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We address the issue of the origin of the phonon thermal hall effect in Tb3Ga5O12, an intriguing
property presumed to originate from magneto-elastic properties, and magnified in this compound
by the non-Kramers nature of Tb3+ ions. Using neutron scattering, we have explored both the spin
and lattice dynamics of Tb3Ga5O12. Our experimental results show that the transition towards the
magnetic ground state, below TN = 280 mK, is driven by the softening of an exciton, as expected in
a two-singlet system like Tb3Ga5O12. Low energy excitations in the ordered phase are still excitons,
whose dispersion throughout the Brillouin zone is driven by magnetic interactions. We have also
discovered a mixing between specific phonon and exciton modes, this hybridization being evidenced
through an intensity anomaly of the transverse acoustic phonons, as they cross low energy crystal
field excitations. Those experimental results can be comprehended by random phase approximation
calculations, involving a Hamiltonian based on crystal electric field, dipolar interactions, and a
coupling between phonons and the quadrupolar 4f electronic density.

I. INTRODUCTION

The phonon thermal Hall effect (PTHE), an enigmatic
thermal analogue of the electronic Hall effect, is charac-
terized by a heat flow in a direction perpendicular to both
an applied magnetic field and a thermal gradient. It was
actually discovered more than a decade ago, in the para-
magnetic insulator garnet Tb3Ga5O12 [1, 2]. In this very
case, it was proposed to rely on a large magneto-elastic
coupling, that is, on the interaction between an elastic
strain and the electronic distribution of the 4f orbital
moments [3]. However, the scope of this result was very
quickly recognized and extended to other cases, leading
to an extensive exploration of the heat-carrying proper-
ties of non-trivial excitations in a variety of other sys-
tems, such as insulating quantum magnets [4], frustrated
magnetic insulators [5], spin-liquid candidates [6–8], or
multiferroics [9].

Amongst the several possible origins for the PTHE in
Tb3Ga5O12 (TbGG), which have been proposed and dis-
cussed, one has invoked a Raman-type interaction be-
tween phonons and large spins (spin-phonon coupling)
[10–12], a Berry curvature of phonon bands [13, 14], or
resonant skew scattering of phonons [15]. All those mech-
anisms involve a large magneto-elastic coupling [16, 17],
a property which has been repeatedly inferred from a va-
riety of experiments in TbGG, through the softening at
low temperature of its longitudinal and transverse elas-
tic constants [16], an acoustic Faraday effect [16, 18, 19],
or a strong scattering of acoustic phonons by Tb3+ ions
[20, 21].

Surprisingly, although magneto-elastic coupling is ar-
guably a cornerstone for a proper understanding of the
PTHE in TbGG, there has not been any direct micro-
scopic evidence for it yet. Furthermore, TbGG is well-
known to be a two-singlet system [22], yet, despite this
non-magnetic ground state, it orders magnetically at TN
≈ 0.28 K [23], [24]. The magnetic order is thus expected
to be of the “induced moment” type [25], [23], [26], a fea-
ture which remains to be seen experimentally in TbGG.

This motivates the present neutron scattering study,
whose aim is a comprehensive description of both the
spin and lattice dynamics in this compound. Our
experimental results show that the transition towards
the magnetic ground state is driven by the softening
of an exciton, as expected in a two-singlet system like
TbGG. The spin dynamics can be reasonably well
modeled by random phase approximation calculations
(RPA), involving a Hamiltonian based on crystal electric
field and dipolar interactions. Furthermore, focusing
on lattice dynamics, we have discovered that TbGG
hosts hybrid phonon/exciton modes, this hybridization
being evidenced through an intensity anomaly of the
transverse acoustic phonons, as they cross low energy
crystal field excitations. We contend this anomaly
to be the microscopic signature of a magneto-elastic
coupling. This conclusion is further supported by
including a phonon-quadrupole coupling term in the
RPA calculations. These findings should prove elemental
in the understanding of the macroscopic properties of
Tb3Ga5O12 and more generally of the PTHE.
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II. EXPERIMENTAL METHODS

A. Sample preparation

The Tb3Ga5O12 (TbGG) powder was synthesized
from a mixture of stoichiometric amounts of Tb2O3 and
Ga2O3, previously dried at 500◦C, pressed into pellets
and heated up to 1200◦C for 48 hrs, with regular re-
grindings. Formation of the pure phases was confirmed
by laboratory X-ray powder diffraction. The sample crys-
tallizes in the expected cubic space group Ia 3̄d, with a
≈ 12.35 Å in agreement with literature results [27]. The
single TbGG crystal (Ø = 10 x 20 mm) was bought from
Northrop Grumman, USA.

B. Neutron powder diffraction

Neutron powder diffraction (NPD) vs. temperature
was performed on the G4.1 diffractometer (λ = 2.426 Å)
at LLB-Orphée (France). Diffractograms were recorded
between 45 mK and 290 mK, in a dilution fridge envi-
ronment. To ensure proper thermalization of the sample
at subkelvin temperatures, the sample was set in a dedi-
cated vanadium cell filled with 4 bars 4He gas and left for
6 hours at 45 mK before the start of the experiment. The
temperature sequence is illustrated on Fig. 1 (right axis),
and corresponds to a dozen temperature steps, increasing
T from 45 mK to 288 mK, before cooling down to base
temperature (45 mK) again (with the neutron beam al-
ways on). Between six and eight 15-min diffractograms
were recorded during each temperature plateau to pro-
vide high statistic data (such as shown on Fig. 2a) for
subsequent Rietveld analysis. As illustrated on Fig. 1,
the ordered magnetic moment extracted from the 15-min
NPD data follows the temperature sequence perfectly,
thus confirming the proper thermalization of the sample.

Rietveld refinements were performed with the Fullprof
program [28]. Symmetry analysis was carried out us-
ing the FullprofSuite software and the Bilbao Crystal-
lographic Server [29], [30]. No sign of partial substitu-
tion of Tb on the Ga octahedral site (and vice versa),
or deviation from the nominal oxygen stoichiometry was
evidenced within the resolution of the experiment (≤ 3
%).

C. Inelastic neutron scattering

Inelastic neutron scattering (INS) measurements were
performed on the thermal triple-axis 2T spectrometer
(LLB-Orphée, France). Standard conditions were used,
with PG002 as monochromator and analyzer, using a
fixed constant wavevetor kf = 2.662 Å−1, along with
an 8 cm thick PG filter on the scattered beam to elimi-
nate harmonics. Experiments were carried out with open
collimations, in combination with a vertically and hori-
zontally bent monochromator and analyzer, to optimize

FIG. 1. (color online) : Evolution of the ordered magnetic
moment of Tb3+ in polycrystalline Tb3Ga5O12 vs. time (left
axis, from Rietveld refinements of low statistic data). The
corresponding temperature sequence (vs. time) is pictured
by red horizontal bars (right axis). Each horizontal bar corre-
sponds to a time period in which the temperature is constant
(i.e., outside a ramp).

the flux at the sample position. This set up yields an
energy resolution ∆E ≈ 1.2 meV. The TbGG powder
sample was put inside an aluminum holder. The single
crystal sample was wrapped in an aluminum foil, aligned
with the [1-10] direction vertical, and attached to the cold
finger of a closed cycle cryostat.

Time-of-flight (TOF) INS experiments were also per-
formed on the TbGG single-crystal, using the cold spec-
trometer IN6-SHARP (ILL, France). The incident wave-
length was λ = 5.12 Å, providing an instrumental res-
olution of 50 µeV at the elastic line. The single-crystal
was oriented with (110)-(001) as the horizontal plane,
wrapped in a copper foil (to ensure proper thermaliza-
tion) and placed in a dilution insert inside a cryostat
[31]. Special care was taken to ensure proper thermaliza-
tion of the sample, and the experiment was started after
a 6-hour wait at base temperature (50 mK). Data were
recorded between 50 mK and 5 K. To get the full dataset
as a function of Q and E, the sample was rotated in steps
of 1 degree and the counting time was about 10 minutes
per sample position. The data were then processed to
subtract a constant background and to convert the time
of flight, sample rotation and scattering angle into energy
transfer and Q-wave-vectors (see Appendix A).

III. RESULTS

A. Magnetic structure

In TbGG, because of the orthorhombic (D2) electric
field on the 24c Wyckoff site of the Ia 3̄d garnet crys-
tal structure [32], the degeneracy of the 7F6 multiplet of
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FIG. 2. (color online) (a) : Rietveld refinement profile of the
TbGG neutron diffraction pattern at 45 mK, using the mag-
netic space group Ia 3̄d. (Experimental: empty red circles,
calculated: black line, Bragg positions (crystal + magnetic
contributions): green ticks. The difference between the ex-
perimental and calculated profiles is displayed at the bottom
of the graph as a blue continuous line. (b) : Reduced tem-
perature evolution of the Tb3+ ordered magnetic moment,
obtained from Rietveld refinements of the neutron diffrac-
tion data (open red symbols). The dotted line shows the
corresponding calculation, based on the singlet-singlet model
described in the main text. Inset of (b) : Multi-axis AFA
magnetic order, with the three magnetic sublattices having
moments parallel or antiparallel to the cubic axis (a, b, c in
yellow, blue and red, respectively).

the free Tb3+ ion is completely lifted into thirteen single
states [22]. The lowest energy states are thus two closely
spaced singlets. As already mentioned, TbGG is, how-
ever, reported to order magnetically at TN ≈ 290 mK
[23], [24]. The observed antiferromagnetic structure is
of the AFA type [23, 24, 33] (inset of Fig. 2b), that is,
multi-axial, with the Tb3+ spins forming six sublattices
parallel or antiparallel to the <100> crystallographic di-
rections of the cubic unit cell (the magnetic space group
being Ia 3̄d ’ (BNS 230.148)). This AFA structure is spe-
cific to rare-earth garnets with Ising anisotropy and dom-
inant dipolar interactions [23], [34–36].

As illustrated in Fig. 2a, neutron powder diffraction

experiments confirm this AFAmagnetic order for TbGG.
The peculiar temperature evolution of the Tb3+ ordered
moment (Fig. 2b) is very similar to that reported in [37],
with TN ≈ 280 mK, and with the Tb3+ moment reaching
only ≈ 4.5 µB at 45 mK.

B. Spin dynamics

FIG. 3. (color online) (a) and (b) : Temperature evolution
of E-scans at constant Q = (110), measured in single crystal
TbGG, above and below 500 mK, respectively. (c) Color plot
of the same data as (a) and (b) (top x axis : reduced tempera-
ture (T/TN ) scale). The dashed vertical line shows TN , below
which a strong elastic signal is observed. (d): Corresponding
calculation, for the model described in the text, with xdip =
1. The shaded area around the elastic line indicates the 50
µeV instrumental resolution. The elastic contribution is not
shown for clarity in (d).

To clarify the formation of this magnetic ground state,
the TbGG CEF excitations were studied by INS at 10 K
on both polycrystalline and single-crystal samples. For
both, the observed levels are in perfect agreement with
a recent and comprehensive neutron scattering study of
TbGG by Wawrzynczak et al. [24]. In particular, a very
broad signal is seen for an energy transfer E ranging be-
tween 4 and 7 meV, which is attributed to 4 distinct CEF
modes [24], alongside a very low energy mode around 0.2
meV (see Fig.3a at 5 K). Note that this CEF scheme
confirms the strong Ising anisotropy of the Tb3+ ion in
TbGG [24], as well as the two-singlet ground state, made
of two closely spaced singlets (∆ ≈ 0.2 meV). More de-
tails can be found in Appendix B.
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Low energy excitations (E ≤ 2 meV) were further stud-
ied below 1 K on the TbGG single-crystal to investigate
the behavior of this two-singlet system through and be-
low TN (TN being about 300 mK in the TbGG single-
crystal). As already observed experimentally on poly-
crystalline TbGG [33], the low energy CEF level around
0.2 meV becomes dispersive when T approaches TN [38]
i.e., when correlations grow, which indicates that the
high-temperature single-ion excitation has been replaced
by a (propagating) exciton. The evolution with temper-
ature of energy scans at the magnetic Bragg Q = (110)
is illustrated on Fig. 3a, b, with the corresponding col-
orplot in Fig. 3c. It shows that, far above TN , a single
CEF mode is observed at 0.2 meV. This mode splits into
two branches with decreasing temperature, one branch
softening down to the elastic line (within the instrumen-
tal resolution) at TN , and the other branch hardening
to reach 0.25 meV at 100 mK. Experimentally, it is not
possible to affirm whether there is a complete softening
or not of the exciton at the transition; if there is a gap,
however, it has to be less than 50 µeV.

This softening fits the theoretical picture of induced
magnetism, as explained in Ref [23, 25, 26]. If one la-
bels the two singlets as |1〉 and |2〉, the singlet nature
imposes 〈1|Ji|1〉 = 〈2|Ji|2〉 ≡ 0 (Ji is the total angular
momentum), with however 〈1|Ji|2〉 non-zero. If magnetic
interactions overcome the energy separation ∆ between
the singlets, the system can take advantage of the finite
〈1|Ji|2〉 matrix element to mix the |1〉 and |2〉 wave func-
tions, to form a magnetic ground state (see also Appendix
Section C). This can been modeled quantitatively using
the following Hamiltonian :

H = HCEF +
∑
〈i,j〉

∑
a,b=x,y,z

Kabi,j Jai Jbj (1)

where Ki,j describes the interaction tensor between the
components of Ja=x,y,z at Tb3+ sites i and j of the hyper-
kagome network of TbGG. In what follows, it is assumed
that Ki,j identifies with the dipolar interaction term Di,j ,
which is tuned artificially by a parameter labeled xdip,
Ki,j = xdip Di,j :

Ka,bi,j = xdip
µo
4π

(gJµB)2

r3
i,j

(
δa,b − 3

rai,j r
b
i,j

r2
i,j

)
(2)

and is truncated to nearest-neighbors. rij is the vector
joining sites i and j. Using the nearest neighbor dis-
tance dnn = a

4

√
3/2 (a is the cubic lattice spacing, dnn

≈ 3.78 Å in TbGG [27]), this gives D ≈ 0.02 K. HCEF

is based on the parameters proposed by [24] to describe
TbGG. There is no magnetic exchange term.

On the basis of this minimalist Hamiltonian, spin dy-
namics was then calculated in the framework of the RPA
approximation (see also Appendix D 1). S(Q, E) maps of
the exciton dispersion along [hh0], calculated at various
temperatures using this model Hamiltonian, are given in
Fig. 4. Cooling from 10 K, calculations clearly show that

FIG. 4. (color online) Reduced temperature evolution of
the calculated S(Q, E) spectra of TbGG, along [hh0] (E ≤
2 meV)). Calculations are carried out using the Hamiltonian
described in the main text, with the CEF parameters of [24],
a dipolar interaction parameter xdip = 1, and no magnetic
exchange.

FIG. 5. (color online) TbGG S(Q, E) spectra along [hh0],
calculated below (T/TN = 0.1) and above (T/TN = 5.3) TN ,
shown between 4 and 7 meV.

the CEF mode at about 0.2 meV becomes dispersing, be-
ing now rather an exciton than a local crystal field ex-
citation. Further decreasing temperature, several modes
can be identified, one of them softening progressively be-
fore condensing at the Néel temperature. In the ordered
phase, the latter hardens again, as a result of the strong
anisotropic nature of the dipolar interaction.

For easier comparison with the experimental data of
Fig. 3c, Fig. 3d displays the temperature dependence
of the calculated excitation spectrum at Q = (110), as
extracted from Fig. 4. The model accounts very well
for the softening of the exciton at TN which is seen ex-
perimentally, and gives a very reasonable value for the
energy of the dispersive excitons below TN . It predicts
another mode of weak amplitude, at ≈ 0.3 meV, which
is not seen on the experimental data, presumably owing
to the limited resolution and/or to the low intensity of
the mode itself.

The temperature evolution of the group of CEF levels
at higher energies, between 4 and 7 meV, is shown in
Fig. 5. In this energy range, the excitonic character of
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the CEF excitations is not observed anymore, since the
strength of the magnetic interactions is negligible com-
pared with the bare energies of the CEF levels, and only a
slight change of the levels’ energy positions is seen below
TN .

The moment at saturation calculated from the admix-
ture of states is Ms = 4 µB , in very good agreement
with the ordered moment value at 45 mK refined from
the diffraction data. It is also noteworthy that there is
no need to introduce hyperfine coupling into the Hamil-
tonian to drive the magnetic order, an issue which was
still open in TbGG to date [39], and in contrast, for in-
stance, to Ho3Ga5O12, another non-Kramers garnet [40].
The main discrepancies between this model and the ex-
perimental results are the value of TN , calculated to be
950 mK (against 280 mK experimentally), and the shape
of the ordered moment temperature evolution, which
reaches saturation below T/TN = 0.5, that is, much
faster than experimental observations (Fig. 2b). Dis-
crepancies between the observed and calculated intensity
of the modes around 0.25 meV can also be seen when
comparing Figs. 3c and 3d. These are indications that
mean-field theory with the chosen Hamiltonian, although
it leads to an overall correct description of TbGG, is likely
not accurate enough to describe finer details, and that a
more complex Hamiltonian, or a more sophisticated the-
oretical approach, are necessary.

C. Lattice dynamics

To go further into the understanding of TbGG
magneto-elastic properties, phonon dynamics was in-
vestigated by INS at 10 K; experimentally this study
was performed at rather large Q values, to increase the
phonon form factor, and in an energy range up to 20
meV. Several tests were performed around different zone
centers, but Q = (008) was eventually chosen to enhance
as much as possible the phonon cross section. The (Q,
E) space was then mapped out, probing both the lon-
gitudinal and transverse acoustic modes stemming from
the corresponding Bragg peak. The energy resolution
did not allow one to study the 0.2 meV level, the latter
being buried into the elastic line. The results are illus-
trated in Fig. 6a, which shows the INS spectrum S(Q, E)
of TbGG built from constant E Q-scans, mapped along
[hh8]. A steep transverse acoustic phonon branch, prop-
agating along [hh0] and polarized along [001], is clearly
visible, linearly stemming from the (008) Bragg position,
and crossing the group of CEF levels located between 4
and 7 meV. The intensity of those modes is still strong,
despite the large wavevectors. An additional scattering
is visible around 12 meV, a feature which is seen also on
the polycrystalline TbGG S(Q, E) spectrum at 5 K. It is
tentatively attributed to an optical phonon mode, as its
intensity increases with Q.

The intensity of the phonon mode was fitted using the

FIG. 6. (color online) (a) Experimental S(Q, E) at 10 K
along [hh8]. (b) Fitting of the phonon branch intensity vs. E,
at different temperatures. (c) and (d) Calculations performed
assuming a magneto-elastic coupling of 0.3 K with a single
acoustic phonon branch. (c) shows the total neutron inten-
sity (magnetic and phononic), while (d) shows the phononic
contribution only, to emphasize the variations of the intensity
of the phonon branch as it crosses the different CEF levels
(pictured by horizontal lines).

following equation :

I(E,Q = (hh8)) = c+ (1 +
1

eE/kBT − 1
)×

A(E) (g(h, hE) + g(h,−hE))

where c is an effective flat background and g(h, hE) =

e−4 log(2)(h−hE)2/γ2

is a Gaussian profile centered on hE
(γ is its FWHM). This analysis, repeated at 4, 30 and 93
K, leads to the results displayed in Fig. 6b. Strikingly,
the A(E) amplitude shows a dip when crossing the 4-7
meV CEF levels, when a classical 1/E behavior would
have been expected. Furthermore, this dip progressively
fills up with increasing temperature, to become barely ob-
servable at 100 K. The same fitting, repeated for the lon-
gitudinal phonon mode propagating and polarized along
[001] did not reveal the same anomaly.
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D. RPA modeling

To qualitatively interpret these measurements, it seems
straightforward to add a magneto-elastic coupling term
to Eq. 1. The simplest way is to couple an atomic dis-
placement to the quadrupolar moments of the Tb 4f elec-
tronic distribution. The latter writes Qi =

∑
a,b qabX

ab
i ,

where Xab
i = |a, i〉〈b, i| denote the transitions between

the CEF eigenstates |a〉 and |b〉 at site i, and where the
qab coefficients depend on the details of HCEF (see Ap-
pendix B and [24]). The atomic displacements write as
(a+
−ks + ak,s) in terms of phonon creation and annihila-

tion operators (s labels the band index, k the momentum
and Ωk,s the phonon energy), so that the new Hamilto-
nian becomes :

H′ = H+
∑
k,s

Ωk,sa
+
ksak,s

+
∑
k,s,i

vi,k,s(a
+
−ks + ak,s)

(
Xab
i +Xba

i

)
(3)

It includes a direct coupling vk,s,i between phonons and
electronic transitions, which, because of resonant cou-
pling, leads to hybrid magneto-elastic modes. This in-
teraction was thus incorporated into the RPA code used
previously (Appendix D 1). In the calculations, a simple
transverse acoustic mode Ωk,s is considered and an identi-
cal effective coupling v is assumed between this mode and
the CEF transitions. Fig. 6c and 6d display the calcu-
lated spin and lattice contributions to the neutron cross
section, respectively, and evidence the expected mixing
of the bare phonon and CEF excitations. Owing to the
proximity of several CEF modes in the 4-7 meV range,
this hybridization manifests itself as a decrease of the
phonon spectral weight, in agreement with what is ob-
served experimentally (Fig. 6b). To reproduce the ex-
perimental data, the strength of the effective coupling
was adjusted to 0.3 K.

IV. DISCUSSION

From an analysis of the temperature and field depen-
dence of the thermal conductivity of TbGG, it had been
previously inferred [20] that including in the data model-
ing resonant scattering of phonons with CEF transitions
frequencies corresponding to transitions X12 and X34

was giving a satisfactory agreement (with the addition
of resonant scattering from a few impurities). Scattering
from the X34 was also found accountable in a broad tem-
perature range, from 8 K to 200 K. The present study
goes further, and now provides microscopic evidence for
the coupling between acoustic phonons and at least four
of the Tb3+ six lowest excited states.

With regards to the phonon Hall effect at 5 K, the
mean free path of phonons with frequencies close to the
resonant frequencies of the X12 and X34 transitions are

on the order of the phonon wavelength; when the split-
ting between levels becomes too large, like when a field
is applied in a specific direction such as [111], the reso-
nant scattering rate decreases and thermal conductivity
peaks. Moreover, the magneto-elastic interaction is also
expected to change the topology of the phonon bands,
giving rise to “anomalous” velocities and thus to off-
diagonal heat conductivity. Because of the field depen-
dence of the CEF, those bands shall strongly depend on
the field amplitude, leading to a significant thermal Hall
effect. Furthermore, owing to the strong Ising character
of Tb3+ on its site, this splitting differs depending on
the orientation of the local Ising axis with respect to the
applied magnetic field.

While a detailed microscopic derivation of the
magneto-elastic Hamiltonian would likely give a more re-
liable value of the coupling constants v, it is important
to mention that H′ describes, at low energies, a two-level
system (|1〉 and |2〉) coupled to a bath of harmonic oscil-
lators, a very difficult problem relevant to many areas of
physics, from quantum decoherence to polaron formation
[41, 42]. The physical effect of the coupling is the “po-
larization” of a given state by the other one: |1〉 (resp.
|2〉) becomes dressed by an admixture of |2〉 (resp. |1〉),
surrounded by a cloud of phonons. Within the mean-
field framework, this may translate into the formation of
a static distorted structure if the coupling v overcomes
the energy separation ∆. This is indeed the case in the
above RPA calculations, which yields v ≈ 0.3 K, a very
large value, likely an artifact of a too crude approxima-
tion, neglecting zero point fluctuations especially. It re-
mains that the coupling to the phonon bath results in
a mixing of the |1〉 and |2〉 states, leading to new elec-
tronic states which can be written, for the sake of illus-
tration, |1′〉 = u|1〉 + v|2〉 and |2′〉 = −v|1〉 + u|2〉. In-
terestingly this mechanism may confer an emergent fluc-
tuating magnetic moment to the new electronic states
〈1′|Ji|1′〉 = −〈2′|Ji|2′〉 = 2uv 〈1|Ji|2〉, which could pre-
vent the formation of any static order, or compete with
the dipolar interaction induced mechanism. In the case
of TbGG, such a competition could be the reason behind
the discrepancy between the experimental TN of 280 mK
and the theoretical one of 950 mK calculated consider-
ing a bare singlet-singlet model, that is, decoupled from
the phonon bath. Within this scenario, magneto-elastic
coupling delays the AFA magnetic ordering, possibly ex-
plaining the peculiar temperature evolution of the Tb3+

ordered magnetic moment below TN as well.

Such physics may be relevant to other Tb compounds,
such as, for instance, the pyrochlores Tb2Ti2O7 or
Tb2Sn2O7 [43–45]. In both, a similar coupling be-
tween the quadrupolar moments of the electronic den-
sity and the lattice degrees of freedom is also at play
[46–50]. In contrast with TbGG, the multiplet degen-
eracy is not totally lifted, so that the low energy CEF
scheme is described by a degenerate Ising magnetic dou-
blet m = 〈1|Ji|1〉 = −〈2|Ji|2〉 6= 0 and characterized
by a strictly zero matrix element 〈1|Ji|2〉 ≡ 0 [51, 52].



7

However, the coupling to the phonon bath may still fa-
vor the formation of perturbed states made of a mixing
of |1〉 and |2〉. This would not only confer a fluctuating
reduced magnetic moment to the new electronic states
〈1′|Ji|1′〉 = −〈2′|Ji|2′〉 = m(u2 − v2), but also a fluctu-
ating non zero matrix element 〈1′|Ji|2′〉 = 2uv m 6= 0,
with two consequences: i) to prevent, or compete with,
the formation of magnetic long range order, and ii) to
give rise to low energy dynamics, taking the form of an
exciton built on the new electronic states. The fact that
Tb2Ti2O7 remains disordered down to 50 mK, while INS
data provide evidence for very low energy spin dynam-
ics both in Tb2Ti2O7 [47] and Tb2Sn2O7 [45], are two
features which have eluded proper understanding up to
now, but which could be understood in this framework.

V. CONCLUSIONS

Neutron scattering measurements combined with RPA
calculations have shed light on the intriguing properties
of Tb3Ga5O12. They confirm the picture of TbGG as
an archetypal two-singlet system, in which dipolar inter-
actions are strong enough to mix the two singlets and
lead to a magnetic state. Magneto-elastic coupling has
a major role in addition, resulting in the formation of
magneto-elastic hybrid modes with arguably direct con-
sequences on the phonon heat-carrying properties includ-
ing PTHE. Whether this coupling along with lattice zero
point motion also influence low energy dynamics still re-
mains to be studied. More generally, our results suggest
that eigenstates coupled with harmonic oscillators could
be a pertinent physical approach to Tb systems.
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Appendix A: TOF data reduction

Reduction of the TOF data from IN6-SHARP was per-
formed using a home-made code which applies a trans-
formation which relates the Cartesian coordinates of the
instrument to the rotated reciprocal lattice coordinates.
The procedure assumes that two reciprocal lattice vectors
u and v are identified, and that their Cartesian coordi-
nates ũ and ṽ (along with w̃ = ũ × ṽ) are known. The
transformation matrix thus writes:

M =

 ũx ṽx w̃x
ũy ṽy w̃y
ũz ṽz w̃z



For instance, if ũ and ṽ are defined with Euler angles α
and β (being the azimuth), those coordinates write:

ũ = ||ũ||

 cosαu cosβu
sinαu cosβu

sinβu


ṽ = ||ṽ||

 cosαv cosβv
sinαv cosβv

sinβv


w̃ = ũ× ṽ

Any wavevector written as Q = λu + µv + νw has thus
Cartesian coordinates given by:

Q̃ = M.Q

During the experiment, the sample is rotated step by step
around the vertical axis by the angle φk. This rotation
depends on an offset Φ, which encodes how the sample
was positioned on the dilution stick. Accordingly, we
have to consider, for each φk, a Mk matrix, consisting in
the collection of the three vectors ũ, ṽ, w̃ rotated around
the vertical axis by the angle φk + Φ, hence:

Q = M−1
k .Q̃

In these conditions, the recorded intensity I(E, θ, φ = φk)
is associated with a scattering process with the incoming
wavevector ki = 2π/λ, the outgoing wavevector:

kf =
√
k2
i − E/a, a ≈ 2.0meVÅ2

and the scattering wavevector Q defined by its Cartesian
coordinates Q̃:

Q̃x = ki − kf cos θ

Q̃y = −kf sin θ

Q̃z = 0

The reasoning is here restricted to the horizontal plane,
but a generalization is straighforward if considering the z
axis. Back to the physical reciprocal lattice, the wavevec-
tor writes:

Q = M−1
k .Q̃

It remains to integrate the recorded intensity on a user-
defined (Q, E) grid and determine the offset Φ while iden-
tifying the Bragg peaks.

Appendix B: Tb3Ga5O12 Crystal Electric Field
Characterization

INS measurements carried out on 2T and IN6 confirm
existing experimental data, as illustrated on Fig. 7 for
instance. We thus did not attempt to determine the crys-
tal field scheme and used the results of Ref. [24] instead.
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TABLE I. TbGG energy levels determined in Ref. [24]. The
quantization axis is given in Table II.

n Energy levels
(meV)

2 0.21

3 4.48

4 5.24

5 6.01

6 6.54

7 26.41

8 28.28

9 34.27

10 34.75

11 35.65

12 36.39

13 38.22

The energy levels are given in Table I and the lowest
energy wavefunctions are given by:

|1〉 ≈ −0.09|Jz = ±5〉+ 0.70|Jz = ±1〉
|2〉 ≈ −0.18|Jz = ±6〉 − 0.12|Jz = ±4〉+ 0.32|Jz = ±2〉

+0.83|Jz = 0〉〉

FIG. 7. (color online) E-scan at constant Q = 2.2 Å−1 of
the powder neutron scattering spectrum of TbGG at 10 K.
Green vertical lines indicate the positions of the CEF excita-
tions calculated by [24]. The four CEF levels are not resolved
because of the ∆E ≈ 1.2 meV resolution of the experimental
setup. Inset : corresponding temperature evolution.

As in rare earth pyrochlores, it is convenient to work
in local bases. In the garnet structure, the subset of
magnetic ions is composed of 2 × 12 atoms, which form
two intertwinned hyperkagome networks. The 24c site
occupied by magnetic ions in the Ia 3̄d space group has
D2 orthorhombic local symmetry; the main axis are one
of the cubic axes. Those local bases are identical for the
two networks. Each block of 12 ions is constructed on two

equivalent groups of 6 atoms, separated by a translation
(1/2, 1/2, 1/2). Atomic positions, numbering and local
CEF axes are given in Table II.

N Position y axis z axis x axis

1 ( 1
8
, 0, 1

4
) (0, 1, 1̄) (0, 1, 1) (1, 0, 0)

2 ( 3
8
, 0, 3

4
) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

3 ( 1
4
, 1
8
, 0) (1̄, 0, 1) (1, 0, 1) (0, 1, 0)

4 ( 3
4
, 3
8
, 0) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

5 (0, 1
4
, 1
8
) (1, 1̄, 0) (1, 1, 0) (0, 0, 1)

6 (0, 3
4
, 3
8
) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

7 ( 5
8
, 1
2
, 3
4
) (0, 1, 1̄) (0, 1, 1) (1, 0, 0)

8 ( 7
8
, 1
2
, 1
4
) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

9 ( 3
4
, 5
8
, 1
2
) (1̄, 0, 1) (1, 0, 1) (0, 1, 0)

10 ( 1
4
, 7
8
, 1
2
) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

11 ( 1
2
, 3
4
, 5
8
) (1, 1̄, 0) (1, 1, 0) (0, 0, 1)

12 ( 1
2
, 1
4
, 7
8
) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

13 ( 7
8
, 0, 3

4
) (0, 1, 1̄) (0, 1, 1) (1, 0, 0)

14 ( 5
8
, 0, 1

4
) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

15 ( 3
4
, 7
8
, 0) (1̄, 0, 1) (1, 0, 1) (0, 1, 0)

16 ( 1
4
, 5
8
, 0) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

17 (0, 3
4
, 7
8
) (1, 1̄, 0) (1, 1, 0) (0, 0, 1)

18 (0, 1
4
, 5
8
) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

19 ( 3
8
, 1
2
, 1
4
) (0, 1, 1̄) (0, 1, 1) (1, 0, 0)

20 ( 1
8
, 1
2
, 3
4
) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

21 ( 1
4
, 3
8
, 1
2
) (1̄, 0, 1) (1, 0, 1) (0, 1, 0)

22 ( 3
4
, 1
8
, 1
2
) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

23 ( 1
2
, 1
4
, 3
8
) (1, 1̄, 0) (1, 1, 0) (0, 0, 1)

24 ( 1
2
, 3
4
, 1
8
) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

TABLE II. Rare-earth atom labels, positions and local CEF
axes in the garnet Ia 3̄d crystal structure.

To investigate the coupling between quadrupolar mo-
ments and phonons, it is useful to evaluate the matrix of
the corresponding operators in the basis formed by the
eigenvectors. For the sake of simplicity, we restrict our-
selves to the 6 lowest energy states. Interestingly, the
largest matrix elements occur for transitions X16 (medi-
ated by Oxy), X23 and X25 (Oxy) and X24 (O20). A
relatively smaller coupling exists for X12 and mediated
by Oyz. This indicates that at 10 K, the 6 lowest energy
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states are potentially coupled to phonons.

O20 =



−37.8 . . . . .

. −30.8 . 25.6 . .

. . 38.8 . 42.7 .

. 25.6 . 59.1 . .

. . 42.7 . −1.3 .

. . . . . −26.9



O22 =



19.4 . . . . .

. 20.3 . −3.6 . .

. . 0.5 . −2.7 .

. −3.6 . −0.2 . .

. . −2.7 . 5.8 .

. . . . . 8.4



Oxz =



. . 6.2 . −5.4

. . . . . 8.4

6.2 . 0.5 . .

. . . . . −1.5

−5.4 . . . .

. 8.4 . −1.5 .



Oxy =



. . . . . 29.7i

. . 16.5i . −23.1i .

. −16.5i . 3.8i . .

. . −3.8i . 5.0i .

. 23.1i . −5.0i . .

−29.7i . . . . .



Oyz =



. 1.1i . 2.3i . .

−1.1 . . . . .

. . . . . 0.1i

−2.3i . . . . .

. . . . . −1.1i

. . −0.1i . 1.1i .



Appendix C: Simple considerations about two levels
systems

1. Induced magnetization

In this section, we explain the notion of induced mag-
netization. For the sake of simplicity, the discussion is
restricted to the subspace spanned by the two low energy
singlets (labeled |1〉 and |2〉) of the full CEF scheme. In
this subspace, the CEF Hamiltonian writes:

HCEF =

(
−∆/2 0

0 ∆/2

)

and ∆ is the energy gap between |1〉 and |2〉. Since those
states are singlets, we have 〈1|J|1〉 = 〈2|J|2〉 ≡ 0, and we
further assume that the transverse matrix elements are

Ising-like, with only 〈1|Jz|2〉 = w 6= 0. The matrix of the
magnetic moment thus writes:

Jx = 0, Jy = 0, Jz =

(
0 w

w 0

)

As a result, an external magnetic field, that we shall iden-
tify later on to a (self consistent) molecular field, allows
for transitions between the two states, yielding:

H = HCEF + h.J =

(
−∆/2 y

y ∆/2

)

Here, y stands for y = h w. It is straightforward to
show that this Hamiltonian is diagonalized in the basis
of eigenvectors: (

cos θ − sin θ

sin θ cos θ

)

with :

tan 2θ = −2y

∆

and eigenvalues ε+ and ε−:

ε± = ±
√

∆2 + 4y2

2

In this basis, the matrix of the magnetic moment writes:

Jx = 0, Jy = 0, Jz = w

(
sin 2θ cos 2θ

cos 2θ − sin 2θ

)

In other words, a soon as θ 6= 0, the new states get a finite
magnetic moment and a reduced off-diagonal element:

|1′〉 = cos θ|1〉+ sin θ|2〉
|2′〉 = − sin θ|1〉+ cos θ|2〉

〈1′|Jz|1′〉 = w sin 2θ

〈2′|Jz|2′〉 = −w sin 2θ

〈1′|Jz|2′〉 = w cos 2θ

The averaged magnetization writes:

m =
1

Z
Tr
(
e−H/TJ

)
, Z = e−ε+/T + e−ε−/T

mz = −w 2y√
∆2 + 4y2

tanh

√
∆2 + 4y2

2T

It is interesting to further examine the neutron cross
section in this simplified model. Owing to the matrix of
the magnetic moment, this quantity is proportional to:

I = (w sin 2θ)2δ(E) +

1

Z
(w cos 2θ)2

(
δ(E − ε) + e−ε/T δ(E + ε)

)
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FIG. 8. (color online) Neutron spectral weight as a function
of energy, for different angles θ, ranging from the weakly cou-
pled (θ = 0.1) to the strongly coupled case (θ = 0.9). The
left and right panels show the two-singlet case, and the Ising
non-Kramers doublet case, respectively.

and thus shows an elastic contribution along with inelas-
tic peaks at E = ±ε. If the elastic peak is weak, the
weight of the inelastic transitions saturates up to w2. In
contrast, if the elastic peak goes up to w, the weight of
the inelastic transitions vanishes (see Fig. 8).

At the mean-field level, the magnetic field shall be
replaced by a molecular field, directly related to the
magnetization itself via a coefficient J , which physi-
cally describes the strength of the interactions, yielding
h = Jmz hence y = Jmzw. The previous equation is
thus a self-consistent equation for y:

y = −y 2Jw2√
∆2 + 4y2

tanh

√
∆2 + 4y2

2T

Beyond the trivial solution y = 0, another solution might
exist, depending on temperature and on the actual value
of J . At low temperature, one obtains:

y ≈ Jw2

√
1−

(
∆

2Jw2

)2

As shown in Fig. 9, a magnetic state is thus stabilized
(or “induced”) if the magnetic energy gain overcomes the
energy gap ∆, more precisely if Jw2 > ∆/2.

2. Connection with the problem of a degenerate
non-Kramers doublet

Interestingly, this problem is dual to the problem of a
non-Kramers magnetic CEF ground doublet in a molecu-
lar field. In this case, we have 〈1|Jx,y,z|2〉 ≡ 0, 〈1|Jz|1〉 =
−〈2|Jz|2〉 = µ, so that the matrix of the magnetic mo-
ment writes:

Jx = 0, Jy = 0, Jz =

(
−µ 0

0 µ

)
We shall also add fluctuations taking the form of the y
matrix element, induced for instance by a quadrupolar

FIG. 9. (color online) Mean-field phase diagram of the two-
singlet problem. Calculations are carried out with ∆ = 1.
The colorscale encodes the value of y/Jw2.

molecular field. For the sake of simplicity, we introduce
one of the quadrupolar operators written as:

O =

(
0 w

w 0

)

so that the Hamiltonian writes:

H = h.J + q O =

(
−∆/2 y

y ∆/2

)

which is identical to the two-singlet case, yet ∆ now
stands for ∆ = 2µ h and y = q w. Hence, the matrix of
O writes:

O = w

(
sin 2θ cos 2θ

cos 2θ − sin 2θ

)

and the magnetic moment:

Jx = 0, Jy = 0, Jz = µ

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)

In other words, a soon as θ 6= 0, the new states get a
reduced magnetic moment and an emergent off-diagonal
matrix element. This situation is the dual of the two-
singlet problem:

|1′〉 = cos θ|1〉+ sin θ|2〉
|2′〉 = − sin θ|1〉+ cos θ|2〉

〈1′|Jz|1′〉 = −µ cos 2θ

〈2′|Jz|2′〉 = µ cos 2θ

〈1′|Jz|2′〉 = µ sin 2θ
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with the following averaged magnetization and
quadrupolar moment:

mz = −µ ∆√
∆2 + 4y2

tanh

√
∆2 + 4y2

2T

o = −w 2y√
∆2 + 4y2

tanh

√
∆2 + 4y2

2T

The neutron cross section writes:

I = (µ cos 2θ)2δ(E) +

1

Z
(µ sin 2θ)2

(
δ(E − ε) + e−ε/T δ(E + ε)

)
and thus also has inelastic peaks at E = ±ε and a
contribution at zero energy. At low temperature, we
recover the same result as in the two-singlet model: the
weight of the inelastic signal and of the elastic peak have
opposite variations.

At the mean-field level, h is replaced by a molecular
field, h = Jmz, and q = Ko, so that the previous equa-
tions form a set of self-consistent equations. Depending
on the relative strength of the two interactions J and K,
a magnetic or a non-magnetic quadrupolar ground state
may appear. In the low temperature limit, one obtains:

∆ = −2µ2J ∆√
∆2 + 4y2

tanh

√
∆2 + 4y2

2T

y = −2w2K y√
∆2 + 4y2

tanh

√
∆2 + 4y2

2T

Appendix D: RPA calculations

1. Hamiltonian, definitions and conventions

a. Magnetic degrees of freedom

In the following, we consider the generalized Heisen-
berg Hamiltonian:

H = HCEF +
1

2

∑
i,j

Ji,jJiJj +
∑
i

gjµBJi.h

+
1

2

∑
i,j

Ki,jOiOj

HCEF is the crystal field Hamiltonian, h is the magnetic
field, J is a (3 × 3) interaction tensor which couples mag-
netic moments and Ki,j is the interaction tensor between
multipoles written as Oi for the sake of simplicity. The
site index i is recast into an index m denoting the unit
cell and i denoting the atomic site within the unit cell.
Since the largest term in H is the crystal field Hamilto-
nian HCEF, it is convenient to use the basis formed by
the set of wavevectors |a〉:

HCEF |a〉 = Ea|a〉

and the projection operators defined on this basis:

|a〉〈b| = Xab

They are characterized by the commutation rules:

[Xab
i , X

cd
j ] = δi,j

(
Xadδbc −Xcbδd,a

)
Fourier transformed operators are defined as:

Xab
k,i =

∑
m

Xab
m,i e

ikRm

[
Xab
k,i, X

cd
k′,j

]
= δk′,−kδi,j

(
Xad
k,iδbc −Xcb

k,iδd,a
)

b. Lattice degrees of freedom

To take into account the interactions with lattice
degrees of freedom (phonons), we consider the elastic
Hamiltonian:

Hel =
∑
m,i

p2
m,i

2Mi
+

1

2

∑
m,i,n,j

um,iΓm,i,n,jun,j

where Γm,i,n,j denote the force constants, Mi the masses,
u and p the positions and momentum, respectively. In
Fourier space, the dynamical matrix writes as:

(Dk)i,j =
∑

∆m,n

Γm,i,n,j(∆m,n)/
√
MiMje

ik∆m,n

∆m,n joins the unit cells labeled m and n. We shall
denote Ω2

k,s the eigenvalues and ek,s the eigenvectors of
the dynamical matrix Dk. The index s runs over the 3L
phonon modes of the unit cell containing L atoms. The
normal coordinates ũ and its conjugated momentum p̃
are defined as:

uk,i =
∑
s

ek,i,s

√
1

Mi
ũk,s

pk,i =
∑
s

ek,i,s
√
Mi p̃k,s

Since the {ek,s} form an orthogonal basis, one obtains:

Hel =
∑
k,s

p̃k,sp̃−k,s
2

+
1

2

∑
k,s

ũk,sΩ
2
k,sũ−k,s

Using standard annihilation and creation operators:

ũk,s =

√
1

2Ωk,s
(a+
−k,s + ak,s)

p̃k,s = i

√
Ωk,s

2
(a+
k,s − a−k,s)

with

[ũk,s, p̃k,s] = i

the elastic Hamiltonian eventually becomes:

Hel =
1

2

∑
k,s

(a+
k,s + a−k,s)

(
Ωk,s

Ωk,s

)(
ak,s
a+
−k,s

)
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c. Coupling

The interaction between these degrees of freedom is
modeled by a local coupling akin to a generalized Jahn-
Teller effect:

Hcpl =
∑
m,i,t

vi,t=(a,b) um,i
(
Xab
m,i +Xba

m,i

)
It involves the displacement of the atom at site i com-
bined with an electronic transition from state |a〉 to state
|b〉 at the same site; v is a tensor (independent of m),
whose microscopic origin remains to be described, and
which carries the strength of this process. t labels the
transition from state |b〉 to |a〉, In fourier space:

Hcpl =
∑

m,i,t,q,k

vi,t e
i(q+k)Rm uq,i

(
Xab
k,i +Xba

k,i

)
=
∑
k,i,t

vi,t u−k,i
(
Xab
k,i +Xba

k,i

)
=
∑
k,i,t

ṽk,i,s,t

(
a−k,s + a+

k,s

) (
Xab
k,i +Xba

k,i

)
ṽ is thus an effective tensor giving the strength of the
coupling at site i with the mode s and transition t:

ṽk,i,s,t = vi,t ek,i,s

√
1

2MiΩk,s

2. Mean-field approximation

Our approach is based on a mean-field approximation,
performed on electronic and lattice degrees of freedom:

H ≈ HCEF +
∑
m,i

∑
n,j

〈Jn,j〉Jm,i,n,j + gjµBh

Jm,i

+

∑
n,j

〈On,j〉Km,i,n,j

Om,i

+
∑
m,i,t

vi,t=(a,b) 〈um,i〉
(
Xab
m,i +Xba

m,i

)
+
∑
m,i,t

vi,t=(a,b) um,i〈Xab
m,i +Xba

m,i〉

The average value 〈um,i〉 can be determined in a self
consistent way by minimizing the classical elastic energy
E (taking into account the contribution from force con-
stants only and not the inertia):

E =
∑
m,i,t

vi,t=(a,b) um,i〈Xab
m,i +Xba

m,i〉

+
1

2

∑
m,i,n,j

um,iΓm,i,n,jun,j

This mean-field step renormalizes the eigenvalues Ea
and eigenvectors |a〉, hence the projection operators. In
terms of these new operators, the mean-field Hamiltonian
writes:

H =
∑
k,i,a

Ei,aX
aa
k,i + V +Hcpl +Hel

V =
1

2

∑
m,i,n,j,a,b,c,d

Vm,i,n,j,a,b,c,dXab
m,iX

cd
n,j

with

Vm,i,n,j,a,b,c,d = 〈i, a|Jm,i − 〈Jm,i〉|i, b〉Jm,i,n,j
×〈j, c|Jn,j − 〈Jn,j〉|j, d〉
+〈i, a|Om,i − 〈Om,i〉|i, b〉Km,i,n,j
×〈j, c|On,j − 〈On,j〉|j, d〉

3. Green function formalism

To study this problem, we shall use the response func-
tion formalism. From a general point of view, the RAB
response function is defined by:

RAB = 〈〈A,B〉〉 = iθ(t)〈[A(t), B]〉

Deriving with respect to time, one obtains:

dRAB
dt

= iδ(t)〈[A,B]〉 + iθ(t)〈[dA(t)

dt
,B]〉

= iδ(t)〈[A,B]〉 + iθ(t)〈[−i[A,H], B]〉
= iδ(t)〈[A,B]〉 − iR[A,H]B

Using Fourier transformed function:

RAB(ω) = lim
η→0+

∫
dteiωt−ηtχAB(t)

the equation of motion becomes:

(ω + iη)RAB = 〈[A,B]〉 − R[A,H],B

Importantly, the magnetic susceptibility (and its imagi-
nary part measured by neutron scattering) can be written
in terms of these response functions as:

χi,j =
∑
t,t′

(〈i, a|Ji−〈Ji〉|i, b〉〈J, a′|Jj−〈Jj〉|J, b′〉) Ri,s|j,s′

with:

Ri,t=(a,b)|J,t′=(a′,b′) = 〈〈Xab
k,i, X

a′b′

−k,j〉〉

With the matrix elements

Wi,t = 〈i, a|Ji − 〈Ji〉|i, b〉

one obtains:

χi,j =
∑
t,t′

Wi,tWJ,t′ Ri,t|j,t′
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and in Fourier space:

χ(Q,ω) =
∑
i,j,t,t′

eiQ.(~ri−~rj) Wi,tWJ,t′ Ri,t|j,t′

Q is a reciprocal lattice vector (with respect to the
mean-field unit cell). The ~ri denote the equilibrium
atomic positions in the same frame.

4. Formal solution of the equations of motion

a. No interactions: the bare susceptibility

Using the above formalism for A = Xab
ki and B =

Xa′b′

−kJ, we get:

[Xab
ki , EJ,µX

µµ
qJ ] = Ei,µ

(
Xaµ
k,iδµ,b −X

µb
k,iδµ,a

)
= (Ei,b − Ei,a)Xab

ki

Meanwhile:

〈[Xab
k,i, X

a′b′

−k,j ]〉 = δi,j〈
(
Xab′

k,i δb,a′ −Xa′b
k,i δb′,a

)
〉

= δi,j〈
(
Xab′

k,i δa,b′δb,a′ −Xa′b
k,i δb′,aδb,a′

)
〉

= δi,jδa,b′δb,a′ (pi,a − pi,b)

with:

pi,a = exp (−Ei,a/T )/
∑
b

exp (−Ei,b/T )

With the convention:

γi,t = pi,a − pi,b
∆i,t = Ei,a − Ei,b

t = b→ a

t̄ = a→ b

we have:

Rk,i,t|−k,j,t′ =
γi,t

ω + iη −∆i,t
δi,j δt′,t̄

Defining the diagonal operators γ, ∆ and L with
Li,j,t,t′ = δi,jδt′,t̄, we get:

R =
γ

ω + iη −∆
L

b. The effect of magnetic interactions

To take into account the effect of magnetic interac-
tions, one shall now calculate [Xνµ

k,i ,V]:

[A,Xab
q,`X

cd
−q,`′ ] = [Xνµ

k,i , X
ab
q,`X

cd
−q,`′ ]

=
(
δi,`δq,−k

(
Xνb
k,iδµ,a −X

aµ
k,iδb,ν

)
+Xab

q,`X
νµ
k,i

)
Xcd
−q,`′ −Xab

q,`X
cd
−q,`′X

νµ
k,i

=
(
δi,`δq,−k

(
Xνb
k,iδµ,a −X

aµ
k,iδb,ν

)
Xcd
−q,`′ +Xab

q,`X
νµ
k,iX

cd
−q,`′

)
−Xab

q,`X
cd
−q,`′X

νµ
k,i

= δi,`δq,−k

(
Xνb
k,iδµ,a −X

aµ
k,iδb,ν

)
Xcd
−q,`′ +

Xab
q,`

(
δi,`′δq,k

(
Xνd
k,iδµ,c −X

cµ
k,iδd,ν

)
+Xcd

−q,`′X
νµ
k,i

)
−Xab

q,`X
cd
−q,`′X

νµ
k,i

= δi,`δq,−k

(
Xνb
k,iX

cd
−q,`′δµ,a −X

aµ
k,iX

cd
−q,`′δb,ν

)
+

δi,`′δq,k

(
Xab
q,`X

νd
k,iδµ,c −Xab

q,`X
cµ
k,iδd,ν

)

that is further approximated by:

[A,Xab
q,`X

cd
−q,`′ ] = δi,`δq,−k

(
〈Xνν

k,i〉 − 〈X
µµ
k,i 〉
)
δν,bδµ,aX

cd
−q,`′ +

δi,`′δq,k

(
〈Xνν

k,i〉 − 〈X
µµ
k,i 〉
)
δν,dδµ,cX

ab
q,`
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to write:

[A,V] =

(
〈Xνν

k,i〉 − 〈X
µµ
k,i 〉
)

2

∑
`′,c,d

Vi,`′,µ,ν,c,d Xcd
k,`′ +

∑
`,a,b

V`,i,a,b,µ,ν Xab
k,`′


=
(
〈Xνν

k,i〉 − 〈X
µµ
k,i 〉
)∑
`′,t′

Vi,`′,t̄,t′ Xcd
k,`′

In a more compact form:

{(ω −∆ + iη)I + γLV}R = γL

where the operators L and γ are defined using the gen-
eralized t index. Indeed, we notice that:

(LV)i,j,t,t′ =
∑
`,t′′

Li,`,t,t′′V`,j,t”,t′ =
∑
t′′

δt′′,t̄Vi,j,t′′,t′ = Vi,j,t̄,t′

c. Lattice degrees of freedom

The same reasoning applies to lattice degrees of free-
dom, using either A = aki or a+

−ki, B = a+
k,j and the

standard boson commutation rules. Since

Hel =
1

2

∑
k,s

(a+
k,s + a−k,s)

(
Ωk,s

Ωk,s

)(
ak,s
a+
−k,s

)

we get:

[
ak,s,Hel

]
= Ωk,sak,s[

a+
−k,s,Hel

]
= −Ωk,sa

+
−k,s

As a result, the full matrix of response function writes:

 γL

I

−I

 =

(ω + iη)I +

 −∆ + γLV
Ωk,s

−Ωk,s


 R

with

R =

 〈〈X
ab
k,i X

cd
−k,j〉〉 〈〈Xab

k,i a
+
k,s′〉〉 〈〈Xab

k,i a−k,s′〉〉
〈〈ak,s Xcd

−k,j〉〉 〈〈ak,s a+
k,s′〉〉 〈〈ak,s a−k,s′〉〉

〈〈a+
−k,s X

cd
−k,j〉〉 〈〈a

+
−k,s a

+
k,s′〉〉 〈〈a

+
−k,s a−k,s′〉〉



These equations describe a resonant process where the
phonon and the exciton hybridize to form new modes.
The interaction is especially strong when the bare ener-
gies of the excitons and of the phonons are close to each
other. At low temperature, coupling arises between the

phonons and the first CEF transitions from the ground
state. With increasing temperature, however, more and
more transitions are thermally activated, hence increas-
ing the possible coupling.
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