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Variables

I M =: (inactive) normal monomer

I f1 =: (active) abnormal monomer (misfolded protein)

I fi , i = 2..n − 1, =: oligomer (unstable species)

I ui , i ≥ n =: polymer (stable species)

I n: is the size of the nucleus.
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Nucleation

M
1
−⇀↽−
c0

f1 (spontaneous conformation) (1)

f1 + f1
cf
−⇀↽−
cf
d1

f2 (dimerization) (2)

...

fk−1 + f1
cf
−⇀↽−
cf
d1

fk ((k)-mer formation) (3)

...

fn−1 + f1
cf
−→ un (nucleus formation) (4)
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Polymerization

ui + f1
kpf
−−→ ui+1, (i ≥ n), (elongation) (5)

ui

kpf

d2
−−→ ui−1 + f1, (i ≥ n), (shortening) (6)

ui
kb
−→ ui−j + uj , (i ≥ n), (polymer break) (7)

and uk
∞

−→ k ∗ f1, if k ≤ n− 1, (oligomer instability)
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Parameters

I c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

I cf : elongation constant in nucleation steps

I d1: equilibrium constant in nucleation steps

I kpf : elongation constant in polymerization steps

I kb: fragmentation rate (independent of the length of the
filaments)

I M(0): initial quantity of monomers.
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Parameters

I c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

I cf : elongation constant in nucleation steps

I d1: equilibrium constant in nucleation steps

I kpf : elongation constant in polymerization steps

I kb: fragmentation rate (independent of the length of the
filaments)

I M(0): initial quantity of monomers.

I n: nucleus size.
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General Behavior: sigmoid

Figure: Several polymerisation experiments
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General Behavior: key definitions
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General Behavior: nucleation dynamics
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At the time the polymerisation starts,
oligomers are not in equilibrium. n=6
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Influences of parameters

I c0: Changes drastically the Lag time and the Growth rate. If
c0 increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.
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Influences of parameters

I c0: Changes drastically the Lag time and the Growth rate. If
c0 increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.

I cf : Only changes the Lag time.

I d1: Influences the nucleation time. Can also limit the
polymerisation if the oligomers don’t disappears quickly
enough (ie if d1 high, which is unlikely to be).
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Influences of parameters

I kpf and kb: Influence both polymerization and nucleation in
the same way. Change also the final equilibrium.
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Influences of parameters

I M(0) and n: M(0) reduces the lag time, while n increases it.
Up to a constant, Tlag follows the same relation with M(0),
whatever the nucleus size is. In agreement with experimental
date. We have

log(Tlag) ' −1.07 ∗ log(M(0)) (8)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

M0, log scale

T
la

g,
 lo

gs
ca

le

Relation between Tlag and M0, for different nucleus size.

 

 
N=3
N=4
N=5
N=6
N=7
N=8
N=9

Slope between
 −1.11 and −1.04

c0=10 
cf=0.001
d1=0.005
kpf=0.1
kb=0.001

YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisation



Outline
Modelling each reaction

Further...

Precise reactions step and parameters
Deterministic rate equations
Stochastic algorithm

Influences of parameters

I M(0) and n: M(0) speeds up the polymerization, while n

slightly decreases it. This contradicts experiments.
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Some key factor: general scaling laws

I Mtot ∗ kpf � kb guarantee an initially growing polymer.
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Some key factor: general scaling laws

I Mtot ∗ kpf � kb guarantee an initially growing polymer.

I Tlag versus V : For large M(0), they are clearly inversely
correlated. This contradicts experiments.
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Some key factor: general scaling laws

I κ =
√

2 ∗Mtot ∗ kpf ∗ kb: In Knowles et al. (2009), using the
nucleated equilibrium hypothesis, and a analytical
approximation of the solution, the authors show a relation
between the normalized growth (V /M(0)) and κ, and
between Tlag and κ

V

Mtot

= C te
M(0),n ∗ κ (9)

Tlag =
log(C te

M(0),n)

κ
(10)
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experimental variability

Figure: Several polymerisation experiments

YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisation



Outline
Modelling each reaction

Further...

Precise reactions step and parameters
Deterministic rate equations
Stochastic algorithm

Variability in Lag Time and Growth rate (Controversial)

Figure: Relation between M(0) and Tlag and V
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Relation between Lag Time and Growth rate
(Controversial)

Figure: Relation between Tlag and V
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Stochastic algorithm - global dynamic
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Break events or Secondary nucleation pathway

I One single nucleation event then elongation and break events
can explain the sigmoid form
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Stochasticity in the oligomer

I One can have many (small) fluctuations in the oligomer
species, before reaching nucleation
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Influences of parameters - stochastic algorithm

I c0: Large c0 will increase variability of the Lag Time.
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Influences of parameters - stochastic algorithm

I c0: Large c0 will increase variability of the Lag Time.

I cf : Small cf will increase variability of the Lag Time
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Influences of parameters - stochastic algorithm

I c0: Large c0 will increase variability of the Lag Time.

I cf : Small cf will increase variability of the Lag Time

I d1: Has no evident effect on variability.
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Influences of parameters - stochastic algorithm

I kpf : Large kpf will increase the variability of the growth rate.
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Influences of parameters - stochastic algorithm

I kb: Influences on the respective numbers of nucleation
events/ break events. Small kb appears to give higher
variability on the growth rate.
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Influences of parameters - stochastic algorithm

I M(0): Small M(0) will increase variability in both Lag time
and polymerization speed.
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Influences of parameters - stochastic algorithm

I n: Small nucleus increases the variability.
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algorithm results
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I Improving the algorithm and precise fitting with data.

I Analyse study, generic scaling laws.

I Mathematical analysis of the stochasticity.
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Conclusion

I Improving the algorithm and precise fitting with data.

I Analyse study, generic scaling laws.

I Mathematical analysis of the stochasticity.

I Introduction of structure variability.
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