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Γ-convergence for a class of action functionals induced by gradients of convex functions

Given a real function f , the rate function for the large deviations of the diffusion process of drift ∇f given by the Freidlin-Wentzell theorem coincides with the time integral of the energy dissipation for the gradient flow associated with f . This paper is concerned with the stability in the hilbertian framework of this common action functional when f varies. More precisely, we show that if (f h ) h is uniformly λ-convex for some λ ∈ R and converges towards f in the sense of Mosco convergence, then the related functionals Γ-converge in the strong topology of curves.

Introduction

Action functionals of the form

I f (γ) := 1 0 | γ(t)| 2 + |∇f | 2 (γ(t)) dt,
and the closely related ones (since they differ by a null lagrangian, the term 2f (γ(1)) -2f (γ(0)))

1 0 | γ(t) -∇f (γ(t))| 2 dt, (1) 
appear in many areas of Mathematics, for instance in the Freidlin-Wentzell theory of large deviations for the SDE dX t = ∇f (X t )dt + √ dB t (see for instance [START_REF] Dembo | Large deviation techniques and applications[END_REF]) or in the variational theory of gradient flows pioneered by De Giorgi, where they correspond to the integral form of the energy dissipation (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]). In this paper, we investigate the stability of the action functionals I f with respect to Γ-convergence of the functions f (actually with respect to the stronger notion of Mosco convergence, see below). More precisely, we are concerned with the case when the functions under consideration are λ-convex and defined in a Hilbert space H. In this case, the functional I f is well defined if we understand ∇f (x) as the element with minimal norm in the subdifferential ∂f (x): this choice, very natural in the theory of gradient flows, grants the joint lower semicontinuity property of (x, f ) → |∇f |(x) that turns out to be very useful when proving stability of gradient flows, see [START_REF] Sandier | Γ-Convergence of Gradient Flows with Applications to Ginzburg-Landau[END_REF], [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF] and the more recent papers [START_REF] Dondl | A gradient system with a wiggly energy and relaxed EDP-convergence[END_REF], [START_REF] Mielke | On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion[END_REF] where emphasis is put on the convergence of the dissipation functionals. In more abstract terms, we are dealing with autonomous Lagrangians L(x, p) = |p| 2 + |∇f | 2 (x) that are unbounded and very discontinuous with respect to x, and this is a source of difficulty in the construction of recovery sequences, in the proof of the Γ-limsup inequality.

Our interest in this problem comes from [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF], where we dealt with the derivation of the discrete Monge-Ampère equation from the stochastic model of a Brownian point cloud, using large deviations and Freidlin-Wentzell theory, along the lines of [START_REF] Brenier | A double large deviation principle for Monge-Ampère gravitation[END_REF]. In that case H = R N d was finite dimensional, f (x) := max σ∈S N

x, A σ , (with A = (A 1 , . . . , A N ) ∈ R N d given and A σ = (A σ(1) , . . . , A σ(N ) ) for all σ ∈ S N , the set of all permutations of 1, N ), and the approximating functions f were given by

f (t, x) = t log 1 N ! σ∈Σ N exp x, A σ εt .
In that case, our proof used some simplifications due to finite dimensionality, and a uniform Lipschitz condition. In this paper, building upon some ideas in [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF], we provide the convergence result in a more general and natural context. For the sake of simplicity, unlike [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF], we consider only the autonomous case. However it should be possible to adapt our proof to the case when time-dependent λ-convex functions f (t, •) are considered, under additional regularity assumptions with respect to t, as in [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF].

In the infinite-dimensional case, Mosco convergence (see Definition 4.1) is stronger and more appropriate than Γ-convergence, since it ensures convergence of the resolvent operators (under equi-coercitivity assumptions, the two notions are equivalent). Also, since in the infinitedimensional case, the finiteness domains of the functions can be pretty different, the addition of the endpoint condition is an additional source of difficulties, that we handle with an interpolation lemma which is very much related to the structure of monotone operators, see Lemma 3.1.

Defining the functionals Θ f,x 0 ,x 1 :

C([0, 1]; H) → [0, ∞] by Θ f,x 0 ,x 1 (γ) := I f (γ) if γ ∈ AC([0, 1]; H), γ(0) = x 0 , γ(1) = x 1 ; + ∞ otherwise, (2) 
our main result reads as follows: 

Theorem 1.1. If (f h ) h is uniformly λ-convex for some λ ∈ R, if f h → f w.
x h,i = x i , sup h |∇f h |(x h,i ) < ∞, i = 0, 1, then Θ f h ,x h,0 ,x h,1 Γ-converge to Θ f,x 0 ,x 1 in the C([0, 1]; H) topology.
As a byproduct, under an additional equi-coercitivity assumption our theorem grants convergence of minimal values to minimal values and of minimizers to minimizers. Obviously the condition x h,i → x i is necessary, and we believe that at least some (possibly more refined) bounds on the gradients at the endpoints are necessary as well. If we ask also that x h,i are recovery sequences, i.e. f h (x h,i ) → f (x i ), then the result can also be read in terms of the functionals [START_REF] Alberti | A geometric approach to monotone functions in R n[END_REF].

As a final comment, it would be interesting to investigate this type of convergence results also in a non-Hilbertian context, as it happened for the theory of gradient flows. For instance, a natural context would be the space of probability measures with finite quadratic moment. Functionals of this form, where f is a constant multiple of the logarithmic entropy, appear in the so-called entropic regularization of the Wasserstein distance (see [START_REF] Clerc | On the variational interpretation of local logarithmic Sobolev inequalities[END_REF] and the references therein).
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Preliminaries

Let H be a Hilbert space. For a function f : H → (-∞, ∞] we denote by D(f ) the finiteness domain of f . We say that

f is λ-convex if x → f (x) -λ 2 |x| 2 is convex.
It is easily seen that λ-convex functions satisfy the perturbed convexity inequality

f (1 -t)x + ty ≤ (1 -t)f (x) + tf (y) - λ 2 t(1 -t)|x -y| 2 , t ∈ [0, 1].
We denote by ∂f (x) the Gateaux subdifferential of f at x ∈ D(f ), namely the set

∂f (x) := p ∈ H : lim inf t→0 + f (x + th) -f (x) t ≥ t h, p ∀h ∈ H .
It is a closed convex set, possibly empty. We denote by D(∂f ) the domain of the subdifferential.

In the case when f is λ-convex, the monotonicity of difference quotients gives the equivalent, non asymptotic definition:

∂f (x) := p ∈ H : f (y) ≥ f (x) + y -x, p + λ 2 |y -x| 2 ∀y ∈ H . (3) 
For any x ∈ D(∂f ) we consider the vector ∇f (x) as the element with minimal norm of ∂f (x).

We agree that |∇f

(x)| = ∞ if either x / ∈ D(f ) of x ∈ D(f ) and ∂f (x) = ∅.
For λ-convex functions, relying on (3), it can be easily proved that ∂f (x) is not empty if and only if

sup y =x f (x) -f (y) + λ 2 |x -y| 2 + |x -y| < ∞ (4) 
and that |∇f |(x) is precisely equal to the supremum (see for instance Theorem 2.4.9 in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]).

For τ > 0 we denote by f τ the regularized function

f τ (x) := min y∈H f (y) + |y -x| 2 2τ (5) 
and we denote by J τ = (Id +τ ∂f ) -1 : H → D(∂f ) the so-called resolvent map associating to x the minimizer y in [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]. When f is proper, λ-convex and lower semicontinuous, existence and uniqueness of J τ (x) follow by the strict convexity of y → f (y) + |y -x| 2 /(2τ ), as soon as τ < -1/λ when λ < 0, and for all τ > 0 otherwise (we shall call admissible these values of τ ). We also use the notation J f,τ to emphasize the dependence on f . Now we recall a few basic and well-known facts (see for instance [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]), providing for the reader's convenience sketchy proofs.

Theorem 2.1. Assume that f : H → (-∞, ∞] is proper, λ-convex and lower semicontinuous. For all admissible τ > 0 one has: (i) f τ is differentiable everywhere, and for all x ∈ H,

∇f τ (x) = x -J τ (x) τ ∈ ∂f (J τ (x)). (6) 
(ii) J τ is (1 + λτ ) -1 -Lipschitz, and f τ ∈ C 1,1 (H) with Lip(∇f τ ) ≤ 3/τ as soon as there holds

(1 + τ λ) -1 ≤ 2.
(iii) For all x ∈ D(∂f ),

∇f τ (x + τ ∇f (x)) = ∇f (x). (7) 
(iv) The following monotonicity properties hold for all x ∈ H:

|∇f |(J τ (x)) ≤ |∇f τ |(x) = |x -J τ (x)| τ ≤ 1 1 + λτ |∇f |(x). ( 8 
)
Proof. The inclusion in [START_REF] Brenier | A double large deviation principle for Monge-Ampère gravitation[END_REF] follows from performing variations around J τ (x) in [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF].

Before proving the equality in ( 6), let us prove the Lipschitz property for J τ given in (ii). Recall that the convexity of

g = f -λ 2 | • | 2 yields that ∂f is λ-monotone, namely ξ -η, a -b ≥ λ|a -b| 2 ∀ξ ∈ ∂f (a), η ∈ ∂f (b).
Given x and y, we apply this property to a := J τ (x), b := J τ (y), ξ := (x -J τ (x))/τ and η := (y -J τ (y))/τ . (Thanks to the inclusion in ( 6), we have ξ ∈ ∂f (a) and η ∈ ∂f (b).) By rearranging the terms, we get

x -y, J τ (x) -J τ (y) ≥ (1 + λτ )|J τ (x) -J τ (y)| 2 .
Hence, by the Cauchy-Schwarz inequality,

J τ is (1 + λτ ) -1 -Lipschitz.
Let us go back to proving the equality in [START_REF] Brenier | A double large deviation principle for Monge-Ampère gravitation[END_REF]. For any x and z, one has (using y = J τ (x) as an admissible competitor in the definition of f τ (x + z))

f τ (x + z) -f τ (x) ≤ |J τ (x) -(x + z)| 2 2τ - |J τ (x) -x| 2 2τ = z, x -J τ (x) τ + |z| 2 2τ
and, reversing the roles of x and x + z,

f τ (x) -f τ (x + z) ≤ -z, x + z -J τ (x + z) τ + |z| 2 2τ .
These two identities together with the continuity of J τ imply that f τ is differentiable at x and provides the equality in ( 6) and hence the one in [START_REF] Clerc | On the variational interpretation of local logarithmic Sobolev inequalities[END_REF]. The Lipschitz property for ∇f τ announced follows directly from this identity and the Lipschitz property for J τ .

To get [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], it suffices to remark that for all x ∈ D(∂f ), 0 belongs to the subdifferential of the strictly convex function

y → f (y) + |x + τ ∇f (x) -y| 2 2τ at y = x.
Hence, x is the minimizer of this function, and J τ (x + τ ∇f (x)) = x. Then, we deduce (6) from [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF].

The first inequality in [START_REF] Clerc | On the variational interpretation of local logarithmic Sobolev inequalities[END_REF] follows from the inclusion in [START_REF] Brenier | A double large deviation principle for Monge-Ampère gravitation[END_REF]. In order to prove the second inequality, we perform a variation along the affine curve joining x to J τ (x), namely, γ(t

) := (1 -t)x + tJ τ (x). Since f (J τ (x)) + 1 2τ |x -J τ (x)| 2 ≤ f (γ(t)) + 1 2τ |x -γ(t)| 2 ≤ (1 -t)f (x) + tf (J τ (x)) + t 2τ t -λτ (1 -t) |x -J τ (x)| 2
for all t ∈ [0, 1], taking the left derivative at t = 1 gives

λ 2 + 1 τ |x -J τ (x)| 2 ≤ f (x) -f (J τ (x)),
so that the representation formula (4) for |∇f |(x) gives

λ 2 + 1 τ |x -J τ (x)| 2 ≤ |∇f |(x)|x -J τ (x)| - λ 2 |x -J τ (x)|.
By rearranging the terms, this leads to the second inequality in [START_REF] Clerc | On the variational interpretation of local logarithmic Sobolev inequalities[END_REF].

Another remarkable property of |∇f |, for f λ-convex and lower semicontinuous, is the upper gradient property, namely,

f (γ(0)), f (γ(δ)) < ∞ and |f (γ(δ)) -f (γ(0))| ≤ δ 0 |∇f |(γ(t))| γ(t)|dt
for any δ > 0 and any absolutely continuous γ : [0, δ] → H (with the convention 0 × ∞ = 0), whenever γ is not constant and the integral in the right hand side is finite (see for instance Corollary 2.4.10 in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] for the proof).

A class of action functionals

For δ > 0 and f : H → (-∞, ∞] proper, λ-convex and lower semicontinuous, we consider the autonomous functionals

I δ f : C([0, δ]; H) → [0, ∞] defined by I δ f (γ) := δ 0 | γ| 2 + |∇f | 2 (γ) dt,
set to +∞ on C([0, δ]; H) \ AC([0, δ]; H). Notice also that I δ f (γ) < ∞ implies γ ∈ D(∂f ) a.e. in (0, δ).

Identity (4) ensures the lower semicontinuity of |∇f |; hence, under a coercitivity assumption of the form {f ≤ t} compact in H for all t ∈ R, the infimum

Γ δ (x 0 , x δ ) := inf I δ f (γ) : γ(0) = x 0 , γ(δ) = x δ x 0 , x δ ∈ H (9) 
is always attained whenever finite. Also, by the Young inequality and the upper gradient property of |∇f |, one has that

I δ f (γ) < ∞ implies γ(0), γ(δ) ∈ D(f ) and 2|f (γ(δ)) -f (γ(0))| ≤ I δ f (γ).
The same argument shows that we may add to I δ f a null Lagrangian. Namely, as done in [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF], we can consider the functionals

δ 0 | γ -∇f (γ)| 2 dt
which differ from I δ f precisely by the term 2f (γ(δ)) -2f (γ(0)), whenever γ is admissible in (9) with I δ f (γ) < ∞. Because of the lack of continuity of x → ∇f (x), very little is known in general about the regularity of minimizers in [START_REF] Dembo | Large deviation techniques and applications[END_REF], even when H is finite-dimensional. However, one may use the fact that I 1 f is autonomous to perform variations of type γ → γ • (Id + φ), φ ∈ C ∞ c (0, δ), to obtain the Dubois-Reymond equation (see for instance [START_REF] Ambrosio | Lipschitz regularity for minimizers of integral functionals with highly discontinuous coefficients[END_REF])

d dt | γ| 2 -|∇f | 2 (γ)) = 0 in the sense of distributions in (0, δ).
It implies Lipschitz regularity of the minimizers when, for instance, |∇f | is bounded on bounded sets (an assumption satisfied in [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF], but obviously too strong for some applications in infinite dimension). We will need the following lemma, estimating Γ δ from above, to adjust the values of the curves at the endpoints. The heuristic idea is to interpolate on the graph of f τ and then read back this interpolation in the original variables. This is related to Minty's trick (see [START_REF] Alberti | A geometric approach to monotone functions in R n[END_REF] for an extensive use of this idea): a rotation of π/4 maps the graph of the subdifferential onto the graph of an entire 1-Lipschitz function; here we use only slightly tilted variables, of order τ . Lemma 3.1 (Interpolation). Let f : H → (-∞, ∞] be a proper, λ-convex and lower semicontinuous function and let τ > 0 be such that (1 + τ λ) -1 ≤ 2. For all δ > 0 and all x 0 ∈ D(∂f ), x δ ∈ D(∂f ), with Γ δ as in [START_REF] Dembo | Large deviation techniques and applications[END_REF], one has

Γ δ (x 0 , x δ ) ≤ 2δ min i∈{0,δ} |∇f | 2 (x i ) + 40 δ + 12δ τ 2 |x δ -x 0 | 2 + 12δ + 40τ 2 δ |∇f (x δ ) -∇f (x 0 )| 2 .
Proof. We use Theorem 2.1 to interpolate between x δ and x 0 as follows: set

γ(t) := 1 - t δ (x 0 + τ ∇f (x 0 )) + t δ (x δ + τ ∇f (x δ )), ξ(t) := ∇f τ (γ(t)), and 
γ(t) := J τ (γ(t)) = γ(t) -τ ξ(t),
where the second equality follows from [START_REF] Brenier | A double large deviation principle for Monge-Ampère gravitation[END_REF]. Since ξ(0) = ∇f τ (x 0 + τ ∇f (x 0 )) = ∇f (x 0 ) and a similar property holds at time δ, the path γ is admissible. Let us now estimate the action of the path γ.

Kinetic term (we use our Lipschitz bound for ∇f τ to deduce that | ξ(t

)| ≤ 3 τ | γ(t)|): δ 0 | γ| 2 dt ≤ 2 δ 0 | γ| 2 dt + 2τ 2 δ 0 | ξ| 2 dt ≤ 20 δ 0 | γ| 2 dt = 20 δ |(x δ + τ ∇f (x δ )) -(x 0 + τ ∇f (x 0 ))| 2 ≤ 40 δ |x δ -x 0 | 2 + 40τ 2 δ |∇f (x δ ) -∇f (x 0 )| 2 .
Gradient term (we use the first inequality in (8), our Lipschitz bound for ∇f τ , and finally ( 7)):

δ 0 |∇f | 2 (γ)dt ≤ δ 0 |∇f τ | 2 (γ)dt ≤ δ 0 |∇f τ |(γ(0)) + 3 τ |γ(t) -γ(0)|) 2 dt ≤ δ 0 2|∇f | 2 (x 0 ) + 18 τ 2 t 2 δ 2 |(x δ + τ ∇f (x δ )) -(x 0 + τ ∇f (x 0 ))| 2 dt ≤ 2δ|∇f | 2 (x 0 ) + 6δ τ 2 |(x δ + τ ∇f (x δ )) -(x 0 + τ ∇f (x 0 ))| 2 ≤ 2δ|∇f | 2 (x 0 ) + 12δ τ 2 |x δ -x 0 | 2 + 12δ|∇f (x δ ) -∇f (x 0 )| 2 .
We get the result by gathering these two estimates, and by remarking that in the second line, we could have controlled |∇f | τ (γ(t)) by its value at time δ instead of its value at time 0.

Choosing δ = τ , bounding |∇f |(x i ), i = 0, 1 by the max of these two values, and using |∇f (x δ ) -∇f (x 0 )| 2 ≤ 4 max i∈{0,1} |∇f | 2 (x i ), we will apply the interpolation lemma in the form

Γ δ (x 0 , x δ ) ≤ 52 τ |x δ -x 0 | 2 + 210τ max i∈{0,δ} |∇f | 2 (x i ). (10) 
4 Proof of the main result

In this section, f h , f denote generic proper, λ-convex and lower semicontinuous functions from

H to (-∞, ∞].
Mosco convergence is a particular case of Γ-convergence, where the topologies used for the lim sup and the lim inf inequalities differ. Definition 4.1 (Mosco convergence). We say that f h Mosco converge to f whenever:

(a) for all x ∈ H there exist x h → x strongly with

lim sup h f h (x h ) ≤ f (x);
(b) for all sequences (x h ) ⊂ H weakly converging to x, one has

lim inf h f h (x h ) ≥ f (x).
It is easy to check that for sequences of λ-convex functions, Mosco convergence implies the pointwise convergence of J f h ,τ to J f,τ , contrarily to usual Γ-convergence. Indeed, for τ > 0 admissible, (a) grants grants that both liminf are limits, and that the convergence of y h is strong.

Recall that given x h,0 , x h,1 ∈ H, the functionals Θ f h ,x h,0 ,x h,1 defined in (2), are obtained from I 1 f h by adding endpoints constraints. Θ f,x 0 ,x 1 is defined analogously. We say that

Θ f h ,x h,0 ,x h,1 Γ-converge to Θ f,x 0 ,x 1 in the C([0, 1]; H) topology if (a) for all γ ∈ C([0, 1]; H) there exist γ h ∈ C([0, 1]; H) converging to γ with lim sup h→∞ Θ f h ,x h,0 ,x h,1 (γ h ) ≤ Θ f,x 0 ,x 1 (γ); (b) for all sequences (γ h ) ⊂ C([0, 1]; H) converging to γ one has lim inf h→∞ Θ f h ,x h,0 ,x h,1 (γ h ) ≥ Θ f,x 0 ,x 1 (γ).
In connection with the proof of property (a) it is useful to introduce the functional

Γ -lim sup h→∞ Θ f h ,x h,0 ,x h,1 (γ) := inf lim sup h→∞ Θ f h ,x h,0 ,x h,1 (γ h ) : γ h → γ so that (a) is equivalent to Γ -lim sup h Θ f h ,x h,0 ,x h,1 ≤ Θ f,x 0 ,x 1 .
Recall also that the Γ -lim sup is lower semicontinuous, a property that can be achieved, for instance, by a diagonal argument.

Proof of Theorem 1.1. It is clear that the endpoint condition passes to the limit with respect to the C([0, 1]; H) topology, since x h,i converge to x i . Also, it is well known that the action functional is lower semicontinuous in C([0, 1]; H). Hence, the Γ-liminf inequality, namely property (b), follows immediately from Fatou's lemma and the variational characterization (4) of |∇f |. Indeed, for all y = x and all sequences

x h → x lim inf h→∞ |∇f h | 2 (x h ) ≥ lim inf h→∞ [f h (x h ) -f h (y h ) + λ 2 |x h -y h | 2 + |x h -y h | ≥ [f (x) -f (y) + λ 2 |x -y| 2 + |x -y| .
where y h is chosen as in (a) of Definition 4.1. Passing to the supremum, we get the inequality

lim inf h |∇f h |(x h ) ≥ |∇f |(x)
, and this grants the lower semicontinuity of the gradient term in the functionals. Notice that this part of the proof works also if we assume only that Γ-lim inf h f h ≥ f , for the strong topology of H, but the stronger property (namely (b) in Definition 4.1) is necessary because we will need in the next step convergence of the resolvents. So, let us focus on the Γ-limsup one, property (a). Fix a path γ with Θ f,x 0 ,x 1 (γ) < ∞, τ > 0 (with (1 + τ λ -1 ) ≤ 2 if λ < 0) and consider the perturbed paths γ τ h (t) = J f h ,τ (γ(t)), γ τ (t) = J f,τ (γ(t)); using the (1 + τ λ) -1 -Lipschitz property of the maps J f,τ , the first inequality in [START_REF] Clerc | On the variational interpretation of local logarithmic Sobolev inequalities[END_REF], the convergence of γ τ h to γ τ and eventually the second inequality in (8) one gets

lim sup h→∞ 1 0 | γτ h | 2 + |∇f h | 2 (γ τ h ) dt ≤ lim sup h→∞ 1 0 (1 + τ λ) -2 | γ| 2 + |γ -γ τ h | 2 τ 2 dt ≤ 1 0 (1 + τ λ) -2 | γ| 2 + |γ -γ τ | 2 τ 2 dt ≤ (1 + τ λ) -2 1 0 | γ| 2 + |∇f | 2 (γ) dt.
Also, the convergence of resolvents gives

lim h→∞ J f h ,τ (x i ) = J f,τ (x i ).
Finally, using again the inequalities (8) and once more the convergence of resolvents, we get

lim sup h→∞ |∇f h |(J f h ,τ (x i )) ≤ |J f,τ (x i ) -x i | τ ≤ (1 + τ λ) -1 |∇f |(x i ) ≤ 2|∇f |(x i ).
Since the endpoints have been slightly modified by the composition with J f h ,τ , we argue as follows. Denoting by S an upper bound for |∇f h |(x h,i ) and 2|∇f |(x i ), we apply twice the construction of Lemma 3.1, with δ = τ , to f h with endpoints x h,i , J f h ,τ (x i ), to extend the curves γ τ h , still denoted γ τ h , to the interval [-τ, 1 + τ ], in such a way that (we use [START_REF] Dondl | A gradient system with a wiggly energy and relaxed EDP-convergence[END_REF] in the first inequality, and the second inequality in [START_REF] Clerc | On the variational interpretation of local logarithmic Sobolev inequalities[END_REF] and the endpoint condition is satisfied at t = -τ and t = 1 + τ . The limit of the curves γ τ h in [-τ, 1 + τ ], still denoted γ τ , is the one obtained applying the construction of Lemma 3.1 with x i and J f,τ (x i ) in the intervals [-τ, 0] and [1, 1 + τ ], and which coincides with J f,τ (γ(t)) on [0, 1].

By a linear rescaling of the curves γ τ h and γ τ to [0, 1] we obtain curves γτ h converging to γτ in C([0, 1]; H), with γτ convergent to γ as τ → 0 and Γ -lim sup h→∞ Θ f h ,x h,0 ,x h,1 (γ τ ) ≤ lim sup h→∞ Θ f h ,x h,0 ,x h,1 (γ h τ )

≤ (1 + O(τ ))

1 0 | γ| 2 + |∇f | 2 (γ) dt + O(τ ).
Eventually, the lower semicontinuity of the Γ-upper limit and the convergence of γτ to γ provide:

Γ -lim sup h→∞ Θ f h ,x h,0 ,x h,1 (γ) ≤ 1 0 | γ| 2 + |∇f | 2 (γ) dt.

h | 2 + 1 0| γ| 2 + 2 ≤ 1 0|

 21221 in the second one) |∇f h | 2 (γ τ h ) dt ≤ (1 + τ λ) -2 |∇f | 2 (γ) dt + 420τ S 2 + 52 τ |x 0 -J f,τ (x 0 )| 2 + |x 1 -J f,τ (x 1 )| (1 + τ λ) -2 γ| 2 + |∇f | 2 (γ) dt + 472τ S 2