
Stochastic self-regulated gene
expression model

Romain Yvinec a Michael C. Mackey b and Changjing Zhuge c

a) Institut Camille Jordan, Universite de Lyon 1, France

&

b) McGill University Montreal, QC CANADA

&

c) Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China

5th International Conference on Stochastic Analysis and its Applications, September 59, 2011, Universitat Bonn – p. 1/17



Outline

Quick review of the standard stochastic models of gene
expression

Can we explain the Bursting phenomena through an
adiabatic reduction of the standard model?
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Central dogma
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Central dogma

DNA
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Studied either in a discrete state-space (Swain and
Shahrezaei 08, Innocentini and Hornos 06) or in a
continuous state-space (Lipniacki and Paszek 06, Mackey
and Tyran and Y 2010)

5th International Conference on Stochastic Analysis and its Applications, September 59, 2011, Universitat Bonn – p. 4/17



The bursting phenomena

Yu et al. 06
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Self-regulated gene
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Reduction 1
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Bobrowski 06: Degenerate convergence of Semigroups.
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Reduction 1
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Reduction 2
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Reduction 2
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Reduction 3
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Sketch of the proof

Initial process
dX

dt
= ξ − γX(1)

where ξ is a dichotomous random process, which takes the
values 0 or λ > 0 and switches at rate α(X) and β.

Final process, when β → ∞, λ → ∞, β/λ → b < ∞

dX = dN(α(X), h)− γX(2)

where N is a compound poisson process, of intensity α(X)
and jump h exponentially distributed of mean b.
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Semi-group proof

Let’s define the semigroup Ttf(x) = Exf(Xt) then the Dynkin’s formula reads

Ttf(x)− f(x) =
∫

t

0
TsAf(Xs)ds. For any test function f in the domain of A

d

dt

∫ ∞

0

p
0

t (x)f
0(x) + p

1

t (x)f
1(x)dx = −γ

∫ ∞

0

xp
0

t (x)
df0

dx
dx

−

∫ ∞

0

(γx− λ)p1t (x)
df1

dx
dx+

∫ ∞

0

(α(x)p0t (x)− β(x)p1t (x))(f
1(x)− f

0(x))dx

For any test function such that f0(x) = f1(x) = f(x),

d

dt

∫ ∞

0

(p0t (x) + p
1

t (x))f(x)dx = − γ

∫ ∞

0

x(p0t (x) + p
1

t (x))
df

dx
dx

+ λ

∫ ∞

0

p
1

t (x)
df

dx
dx
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A particular choice for a test function

For any test function such that f0(x) = 0, f1(x) = g(x),

d

dt

∫ ∞

0

p
1

t (x)g(x)dx = −γ

∫ ∞

0

xp
1

t (x)
dg

dx
dx+ λ

∫ ∞

0

p
1

t (x)
dg

dx
dx

+

∫ ∞

0

α(x)p0t (x)g(x)dx− β

∫ ∞

0

p
1

t (x)g(x)dx

One can perform a quasi steady-state approximation, which gives

λ

∫ ∞

0

p
1

t (x)g(x)dx = −
γλ

β

∫ ∞

0

xp
1

t (x)
dg

dx
dx+

λ

β

∫ ∞

0

α(x)p0t (x)g(x)dx

+
λ2

β

∫ ∞

0

p
1

t (x)
dg

dx
dx
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Iterating

Iterating the process, one can find,

∫ ∞

0

λp
1

t (x)
df

dx
dx =

∑

i≥1

(

λ

β

)

i ∫ ∞

0

α(x)(p0t (x) + p
1

t (x))
dif

dxi

−
∑

i≥1

(

λ

β

)

i ∫ ∞

0

γxp
1

t (x)
dif

dxi
−

∑

i≥1

(

λ

β

)

i ∫ ∞

0

α(x)p1t (x)
dif

dxi

The first sum give the jump kernel
∫ ∞

0

α(x)(p0t (x) + p
1

t (x))

(
∫ ∞

x

h(y − x)f(y)dy − f(x)

)

dx,

where h is a distribution whose moments are given by

E
i[h] = i!

(

λ

β

)

i

The two others sum are shown to be arbitrary small.�
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summary

The same is working in a discrete formalism

Powerful tools to perform adiabatic reduction in Hybrid
systems

The "full-model" can now be analysed according its
different limit behaviour.

Other scaling are to be investigated
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Thank you for your attention!
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