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Variables

» M =: (inactive) normal monomer

» f; =: (active) abnormal monomer (misfolded protein)
» f;, i=2..n—1, =: oligomer (unstable species)

» u;, i > n =: polymer (stable species)

» n: is the size of the nucleus.

YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisatio



Precise reactions step and parameters
Modelling each reaction Deterministic rate equations
Stochastic algorithm

Nucleation

fi (spontaneous conformation) (1)

o o1

hth = (dimerization) (2)
dp

fr1+hf % fx ((k)-mer formation) (3)
a

fo1+h up (nucleus formation) (4)
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Polymerization
K
ui+fi 5 wuig1, (i > n), (elongation) (5)
Kof
U -2 w4 A, (i > n), (shortening) (6)
u 2 ui—j + uj, (i > n), (polymer break)
and vy, =

kxfy, if k < n—1, (oligomer instability)
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M=c=xhf
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Parameters

> Co: equilibrium constant between inactive monomers M and
active monomers f;. We suppose (fast variable)

M=c=xhf

» cr: elongation constant in nucleation steps
» di: equilibrium constant in nucleation steps
> kpr: elongation constant in polymerization steps

» kp: fragmentation rate (independent of the length of the
filaments)

» M(0): initial quantity of monomers.

» n: nucleus size.
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General Behavior: sigmoid
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Figure: Several polymerisation experiments
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General Behavior: key definitions
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General Behavior: nucleation dynamics

Nucleation in a deterministic simulation
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Influences of parameters

» ¢o: Changes drastically the Lag time and the Growth rate. If
Cp increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.
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Influences of parameters

» ¢o: Changes drastically the Lag time and the Growth rate. If
Cp increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.

» ¢r: Only changes the Lag time.

» dq: Influences the nucleation time. Can also limit the
polymerisation if the oligomers don't disappears quickly
enough (ie if d1 high, which is unlikely to be).
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Influences of parameters

> kpr and kp: Influence both polymerization and nucleation in
the same way. Change also the final equilibrium.

Effect of kpf on the dynamics
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Influences of parameters

» M(0) and n: M(0) reduces the lag time, while n increases it.
Up to a constant, Tlag follows the same relation with M(0),
whatever the nucleus size is. In agreement with experimental
date. We have

log(Tlag) ~ —1.07 % log(M(0)) (8)

Relaton between Tiag and MO, fo diferent nuceus sie.

0, log scale
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Influences of parameters

» M(0) and n: M(0) speeds up the polymerization, while n
slightly decreases it. This contradicts experiments.

Relation between Growth rate and M(0)
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Some key factor: general scaling laws

> Mot * kpr > kp, guarantee an initially growing polymer.
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Some key factor: general scaling laws

> Mot * kpr > kp, guarantee an initially growing polymer.

» Tlag versus V: For large M(0), they are clearly inversely
correlated. This contradicts experiments.

Relation between Lag Time and Growth rate
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Some key factor: general scaling laws

> K= \/2 * Myot * kpf * kp: In Knowles et al. (2009), using the
nucleated equilibrium hypothesis, and a analytical
approximation of the solution, the authors show a relation
between the normalized growth (V' /M(0)) and &, and
between T4 and k

14
= Ck * K 9
Mot M(0),n ( )
log(Ctior 1)
Tog = — (10)
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experimental variability
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Figure: Several polymerisation experiments
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Variability in Lag Time and Growth rate (Controversial)
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Figure: Relation between M(0) and Tlag and V
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Relation between Lag Time and Growth rate
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Stochastic algorithm - global dynamic
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and parameters
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Break events or Secondary nucleation pathway

» One single nucleation event then elongation and break events
can explain the sigmoid form

wih baking —n
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Stochasticity in the oligomer

» One can have many (small) fluctuations in the oligomer
species, before reaching nucleation

5 Nucleation—polymerisation in a simulation
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Influences of parameters - stochastic algorithm

> co: Large ¢ will increase variability of the Lag Time.
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> co: Large ¢ will increase variability of the Lag Time.

> cr: Small ¢r will increase variability of the Lag Time
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Influences of parameters - stochastic algorithm

> co: Large ¢ will increase variability of the Lag Time.
> cr: Small ¢r will increase variability of the Lag Time

» di: Has no evident effect on variability.
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Influences of parameters - stochastic algorithm

> kpr: Large kyr will increase the variability of the growth rate.

mass of monomers in polymers
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ot
1200
mm” (J"/.——.w-—wv—v—v
TRl 107 s
k=10 k710 k107
Tlag: j 2350 Tlag: j =2449 Tlag: j =2580
02112020 o?/p?=0.14 0?11 %=007
8001y =126 Vip=32 Vip=078
0?1208 0?11?2004 0?1 1220008
00
400
M(0)=10
200 =10
¢F107°
i 3
d,25.10
o
k=10
N=6
I I I . I
o 1000 2000 3000 4000 5000 6000 7000
time

YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisatio



Precise reactions step and parameters
Modelling each reaction Deterministic rate equations
Stochastic algorithm

Influences of parameters - stochastic algorithm

> kp: Influences on the respective numbers of nucleation
events/ break events. Small k;, appears to give higher
variability on the growth rate.
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Modelling each reaction

Influences of parameters - stochastic algorithm

» M(0): Small M(0) will increase variability in both Lag time

and polymerization speed.

Relation between Tlag and Growth rate
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Influences of parameters - stochastic algorithm

» n: Small nucleus increases the variability.
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algorithm results

Different Nuleation-Polymerization with same parameters
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Further...

Conclusion

» Improving the algorithm and precise fitting with data.
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Further...

Conclusion

v

Improving the algorithm and precise fitting with data.

v

Analyse study, generic scaling laws.

v

Mathematical analysis of the stochasticity.

v

Introduction of structure variability.
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