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Probabilistic Inverse Kinematics for Human Posture Prediction during
Physical Human-Robot Interaction

Lorenzo Vianello1,2, Jean-Baptiste Mouret1, Eloise Dalin1, Alexis Aubry2, Serena Ivaldi1

Abstract— When a human is interacting physically with
a robot to accomplish a task, his/her posture is inevitably
influenced by the robot movement. Since the human is not
controllable, an active robot imposing a collaborative trajectory
should predict the most likely human posture. This prediction
should consider individual differences and preferences of move-
ment execution, and it is necessary to evaluate the impact of
the robot’s action from the point of view of ergonomics. Here,
we propose a method to predict, in probabilistic terms, the
human postures of an individual for a given robot trajectory
executed in a collaborative scenario. We formalize the problem
as the prediction of the human joints velocity given the current
posture and robot end-effector velocity. Previous approaches
to solve this problem relied on the inverse kinematics, but did
not consider the human body redundancy nor the kinematic
constraints imposed by the physical collaboration, nor any prior
observations of the human movement execution. We propose a
data-driven approach that addresses these limits. The key idea
of our algorithm is to learn the distribution of the null space
of the Jacobian and the weights of the weighted pseudo-inverse
from demonstrated human movements: both carry information
about human postural preferences, to leverage redundancy and
ensure that the predicted posture will be coherent with the end-
effector position. We show in a simulated toy problem and on
real human-robot interaction data that our method outperforms
model-based inverse kinematics prediction, sample-based pre-
diction and regression methods that do not consider geometric
constraints. Our method is validated on a a collaboration
scenario with a human interacting physically with the Franka
robot.

I. INTRODUCTION

Cobots (i.e., industrial manipulators for collaboration) and
exoskeletons are designed to physically interact with humans
and to assist their movement in accomplishing one or more
tasks [1]. The general objective is to reduce the human
physical effort and improve his/her ergonomics, which needs
the evaluation of several ergonomics criteria, most often
determined by the human posture [2]. The way this assistance
is provided depends on the platform and on the type of
the collaboration, which often translates in defining contact
points, collaboration control laws with structured roles (e.g.,
leader-follower) and the amount of provided assistance [3].

An open problem, when a robot wants to assist the human,
is that humans are not entirely “controllable”: humans are
highly redundant systems that are over-actuated for many
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Fig. 1: The human posture is influenced by the robot’s
trajectory during physical interaction, but the human may
adopt different postures during each task execution. In this
paper we want the robot to predict the human posture given
a known Cartesian trajectory of its end-effector and prior
observations of the task executed by the human. The human
posture is measured online by a wearable Xsens MVN suit.

manipulation tasks. In other words, humans can execute the
same task in many different ways. For instance, lifting a box
from the floor might be performed by bending the back,
but also by bending the knees. Individual preferences of
movement and musculo-skeletal problems might add to the
intrinsic variability of the human movement, thus increasing
the variance of all possible postures in response to a robot
action. For these reasons, when the human is physically
coupled with the robot to accomplish a task, it is not possible
to know with certainty how a human will move when the
robot imposes a trajectory, which makes it challenging to
select the best trajectories for the robot in collaborative tasks.

In this context, data-driven probabilistic models of hu-
man movements, learned from demonstrations, can provide
interesting insights into human preferences while capturing
the variance of demonstrated movements. Wearable motion
tracking systems can be easily used to acquire postural
information of humans interacting with robots [4]. The
most common strategy to predict human movements is to
use trajectory-centric models such as movement primitives,
which are probabilistic models capturing the variability of
human demonstrations for solving a task. However, these
models usually represent task-level trajectories (e.g., Carte-
sian trajectories of the human hand and the robot end-



effector) [5], [6], which means that they have to compute
the inverse kinematics to find joint trajectories or learn
directly task-specific primitives in the joint space. In the
latter case, a small error in the joint estimation can cause a
large error in the estimation of the end-effector position (i.e.,
the human hand), which makes the prediction kinematically
inconsistent. This error is tricky to deal with, especially when
the human is physically coupled to the robot because it could
compromise the quality of the collaboration.

In this paper, we consider a leader robot that is physically
coupled with the human follower at the level of the end-
effector / hand (see Fig. 1). For a known end-effector
trajectory and an initial human posture, we want to determine
the probability distribution of the human postures along
the trajectory of the end-effector. We call this problem
“probabilistic inverse kinematics of the human body”. We
record several demonstrations of the human interacting with
the robot. We start by modeling the human with a Digital
Human Model (DHM) which is a rigid body model, similar
to the one a humanoid robot, with similar anthropometrics
data of the human (height, weight). We constrain the DHM
and the robot’s end-effectors to be physically linked.

Our main idea is to learn, from the human demonstrations,
a model in the null space of the DHM Jacobian, which
describes the human configurations that all lead to the same
end-effector position. By doing so, we can query the learned
model and combine it with the null space of the end-effector
to be guaranteed that the posture leads to the end-effector
position. For each point of the robot trajectory, our method
consist in first projecting the postures in the null space
defined by the end-effector position and the kinematic model
of the human, then learn Gaussian processes that predicts
projected configurations, and project back to the original
joint space. We use Gaussian processes [7] for predictors
because they make accurate and smooth predictions with
little data compared to alternatives like neural networks. In
addition, they associate each prediction with an estimate of
the uncertainty.

We demonstrate the method on a toy problem first (a 5-
revolute (5R) joints planar robot) and then on a human in-
teracting with a robot manipulator (Franka) in a cooperative
pick & place task. We show in the experiments that our
method can predict the future movement “planned” by the
human with a good accuracy and kinematics consistency,
and this knowledge enables the robot to anticipate the
human movement and discard trajectories that could make
the human execute ergonomically unsafe movements.

II. RELATED WORK

A. Human Posture Measurement and Inverse Kinematics

Collaborative robots need to have an estimation of the cur-
rent human posture and its future intended evolution to plan
appropriate collaborative actions. The human posture can be
retrieved in real-time essentially using cameras or wearable
motion tracking sensors [8]. However, robots often do not
have access to the human posture measurement in real-time,
and the only information they have is the fact that human

is physically attached to their end-effector in some tasks. In
such cases, Inverse Kinematics (IK) has been used to predict
the human pose starting from the end-effector position using
simplified human models as in [9]. The problem is that the
human posture is not uniquely defined by its end-effector
position, because of the intrinsic human body redundancy
but also task preferences and other individual factors; for a
robot, it is hard to predict the human posture given only the
task description, and therefore we are forced to formulate
the problem as a Probabilistic Inverse Kinematics problem.
To address this kind of problem, a common approach is to
sample in the space of the possible solutions and to evaluate
them accordingly to the kinematic properties [10] and to task
specific loss functions [11]. We refer to this kind of methods
as sampling based approaches. These kind of methods are
computationally (and time) expensive and highly dependent
on the choice of the parameters. Moreover they are not
well designed to integrate human demonstrations that capture
human preferences of movement.

B. Human Posture Prediction

Predicting the human intention, i.e., the future intended
movement [6] is an active field of research, where tradition-
ally movements are represented by trajectories or movement
primitives issued with a probabilistic description. The pre-
diction with motion primitives, is most often done in the
task space, e.g., the Cartesian space, and Inverse Kinematics
is used to find the most appropriate corresponding joint
trajectories to fulfil the robot task. Motion primitives can also
be learned in the joint space, however each joint primitive
cannot be learned independently as all the primitives must
be kinematically consistent, and conditioning may not be
sufficient to properly ensure this property [12]. Recurrent
neural networks have also been proposed for predicting
future human posture [13], [14]. One of the main challenge
of these methods is to encode the multi-value behaviour
of the human, coming by its redundant structure, and to
evaluate the different solutions [15]. Data-driven of methods
are, in general, time efficient and they do not require hard
coded evaluation functions because they learn directly from
demonstrations. The main limit of these algorithms is the
loss of the kinematic consistency in the prediction: it was
demonstrated that applying regression for mapping from task
space to joint space using standard regression can lead to
inconsistent predictions [16]. In [17] a correction phase has
been added to match the kinematic constraints imposed by
the collaborative robot.

C. Digital Human Models for Ergonomics

A collaborative robot can be used to assist the human
worker and improve ergonomics at work [18]. Ergonomics
scores typically rely on kinematics and dynamics information
about the human’s movement, which are often extracted from
simulations of Digital Human Models (DHMs). There are
two main types of DHMs: the first are musculo-skeletal
models (e.g., as in AnyBody or OpenSim), which are rather
complex, have many degrees of freedom, and enable to



analyse the human movement by simulating the muscular
efforts [19]; the second are rigid body models, which are
simplified models with less degrees of freedom, where the
human is basically represented as a humanoid robot made of
rigid body links [18]. While the first ones are rather complex
and expensive in terms of computational resources (it can
take several minutes to simulate a small movement), the
second ones are simpler but faster to simulate. As such, they
are better suited for real-time applications such as model-
based prediction, control and ergonomics assessment [18].
Several ergonomics scores exist (e.g., RULA, REBA), and
they are mostly based on postural information [20].

III. NOTATION

In our study, the human is represented by a DHM, a
rigid body model with n degrees of freedom. The following
notation is used for the DHM:
• q ∈ Rn is the vector of joints values;
• x ∈ Rm hand Cartesian pose (position and orientation);
• n > m overactuated condition, k = n −m degrees of

redundancy;
• f(.) : Rn → Rm forward kinematics function;
• q̇ and ẋ joint and Cartesian velocities;
• J(q) ∈ Rm×n Jacobian Matrix, such that ẋ = J(q)q̇.
• We define as y ∈ Rk a vector in the null space of the

Jacobian J(q).
The robot state is determined by xR, ẋR, i.e., the Cartesian
position and velocity of its end-effector (EE). The robot
joints qR are not used in this work.

IV. PROBLEM FORMULATION

We consider a cooperating human-robot interaction sce-
nario, where human and a robot manipulator interact to
perform a joint task. The robot’s task trajectory at the end-
effector is known at each time step: ẋR(t), t = 0, . . . , T−1.1

The two agents are physically coupled at their end-effectors;
the robot is leading (leader role), while the human (follower
role) is guided by the robot; hence, we assume ẋ = ẋR. We
ignore for the moment any linear roto-translation between
the two frames.

Given the current human joint configuration q (known,
we suppose its measure is accessible to the robot) and
the robot end-effector velocity ẋR, we want to predict the
human joint velocity q̇. Since the human is over-actuated,
we want to predict a distribution of solutions that capture
the “preference” of human movement (i.e., analogously to
the concept of most likely solutions [11]); such solutions
must be kinematically feasible, i.e., they must verify that
ẋ = J(q)q̇. The problem can be formalized as computing
the conditional probability:

p(q̇|q, ẋ) s.t. ẋ = J(q)q̇ , (1)

where the second term is the kinematic constraint which
determines the set of possible solutions.

1In the following, we drop the time dependence t in the equations, unless
necessary, to improve the readability of the equations.

V. BACKGROUND

A. Kinematics for redundant DHMs

A redundant DHM2 is a DHM that has more degrees of
freedom than the number nominally required to perform a
given set of tasks (n > m). Redundancy yields increased
dexterity and versatility for performing a task due to the
infinite number (∞n−m) of joint motions which produce
the same end-effector motion. Given an EE pose x ∈ Rm,
the space which contains all the solutions of the inverse
kinematics equation {q : x = f(q)} is defined as the inverse
kinematics’s manifold Mx. It is considered as an union of
more simple and continuous manifolds, called “self-motion
manifold” (Ms) [21]. Any change of joint configuration
along a self-motion manifold does not change the position of
the end-effector. Instantaneous joint velocity vectors that are
tangential to the manifold generate so-called “self-motions”.
These motions q̇s do not change the end-effector position:
J(q)q̇s = 0. The space containing these joint velocities is
the null-space of the Jacobian matrix evaluated in q, which
is the set of vectors q̇s which satisfy J(q)q̇s = 0 and with
q̇s 6= 0. A basis for the null space of J(q) is composed by
the columns of the matrix VN = [µ1, ..., µn−m]; this matrix
could be obtained by singular value decomposition:

J = USV > = U(SR 0)

(
V >R
V >N

)
(2)

where VR and VN are the range and the null-space com-
ponents, respectively [16]. Thus, each self motion velocity
could be represented by a linear combination of the columns
of VN : q̇s = VN (q)y, where y ∈ Rk is the vector of the
coefficients of the linear combination. This consideration is
particularly useful for interpreting local redundancy resolu-
tion technique: each movement in the joint state could be
seen as the sum of the minimal velocity needed to match
ẋ plus a movement in the joint space which has no effect
in the workspace. In the literature, this approach is usually
referred to as dual projection method:

q̇ = J†W (q)ẋ+ (I − J†W (q)J(q))z(q) (3)

where J†W (q) is the weighted pseudo-inverse:

J†W (q) = WJ>(q)
(
J(q)WJ>(q)

)−1

(4)

that instantaneously minimizes the symmetric weighted
quadratic form q̇>W−1q̇, and z(q) ∈ Rn is a joint velocity
projected onto the null space of the manipulator Jacobian
and thus on the tangent space of the self-motion manifold.
Typically, z(q) is designed as a potential function that
minimizes a desired cost function C(.) [22][23].

B. Gaussian Processes

A Gaussian Process (GP) [7] is a collection of random
variables such that any finite collection has a joint Gaussian
distribution. In regression the random variables represent the
value of the function f(x) ∈ Y for the given input x ∈ X .

2The reader may notice that “redundant DHM” is equivalent to “redundant
robot”, since the DHM is modeled essentially as a robot with rigid bodies.
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Fig. 2: Flowchart of the offline training: (1) We collect human movements using a motion capture suit. The joint states are
passed to a digital human model and they are used to calculate the Jacobian at each joint configuration. From the digital
human model we record also the dataset D. (2) We project the joint velocities q̇ on the null space of the Jacobian; at the
first iteration of the algorithm the matrix W used for the pseudo-inverse is an identity matrix. (3) The projected dataset is
used to train k independent GP. (4) We invert the projection to obtain a distribution over q̇ and we calculate the likelihood;
(5) We optimize the W matrix accordingly to the likelihood using a gradient free optimizer and we repeat from point (2).

Fig. 3: Flowchart of the online prediction: Given an EE trajectory imposed by the robot and the knowledge of the initial
human state we can predict a distribution over the future human states. To do that we sample on the human joint velocity
q̇ calculated with our method(MI-NsGP) then we integrate the current human state. In this way we could propagate the
uncertainty to the next human state. We repeat this procedure throughout the end-effector trajectory, in this way we create
a probabilistic estimation of the human joint trajectory (Monte Carlo rollout).

A GP, denoted by f(x) ∼ GP(m(x), k(x,x′)), is entirely
characterized by the mean m(x) = E[f(x)] and covariance
k(x,x′) = E[(f(x) − m(x))(f(x) − m(x))>, which is
symmetric and positive semi-definite.

Let D = {(xi,yi)|xi ∈ X ,yi ∈ Y} be a training set and
(x∗,y∗) a point we did not observe in D. The GP predictive
distribution for the output y∗ at the test input x∗, given in
vector form, is

p(y∗|D,x∗) = N (µ∗,Σ∗),

µ∗ = k>∗ (k +Kerr)
−1y,

Σ∗ = k∗∗ − k>∗ (k +Kerr)
−1k∗

where, given a kernel function k(., .) : R × R → R
we use the notation k = k(x,x), k∗ = k(x,x∗), k∗∗ =
k(x∗,x∗) and Kerr is the measurement error variance. In
this work, we use the radial basis function (RBF) kernel:
kσ2,λ(x,y) = σ2exp(− ||x−y||

2

2λ ), λ > 0. In that case the
parameters (σ2, λ) are chosen by maximizing the marginal

likelihood P (y|(σ2, λ)).

VI. METHOD

We consider a DHM with n degrees of freedom. We
assume that the human/DHM follows this classic control law
from robotics (section V-A, [22], [23]):

q̇ = J†W (q)ẋ+ (I − J†W (q)J(q))z(q) (5)

where z(q) is an unknown cost function and the weight
W of the weighted pseudo-inverse J†W are also unknown.
The EE velocity ẋ is known. Our objective is to learn z(q)
and W from data. In this way, the solutions we find must
always satisfy the kinematic constraint: ẋ = J(q)q̇.

A. Learning the cost function z(q) with Gaussian processes

Let us consider a dataset related to the motions of the
DHM, D, composed of ND pairs: a tuple with the current
joint state q ∈ Rn and the EE velocity ẋ ∈ Rm, and the
joint velocity q̇ ∈ Rn: D = {(qi, ẋi), q̇i}ND

i=1. This dataset



can be generally acquired via human motion tracking (see
Fig.2-(1)).

At this stage, we consider the values of the weight matrix
W of Eq. 5 to be known, for example W = I , where I is
the identity matrix (see section VI-B for learning W ).

Instead of learning directly the value of z(q), we notice
that we can write [24]:

VN (q)y = (I − J†W (q)J(q))z(q) (6)

where VN (q) is the basis of the null space of the Jaco-
bian J(q), which is computed using Singular Value Decom-
position (SVD), and y ∈ Rk represents the coordinates of
the self-motion joint velocity in the null space.

We learn y instead of z(q) because it is the minimal size
representation for a self-motion joint velocity (Fig.2-(2)). We
therefore project every joint velocity q̇ of our dataset to the
null space of the Jacobian J(q) evaluated in the current joint
configuration q by applying:

y(q, ẋ) = V †N (q)
(
q̇ − J†W (q)ẋ

)
(7)

Thus, given the dataset D = {(qi, ẋi), q̇i}ND
i=1, we apply

Eq. 7 to obtain DNW = {(qi, ẋi), yi}ND
i=1.

We learn y(q, ẋ) using GPs (sec. V-B) that map input the
current joint state and the EE velocity to the joint velocity:

y|(q, ẋ) ∼ GP
(
m(q, ẋ), k((q, ẋ)i, (q, ẋ)j)

)
(8)

Like it is often done [25], we train k independent GP,
one for each dimension of y. Since Eq. 7 is linear, given
the Gaussian distribution p(y) ∼ N (µy,Σy), we can get the
Gaussian distribution of p(q̇) ∼ N (µq̇,Σq̇) by inverting it:

µq̇(q, ẋ) = J†W (q)ẋ+ VN (q)µy (9)

Σq̇(q, ẋ) = J†WΣẋ(J†W )> + VN (q)ΣyVN (q)> (10)

where Σẋ is the covariance matrix of the noise of ẋ learnt
from the data (Fig.2-(4)).

B. Learning the parameters W
We want to find the values of W that maximizes the

likelihood of the q̇ of the training set (Fig.2-(5)). To do so,
we introduce a score function S(W ) that is maximized with
a non-linear optimizer: S(W ) = 1

ND

∑ND

i=1 L(q̇i|W ), where
L(q̇i|W ) is the likelihood of q̇i given a particular value of W
and N is the size of the training set. For a given W and q̇,
L(q̇|W ) can be computed using µq̇ and Σq̇ from Eq. 10
(since µq̇ and Σq̇ define a multivariate Gaussian distribution
and we know ẋ and q from the training set):

L(W |q̇) =
1√

(2π)k|Σq̇|
exp

(
−1

2
(q̇ − µq̇)>Σ−1

q̇ (q̇ − µq̇)
)

where |Σq̇| denotes the determinant of Σq̇ , µq̇ = µq̇(q, ẋ),
and Σq̇ = Σq̇(q, ẋ).

Any non-linear optimizer can be used to maximize S(W ).
For simplicity and robustness, we used BIPOP-CMA-ES
[26], which is a gradient-free stochastic optimizer available
in the “pycma3” Python library.

3https://github.com/CMA-ES/pycma

C. Prediction Phase

Once the model has been trained, it can been used to
predict trajectories of the human’s joints given the current
joint configuration qt and expected EE trajectory executed
by the robot {xd1, . . . , xdT }. At each time step we can sample
the EE velocity as: ẋt ∼ 1

∆ t

(
xdt+1 − f(qt) +N (0,Σẋ)

)
,

where ∆t is the distance between two time-steps, Σẋ is the
robot repeatability when executing a trajectory (which we
estimated empirically by executing a desired trajectory 10
times). The use of f(qt) instead of x will be clear when we
will compare our approach to methods that do not guarantee
that f(qt) = x (Sec. VII).

At each time-step, given the current configuration qt, we
can get µq̇(qt, ẋt) and Σq̇(qt, ẋt) by querying the model
(Eq. 10). From this multivariate Gaussian distribution, we
can sample q̇t, which allows us to compute the qt+1:

qt+1 ∼ qt + ∆t N (µq̇(qt, ẋt), σq̇(qt, ẋt)) (11)

To sample a whole trajectory, we repeat this procedure by
propagating the sampling over time from t = 0 to T − 1. If
we repeat this sampling procedure many times for a given
trajectory, we get a Monte-Carlo estimate of the distribution
over the human joint trajectories according to our model [27].
A schema of the prediction phase is depicted in Fig. 3.

VII. EXPERIMENTS

To evaluate our method, we compare it experimentally to
alternative approaches that use only a subsets of our elements
(i.e., we make several ablation experiments):

1) MI-NsGP: Null-Space Gaussian Process with weight
identification: our method, which learns both W and
y(q, ẋ) (Sec. VI)
q̇|(q, ẋ) ∼ J†W (q)ẋ+ VN (q)GP(q, ẋ)

2) GP: learning directly from data with a GP
q̇|(q, ẋ) ∼ GP(q, ẋ).

3) W-IK: learning W but not y(q, ẋ) (i.e., y(q, ẋ) = 0)
q̇ = J†W (q)ẋ

4) NsGP: learning y(q, ẋ) but not W (i.e., W = I)
q̇|(q, ẋ) ∼ J†I (q)ẋ+ VN (q)GP(q, ẋ)

5) Sb-M: fitting a normal distribution N (µy,Σy) on the
training set for y(q, ẋ) and not learning W :
q̇|(q, ẋ) ∼ J†I (q)ẋ+ VN (q)N (µy,Σy)

where GP(q, ẋ) denotes the distribution that corresponds to
the GP model learned from data. The same training set and
test set has been used for all the methods.

The methods were evaluated on two experiments: A)
predicting the joint state of a 5R planar robot controlled
by a biased IK function (in simulation); B) predicting the
human posture (joint configuration) during a human-robot
collaboration task (from real data, a human interacting with
the Franka robot).

A. Toy problem: 5R Manipulator

We simulate an overactuated planar robot with 5 degrees of
freedom. Like a human, this 5R planar robot is overactuated
for the two-dimensional position of its EE, thus a planar task
can be executed with several joints velocities.

https://github.com/CMA-ES/pycma


The robot controller is conceptually similar to the (un-
known) human controller (Eq. 5), except that the ground
truth is known (W, z(q)). The 5R robot is controlled using
the control law from Eq. 5, with:

z(q) =
∇C(q)
∇q

+N (0, σz) (12)

To define z(q) similar to the human model, we hypoth-
esized, as in [11], that the joint velocity minimizes an
ergonomic cost function C(q) that depends on the joint
configuration. We designed a cost function similar to the
RULA continuous ergonomic score [20], the sum of a second
order polynomial for each joint:

C(q) =

n∑
j=1

(p2,jq
2
j + p1,jqj + p3,j) (13)

Where {(1.1×10−03, 0.0, 0.0), (9.8×10−04, 0.0, 1.0), (1.6×
10−04,−2.5 × 10−02, 2.0), (1.2 × 10−04, 0.0, 0.0), (2.1 ×
10−03, 0.0, 1.0)} are the (p1, p2, p3) of the joint j ∈
[0, ..., n]; they have been calculated by fitting a second degree
polynomial within the RULA score.

To define W , we assumed that some joints have more con-
tribution than others (for example, in humans, the shoulders
and elbows are typically more involved than lumbar’s joints,
but any musculoskeletal disorder can change this distribution
drastically). To model these situations, we choose a weight
matrix W that has non-uniform values (e.g., a low value for
the first joint means that it is not used much). Specifically, we
selected a diagonal and positive definite matrix with values
bounded in [0 + ε, 2 − ε]. We chose to bound the values
because otherwise we could fall in a singular configuration in
which a joint never moves or always moves, which appeared
far from a human-like behavior.

Starting from a configuration q0, we applied ND times
the control law specified in the Equations 5 and 12, with a
random EE velocity ẋi ∈ [−umax, umax]. The successive
joint state is then updated as qt = qt−1 + q̇t−1∆t + ωa∆2

t ,
where ωa ∼ N (0,Σa) is a Gaussian noise. If the robot
falls in a singular configuration, the data collection stops and
restarts from the q0 configuration. At each time step t, we
collected {(q, ẋ), q̇}t to create the training set D. The dataset,
composed by ND = 103 points, has been normalized and
divided into a training and a validation set. We trained the
models using the training set. Each GP has been implemented
in Python using gpytorch library with constant mean and the
RBF kernel. For finding the values of the parameters W ,
the BIPOP-CMA-ES optimizer searches in [0 + ε, 2− ε]. We
repeated the experiment 10 times varying the starting point
and the parameters of the control model (W ).
Results: We first analyze the quality of the predicted dis-
tribution by computing the mean log-likelihood over the
test set (Fig.4-a). Overall, our method (MI-Ns-GP) leads
to significantly better likelihood values than all the control
approaches. The worst likelihoods are obtained by the meth-
ods that do not use the null space and we observe a large
gap between using and not using the null space projection.

Fig. 4: Comparison of methods for joint velocity predic-
tion for 5R manipulator: our method (MI-NsGP), learning
directly from data using Gaussian Process (GP), learning
W and apply pseudo-inverse (W-IK), learning null space
(NsGP), sampling in the null space (Sb-M). The criteria:
(a) Mean-Log-Likelihood of the predicted joint velocity (b)
R-MSE between the mean of the predicted joint velocity
and real value (c) Mean-LogLikelihood of the end-effector’s
velocity obtained applying the methods.

Among the methods that use the null space, learning W
makes a significant difference.

We then focused on the mean prediction by computing
the root mean square error on q̇ (Fig.4-b) (we ignored the
variance). As before, the best results are obtained with our
method, and using the the null space makes a significant dif-
ference. However, learning a simple Gaussian model instead
of a GP leads to very bad mean square errors whereas it
corresponds to high likelihood values (Fig.4-a). This means
that this method has a very large variance, which makes the
test set likely (high likelihood score) but the predictions very
inaccurate.

Last, we computed the mean log-likelihood of the end-
effector position (ẋ, Fig.4-c). As expected, perfect scores are
obtained with the methods that exploit the null space (W-
IK, Sb-M, NS-GP, MI-NS-GP), but learning directly a GP
that predicts q̇ directly leads to significant errors in the end-
effector position. These results suggest that if the human’s
IK model is similar to the one we used for the 5R robot, our
method is likely to improve the quality of prediction of the
joint velocity while it returns only solutions which satisfy
the kinematic constraint.

B. Human IK prediction

We then evaluated our method with a real dataset of a
human interacting with the Franka Emika Panda robot. We
used a motion capture suit (Xsens MVN) to capture the
human posture. The human and the robot are facing each
other like in Fig. 1, and the right hand of the human is always
in contact with the robot’s EE (see video attachment). The
robot executes four “pick and place” trajectories spanning
50cm, its orientation is maintained constant. Each trajectory
is repeated 10 times: the first five trajectories make the
training set, and the five remaining ones the test set. Fig.7a
shows the intrinsic variability of the human repetitions (for



Fig. 5: Comparison of methods for joint velocity predic-
tion in Human Joint Velocity Prediction: (a) Mean-Log-
Likelihood of the predicted joint velocity (b) R-MSE be-
tween the mean of the predicted joint velocity and real value
(c) Mean-LogLikelihood of the EE velocity.

the same EE movement, the joint trajectories change). The
dataset D = {(qi, ẋi), q̇i}ND

i=0 contains q ∈ R24, i.e., the joints
which link the human pelvis to the right hand, and x ∈ R6,
i.e., the EE position and orientation.

The human poses are fitted (retargeted) to a DHM of
66 segments (Fig. 6a), based on the Xsens MVN model.
The segments are scaled with the human height, while
the dynamic properties (e.g., mass) are computed from
anthropometric data available in literature [18]. A URDF
(Universal Robot Description Format) model is then created
to represent the kinematics and dynamics of the DHM,
and used by the Pinocchio library [28] to calculate the
Jacobian going from the human pelvis to the right hand for
a given human joint configuration. Regarding the parameters
optimization, we applied BIPOP-CMA-ES and the search is
in [0 + ε, 2− ε]. In the prediction phase we also sampled 10
trajectories using Monte-Carlo approach and for each of them
we calculated four different ergonomics scores from the state
of the art in human ergonomics [18]: RULA, REBA, RULA
continuous, cumulative back angle (Fig.6b). The purpose is
to show that the probabilistic IK also impacts the prediction
of ergonomics scores, which is a critical information for a
collaborative robot.
Results We observed that Sb-M improves the Log-
Likelihood of the prediction with respect of using GP;
there is a further improvement using Ns-GP to predict
the self-motion velocities, in the end by identifying the
weights W using MI-Ns-GP we can outperform the pre-
vious methods4 (Fig.5.a, GP: (median: 7.94[7.75, 8.08]),
W-IK: (7.05[6.73, 7.12]), Sb-M: (8.64[[8.23, 8.74]), NsGP:
(9.13[[8.99, 9.21]); MI-NsGP: (8.95[8.87, 9.03])). In the toy
problem we observed that Sb-M performs worse than the
other methods in simple regression. Instead in this situ-
ation the worst performance has been reached using GP;
moreover, in this case W-IK has lower minimum value
but NsGP and MI-NsGP perform better in the median
and max value of the 95th percentile (Fig.5.b, GP: (me-
dian: 1.055([0.92, 1.50]), W-IK: (0.053([0.014, 0.111]), Sb-

4We report the results with the notation median [IQR 25%, 75%].

(a)

(b)

Fig. 6: (a) The DHM in Simulation, showing the variance of
the solutions calculated via Monte-Carlo integration. (b) Er-
gonomic scores computed on different sampled trajectories:
RULA, REBA, RULA continuous, cumulative back angle.

M: (0.067([0.021, 0.14]), NsGP: (0.030([0.018, 0.045]), MI-
NsGP: (0.027([0.017, 0.040])). Regarding the ability of sat-
isfying the kinematic constraint, we observed a behavior
similar to the toy-problem. In fact model based methods
(Sb-M, Ns-GP, MI-Ns-GP) have always bigger likelihood
(Fig.5.c, Log-Likelihood, GP: 7.51, [7.33, 7.67]), Others:
(11.74, [11.74, 11.74])); R-MSE: GP:(1.367[1.13, 1.68]) ×
10−04, Others: (1.234[0.598, 2.52])× 10−09). This improve-
ment is even more evident at trajectory level: if we use the
GP alone to predict the DHM joint trajectories while the
prediction horizon is growing, the R-MSE between the EE of
the DHM (in Fig.7b the red progression) and the robot’s EE
grows too fast to be used in a safe human-robot collaboration
scenario (after 0.5s of trajectory execution the median error
is already 5.0cm, growing at 8.8cm after 1.0s) while if we
use Ns-GP (in Fig.7b the green progression) the error is
acceptable (after 0.5s of trajectory execution the median error
is 0.03cm, 0.04cm after 1.0s). In searching the best W using
MI, we applied the same considerations gained in the toy
problem and looked for the solution with maximum module
inside the bounds. In the case of the human, W is unknown;
thus, it is not straightforward to evaluate the resulting values
from model identification. Anyway some considerations are
possible: even considering different training-sets, the opti-
mization converges to the same values of W ; this values
agree with our expectations regarding the distribution of the
joint velocity, in fact the joints which move less (like for
example the lumbar joints) have a smaller value with respect
to those which are more involved in the execution of the
movement (like shoulder and elbow).

[inline]No Type 3 fonts

VIII. CONCLUSIONS

In this paper we presented a method for learning a prob-
abilistic inverse kinematic model of the human in a Human-
Robot Collaboration scenario where the human hand motion
is constrained by the robot’s end-effector. We propose a two
phases method: in the first phase, we leverage a dataset of
human demonstrations to learn a distribution over the null-
space of the human Jacobian using a Gaussian Process; in
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Fig. 7: (a) Human joint trajectories (shoulder’s roll and pitch)
in response to the same EE movements. (b) Mean square
Error in offline prediction with GP and MI-NsGP.

the second phase we optimize the weights of the weighted
pseudo-inverse of the Jacobian. Our method computes a
probabilistic estimation of the future postures that satisfy the
kinematic constraints imposed by the physical link between
the human and the robot, and at the same time is coherent
with the human preferences of movement.

In the future, we want to integrate this probabilistic predic-
tion into our framework for ergonomics control, which aims
at optimizing a collaborative robot’s motions to maximize
the comfort and the ergonomics of the human collaborator.
A byproduct of our method is the probabilistic computation
oh ergonomics scores for a given robot’s EE trajectory, which
is a critical element for planning and optimizing the robot’s
trajectories. Further, we want to remove the leader/follower
hypothesis, and address the case where the leadership role
may vary over time.
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