hierarchy of MT(f) and the (regional) maxima of f .
The node V includes every node of H and is called the root.
For any node Ci ofH, a pixel v in Ci that is not contained in
any child of Ci is called a proper pixel of Ci. Any element v
of V is a proper pixel of a unique node Ci denoted par(v).
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Fig. 1. Max-tree example. The left figure shows a 1d im-
age f ∈ R6 defined on the domain v1, . . . , v6. Each of the
four level sets at levels 0, 1, 2, and 3, has a single connected
componentC1, . . . , C4. Those components are the nodes of hi-
erarchy MT1(f) (circles) shown on the right image. The plain
lines represent the parent relations between nodes.The proper
elements of each node are depicted by squares and the dashed
lines show the parent relation between those proper elements
and their respective nodes, for example we have par(v4) = C3.
The altitude vector a = MT2(f) of the max-tree of f is equal
to [0, 1, 2, 3], meaning for example that the altitude of the node
C2 is equal to 1. The two maxima of f corresponds to the leaf
nodes C3 and C4 of the hierarchy MT1(f).

3. OPTIMIZATION WITH DIFFERENTIABLE
MAX-TREES

In this section, we first study how the altitude vector of a
max-tree can be sub-differentiated, then we state the general
formulation of the optimization problem which is addressed.

Differentiable max-trees. Trees, as combinatorial struc-
tures, are generally not suited to gradient-based optimization.

However, in max-trees, the altitude of a component is mapped
to the value of some pixels of the base image: its proper pixels.
Then, intuitively, a small modification of the values of those
proper pixels wont change the hierarchy associated to the max-
tree of the image and will produce the exact same modification
of the altitude of the corresponding node of the hierarchy.

Property 1. Let f ∈ Rn be an image. Let ε ∈ Rn such that
MT1(f) = MT1(f + ε). Then, for any node Ci of MT1(f),
the altitude of Ci in MT(f + ε) is equal to ai + εj where ai is
the altitude of Ci and where vj is any proper pixel of Ci.

This property indicates that the Jacobian of the function
MT2 can be written as the matrix composed of the indicator
column vectors giving the index of the node associated to any
pixel of V by the parent mapping (its proper elements):

∂MT2(f)

∂f
=
[
1par(v1), . . . ,1par(vn)

]
, (1)

where 1Ck
is the column vector of Rm equals to 1 in posi-

tion k, and 0 elsewhere. In a back-propagation algorithm, this
means that if we have an error measure e and we have already
computed ∂e

∂a , i.e., how the altitude vector a = MT2(f) of
the max-tree of f should be modified in order to minimize e,
we can then back-propagate through MT with the chain rule
∂e
∂f = ∂a

∂f
∂e
∂a leading to the simple formula

(
∂e
∂f

)
i
=
(
∂e
∂a

)
par(i)

telling how f should be modified to minimize e.
For example, the transpose of the Jacobian of the altitude

vector MT2(f) of the max-tree shown in Fig. 1 is equal to


f1 f2 f3 f4 f5 f6

a1 1 1 0 0 0 0
a2 0 0 0 0 1 0
a3 0 0 1 1 0 0
a4 0 0 0 0 0 1

.
This matrix indicates, how the image f should be modified in
order to reflect a modification of the altitude vector a of the
nodes of the max-tree of f . For example, in order to increase
the altitude a3 of the component C3 by a small value ε, one
must increase the value of f3 and f4 by this same value ε.

Optimization problem. We now state a general formula-
tion of the optimization problem that we want to solve. Let
y ∈ Rn be an image representing an observation. We are
interested in solving the following optimization problem:

minimize
f∈Rn

J(f ;y), (2)

where J is a differentiable cost function involving the altitude
vector MT2(f). As this altitude vector MT2(f) is differen-
tiable with respect to the image f , a local optimum of the above
problem can be found by gradient descent algorithm.

4. MAXIMA LOSS

In the following, we study how to define a component tree
loss imposing a topological criterion, by prescribing how many



maxima should be present in the result. The proposed approach
relies on two features characterizing the maxima of an image:

• a measure of saliency: increasing this measure should
reinforce the maxima and decreasing it should make it
disappear; and

• a measure of (relative) importance: which provides a
ranking of the maxima to identify those that should be
reinforced and those which should disappear.

We first introduce a generic loss function to select a given
number of maxima and to discard the others according to these
two measures. Then, we introduce several measures that can
be used to measure the importance and the saliency of maxima.

4.1. Ranked selection loss

Assume that the hierarchy of MT(f) contains k maxima
{Mi}i=J1,kK (its leave nodes). Let ` ∈ N+ be a target number
of maxima. Let sm ∈ Rk and im ∈ Rk represent respectively
a saliency and an importance measure on the maxima {Mi}.
Then we define the ranked selection function as:

Jr(sm, im; `) =

i≤∑̀
i=1

max(m− smri , 0) +

i≤k∑
i=`+1

smri

with r = argsort(im), (3)

where m ∈ R is a constant margin, whose goal is to prevent
selected maxima to grow without limit, and where argsort is
the function that associates to any vector v of Rk, a permuta-
tion vector r sorting the elements of v in decreasing order, i.e.,
such that for any i, j in J1, nK, we have i < j ⇒ vri ≥ vrj .

4.2. Maxima measures

We now define maxima measures that will be used as saliency
and/or importance measures in the previous loss function. Re-
call that the leaves of the max-tree of an image f corresponds
to the maxima of this image and assume that the hierarchy of
MT(f) contains k maxima {Mi}i=J1,kK; a measure on {Mi}
is then a vector of Rk.

Highest altitude: A simple way to measure the impor-
tance and the saliency of a maxima is to look at its highest
altitude, i.e., to the value of the pixels contained in the maxima.
The highest altitude of the maxima of f is denoted alt(f).

Extinction values: Extinction values are classical maxima
measure known for their robustness [15]. Given a family of
image filters {σk}k whose activity increases with k (for any
k1 ≤ k2, we have σk1 ≥ σk2). The extinction value of a
maxima Mi of f is equal to the smallest k such that Mi is
not contained in any maxima of σk(f). A typical example
of extinction value is the dynamics which is based on the
filtering that removes any node of the max tree that has a height
(difference between the altitude of the deepest node in the

Dynamics Volume

Fig. 2. Illustration of the dynamics and the volume associated
to the maxima of a 1d function. The dynamics of a maxima
is equal to the difference of altitude between the top of the
maxima and the closest level that contains another maxima of
greater altitude. Similarly the volume of the maxima is equal
to the surface between the top of the maxima and the closest
level that contains another maxima of greater volume. With
the dynamics, the most important maxima is the sharp peak on
the left while, with the volume, the most important maxima is
the large mount in the middle.

subtree rooted in this node and the altitude of this node) smaller
than a given threshold. The dynamics of the maxima of f will
be denoted by dyn(f). Another classical extinction value is
the one based on the volume filter, which removes any node of
the max tree whose volume is smaller than a given threshold:
this measure will be denoted by vol(f). In practice, computing
the extinction value of a maxima can be done efficiently in
the tree by finding the saddle node associated to this maxima,
that is the closest ancestor of the maxima that contains another
maxima with a greater attribute value. If no such node exists
(the maxima has the largest value), then we consider that its
saddle node is the root of the tree. The dynamics and volume
associated to the maxima of a function are illustrated in Fig. 2.

5. EXPERIMENTS

We demonstrate the behavior of the proposed method and the
various maxima measures on a simulated image and we show
how it can be combined with classical loss functions to process
real images. The method is implemented using the library
Higra [18] for hierarchical graph analysis in combination with
the continuous optimization framework Pytorch [19]. In all
the experiments, an Adam optimizer [20] is used and the input
image y is used as the initial solution. A Jupyter notebook
containing the presented experiments is available online1.

The effect of the component tree loss Jr with the proposed
importance and saliency maxima measures is demonstrated
on a simulated image in Fig. 3. The test image contains four
maxima with different altitudes, sizes, and volumes. On the
side of the importance measures, we can see that the altitude
measure is not robust to noise and usually fails to select per-
ceptually significant maxima. On the other hand, the two

1https://www.esiee.fr/~perretb/tmp/Component_
Tree_Loss.ipynb
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Fig. 3. Optimization of the component tree loss Jr on a simulated image with an objective of selecting 2 maxima. The figures on
the right show the result for different combinations of maxima saliency measures (sm) and maxima importance measures (im).

measures based on extinction values, the dynamics and the
volume, both manage to select significant maxima: with the
dynamics, the two brightest maxima are selected while with
the volume, the two largest maxima are selected. Regarding
saliency measures, we can see that the optimization of the
saliency based on maxima altitudes leads to increasing the
altitudes of the top node of the selected maxima and to raising
discarded maxima. The optimization of the dynamics saliency
measure is more complex as increasing/decreasing the dynam-
ics of the maxima involves increasing/decreasing the altitude
of its top node and decreasing/increasing the altitudes of its
saddle node: this leads to the creation of “bridges” between
some maxima.

Note that optimizing Jr with the dynamics used both as
the saliency and the importance measure of maxima is sim-
ilar [21] to optimizing the barcode length of the connected
components used in the “topological loss” based on persistent
homology [10, 11, 12, 13]. However, as our approach does
not require to compute the full persistence diagram associated
to the image at each iteration of the optimization algorithm,
we observe that it is dozens of times faster than a classical
implementation of the topological loss2.

Finally, in Fig. 4, we show how the proposed loss func-
tion can be combined with classical loss functions used
in image analysis: here we optimize the term ||f − y||22 +
λ1Jr(dyn(f),dyn(f), 1) + λ2||∇f ||22 which combines our
loss based on the max-tree to enforce the presence of a single
maxima with a L2 data attachment term and a total variation
regularization term. We can see that we are able to successfully

2https://github.com/bruel-gabrielsson/
TopologyLayer

Image Result

Fig. 4. Reconnection of a neurite image with a combination of
the proposed loss Jr to enforce a single maximum, a L2 data
attachment term and a TV2 regularization term.

reconnect the different branches of the neurite.

6. CONCLUSION

We have proposed a continuous optimization framework based
on the hierarchical image representation called the max-tree.
We showed how it can be used to design a component tree loss,
i.e., a regularization term, enabling to select or discard maxima
in an image based on various measures. This approach can be
generalized immediately to other hierarchical representations
such as the min-tree or the tree-of-shapes [22, 23]. In future
works, we plan to explore more general component tree loss
functions based on such hierarchical representations and their
use in supervised learning methods involving deep networks.

https://github.com/bruel-gabrielsson/TopologyLayer
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