

Using dynamical reaction network to infer drugs selectivity in pharmacology

Romain Yvinec

▶ To cite this version:

Romain Yvinec. Using dynamical reaction network to infer drugs selectivity in pharmacology. ICSB 2018, Oct 2018, Lyon, France. pp.1-66. hal-03115045

HAL Id: hal-03115045

https://hal.science/hal-03115045

Submitted on 19 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

USING DYNAMICAL REACTION NETWORK TO INFER DRUGS SELECTIVITY IN PHARMACOLOGY

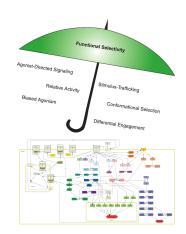
Romain Yvinec

BIOS, INRA Centre Val-de-Loire

Outline

What is Drugs Selectivity?

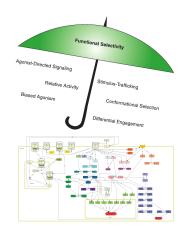
Some examples


Bias quantification - standard method : operational mode

Biased quantification using dynamical mode

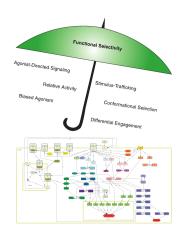
Functional selectivity, biased signaling

What is Drugs Selectivity?


 Several reaction pathways are generally associated to a given receptor, and lead to various cell response.

Functional selectivity, biased signaling

What is Drugs Selectivity?


- Several reaction pathways are generally associated to a given receptor, and lead to various cell response.
- Differential activation of those reaction pathways, that differs between (natural or synthetic) ligand

Functional selectivity, biased signaling

What is Drugs Selectivity?

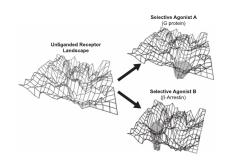
- Several reaction pathways are generally associated to a given receptor, and lead to various cell response.
- Differential activation of those reaction pathways, that differs between (natural or synthetic) ligand
- Drugs Selectivity =
 Ligand-dependent selectivity for certain signal transduction pathways at one given receptor

Key concept in pharmacology

- Drugs Selectivity (or Biased Signaling) is a key concept to be distinguish from
 - Partial or full agonist.
 - Antagonist, inverse agonist.
 - Affinity (K_d) , potency (EC_{50}) , efficacy (E_{max}) .

Key concept in pharmacology

- Drugs Selectivity (or Biased Signaling) is a key concept to be distinguish from
 - Partial or full agonist.
 - Antagonist, inverse agonist.
 - Affinity (K_d) , potency (EC_{50}) , efficacy (E_{max}) .
- A bias might be context-dependent (cell type, physiological state, etc.)


Key concept in pharmacology

- Drugs Selectivity (or Biased Signaling) is a key concept to be distinguish from
 - Partial or full agonist.
 - Antagonist, inverse agonist.
 - Affinity (K_d) , potency (EC_{50}) , efficacy (E_{max}) .
- A bias might be context-dependent (cell type, physiological state, etc.)
- Biased agonism is becoming a major tool in drug discovery.
- \Rightarrow Candidate screening requires to accurately quantify bias.

Theoretical foundation

A receptor may adopt several spatial conformations, each of which has different activation pathway profiles.

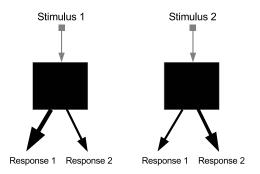
Conformational selectivity = Ligand-specific modification of the energetic landscape, changing affinities and efficacies of signaling patways.

Kenakin, J Pharmacol Exp Ther (2011)

Theoretical foundation

A receptor may adopt several spatial conformations, each of which has different activation pathway profiles.

Conformational selectivity = Ligand-specific modification of the energetic landscape, changing affinities and efficacies of signaling patways.


Similar concept : modulating bias

Minimal setting

To speak about signaling bias, one necessarily needs **two** ligands and **two** responses, in a **same** cellular context.

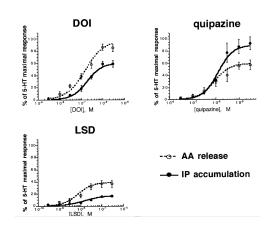
 \Rightarrow We always compare a ligand with respect to a reference one.

Outline

What is Drugs Selectivity?

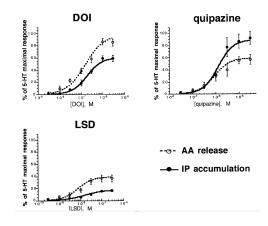
Some examples

Bias quantification - standard method : operational model


Biased quantification using dynamical mode

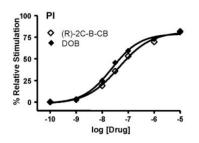
Serotonine receptor $5 - HT_{2C}$

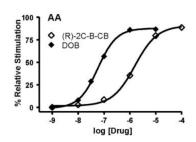
- Quipazine is biaised towards PI accumulation with respect to AA production, compared to the reference agonist DOI.
- LSD is not biased.



Berg et al., Mol. Pharmacol. (1998)

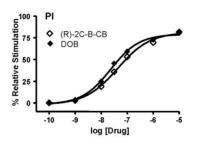
Serotonine receptor $5 - HT_{2C}$

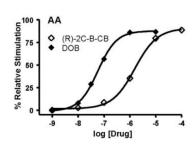

- Quipazine is biaised towards PI accumulation with respect to AA production, compared to the reference agonist DOI.
- LSD is not biased.
- \Rightarrow Bias due to an E_{max} difference.



Berg et al., Mol. Pharmacol. (1998)

Serotonine receptor $5 - HT_{2A}$

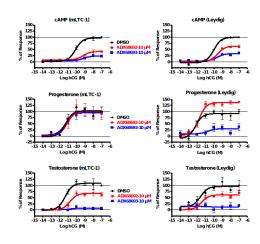



 (R) - 2C - B - CB is biaised towards PI accumulation with respect to AA production, compared to the reference agonist DOB.

Urban et al., J Pharmacol Exp Ther (2007)

Serotonine receptor $5 - HT_{2A}$

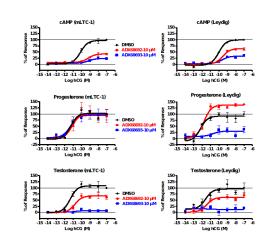
- (R) 2C B CB is biaised towards PI accumulation with respect to AA production, compared to the reference agonist DOB.
- \Rightarrow Bias due to an EC_{50} difference.


Urban et al., J Pharmacol Exp Ther (2007)

Steroidogenesis modulated by NAM

Some negative allosteric modulators (NAM) can biased Progesterone production with respect to Testosterone production, under stimulation of LH/CG receptor by hCG.

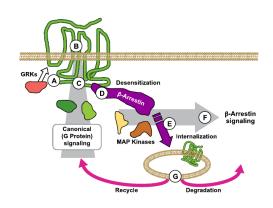
Ayoub et al., *Mol. Cell. Endocrinol* (2016)


Steroidogenesis modulated by NAM

Some negative allosteric modulators (NAM) can biased Progesterone production with respect to Testosterone production, under stimulation of LH/CG receptor by hCG.

⇒ Selective (biased) allosteric modulation

Ayoub et al., *Mol. Cell. Endocrinol* (2016)



Many more examples on GPCR (principle drug target)

Many GPCR's are known to have biased ligands (G / β -arrestin)

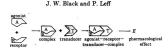
Kenakin, *Chem Rev* (2017)

Outline

What is Drugs Selectivity?

Some examples

Bias quantification - standard method : operational model


Biased quantification using dynamical mode

Operational model

Dose-response data are fitted with the function

$$y = E_{tot} \frac{\tau^n[L]^n}{([L] + Ka)^n + \tau^n[L]^n}.$$

- Response at equilibrium of a Michaelis-Menten type model.
- Ka = Dissociation constant of the couple Ligand/Receptor
- τ = Efficacy coefficient of the transduction pathway

Black and Leff, *Proc.* R. Soc. Lond. B (1983)

Operational model

Dose-response data are fitted with the function

$$y = E_{tot} \frac{\tau^n[L]^n}{([L] + Ka)^n + \tau^n[L]^n}.$$

For n = 1,

- $EC_{50} = \frac{Ka}{\tau + 1}$
- Efficacy $y_{\infty}/E_{tot} = \frac{\tau}{\tau+1}$

J. W. Black and P. Leff

Black and Leff, *Proc.* R. Soc. Lond. B (1983)

Operational model

Dose-response data are fitted with the function

$$y = E_{tot} \frac{\tau^n [L]^n}{([L] + Ka)^n + \tau^n [L]^n}.$$

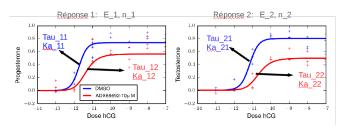
For n=1,

- $EC_{50} = \frac{Ka}{\tau+1}$
- Efficacy $y_{\infty}/E_{tot} = \frac{\tau}{\tau+1}$

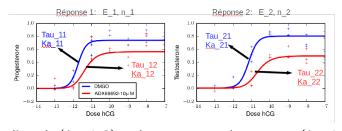
Then, we define

⇒ Transduction coefficient :

$$R := \log\left(\frac{\tau}{\mathit{Ka}}\right)$$


J. W. Black and P. Leff

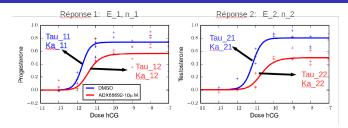
Black and Leff, *Proc.* R. Soc. Lond. B (1983)


Bias quantification : with the operational model

Two ligands (j = 1, 2) and **two** measured responses (i = 1, 2): Each dose-response data is fitted with the operational model:

$$y_{ij} = E_i \frac{\tau_{ij}^{n_i}[L]^{n_i}}{([L] + Ka_{ij})^{n_i} + \tau_{ij}^{n_i}[L]^{n_i}}.$$

Bias quantification : with the operational model



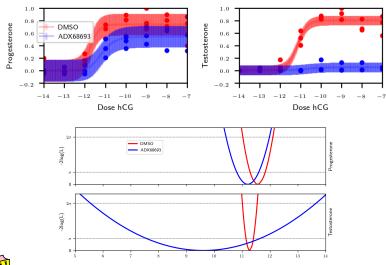
Two ligands (j = 1, 2) and **two** measured responses (i = 1, 2): Each dose-response data is fitted with the operational model :

$$y_{ij} = E_i \frac{\tau_{ij}^{n_i}[L]^{n_i}}{([L] + Ka_{ij})^{n_i} + \tau_{ij}^{n_i}[L]^{n_i}}.$$

For a given response i, we calculate $\Delta_i \log(\tau/Ka) = \log(\tau_{i2}/Ka_{i2}) - \log(\tau_{i1}/Ka_{i1})$.

Bias quantification: with the operational model

Two ligands (j = 1, 2) and **two** measured responses (i = 1, 2): Each dose-response data is fitted with the operational model :


$$y_{ij} = E_i \frac{\tau_{ij}^{n_i}[L]^{n_i}}{([L] + Ka_{ij})^{n_i} + \tau_{ij}^{n_i}[L]^{n_i}}.$$

For a given response i, we calculate $\Delta_i \log(\tau/Ka) = \log(\tau_{i2}/Ka_{i2}) - \log(\tau_{i1}/Ka_{i1})$.

The **Bias** is then defined by

$$\Delta\Delta \log(au/ extsf{Ka}) = \Delta_2 \log(au/ extsf{Ka}) - \Delta_1 \log(au/ extsf{Ka})$$

Statistical consideration : parameter confidence interval and (un-)identifiability

Data2Dynamics: Raue A., et al. Bioinformatics (2015)

Outline

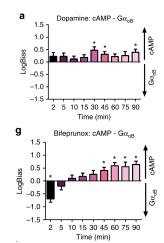
What is Drugs Selectivity?

Some examples

Bias quantification - standard method : operational mode

Biased quantification using dynamical model

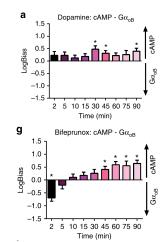
Time-dependent bias?


The role of kinetic context in apparent biased agonism at GPCRs

Carmen Klein Herenbrink¹, David A. Sykes², Prashant Donthamsetti^{3,4}, Meritxell Canals¹, Thomas Coudrat¹, Jeremy Shonberg⁵, Peter J. Scammells⁵, Ben Capuano⁵, Patrick M. Sexton¹, Steven J. Charlton², Jonathan A. Javitch^{3,4,6}, Arthur Christopoulos¹ & J Robert Lane¹

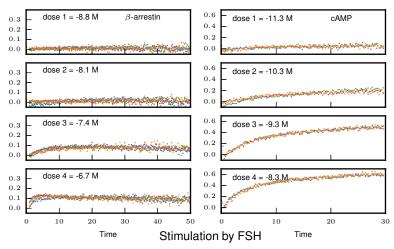
- Bias value may change according to the response time after stimulation.
- Kinetic explanation:
 Ligands with a slow binding kinetics may have changing bias value according to time.

Klein Herenbrink et al., *Nat. Commun* (2016)

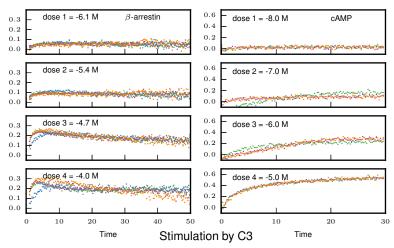


Time-dependent bias?

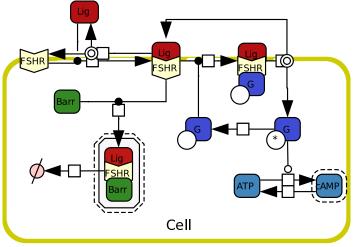
The role of kinetic context in apparent biased agonism at GPCRs


Carmen Klein Herenbrink¹, David A. Sykes², Prashant Donthamsetti^{3,4}, Meritxell Canals¹, Thomas Coudrat¹, Jeremy Shonberg⁵, Peter J. Scammells⁵, Ben Capuano⁵, Patrick M. Sexton¹, Steven J. Charlton², Jonathan A. Javitch^{3,4,6}, Arthur Christopoulos¹ & J Robert Lane¹

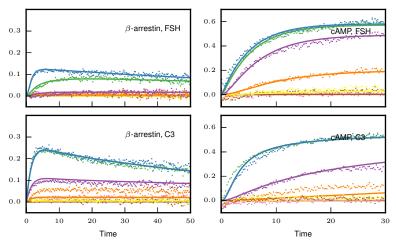
- Bias value may change according to the response time after stimulation.
- Kinetic explanation:
 Ligands with a slow binding kinetics may have changing bias value according to time.
- ⇒ We need to take into account dynamic patterns in bias quantification


Dynamic data (on FHSR in HEK cells)

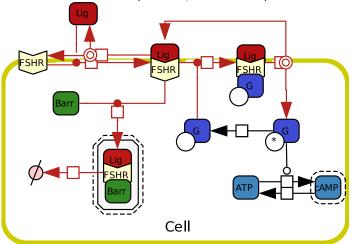
Instead of focusing on dose-response curves, we deal with **kinetic data** performed at several doses (here : induced BRET data)


Dynamic data (on FHSR in HEK cells)

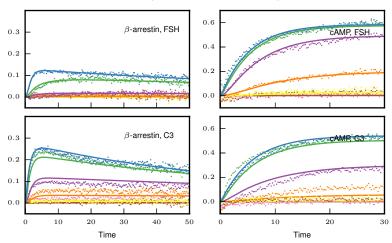
Instead of focusing on dose-response curves, we deal with **kinetic data** performed at several doses (here : induced BRET data)


Principle of the methodology

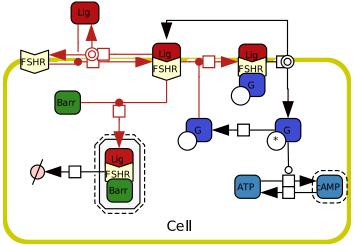
I)We start with a sufficiently detailed chemical reaction network


Principle of the methodology

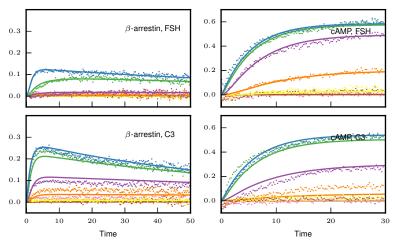
I)We start with a sufficiently detailed chemical reaction network to accurately fit the data (one **separate** model for each Ligand)



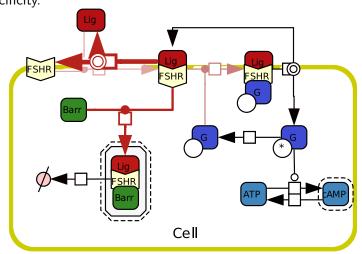
Principle of the methodology

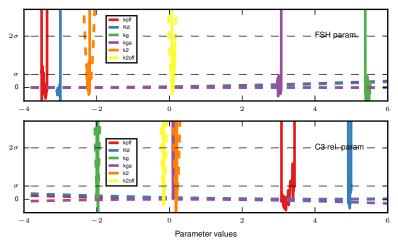

II) We fit **all data at once**, using some **common** parameters (initial concentration of molecules, measurement parameters...) and some **different** ones (kinetic parameters...)

II) We fit **all data at once**, using some **common** parameters (initial concentration of molecules, measurement parameters...) and some **different** ones (kinetic parameters...)


III) We use L^1 -penalization to find ligand specific parameters

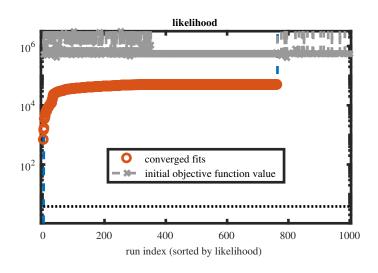
Data2Dyanmics : Steiert, Timmer and Kreutz, *Bioinformatics* (2016)


III) We use L^1 -penalization to find **ligand specific parameters**, keeping the fit 'as good as before'

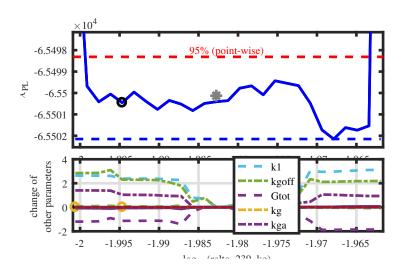


Steiert. Timmer and Kreutz. Bioinformatics (2016)

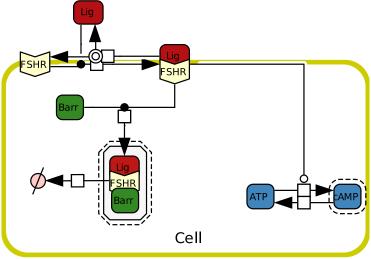
IV) After re-optimization, the set of distinct (ligand-specific) kinetic parameters gives us an accurate description of ligand specificity.

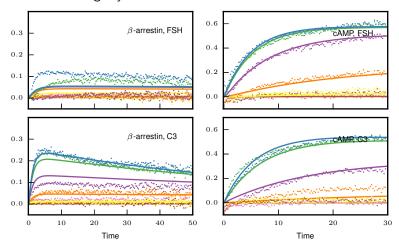


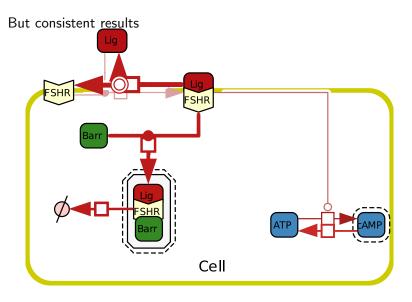
V) Significant differences between parameters is assessed by PLE



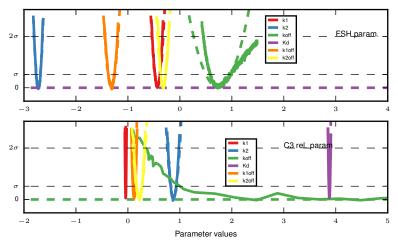
 \rightarrow here : C3 is biased towards β -arr, compared to cAMP, in comparison to FSH.


Practical problems...

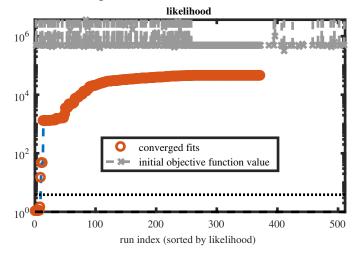

Practical problems...



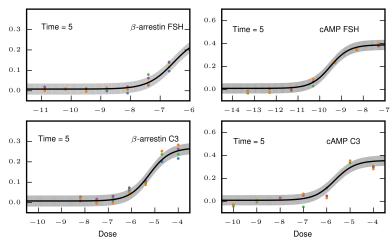
Kinetic model without G-protein



We obtain a slightly worse fit

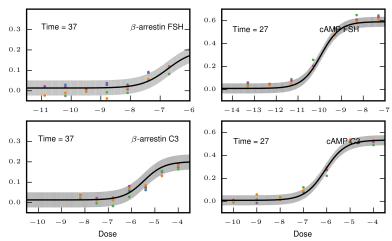


And "better" parameter identifiability

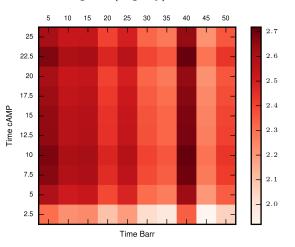


C3 is biased towards β -arr, compared to cAMP, in comparison to FSH.

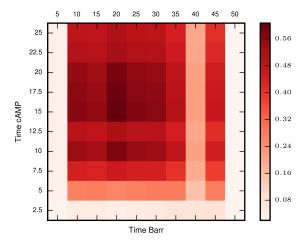
And "better" convergence curves



We systematically calculate bias value using standard method (operational model on dose-response curves :)


Bias=2.3 : C1 is biased towards β -arr, compared to cAMP, in comparison to FSH

We systematically calculate bias value using standard method (operational model on dose-response curves :)


Bias=2.64 : C1 is biased towards β -arr, compared to cAMP, in comparison to FSH

We systematically calculate bias value using standard method Different times gives (slightly) different bias values

C1 is biased towards β -arr, compared to cAMP, in comparison to FSH

We systematically calculate bias value using standard method Uncertainty can be large according to the time of measurement

Summary

- Notion of signaling bias to quantify differential activation of several pathways by a Ligand at a given receptor.
- Standard quantification has several drawbacks (no time, limited to sigmoid scenario, et).
- We gave a kinetic interpretation of Ligand biased, which rely on dynamic (ODE) modeling and parameter estimation with L¹ penalization.

Summary

- Notion of signaling bias to quantify differential activation of several pathways by a Ligand at a given receptor.
- Standard quantification has several drawbacks (no time, limited to sigmoid scenario, et).
- We gave a kinetic interpretation of Ligand biased, which rely on dynamic (ODE) modeling and parameter estimation with L^1 penalization.
- ⇒ How to deal with "fuzzy/noisy" PLE / Densely sampled time data?
- ⇒ How to deal with non uniqueness of the penalized solution?
- ⇒ How to perform a model reduction that would lead to both a satisfactory fit and identifiable parameters?

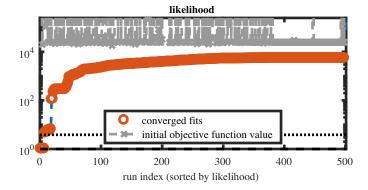
Thanks for your attention!

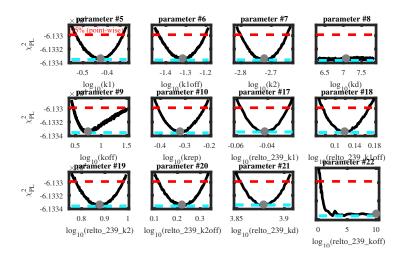
Bios Team, PRC, INRA (Tours, Fr)

- * Eric Reiter
- ⋆ Pascale Crépieux
- * Anne Poupon
- * Francesco De Pascali

United Arab Emirates University

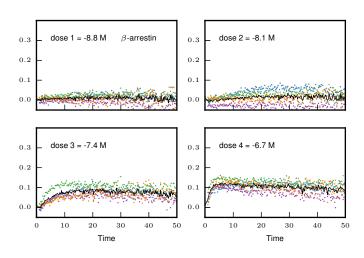
⋆ Mohammed Ayoub

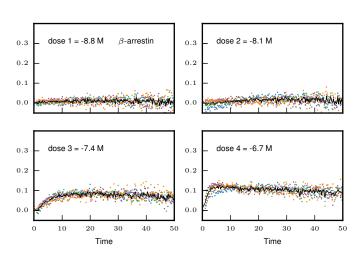



M. Ayoub et al., Molecular and Cellular Endocrinology 436 (2016)

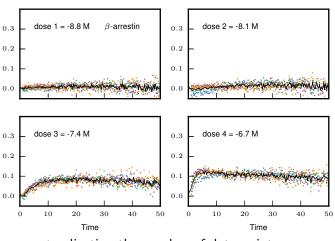
L. Riccetti et al., Scientific Reports 7:940 (2017)

R.Y. et al., Methods in Molecular Biology, in press (2018)




("trick" to minimize variance...)

Original "raw" data


("trick" to minimize variance...)

"Adjusted" data

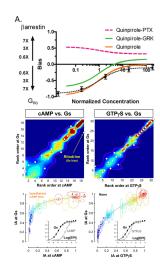
("trick" to minimize variance...)

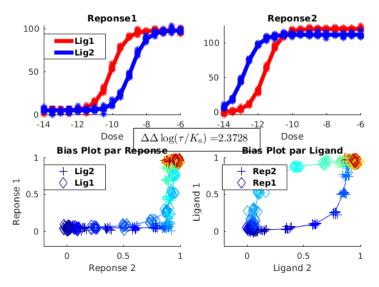
"Adjusted" data

 $\boldsymbol{+}$ adjusting the number of data points \dots

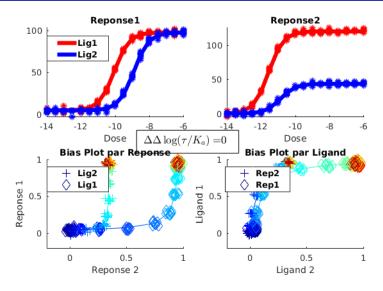
Other extensions

Dose-dependent bias

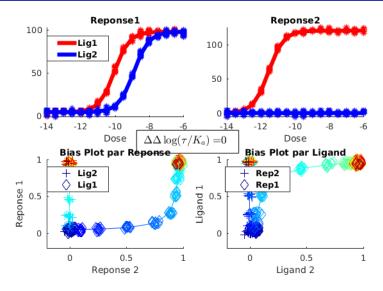

Barak and Peterson et al., Biochem. (2012) Extension of the operational model

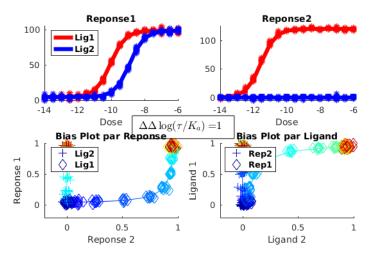


Kenakin, *Chem. Rev.* (2017) Method based on Intrinsic activities and rank ordering

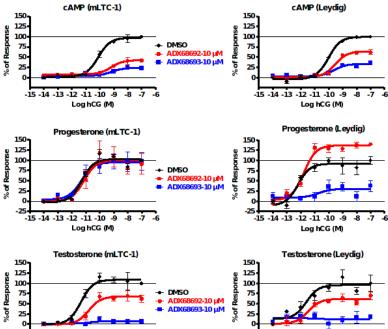


Onaran et al., *Sci. Rep.* (2017)




A strong bias is usually 'apparent' on dose-response curves or bias plot

But there may be counter-intuitive situation...



But there may be counter-intuitive situation...

But there may be counter-intuitive situation...

... and those situations occur in real life!

