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Abstract. In this article, we propose a method for designing loss func-
tions based on component trees that can be optimized by gradient de-
scent algorithms and are therefore usable in conjunction with recent ma-
chine learning approaches such as neural networks. The nodes of this tree
are the connected components of the upper level sets of an image and
the leaves represent the regional maxima (or regional minima if the dual
tree is considered) of the image, i.e., connected sets of bright pixels sur-
rounded by darker pixels. The proposed loss function is thus defined at
the level of connected components rather than at the level of individual
pixels, which allows for the optimization of higher semantic level quan-
tities such as topological features. We show how the altitudes associated
with the nodes of such hierarchical image representations can be differ-
entiated with respect to the values of the image pixels. This property is
used to design a generic loss function that can select or discard image
maxima based on various attributes, such as extinction values based on
the contrast or the size of the maxima. The possibilities of the proposed
method are demonstrated on simulated and real image filtering.

Keywords: max-tree · connected filters · topological loss · continuous
optimization · mathematical morphology

1 Introduction

Component-trees are hierarchical image representations that are used to perform
connected image analysis and filtering [19,13]. In such methods, an image is seen
as the collection of the connected components of its level sets, thus offering a
representation based on elements of higher semantic level, connected compo-
nents instead of pixels, to design new image analysis methods. These approaches
provide efficient solutions to many image analysis problems such as feature de-
tection [8,23], segmentation [19,13,7,22,18], or object detection [11,20].

However, those methods, based on topological decompositions, do not play
well with recent machine learning approaches such as neural networks as their
combinatorial nature is, at first sight, not well suited to optimization strategies
based on gradient descent. In this context, some authors have recently proposed
topological loss functions [5,12,4,9] that enable to enforce topological constraints
in continuous optimization frameworks using notions coming from the persistent
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homology theory. It has also been shown that hierarchies of segmentations can
also be used in such context with the introduction of an ultrametric layer [3].

In this article, we propose a novel approach to use component trees, and more
specifically max-trees, within continuous optimization methods. This approach
is based on the observation that, in such trees, the altitude of a node (the level of
the level-set where it first appears) is directly linked to the value of some pixels
of the image. Hence, we study how we can back-propagate any slight modifica-
tion of the altitude of a node of the tree to a slight modification of the initial
image. We then design a component tree loss function that enforces the presence
of a prescribed number of maxima in the image based on maxima measures. We
study how extinction values [21], maxima measures notably used in mathemat-
ical morphology to define hierarchical watersheds [6,17], can be used to modify
the behavior of the proposed loss function. Finally, the method has been imple-
mented in Pytorch with the hierarchical graph processing library Higra [16] and
we provide preliminary results demonstrating the use of the proposed approach
on simulated and real images.

This article is organized as follows. The definition of max-trees is recalled in
Sec. 2. Then, Sec. 3 presents how max-trees can be used in gradient descent algo-
rithms and formalizes the optimization problem which we address. In Sec. 4, we
define a component tree loss function used for maxima selection in the max-trees
and we introduce different maxima measures. The experiments are presented in
Sec. 5. Finally, Sec. 6 concludes the work and gives some perspectives.

2 Max-trees

In this section, we recall the definition of max-trees [19,13] which is based on the
decomposition of every upper thresholds of an image into connected components.

In the following, the image domain is represented by a finite nonempty set
V = {vi}i∈J1,nK of cardinality n. The elements of V are called pixels. Given any
vector v of Rm with m ∈ N+, the i-th component of v is denoted vi. An image
is represented by a vector f ∈ Rn and, for any i ∈ J1, nK, fi is called the value of
the pixel vi. Note that any image can be represented as a vector by choosing an
arbitrary ordering of the pixels (e.g., a raster scan for 2d images) and that this
choice does not change the results of the proposed method. In order to simplify
notations, when we have a vector f ∈ Rn and an element x of a family {xi}i∈J1,nK
indexed from 1 to n, there exists a single integer k ∈ J1, nK such that x = xk
and we will write fx instead of fk.

Let X be a subset of V , the set of connected components of X is denoted by
CC(X) where connected components may be defined by any appropriate mean:
e.g., by path connectivity in a graph. In this article, all the examples involving
2d images are based on a classical 8-adjacency relation on a regular square grid
of pixels. Let f ∈ Rn be an image, the set of connected components of f , denoted
by CC(f), is defined by CC(f) =

⋃
λ∈R {CC([f ]λ)} where, for any λ ∈ R, [f ]λ is the

upper level set of f of level λ: [f ]λ = {vi ∈ V | fi ≥ λ}. Note that the set CC(f)
is finite and can thus be indexed by integers: CC(f) = {Ci}i∈J1,mK, where m is
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the number of connected components of f . Let Ci in CC(f), the altitude of Ci is
defined as the largest level λ in R such that Ci is a connected component of the
upper level set of f at level λ: i.e., max

{
λ ∈ R | Ci ∈ CC([f ]λ)

}
.

Let f ∈ Rn be an image. The max-tree MT(f) of f is the pair ({Ci}i∈J1,mK ,a)

where {Ci} is the set of connected components of f and where a is a vector of
Rm such that ai is equal to the altitude of Ci. The first element of the pair,
denoted by MT1(f), is called the hierarchy of MT(f). The second element of the
pair, denoted by MT2(f), is called the altitude vector of MT(f). An example is
given in Fig. 1. An element of the hierarchy H of MT(f) is called a node of H.
The node V includes every node of H and is called the root. Let Ci and Cj be
two distinct nodes of H. We say that Ci is an ancestor of Cj if Cj is included in
Ci. Furthermore, if Ci is an ancestor of Cj , we say that Ci is a parent of Cj and
that Cj is a child of Ci if any ancestor Ck 6= Ci of Cj is also an ancestor of Ci.
Any non-root node Ci of H has a unique parent which is denoted by par(Ci).
The set of children of a node Ci of H is denoted by Ch(Ci). A node Ci of H
is called a leaf if it has no child. There is a bijection between the leaf nodes of
the hierarchy of MT(f) and the (regional) maxima of f . For any node Ci of H,
a pixel v in Ci that is not contained in any child of Ci is called a proper pixel
of Ci. Any element v of V is a proper pixel of a unique node Ci denoted par(v).
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Fig. 1. Max-tree example. The left figure shows a 1d image f ∈ R6 defined on the do-
main v1, . . . , v6. Each of the four level sets at levels 0, 1, 2, and 3, has a single connected
component C1, . . . , C4. Those components are the nodes of hierarchy MT1(f) (circles)
shown on the right image. The plain lines represent the parent relations between nodes.
The proper elements of each node are depicted by squares and the dashed lines show
the parent relation between those proper elements and their respective nodes, for ex-
ample we have par(v4) = C3. The altitude vector a = MT2(f) of the max-tree of f is
equal to [0, 1, 2, 3], meaning for example that the altitude of the node C2 is equal to 1.
The two maxima of f correspond to the leaf nodes C3 and C4 of the hierarchy MT1(f).



4 B. Perret & J. Cousty

3 Optimization with differentiable max-trees

In this section, we first study how the altitude vector of a max-tree can be
sub-differentiated with respect to the pixel values, then we state the general
formulation of the optimization problem which is addressed.

Differentiable max-trees. Trees, as combinatorial structures, are generally
not suited to gradient-based optimization. However, in max-trees, the altitude of
a component is mapped to the value of some pixels of the base image: its proper
pixels. Then, intuitively, a small modification of the values of those proper pixels
will not change the hierarchy associated with the max-tree of the image and will
produce the exact same modification of the altitude of the corresponding node
of the hierarchy.

Property 1 Let f ∈ Rn be an image. Let ε ∈ Rn such that MT1(f) = MT1(f +
ε). Then, for any node Ci of MT1(f), the altitude of Ci in MT(f + ε) is equal to
ai + εj where ai is the altitude of Ci and where vj is any proper pixel of Ci.

This property indicates that the Jacobian of the function MT2 can be written
as the matrix composed of the indicator column vectors giving the index of the
node associated with any pixel of V by the parent mapping (its proper elements):

∂MT2(f)

∂f
=
[
1par(v1), . . . ,1par(vn)

]
, (1)

where 1Ck
is the column vector of Rm equals to 1 in position k, and 0 elsewhere.

In a back-propagation algorithm, this means that if we have an error measure e
and we have already computed ∂e

∂a , i.e., how the altitude vector a = MT2(f) of
the max-tree of f should be modified in order to minimize e, we can then back-
propagate through MT with the chain rule ∂e

∂f = ∂a
∂f

∂e
∂a leading to the simple

formula
(
∂e
∂f

)
i
=
(
∂e
∂a

)
par(i)

telling how f should be modified to minimize e.
For example, the transpose of the Jacobian of the altitude vector MT2(f) of

the max-tree shown in Fig. 1 is equal to


f1 f2 f3 f4 f5 f6

a1 1 1 0 0 0 0
a2 0 0 0 0 1 0
a3 0 0 1 1 0 0
a4 0 0 0 0 0 1

.
This matrix indicates, how the image f should be modified in order to reflect
a modification of the altitude vector a of the nodes of the max-tree of f . For
example, in order to increase the altitude a3 of the component C3 by a small
value ε, one must increase the value of f3 and f4 by this same value ε.

Optimization problem. We now state a general formulation of the opti-
mization problem that we want to solve. Let y ∈ Rn be an image representing
an observation. We are interested in solving the following optimization problem:

minimize
f∈Rn

J(f ;y), s.t. 0 ≤ f ≤ 1, (2)
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where J is a differentiable cost function involving the altitude vector MT2(f). As
this altitude vector MT2(f) is differentiable with respect to the image f , a local
optimum of the above problem can be found by gradient descent algorithm. The
constraint to keep the image between the values 0 and 1 will prevent it to shrink
(resp. grow) towards −∞ (resp.∞) when we try to remove (resp. increase) some
image features. A similar effect could be achieved by imposing margins on how
much a feature can shrink or grow.

4 Maxima loss

In the following, we study how to define a component tree loss imposing a topo-
logical criterion, by prescribing how many maxima should be present in the
result. The proposed approach relies on two features characterizing the maxima:

– a measure of saliency : increasing this measure should reinforce the maximum
and decreasing it should make it disappear; and

– a measure of (relative) importance: which provides a ranking of the max-
imum to identify those that should be reinforced and those which should
disappear.

We first introduce a loss function to select a given number of maxima and
to discard the others according to these two measures. Then, we present several
measures to assess the importance and the saliency of maxima.

4.1 Ranked selection loss

Assume that the hierarchy H of MT(f) contains k maxima {Mi}i=J1,kK (its

leave nodes). Let ` ∈ N+ be a target number of maxima. Let sm ∈ R+k

and im ∈ R+k represent respectively a saliency and an importance measure
on the maxima {Mi}. Let p ∈ R+∗ and q ∈ R+∗ be 2 strictly positive numbers
controlling the growth/shrink pressure applied on the maxima. The ranked se-
lection function will seek to maximize the saliency of the ` maxima with the
largest importance values and decrease the saliency of the others:

Jp,q(sm, im; `) = −
i≤∑̀
i=1

smp
ri +

i≤k∑
i=`+1

smq
ri with r = argsort(im), (3)

where argsort is the function that associates any vector v of Rk with a permu-
tation vector r ∈ J1, nKk sorting the elements of v in decreasing order, i.e., such
that for any i, j in J1, nK, we have i < j ⇒ vri ≥ vrj .

4.2 Maxima measures

We now define maxima measures that will be used as saliency and/or importance
measures in the previous loss function. Recall that the leaves of the max-tree
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Dynamics Volume

Fig. 2. Illustration of the dynamics and the volume associated with the maxima of a 1d
function. The dynamics of a maximum is equal to the difference of altitude between the
top of the maximum and the closest level that contains another maximum of greater
altitude. Similarly, the volume of the maximum is equal to the surface between the
top of the maximum and the closest level that contains another maximum of greater
volume. With the dynamics, the most important maximum is the sharp peak on the
left while, with the volume, the most important maximum is the large mount in the
middle.

of an image f corresponds to the maxima of this image and assume that the
hierarchy H of MT(f) contains k maxima {Mi}i=J1,kK; a measure on {Mi} is
then a positive vector of Rk.

Maxima altitude:A simple way to measure the importance and the saliency
of a maximum is to look at its altitude, i.e., to the altitude aM of the maximum
M of H. The altitude of the maxima of f is denoted alt(f).

Extinction values: Extinction values are classical maxima measures known
for their robustness [21]. Given a family of image filters {σk}k whose activity
increases with k (for any k1 ≤ k2, we have σk1 ≥ σk2). The extinction value of a
maximum M of f is equal to the smallest k such that M is not contained in any
maximum of σk(f). Typical examples of extinction values are the dynamics and
the volume. The dynamics and volume associated with the maxima of a function
are illustrated in Fig. 2. In the following, we will show how extinction values can
be defined and computed based on the max-tree representation.

Any extinction value relies on an increasing attribute measuring the impor-
tance of regional maxima. Such attribute will be represented by a vector v ∈ Rm
associating a value to each node of the max-tree such that for any two nodes
Ci and Cj , Ci ⊆ Cj ⇒ vi ≤ vj . The idea to compute the extinction value of a
maximum for the attribute v is then to find, for any maximum M , the closest
ancestor of M that contains another maximum whose attribute value is greater
than the one of M : this node is called the saddle node associated with M for v.

Formally, let N be a node of H and let A be an ancestor of N . There exists
a single branch rooted in A that contains the node N , the child of A in this
branch is denoted by ch(A)→N ; in other words ch(A)→N is the only child C
of A that contains N . The saddle node associated with the node N for the
attribute v, denoted by saddlev(N), is the closest ancestor A of N such that
there exists a child C of A with vch(A)→N

< vC . If no such ancestor exists,
then the saddle node of N for v is defined as the empty-set ∅. The base node
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associated with the node N for the attribute v, denoted by basev(N), is then
equal to ch(saddlev(N))→N if saddlev(N) 6= ∅ and the root of the max-tree
otherwise.

va
lu

e

0
1
2
3
4
5

1d image

0
1

4

2
3

3

4
5

2

3
1

5
4

3

5

2

3

5
17

2

6
1

0
1

Maxima by dynamics Maxima by volume

Fig. 3. Regional maximum associated with each maximum for the dynamics and the
volume. We consider a 1d image on the left with 3 maxima. The second (resp. third)
figure shows how the 1d image is decomposed into 3 regional maxima according to the
dynamics (resp. the extinction by volume). In those two images, we see the max-tree
of the 1d image where the nodes are depicted by circles, squares and hexagons. The
label of each node corresponds to its index, and the blue value beside it corresponds
to its attribute value: its depth for the dynamics and its volume for the extinction by
volume. The hexagons are the maxima, i.e., the leaves of the tree. Each maximum is
associated with a branch of the tree, circled in red (dotted line), green (dashed line)
and orange (dot-dash line) whose base node is depicted by a square. For example, for
the dynamics (resp. the extinction by volume), the maximum of index 5 extends to its
base node 0 (reps. 1); its dynamics (resp. extinction by volume) is thus equal to 5, i.e.,
the attribute value of this base node.

Thus, each regional maximum extends from its top node M to its base node
basev(M), and the saddle node saddlev(M) is the first ancestor of M that be-
longs to another maximum according to the attribute v. The extinction value
of the maximum M for the attribute v is then defined as the attribute value of
its base node vbasev(M), see Figure 3. Note that the definition of the extinction
value for the attribute v is just a value selection process in a vector, as in a
max-pooling layer, and it can thus be used in the definition of a loss function
suitable for gradient descent optimization.

In the following, we consider two different attributes: the depth, whose as-
sociated extinction value is usually called the dynamics, and the volume. Both
attributes will be defined as a function of the max-tree altitudes, so that any
error on the extinction value can be translated as an error on those altitudes.

Let N be a node of H, the depth of N , denoted by depth(N), is defined by:

depth(N) = max {aC , C ∈ H | C ⊂ N} − apar(N). (4)

The depth of N is thus equal to the difference between the largest altitude in the
subtree rooted in N and the altitude of the parent of N . The extinction values
of the maxima of H for the attribute depth is called the dynamics and will be
denoted by dyn, see Figure 3.
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Let N be a node of H, the volume of N , denoted by vol(N), is defined
recursively by:

vol(N) = |N | ·
(
aN − apar(N)

)
+

∑
C∈Ch(N)

vol(C), (5)

where |N | denotes the cardinal of N , i.e., the number of pixels in the node N .
The volume of N is thus equal to the volume of the cylinder defined by the
node N and its parent, plus the volume of its children. The extinction values of
the maxima of H for the attribute vol is called the extinction value by volume
and will be denoted by vol, see Figure 3.

Effect of modifying the saliency: The ranked selection loss (3) will try to
increase the saliency measure of the selected maxima and decrease the one of the
others. In order to better understand how this will affect the result, we propose
to study how a single maximum is modified when we try to increase/decrease
its saliency according to one of the proposed saliency measures.

In the case of the saliency based on the maxima altitudes, this effect is
simple, as increasing (resp. decreasing) the altitude of a maximum simply means
increasing (resp. decreasing) the altitude of the leaf node that corresponds to
this maximum in the max-tree.

With the dynamics, the saliency of a maximum is determined by the altitude
of the leaf node that corresponds to this maximum in the max-tree and by the
altitude of the saddle node associated with this leaf for the depth attribute.
In this case, increasing (resp. decreasing) the dynamics of a maximum means
increasing (resp. decreasing) the altitude of its leaf node and decreasing (resp.
increasing) the altitude of the saddle node (see Figure 4). Note that the altitudes
of all the nodes between the leaf node and the saddle node are not modified.
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Fig. 4. Effect of increasing or decreasing the saliency measure of a maximum based on
the dynamics dyn. The first figure shows a 1d image and a regional maximum for the
dynamics (see Figure 2). The second (resp third) figure shows the effect of increasing
(resp decreasing) the measure for this maximum.

Finally, with the extinction value by volume, the saliency of a maximum is
determined by the altitudes of all the nodes in the branch going from the leaf
node that corresponds to this maximum in the max-tree to the saddle node
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associated with this leaf for the volume attribute. In this case, increasing (resp.
decreasing) the extinction value by volume of a maximum means increasing
(resp. decreasing) the altitudes of all the nodes in the branch going from the
leaf node to the base node and decreasing (resp. increasing) the altitude of the
saddle node (see Figure 5).
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Fig. 5. Effect of increasing or decreasing the saliency measure of a maximum based on
the extinction value by volume vol. The first figure shows a 1d image and a regional
maximum for the volume extinction value (see Figure 2). The second (resp third) figure
shows the effect of increasing (resp decreasing) the measure for this maximum.

Note that in both cases, modifying the saliency of a single maximum usually
preserves the ordering of the nodes in the tree; an inversion between the top
node and the base node may still happen when a maximum collapses. However,
when the saliency of several maxima is modified at the same time, it becomes
more probable that the ordering of the nodes in the tree changes, leading to
more complex topological modifications in the image domain.

5 Experiments

We demonstrate the behavior of the proposed method and the various maxima
measures on a simulated image, and we show how it can be combined with clas-
sical loss functions to process real images. The method is implemented using the
library Higra [16] for hierarchical graph analysis in combination with the con-
tinuous optimization framework Pytorch [15]. In all the experiments, an Adam
optimizer [14] is used and the input image y is used as the initial solution. A
Jupyter notebook containing the presented experiments is available online1.

Simulated image filtering: The effect of the optimization of the compo-
nent tree loss J1,2(sm, im; 2) with the proposed importance and saliency maxima
measures is demonstrated on a simulated image in Fig. 6. The test image con-
tains four maxima with different altitudes, contrast, and volumes. We can see
that the altitude measure is not robust to noise and fails to select perceptu-
ally significant maxima: both are located in the bottom left blob. On the other
1 https://www.esiee.fr/~perretb/notebooks/Component_Tree_Loss.zip

https://www.esiee.fr/~perretb/notebooks/Component_Tree_Loss.zip
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Input Image

Fig. 6. Optimization of the component tree loss J1,2(sm, im; 2) on a simulated image
with the objective of selecting 2 maxima for various combinations of saliency measures
(sm) and importance measures (im).

hand, the two measures based on extinction values, the dynamics and the vol-
ume, both manage to select significant maxima: with the dynamics, the two
brightest maxima are selected (bottom left and the top right blobs) while with
the volume, the two largest maxima are selected (top left and bottom right
blobs). Regarding saliency measures, we can see that the optimization of the
saliency based on maxima altitudes leads to increasing the altitudes of the top
node of the selected maxima and to raising discarded maxima. The optimization
of the dynamics saliency measure is more complex, as increasing/decreasing the
dynamics of the maxima involves increasing/decreasing the altitude of its top
node and decreasing/increasing the altitudes of its saddle node: this leads to
the creation of “bridges” between some maxima. Finally, the optimization of the
volume saliency has a more global effect on the maxima as, contrarily to the
dynamics, its definition involves the altitudes of all the nodes between the base
and the top nodes of a maximum.

In order to work with the saliency measure based on volume, we have observed
that raising the power q to 2 inside the loss function can help to erase the
unwanted maxima whose contribution to the loss value and hence to the gradient
tends to be smaller than the one of the largest maxima.
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Note that optimizing J with the dynamics used both as the saliency and the
importance measure of maxima is similar [2] to optimizing the barcode length
of the connected components used in the “topological loss” based on persistent
homology [5,12,4,9]. However, as our approach does not require computing the
full persistence diagram associated with the image at each iteration of the opti-
mization algorithm, we observe that it is faster than a classical implementation
of the topological loss2.

Real image filtering: Finally, in Fig. 7, we show how the proposed loss
function can be combined with classical loss functions used in image analysis:
here we optimize the term

||f − y||22 + λ1J1,1(dyn(f),dyn(f), 1) + λ2||∇f ||22, (6)

which combines our loss based on the max-tree to enforce the presence of a single
maximum with a L2 data attachment term and a total variation regularization
term. We can see that we are able to successfully reconnect the different branches
of the neurite.

Image Result

Fig. 7. Reconnection of a neurite image with a combination of the proposed loss Jr to
enforce a single maximum, a L2 data attachment term and a TV2 regularization term.

6 Conclusion

We have proposed a continuous optimization framework based on the hierarchical
image representation called the max-tree. We showed how it can be used to design
a component tree loss, i.e., a regularization term, enabling to select or discard
maxima in an image based on various measures. This approach can be generalized
2 https://github.com/bruel-gabrielsson/TopologyLayer

https://github.com/bruel-gabrielsson/TopologyLayer


12 B. Perret & J. Cousty

immediately to other hierarchical representations, such as the min-tree or the
tree-of-shapes [1,10]. In future works, we plan to explore more general component
tree loss functions based on such hierarchical representations and their use in
supervised learning methods involving deep networks.
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20-CE23-0019.
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