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Experiments

Nucleation-Polymerisation were performed by an initially population of recombinant Prion protein PrPc upon

different conditions (pH, temperature, concentration, solution) Here are represented several experiment performed

upon two different conditions. The ThT fluroescence is used as a measurable quantity which is correlated to the

global mass of the polymer during experiments were performed.
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Spontaneous polymerization

Fmax = a + y0

y0

slope= 1

τ

F = y0 +
a

1 + e
−2(t−Ti)

τ∗a

t = Ti

Tlag (10%) Tlag = Ti − τ(y0 + a
2
)

Four quantities appear to be characteristic of the dynamics.

◮ Fmax is the maximal fluorescent value reached.

◮ 1
τ

is the maximal growth rate during the polymerization, which is achieved at t = Ti .

◮ Tlag is the waiting time before the polymerization starts truly

All of these quantities can be measured on each experimental curves.
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Relation between Fmax and Ti and τ

(a) Relation between Fmax and Ti (b) Relation between Fmax and τ

The maximum value does not correlate with the remain quantity of monomers at the end of the experiment, and

does not correlate neither with the lag time and the maximum growth rate This proves that no ”off-pathway”

occurs.
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Observed heterogeneity of the structure

(c) microscopy photos (d) Fluorescence and Polymer size

This lead to conjecture to an heterogeneity of the final structure itself of the polymer. The electron microscopy

analysis give some clue to this heterogeneity and the relation between the size of polymer with its fluorescence

response to ThT confirm it.
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Variability in Lag Time and Growth rate

(e) Relation be-
tween M(0) and
Tlag and τ

(f) Relation between Tlag and τ

These result can also be interpreted as heterogeneity of nucleation and subsequent polymer formation. It can be

suggested that different nucleus generated structurally different polymers each exhibiting specific polymerisation

dynamics.
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Seeding

(g) Seeded experi-
ment with increased
initial quantity of seed

(h) Successive seeding
experiment

Seeding experiments explain the infectiousity of the prion disease. But the nucleation is predominant in the

formation of prion amyloids. The conformational change has to take place during the nucleation process more

than during the polymerisation process.
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Model
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Variables

◮ M =: (inactive) normal monomer
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◮ M =: (inactive) normal monomer

◮ f1 =: (active) abnormal monomer (misfolded protein)

◮ fi , i = 2..n − 1, =: oligomer (unstable species)
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Variables

◮ M =: (inactive) normal monomer

◮ f1 =: (active) abnormal monomer (misfolded protein)

◮ fi , i = 2..n − 1, =: oligomer (unstable species)

◮ ui , i ≥ n =: polymer (stable species)
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Variables

◮ M =: (inactive) normal monomer

◮ f1 =: (active) abnormal monomer (misfolded protein)

◮ fi , i = 2..n − 1, =: oligomer (unstable species)

◮ ui , i ≥ n =: polymer (stable species)

◮ n: is the size of the nucleus.
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Nucleation

M
1
−⇀↽−
c0

f1 (spontaneous conformation) (1)

f1 + f1
cf
−⇀↽−

cf
d1

f2 (dimerization) (2)

...

fk−1 + f1
cf
−⇀↽−

cf
d1

fk ((k)-mer formation) (3)

...

fn−1 + f1
cf
−→ un (nucleus formation) (4)
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Polymerization

ui + f1
kpf
−−→ ui+1, (i ≥ n), (elongation) (5)

ui

kpf
d2
−−→ ui−1 + f1, (i ≥ n), (shortening) (6)

ui
kb
−→ ui−j + uj , (i ≥ n), (polymer break) (7)

and uk
∞

−→ k ∗ f1, if k ≤ n − 1, (oligomer instability)
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

◮ cf : elongation constant in nucleation steps
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

◮ cf : elongation constant in nucleation steps

◮ d1: equilibrium constant in nucleation steps
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

◮ cf : elongation constant in nucleation steps

◮ d1: equilibrium constant in nucleation steps

◮ kpf : elongation constant in polymerization steps
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

◮ cf : elongation constant in nucleation steps

◮ d1: equilibrium constant in nucleation steps

◮ kpf : elongation constant in polymerization steps

◮ kb: fragmentation rate (independent of the length of the
filaments)
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

◮ cf : elongation constant in nucleation steps

◮ d1: equilibrium constant in nucleation steps

◮ kpf : elongation constant in polymerization steps

◮ kb: fragmentation rate (independent of the length of the
filaments)

◮ M(0): initial quantity of monomers.
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Parameters

◮ c0: equilibrium constant between inactive monomers M and
active monomers f1. We suppose (fast variable)

M = c0 ∗ f1

◮ cf : elongation constant in nucleation steps

◮ d1: equilibrium constant in nucleation steps

◮ kpf : elongation constant in polymerization steps

◮ kb: fragmentation rate (independent of the length of the
filaments)

◮ M(0): initial quantity of monomers.

◮ n: nucleus size.
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Fast equilibrium
Fast equilibrium

1) Fast Equilibirum 2) Nucleation: unfavourable steps (slow process)

Ends when reach the minimal nucleus size n (n=5 here)
Both monomers decay

(slowly)

3) Polymerization (fast process) 

Fast equilibrium

Both monomers decay

(quickly)

Fast equilibrium

Both monomers decay

(exponential)

4) Fragmentation and Polymerization (fast process) 

First Nucleation

EVENT

Secondary Nucleation

EVENTNon-Infectious PrP c

Infectious PrP Sc

Oligomer 

or small polymer

Long polymer SCHEMATIC NUCLEATION-POLYMERIZATION MODEL
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General Behavior
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Nucleation−Polymerisation in a deterministic simulation
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General Behavior: nucleation dynamics
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At the time the polymerisation starts,
oligomers are not in equilibrium. n=6
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Influences of parameters

◮ c0: Changes drastically the Lag time and the Growth rate. If
c0 increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.

YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisation



Outline
Experimental heterogeneity

Modelling each reaction
Further...

Precise reactions step and parameters
Deterministic rate equations
Stochastic algorithm
Reproducing the experimental variability

Influences of parameters

◮ c0: Changes drastically the Lag time and the Growth rate. If
c0 increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.

◮ cf : Only changes the Lag time.
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Influences of parameters

◮ c0: Changes drastically the Lag time and the Growth rate. If
c0 increases, less active monomers will be available, resulting
in increasing the time of nucleation and slowing down also the
polymerization. It has also by the same way an influence on
the final equilibrium.

◮ cf : Only changes the Lag time.

◮ d1: Influences the nucleation time. Can also limit the
polymerisation if the oligomers don’t disappears quickly
enough (ie if d1 high, which is unlikely to be).
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Influences of parameters

◮ kpf and kb: Influence both polymerization and nucleation in
the same way. Change also the final equilibrium.
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kpf=0.01
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Mtot=220
c0=10
cf=0.001
d1=.005
kb=0.001
n=6

kpf=0.1
V=2.5

kpf=1
V=6.5

YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisation



Outline
Experimental heterogeneity

Modelling each reaction
Further...

Precise reactions step and parameters
Deterministic rate equations
Stochastic algorithm
Reproducing the experimental variability

Influences of parameters

◮ M(0) and n: M(0) reduces the lag time, while n increases it.
Up to a constant, Tlag follows the same relation with M(0),
whatever the nucleus size is. In agreement with experimental
date. We have

log(Tlag ) ≃ −1.07 ∗ log(M(0)) (8)
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Influences of parameters

◮ M(0) and n: M(0) speeds up the polymerization, while n

slightly decreases it. This contradicts experiments.
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Some key factor: general scaling laws

◮ Mtot ∗ kpf ≫ kb guarantee an initially growing polymer.
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Some key factor: general scaling laws

◮ Mtot ∗ kpf ≫ kb guarantee an initially growing polymer.

◮ Tlag versus V : For large M(0), they are clearly inversely
correlated. This contradicts experiments.
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experimental variability

Figure: Several polymerisation experiments
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Stochastic algorithm - global dynamic
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m
f1
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p
sum(u)

Nucleation−break event

First nucleation

m0=1500
c0=10
cf=0.00001
d1=0.005
kpf=0.01
d2=107

kb=0.0001
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Break events or Secondary nucleation pathway

◮ One single nucleation event then elongation and break events
can explain the sigmoid form
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Stochastic Nucleation−polymerisation with or without breaking event
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Nucleation break event
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Stochasticity in the oligomer

◮ One can have many (small) fluctuations in the oligomer
species, before reaching nucleation
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Influences of parameters - stochastic algorithm

◮ c0: if it increases, the relative proportion of normal and
abnormal monomer will increase variability of the Lag

Time. Indeed, larger c0 will result in less active monomer
available (while keeping the total value of monomer constant)
making the nucleation event a rare event with high variability.
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Influences of parameters - stochastic algorithm

◮ c0: if it increases, the relative proportion of normal and
abnormal monomer will increase variability of the Lag

Time. Indeed, larger c0 will result in less active monomer
available (while keeping the total value of monomer constant)
making the nucleation event a rare event with high variability.

◮ cf : if the elongation rate of the nucleation steps decreases, it
will increase the variability of the Lag Time. Smaller cf

gives less probability to the aggregation event, and then
increases the fluctuations.
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Influences of parameters - stochastic algorithm

◮ c0: if it increases, the relative proportion of normal and
abnormal monomer will increase variability of the Lag

Time. Indeed, larger c0 will result in less active monomer
available (while keeping the total value of monomer constant)
making the nucleation event a rare event with high variability.

◮ cf : if the elongation rate of the nucleation steps decreases, it
will increase the variability of the Lag Time. Smaller cf

gives less probability to the aggregation event, and then
increases the fluctuations.

◮ d1: The equilibrium constant of the nucleation step has no
evident effect on variability.
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Influences of parameters - stochastic algorithm

◮ kpf : if it increases, the elongation constant will increase the

variability of the growth rate. Large kpf appears to give
higher variability on the growth rate. Almost no influence on
the lag time.
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Influences of parameters - stochastic algorithm

◮ kpf : if it increases, the elongation constant will increase the

variability of the growth rate. Large kpf appears to give
higher variability on the growth rate. Almost no influence on
the lag time.

◮ kb: the fragmentation rate influences on the respective
numbers of nucleation events/ break events. Small kb

appears to give higher variability on the growth rate.
Almost no influence on the lag time.
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Influences of parameters - example of kpf
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Evolution of the Lag Time and the Growth rate on the

stochastic algorithm, for different populaton size
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For both, large population decrease the variability, but it much more obvious for the lag time than the growth rate.
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Relation between the Lag Time and the Growth rate on

the stochastic algorithm
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Figure: Relation between lag time and growth rate (log scale)
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Distribution of the Lag time on the stochastic algorithm

0 0.5 1 1.5 2 2.5 3

x 10
4

2

4

6

8

10

12

14

16

18

x 10
−4

T
lag

D
en

si
ty

Distribution of the T
lag

 in stochastic simulations

 

 

M(0)=2000

lognormal2000:  σ2/µ2 = 0.01 

M(0)=1000

  logmormal1000: σ2/µ2 = 0.29 

M(0)=500

  lognormal500: σ2/µ2 = 2.12

 

 
lognormal500
M(0)=500

c
0
=10 

c
f
=10−5

d
1
=5.10−3

k
pf

=10−2

k
b
=10−4

N=6

Figure: Distribution of lag time in 1000 simulations
YVINEC Romain Stochastic Model of Prion’s Disease: Nucleation-Polymerisation



Outline
Experimental heterogeneity

Modelling each reaction
Further...

Precise reactions step and parameters
Deterministic rate equations
Stochastic algorithm
Reproducing the experimental variability

Distribution of the Growth rate on the stochastic algorithm
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Coexsitence of two structure
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Figure: One example of coexistence of two structures
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Conclusion

◮ Improving the algorithm and precise fitting with data.

◮ Analyse study, generic scaling laws.

◮ Mathematical analysis of the stochasticity.

◮ Interaction between structures.
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