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We present a local approach to the study of scale-to-scale energy transfers in magnetohydrodynamic (MHD)
turbulence. This approach is based on performing local averages of the physical fields, which amounts to filtering
scales smaller than some parameter �. A key step in this work is the derivation of a local Kármán-Howarth-Monin
relation which provides a local form of Politano and Pouquet’s 4/3 law, without any assumption of homogeneity
or isotropy. Our approach is exact and nonrandom, and we show its connection to the usual statistical results
of turbulence. Its implementation on data obtained via a three-dimensional direct numerical simulation of the
forced incompressible MHD equations from the John Hopkins turbulence database constitutes the main part
of our study. First, we show that the local Kármán-Howarth-Monin relation holds well. The space statistics of
local cross-scale transfers are studied next, their means and standard deviations being maximum at inertial scales
and their probability density functions (PDFs) displaying very wide tails. Events constituting the tails of the
PDFs are shown to form structures of strong transfers, either positive or negative, which can be observed over
the whole available range of scales. As � is decreased, these structures become more and more localized in
space while contributing to an increasing fraction of the mean energy cascade rate. Finally, we highlight their
quasi-one-dimensional (filamentlike) or quasi-two-dimensional (sheetlike or ribbonlike) nature and show that
they appear in areas of strong vorticity or electric current density.

DOI: 10.1103/PhysRevE.99.053202

I. INTRODUCTION

Among unsolved problems in classical physics, fully de-
veloped turbulence is a nonlinear and nonlocal phenomenon
which has remained a great challenge [1–11]. Our understand-
ing of turbulence is centered around the idea of an energy
cascade, crucial to energy dissipation and the existence of a
stationary flow at large scales [1,8]. In the cascade picture,
when a fluid is set in motion by some large-scale forcing,
the input kinetic energy is transferred to small scales (direct
cascade) due to nonlinear interactions, where it can be effi-
ciently dissipated by viscous effects. Between the injection
scale L and the dissipative scales lies the inertial range where
nonlinear forces govern the dynamics and energy cascades
without being directly injected or dissipated [10]. Therefore,
understanding the mechanisms which lead to this cascading
process is of paramount importance to turbulence theory.

During the period when the idea of an energy cascade was
formalized and linked to the laws of fluid dynamics, governed
by the Navier-Stokes equations, the mathematical tools de-
veloped by Taylor, von Kármán, Howarth, and Kolmogorov
were rooted in a statistical view of turbulence, in which the
fields at two points x and x′ are described as correlated ran-
dom variables. This approach culminated in the publication
of four seminal papers [5–8] which laid the foundations of
Kolmogorov’s theory of homogeneous isotropic turbulence
(referred to as K41 in the following). One crucial result was
the derivation by von Kármán and Howarth of an equation

*denis.kuzzay@obspm.fr

governing the evolution of longitudinal autocorrelation of the
velocity u [4], which was later generalized by Monin without
the isotropy assumption [12,13]. The isotropic version of the
Kármán-Howarth-Monin (KHM) relation served as a stepping
stone to the formulation of K41 and the derivation of the
famous 4/5 law

〈δ�u3〉 = − 4
5εu�, (1)

where the angular brackets denote an ensemble average and

δ�u(x) := δ�u(x) · �

�
:= [u(x + �) − u(x)] · �

�
(2)

are the longitudinal velocity increments between two points
separated by a vector �. In Eq. (1), the scale � lies in the
inertial range and εu is the mean kinetic energy dissipation
rate. Kolmogorov’s 4/5 law is a cornerstone of turbulence
theory, which has been thoroughly studied theoretically, ex-
perimentally, and numerically [14–25]. It formalizes the con-
cept of energy cascade by connecting εu, assumed to remain
finite in K41, to the measurable third-order structure function.
Moreover, it is the only scaling law which has been derived
from Navier-Stokes equations and is exact. Using the incom-
pressibility condition, the 4/5 law may be expressed in terms
of both longitudinal and vector increments as

〈δ�u|δ�u|2〉 = − 4
3εu�, (3)

i.e., a 4/3 law, which is the analog of the relation derived
by Yaglom for temperature fluctuations in turbulent flows
[12,26].

Interestingly enough, the 4/3 law may be generalized
to magnetohydrodynamics (MHD) while keeping a simple
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expression such as in Eq. (3). In the presence of a magnetic
field b (in Alfvén units), the 4/3 law is expressed for inertial
scales in terms of the Elsässer variables z± = u ± b as

〈δ�z∓|δ�z±|2〉 = − 4
3ε±�, (4)

which formalizes the existence of a double direct cascade
of E± := 〈z±2〉 at rates ε± or, equivalently, of both the to-
tal energy ET := 〈u2 + b2〉/2 and the cross helicity HC :=
〈u · b〉 at rates εT = (ε+ + ε−)/2 and εC = (ε+ − ε−)/2, re-
spectively. As in the hydrodynamic case, the derivation of
relation (4) is based upon the derivation of a generalization of
the KHM relation to MHD assuming both homogeneity and
isotropy [27]. Note that it is possible to derive a law involving
only the longitudinal components of the field [27,28]. How-
ever, it takes a more complex form than (1), as it explicitly
involves both third-order structure functions and third-order
correlation functions of the longitudinal fields. Furthermore,
the 4/5 factor is replaced by 8/15.

Recent theoretical advances in hydrodynamic turbulence
have shown that the cascade phenomenology can be under-
stood from a local nonrandom description of energy transfers.
Onsager, who contributed to turbulence theory [29,30], seems
to have been the first to realize that the statistical notions
presented above should hold for individual realizations of
turbulent flows, i.e., without any ensemble averages [31,32].
These ideas were recently formalized in a clear mathematical
framework by Duchon and Robert [33], and a key step in
describing the energy cascade from a local nonstatistical point
of view is the derivation of a local version of the KHM
relation. The local form of the 4/3 law follows after a few
lines of calculations, where statistical averages are replaced
by local averages over a ball of typical size � and neither
homogeneity nor isotropy is assumed (see also [34,35]). This
approach, which allows for the generalization of the statistical
picture presented above to a local description, was applied to
empirical data in the framework of von Kármán flows [36].
Investigations of local scale-to-scale energy transfers led to
the detection of extreme events at Kolmogorov scale, perhaps
connected to singularities in the velocity field [37–39]. In the
light of these positive results, further analyses were performed
to study intermittency in the same context and to examine
atmospheric flows [40,41]. The developments brought about
by this approach raise the question of what can be achieved
in MHD turbulence, where local processes have been widely
investigated in connection with turbulent energy dissipation
[42–50]. Various approaches have been tested in order to gain
some insight into the local physics of MHD flows, especially
in the context of solar wind turbulence. However, these either
are heuristic [51,52] or focus on second-order statistics rather
than third-order [53,54]. Recently, the approach introduced by
Duchon and Robert [33] has been generalized to MHD [55].
This sets a theoretical background for the study of local energy
transfers in turbulent magnetized flows, in connection with the
dynamical equations.

The aim of this paper is to present investigations of this
local approach from MHD data. In this study, we have chosen
to work with numerical data from the John Hopkins turbu-
lence database [56–59]. First, we present our own derivation
of the local KHM relation for MHD flows in terms of Elsässer
variables, largely following [33], and discuss the physics of

our approach. In this formulation, the connection to classical
results of MHD turbulence [27,28] is made and discussed.
We then proceed to the study of the local KHM relation by
checking that it holds in these data and by checking that
usual results of MHD turbulence are recovered globally over
the whole flow. Next we investigate the local organization of
scale-to-scale energy transfers by providing maps at injection,
inertial, and dissipative scales. The existence of structures of
strong magnitude, either positive or negative, over the whole
available range of scales is highlighted and the statistics of
cross-scale transfers are studied. In particular, we highlight
that they get more and more localized as the scale � is
decreased, while contributing to an increasing fraction of the
overall energy transfer rate. Moreover, we show that these
structures are quasi-one-dimensional (quasi-1D) or quasi-2D
clusters of events constituting the tails of the probability
density functions. Finally, we try to connect the existence of
such structures with local strong gradients in the velocity and
magnetic fields and show a very good correlation with regions
of strong vorticity or electric current density.

II. LOCAL APPROACH

A. Filtering approach

For our study of energy transfers at different scales, we use
a local scale-by-scale approach which allows us to separate
different scales of motion. Let us start from the incompressible
MHD equations for Elsässer variables z± = u ± b,

∂t z
±
i + z∓

j ∂ j z
±
i = −∂i p

∗ + ν∂ j∂ j z
±
i + fi, (5)

∂ j z
±
j = 0, (6)

where p∗ := p + b2/2 is the sum of the hydrodynamic and
magnetic pressures, f is some external forcing, and ν is
the kinematic viscosity. Summation over repeated indices is
implied. Since it does not change any of our reasoning, we
take the magnetic Prandtl number (ratio between the kine-
matic viscosity and magnetic resistivity) Pm = 1 for simplic-
ity. The filtering approach is based on mollifying physical
quantities with some kernel G which is even, non-negative,
spatially localized, has compact support on R3, and is such
that

∫
R3 dr G(r) = 1. In order to formalize the notion of scale,

we define the function G� such that G�(r) := �−3G(r/�) [60].
Let us now define the coarse-grained Elsässer fields at scale �

by taking the convolution product of z± with G�,

z±
i,�(x, t ) :=

∫
R3

dr G�(r)z±
i (x + r, t ). (7)

The filtered pressure field p∗
� is defined in the same way.

In Eq. (5) the unknown Elsässer and pressure fields contain
information about the physics at all scales. The filtering
process (7) averages out fine details of the fields while keeping
information about scales larger than �. Therefore, z±

� (x, t )
represents the average Alfvénic fluctuations over a volume of
plasma of typical size � at point x and time t . We thus see
that this approach allows a local scale-by-scale study of MHD
turbulence and will be well suited for our purposes.
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B. Local energy balance

We now want to derive a local energy balance at all scales
based on the filtering approach presented in Sec. II A. The
following reasoning closely follows the work of [33], where it
was applied to hydrodynamics (see also [34]). We define the
energy of the Elsässer fields at scales larger than � as

e±
� (x, t ) := 1

2
z±

i (x, t )z±
i,�(x, t )

=
∫
R3

dr G�(r)
1

2
z±

i (x, t )z±
i (x + r, t ), (8)

where z±
i (x, t )z±

i (x + r, t )/2 is called the point-split energy
density of the z± fields. When � → 0, e±

� tends to the usual
definition of the energy since z±

i,� → z±
i . Note that e±

� can
as well be interpreted as the local two-point autocorrelation

of the Elsässer fields, averages being performed over a local
volume of plasma of typical size � at point x and time t . Let us
also draw the attention of the reader to the fact that this defi-
nition for the large-scale energy is different from the one used
when adopting a large-eddy simulation (LES) perspective,
E±

� := z±
i,�z±

i,�/2 = e±
� + (δz±

i )�z±
i,�/2. In particular, e±

� is not
guaranteed to be positive. However, it can be checked in data
that it is mostly positive, especially at inertial and dissipative
scales. The reasons for working with the alternate definition
(8) will be discussed in more detail in Sec. II C. Let us now
denote by a circumflex the value of the fields taken at point
x + r, i.e., ẑ±

i := z±
i (x + r, t ) and p̂∗ := p∗(x + r, t ). Writing

Eq. (5) at point x multiplied by ẑ±
i together with Eq. (5) at

point x + r multiplied by z±
i and adding the two equations, it

can be shown using the incompressibility condition (6) that
the point-split energy density z±

i ẑ±
i /2 satisfies

∂t

(
z±

i ẑ±
i

2

)
+ ∂ j

[
z±

i ẑ±
i

2
z∓

j + p∗ẑ±
j + p̂∗z±

j

2
+ δrz∓

j ẑ±
i ẑ±

i

4
− ν∂ j

(
z±

i ẑ±
i

2

)]

= 1

4
∂r j (δrz∓

j δrz±
i δrz±

i ) − ν(∂ j z
±
i )(∂ j ẑ

±
i ) + 1

2
( fiẑ

±
i + f̂iz

±
i ), (9)

where ∂r j denotes the derivative over the jth component of
the displacement vector r. Then multiplying by G�(r) and
integrating over r yields the large-scale energy balance

∂t e
±
� + ∂ jJ

±
j,� = −�±

� − D±
ν,� + F±

� , (10)

where

J±
j,� := e±

� z∓
j + 1

2
(p∗z±

j,� + p∗
�z±

j ) + 1

4
(z∓

j z±
i z±

i )�

− 1

4
(z±

i z±
i )�z∓

j − ν∂ je
±
� , (11)

�±
� := 1

4

∫
dr[∂ jG�(r)]δrz∓

j δrz±
i δrz±

i , (12)

D±
ν,� := ν(∂ j z

±
i )(∂ j z

±
i,�), (13)

F±
� := 1

2
( fiz

±
i,� + fi,�z±

i ). (14)

Equation (10) is comprised, as usual, of a local time derivative
of the large-scale energy e±

� and the divergence of a spatial
energy flux J±

� on the left-hand side, while the right-hand side
gathers sink or source terms. Here �±

� stems from nonlinear
effects and thus describes the energy transfers through scale �.
Further, D±

ν,� describes viscous interactions and F±
� describes

the energy injected by the external force f at scales larger
than �. This result was first obtained in [55] (also following
the derivation of [33]), where Eq. (10) was written with u
and b instead of z± and generalized to Hall MHD.1 However,
the similarities to hydrodynamics appear more clearly in the

1Actually, the first attempt at deriving Eq. (10) was made in [61].
Even though it was published, this work contains many mistakes

Elsässer formulation, and taking b = 0 directly yields the
results obtained in [33]. In conclusion, since the large-scale
energy balance (10) is local in both space and time, we will
be able, from appropriate sets of data, to study the behavior
of each of these terms in various areas of MHD flows, at
various scales. Finally, let us mention that local balances can
also be derived for the large-scale kinetic and magnetic energy
separately, using the point-split approach. Their derivation is
provided in the Appendix, but their detailed study is left for
future works.

C. Link to traditional results of turbulence

Let us now discuss the connection of Eq. (10) to traditional
well-established results of turbulence. In homogeneous turbu-
lence, it is possible, starting from Eqs. (5) and (6), to derive an
equation governing the evolution of the two-point autocorre-
lation function (or the mean point-split energy density) of the
z± variables

1
2∂t 〈z±

i (x)z±
i (x + �)〉

= 1
4∂�i〈δz∓

i (�)|δz±(�)|2〉 + ν∂� j ∂� j 〈z±
i (x)z±

i (x + �)〉
+ 1

2 〈 fi(x)z±
i (x + �) + fi(x + �)z±

i (x)〉, (15)

where angular brackets denote ensemble averages. Equation
(15) was derived in [27] assuming only homogeneity (without
isotropy) and was written in an equivalent form in terms of
increments. Its hydrodynamic counterpart (b = 0) is known
as the Kármán-Howarth-Monin relation, which is a name we

which lead to an incorrect result. The correct derivation was pub-
lished in [55].
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will keep in the following to refer to Eq. (15). The derivation
from Navier-Stokes equations also applies to MHD and can
be found in [10], where it is shown to be an energy flux
relation. The scale-to-scale transfer rate is identified with the
first term on the right-hand side, stemming from nonlinear
interactions, and expressed as a divergence over scales of
third-order structure functions. The 4/3 law of MHD

ε± = −〈δ�z∓|δ�z±|2〉
4/3�

(16)

follows from (15) in the inertial range by adding the assump-
tions of isotropy and stationarity according to K41 [27]. Here
ε± is the mean dissipation rate of E± := 〈z±2〉, assumed to
be finite and positive in the limit of ideal MHD and which is
equal to the cascade rate by stationarity. More generally, we
will define the quantity ε±

� as

ε±
� := −〈δ�z∓|δ�z±|2〉

4/3�
, (17)

at any scale � from injection to dissipative scales. In particular,
ε±
� = ε± for � lying in the inertial range.

Returning to the results derived in Sec. II B, we see that
Eq. (10) may be interpreted as a local version of the KHM
relation for MHD (15), where ensemble averages are replaced
by local averages over a local volume of typical size �. The
presence of the divergence term on the left-hand side of (10)
comes from the local inhomogeneity of the spatial flux and
vanishes after averaging using the statistical homogeneity
assumption. Note that our local approach has allowed us to
derive Eq. (10) without any assumption on homogeneity or
isotropy. The correspondence between terms in Eqs. (10) and
(15) is easily made and the KHM relation is recovered from
its local version by averaging over a statistical ensemble,
assuming homogeneity. Therefore, Eq. (10) is a stronger result
than (15).

If we now focus on the expression of �±
� given in (12),

we see that local energy transfers through scales are still
related to the divergence of the cube of increments. In (12),
an integration by parts has been made in order to make the
gradient operator act on the test function G� (boundary terms
vanish since G has compact support) rather than directly on
the increments. However, the most interesting result is perhaps
to note that the 4/3 law (16) has a local counterpart. Indeed,
generalizing the derivation in [33] (see also [34]) to MHD,
it can be shown after a few lines of calculation that in the
case of a spherically symmetric filter kernel [G(r) = G(r)],
the expression of �±

� may be simplified to

�±
� = −〈δ�z∓|δ�z±|2〉ang

4/3�
(18)

for � lying in the inertial range. The quantity

〈δ�z∓|δ�z±|2〉ang := 1

4π

∫ π

0
sin θ dθ

∫ 2π

0
dϕ δ�z∓|δz±|2

(19)

is the angular average of δ�z∓|δ�z±|2 over the unit sphere in
three dimensions. This result was first given in [33] for the
hydrodynamic case. Of course, �±

� should be independent of �

in a well-defined inertial range. Let us stress that the derivation
of (18) presented here is very similar to the derivation of (16)
in [27], in that both are based on a KHM relation in order
to arrive at an exact scaling relation for third-order structure
functions. The main difference between the two approaches
lies in the type of averages that are performed. It is very
interesting to note that the 4/3 law, which formalizes the
concept of a dual cascade in MHD, still holds in a local (in
space and time) sense. As stated in [34], the results presented
here are much stronger than the usual statistical ones, because
they hold for individual realizations of MHD flows. Indeed,
the reasoning leading to Eqs. (9)–(14) is exact, and Eq. (18)
follows for any individual solution to the incompressible
MHD equations, without performing any ensemble averages
and without making any assumptions on homogeneity or
isotropy. For more discussions see [29,30,34,35], which focus
on hydrodynamics but can be generalized to MHD.

Finally, let us highlight the fact that space filtering has
attracted a great deal of interest in the past few years, in
order to investigate the local physics of turbulent MHD flows.
For instance, separate energy balances for the kinetic and
magnetic energies have been derived in order to study the
scale locality of the double cascade, the effect of subscale
terms, and kinetic scales [62–65]. This approach has also been
used in Hall-MHD numerical data in order to quantify the
correlation between regions of nonzero scale-to-scale energy
transfers and the presence of coherent structures in these areas
[66]. In these studies, the authors adopt a LES approach
in which the large-scale energy is defined as the square of
the filtered fields E±

� := z±
i,�z±

i,�/2 = e±
� + (δz±

i )�z±
i,�/2 [to be

compared with Eq. (8)]. The main difference between the
two approaches comes from two alternate definitions of the
large-scale energy which lead to two different definitions for
the nonlinear energy flux [34]. Indeed, from a LES approach,
the local scale-to-scale transfers are described by τ±

i j,�∂ jz
±
i,�,

where τ±
i j,� = (z±

i z∓
j )� − z±

i,�z∓
j,�. As noted by Onsager (see

[35]), this flux depends on increments only since

τ±
i j,�=

∫
dr G�(r)δrz±

i δrz∓
j −

∫
dr G�(r)δrz±

i

∫
dr G�(r)δrz∓

j

(20)

and

∂ j z
±
i,� = −

∫
dr[∂ jG�(r)]δrz±

i . (21)

As a consequence, it can be seen that the local scale-to-
scale energy flux obtained from the LES perspective is not
straightforwardly related to �±

� defined in Eq. (12) because
local averages on increments are taken in a different way.
Note, however, that these can be considered as a different way
of defining local structure functions. Therefore, the choice of
definition for the large-scale energy depends on which type of
structure functions one chooses to study, some of them being
more directly related to energy flux (as is the case in our study;
see [34,35] for a more detailed discussion).

III. APPLICATION TO TURBULENT NUMERICAL DATA

Direct numerical simulations (DNSs) are a powerful tool to
investigate MHD flows. They provide a framework in which
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the main features of the flow such as the forcing, the kinematic
and magnetic viscosities, or the initial and boundary condi-
tions may be precisely controlled. As such, they have been
extensively used for the study of MHD turbulence, under a
wide range of conditions [67–73]. In the end, DNSs give ac-
cess to all components of the relevant fields on a grid. Spatial
gradients as well as filtered quantities can therefore be readily
computed at several scales, which will enable us to visualize
local energy transfers in various areas, at various �, at the same
time. As a consequence, DNSs allow for investigations which
are not possible from spacecraft data, organized as time series.
For such data, we may interpret time scales as space scales
using Taylor’s hypothesis, but only one-dimensional infor-
mation is recovered about the flow. Even multiple-spacecraft
missions such as CLUSTER or MMS [74,75], which aim at
investigating the local three-dimensional structure of the solar
wind and the Earth’s magnetoshpere, are limited to one region
of space at a time and a single scale (typically the distance
between the spacecrafts). Direct numerical simulations pro-
vide a tool to investigate the three-dimensional structure of
MHD flows on many scales without using Taylor’s hypothesis.
Consequently, they are well suited to perform our study and
encourage future applications to plasma physics.

A. Simulation parameters and data characteristics

In the following, we use forced MHD turbulence
data downloaded from the open John Hopkins Turbulence
Database [56]. The data were generated by a DNS of the
3D incompressible MHD equations, in a cubic domain of
size 2π with periodic boundary conditions and resolution
10243. As in Sec. II, the magnetic Prandtl number is unity
with ν = 1.1 × 10−4. The flow is forced at large scales in the
(x, y) plane by a steady Taylor-Green body force added to the
momentum (Navier-Stokes) equation

f = f0[sin(k f x) cos(k f y) cos(k f z)ex

− cos(k f x) sin(k f y) cos(k f z)ey], (22)

where f0 = 0.25 and k f = 2, and we define L = π/2 as the
energy injection scale. Data were stored after the flow had
reached a statistically stationary regime and may be accessed
remotely through a web-service interface [57–59]. For our
analysis, we downloaded one snapshot, typical slices of u,
b, Eu := u2/2, Eb := b2/2, and z± in the (x, y) plane being
displayed in Fig. 1. The vector fields exhibit characteristic
features of turbulent flows, appearing as disordered with vor-
tical structures, and the spatial distributions of the kinetic and
magnetic energy densities are inhomogeneous, as expected.
Moreover, the spatial distributions of z+ and z− are very
patchy, consistent with that of u and b, and we will see
that they lead to an equally inhomogeneous contribution of
the local nonlinear couplings governing the cascade. In the
stationary regime, the mean kinetic and magnetic energy dis-
sipation rates are εu = 1.1 × 10−2 and εb = 2εu, respectively.
The injection, cascade, and dissipation rates of total energy are
all equal to εT = εu + εb = 3.3 × 10−2. The corresponding

Taylor-scale Reynolds numbers2 fluctuate around Reu
λ = 186

and Reb
λ = 144. The ratio of magnetic to kinetic energy is

χM = 〈b2〉/〈u2〉 = 1.1, and the (u, b) correlation is weak 〈u ·
b〉/〈u2 + b2〉 ≈ 10−2. The energy spectra cover around two
decades of scales, with one full decade where they closely
follow power laws [56]. Note that from the DNS parameters,
we can already see that the statistical properties of both
Elsässer variables will be almost identical. Indeed, the Prandtl
number being unity, the forcing being the same for z+ and
z−, and the injection rate of cross helicity being small, it
can be anticipated that both variables will have a statistically
symmetric role. This can be noticed on the energy spectra [56]
and will be confirmed during our study. More details about the
DNS may be found in [56].

B. Data processing method

In the following study, all gradients and convolution prod-
ucts are computed by making use of the periodic boundary
conditions through fast Fourier transforms. The filtering ker-
nel G is defined as

G(r) =
{

1
N exp

( −1
1−r2

)
for r < 1

0 otherwise,
(23)

where N is a normalizing constant ensuring that
∫
V dr G(r) =

1, V being the volume of the whole cube. The function G
satisfies all the properties given in Sec. II A and is spherically
symmetric. Let us note that for any finite scale �, filtered
quantities depend on the choice of G, while their limits for
� → 0 do not [55]. However, physical results are expected to
be independent (or at least weakly dependent) of the choice of
kernel as long as it has the same symmetries as G defined here
and the properties given in Sec. II A are satisfied.

Finally, note that �±
� as written in (12) is not a convolution

product. However, by developing the increments under the
integral it can be expressed as the sum of four terms where
convolution products appear [33]

�±
� = −∂i(z

∓
i z±

j z±
j )�/4 + z±

j ∂i(z
∓
i z±

j )�/2

− z∓
i z±

j ∂i(z
±
j )�/2 + z∓

i ∂i(z
±
j z±

j )�/4. (24)

C. Check local and global balance

In Sec. II we have shown that a key result for the study of
local energy transfers was the derivation of two local KHM
relations for z+ and z− [see Eqs. (10)–(14)]. Here we want
to check whether these relations hold globally over the whole
box, as well as locally at grid points. This is what is shown in
Fig. 2. Globally, the space-averaged KHM relations read

〈∂t e
±
� 〉V = −〈�±

� 〉V − 〈D±
ν,�〉V + 〈F±

� 〉V , (25)

where 〈·〉V denotes space averaging and the divergence term
vanishes due to the periodic boundary conditions. Figure 2(a)
displays the variations of the left-hand side (LHS) and right-
hand side (RHS) of Eq. (25) as a function of scales. As can

2We recall that the Taylor microscale is defined as λw =
(15ν/εw )1/2w′, where w denotes either u or b and w′ is the root mean
square of the fluctuations of w.
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(a)
u

(b)
b

(c)
Eu

(d)
Eb

(e)
z+

(f)
z−

FIG. 1. Typical slices of the physical fields in the (x, y) plane of forcing for the snapshot considered in our analysis. For vector fields,
arrows represent the in-plane component and the colormap represents the out-of-plane component. The vector fields have been normalized by
their norm.

be seen, the curves representing the LHS and RHS of both
equations are undistinguishable for both balances. This means
that the KHM relations hold very well globally. This is not
surprising since Eq. (25) expresses that for every scale �, a
time variation of the total energy of the Elsässer fields can only
come from the difference between the total injected power
and the joint effect of both the cascade and the dissipation.
In fact, we expect this time variation to be very small since
the data were stored after the DNS had reached a statistically
stationary regime. This is confirmed in Fig. 2(b), where both

the black and triangle curves are close to zero [note that in
this figure the solid lines, which represent terms with a plus
superscript, almost superimpose with the symbols represent-
ing the corresponding terms with a minus superscript (see the
discussion in Sec. III A)]. We also check that the divergence
term vanishes at all scales (pink and star curves). We therefore
conclude that Eq. (25) shortens to the RHS being zero.

Let us then study the variations in scales of the terms
constituting the RHS. The global contribution of nonlinear
effects [blue and diamond curves in Fig. 2(b)] varies as
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Kármán-Howarth-Monin relation as a function of scale �. (a) Balance between the left- and right-hand sides of Eq. (25).
(b) Contribution of each term constituting (25) to the balance displayed in (a). Note that the solid lines, which represent terms with a plus
superscript, are almost superimposed with the symbols representing the corresponding terms with the minus superscript. (c) and (e) Local
balance between the left- and right-hand sides of Eq. (10) at the same point. (d) and (f) Contribution of each term constituting (10) to the
balance displayed in (c) and (e), respectively.

expected, being small at both large and small scales and
of maximum amplitude in the inertial range around �/L =
0.125. This maximum takes a value close to the total energy
dissipation rate εT , confirming our interpretation of �±

� as
describing scale-to-scale energy transfers. In addition, since
its contribution is negative, the cascade is indeed direct. The
viscous term, plotted as green crosses in Fig. 2(b), is small
in the injection and inertial ranges of scales and becomes
dominant over nonlinear effects at the end of the cascade, as
usual. Finally, the forcing term (red and circle curves), which
describes the energy injected above scale �, is small at large
scales and maximum in the inertial and dissipation ranges,

balancing both energy dissipation and nonlinear transfers. Let
us stress that 〈F±

� 〉V does not represent the global rate at which
energy is injected at scale �. If this were the case, it would
be maximum for �/L ≈ 1 and zero at smaller �. Due to the
filtering process which averages out fine details of the flow
while keeping information about large scales, 〈F±

� 〉V repre-
sents the energy injection at scales larger than �, explaining
the variations of the red curves in Fig. 2(b). Injection at scale
� would be 〈I±

� 〉V := ε± − 〈F±
� 〉V , so Eq. (25) becomes

ε± = 〈�±
� 〉V + 〈D±

ν,�〉V + 〈I±
� 〉V (26)

at all �.
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We now turn to the KHM relation in its local form. Out of
the 10243 available points, we have verified the local balance
at several locations to check that it holds well. A typical
example is given in Figs. 2(c)–2(f), where we show the LHS
(solid lines) and RHS (dashed lines) of Eq. (10) as a function
of scale at one point, together with the local contribution of
each of the five terms constituting the balance. We observe
that the local KHM relations hold well, thus providing nu-
merical evidence that the local approach presented in Sec. II
is valid in turbulent MHD data. This also confirms that the
only processes breaking the local conservation of energy are
injection, dissipation, and scale-to-scale transfers. Let us note,
however, that the balance does not hold as well as what is
shown in Figs. 2(c) and 2(e) for all points. Indeed, there
exist many points where a larger discrepancy can be observed
between the LHS and RHS of Eq. (10), especially at small
scales. This can be explained by the fact that when � is
too small (typically of the order of a few grid steps), local
averages are performed over few number points, so they may
not be well converged. For larger � this discrepancy generally
disappears.

Investigating further in detail the local KHM relation, we
can study the local variations of each of the five terms as
a function of �. This is what is shown in Figs. 2(d)–2(f),
where we observe that the variations of all five terms are
very different from Fig. 2(b). Locally, the amplitude of these
terms may be orders of magnitude larger than their space
averages and even change sign. Let us first focus on Fig. 2(d).
We observe that the local time variation of e+

� (black curve
with triangles) is much stronger than its global average and
increases with decreasing scales. In the same way, we see
that the divergence term (pink curve with stars) is nonzero
and is one of the three dominant terms in the local balance
throughout the available range of scales. It is strongly positive
(compared to ε+) at large scales and strongly negative in the
dissipation range. Local scale-to-scale energy transfers (blue
curve with diamonds) also locally change sign in the inertial
range, have a strong amplitude, and fall to zero at very small
and very large scales. Finally, the dissipation and forcing
terms (green curve with crosses and red curve with circles,
respectively) are negligible compared to the other three. We
can therefore interpret the results presented in Fig. 2(d) as
follows: In the inertial range, where the �+

� changes sign,
z+ locally accumulates energy due to a converging spatial
energy flux (negative divergence). This flux then plays the
role of a forcing, providing energy which feeds two cascades
to both large and small scales. At large scales, energy is
provided by this local inverse cascade and leaves the area
under consideration via a spatial energy flux directed outward.
However, the rate of the cascade is higher than the rate at
which energy is removed, thus leading to an accumulation of
energy in z+. At small scales, the roles of the spatial flux and
the nonlinear interactions are reversed. Energy is brought by
the local flux and removed by the cascade. Again, energy is
brought faster than it is removed, the local cascade vanishing
at small scales. This again leads to a local accumulation of
energy, the local KHM relation (10) being preserved.

Now turning to Fig. 2(f), the interpretation is slightly
different since, roughly, the signs are reversed [same color
code as in Fig. 2(d)]. As a consequence, we see that the energy

e−
� locally contained above scale � in z− is decreasing in time,

except for large �. At large scales, we have a local direct cas-
cade of energy together with an incoming spatial energy flux.
The viscous and forcing terms being once again negligible, e−

�

is increasing at large scales since the incoming rate is stronger
than the cascade rate. This competition between nonlinear
transfers and the incoming flux continues through the inertial
range, where the cascade rate becomes slightly stronger than
the flux, therefore leading to a decreasing e−

� . At some point in
scale the cascade and the flux change sign, with an outgoing
flux always stronger than the inverse cascade. This explains
the local decrease of e−

� at small scales.
In conclusion, we have checked that the local KHM rela-

tion (10) is locally satisfied and highlighted that its constitut-
ing terms may exhibit much stronger amplitudes than their
space averages, as could be expected. Moreover, the local
behavior of one same term may be very different for both
balances, and local cross-scale transfers may change sign as
a function of �.

D. Local organization of scale-to-scale energy transfers

In the rest of the paper we are going to focus on transfers
of total energy (kinetic plus magnetic) through scales. Locally,
these transfers are described by the quantity

�T
� := �+

� + �−
�

2
. (27)

We show in Fig. 3 typical slices of �T
� in the (x, y) plane.

These slices are displayed at three different scales: �/L =
0.996 close to the injection scale [Fig. 3(a)], �/L = 0.125 in
the inertial range [Fig. 3(b)], and �/L = 0.0078 in the dissipa-
tive range, approximately three times larger than both hydro-
dynamic and magnetic Kolmogorov length scales [Fig. 3(c)].
Since the statistics of energy transfers (which are discussed
in Sec. III E) depend on �, we have normalized �T

� so that it
has zero space mean and unit variance at the three displayed
scales, which allows for a better comparison.

First of all, we observe that energy transfers fluctuate in
space and are organized into local structures characterized
by strong magnitudes in a background of weak (or average)
transfers. Qualitatively, we call structures events of strong
cross-scale transfers correlated over a large number of neigh-
boring grid points (typically 104–105 at inertial scales). As
we see from Fig. 3, these structures exist over a wide range
of scales, some of them covering all available �. Moreover,
we observe that they get more localized as � is decreased,
in agreement with the results of Sec. III C, where we saw
that viscous effects become globally dominant at small scales.
As a consequence, they seem to occupy a smaller fraction of
space at smaller scales, as reported by previous MHD and pure
hydrodynamic studies [37,38,66]. It is interesting to note that
nonlinear effects do not vanish close to Kolmogorov scale and
can be locally very strong. Indeed, Fig. 3(c) shows local events
which deviate more than six times the standard deviation from
their mean. Such strong events have also been observed in
hydrodynamic turbulence in the framework of von Kármán
flows [37]. Similar results at both ion and electron scales have
been reported in maps of cross-scale kinetic energy transfers
as well, using a LES approach, in the simulation data of a
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(a)

= 0.996

(b)

= 0.125

(c)
= 0.0078

FIG. 3. Typical slices of �T
� in the same plane as in Fig. 1 at three different scales: (a) close to the injection scale, (b) in the inertial

range, and (c) in the dissipative range. The mean and variance of �T
� have been set to zero and unity, respectively, at all three scales for better

comparison. We observe that local transfers are organized into structures existing over a wide range of scales.

fully kinetic particle-in-cell simulation [64]. This highlights
the local nature of the mechanisms responsible for the cascade
and shows the importance of probing very small scales to
understand turbulent energy dissipation. However, let us insist
that caution should be taken when discussing the physics
of the dissipative range from our study since local averages
may be badly converged due to the small number of grid
points contained contained in the ball of size �. Finally, let us
observe that these structures can be either positive or negative,
meaning that energy can be locally transferred from large to
small scales or backscattered, with an overall transfer to small
scales as evidenced in Fig. 2(b).

E. Statistics of local energy transfers

We have seen in Sec. III D that �T
� is a fluctuating quantity,

the statistics of which depend on scale �. Here we are going
to investigate these statistical properties. Figure 4 displays
the spatial mean [Fig. 4(a)], standard deviation [Fig. 4(b)],
and probability density functions [Fig. 4(c)] of �T

� as a
function of scales. From Sec. III C we know that �+

� , �−
� ,

and therefore �T
� have approximately the same averages at

all scales [black solid curve in Fig. 4(a)]. Figure 4(a) also

displays the variations of

εT
� := ε+

� + ε−
�

2
, (28)

computed from third-order structure functions (blue dash-
dotted curve), which allows for the comparison of our ap-
proach with Politano and Pouquet’s 4/3 law. Indeed, in the
inertial range where homogeneity and isotropy are expected
to be recovered, space averages are equivalent to ensemble
averages, so 〈�T

� 〉V should compare well with εT
� . This is

what we observe in Fig. 4(a), where both quantities behave
essentially the same despite slight discrepancies. For exam-
ple, the maximum of εT

� is slightly smaller than the one of
〈�T

� 〉V and is reached at �/L = 0.102 instead of �/L = 0.125.
There are mainly two reasons for these discrepancies. First,
in the computation of 〈�T

� 〉V , we perform local averages of
δrz∓

j |δrz±|2 over scales weighted by (∂ jG)� prior to summing
over the whole box. These local averages make �T

� smoother
than the raw quantity δrz∓

j |δrz±|2, and slightly different re-
sults are therefore expected after space averaging. Second,
the flow is inhomogeneous and anisotropic due to the large-
scale forcing. We observe in the data that homogeneity and
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(a) (b)

(c)

FIG. 4. (a) Global scale-to-scale transfers as a function of scale �. (b) Standard deviation σ T
� of �T

� as a function of scale �. (c) Probability
distribution functions of the local scale-to-scale transfers �T

� . The scales represented are, from top to bottom, �/L = 0.0078, 0.0352, 0.125,
0.352, and 0.996. All curves have been arbitrarily shifted vertically for the sake of clarity, and their mean and variance have been respectively
set to zero and unity.

isotropy are not entirely recovered at smaller scales, so some
anisotropy and inhomogeneity persist at inertial scales. This
is due to the Reynolds numbers not being high enough to
create a well-defined inertial range decoupled from large-scale
effects. Since the 4/3 law (16) assumes both homogeneity
and isotropy, εT

� does not to exactly provide a measure of
the energy cascade rate in the inertial range. This concretely
emphasizes the power of the local approach which is free from
homogeneity and isotropy assumptions.

Finally, let us note that finite-Reynolds-number effects are
also responsible for the fact that both estimates of the energy
cascade rate are smaller than the energy dissipation rate εT

[horizontal dashed line in Fig. 4(a)]. Indeed, relations (16)
and (18) are asymptotic laws, expected to be valid in the limit
of infinite Reynolds numbers, or at least in a well-defined
inertial range, far from the injection and dissipation scales. At
finite Reynolds numbers, it has been shown that effects from
large and viscous scales are not negligible at inertial scales,
so the 4/3 law is not exactly satisfied even when the flow
is homogeneous and isotropic. However, when the Reynolds
number is increased, a decrease of the discrepancies from
asymptotic laws is observed, together with an extension of the

inertial range [17,23,76]. Nonetheless, we can conclude our
discussion of Fig. 4(a) by emphasizing that our approach is in
very good agreement with the usual statistical one.

The standard deviation of �T
� is defined as

σ T
� :=

√〈
�T

�

2〉
V − 〈

�T
�

〉2
V . (29)

Its variations with scales are displayed in Fig. 4(b), where
we observe that as for the mean, it is small at large scales,
reaches its maximum around �/L = 0.0586 in the inertial
range, and then decreases at small scales. This confirms that
the highest magnitudes of scale-to-scale transfers are most
likely to be reached at inertial scales. Moreover, we see that
the standard deviation is between two and three times larger
than the mean for all �. This indicates that the magnitude
of scale-to-scale transfers tends not to be clustered around
their mean, but instead deviates significantly. The way in
which they are spread is given by plotting the probability
distribution functions (PDFs) of �T

� at various scales. These
PDFs are displayed in Fig. 4(c), where their mean is set to
zero, their variance to unity, and they have been arbitrarily
shifted vertically for the sake of clarity. First, we observe that
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they are widely spread out with very large tails, exhibiting the
existence of events where∣∣�T

� − 〈
�T

�

〉
V
∣∣ � 10 × σ T

� . (30)

The existence of such large tails explains the large standard
deviations in Fig. 4(b). Moreover, we see that the PDFs
undergo a continuous shape deformation as � is decreased.
At injection scales, the PDF is almost symmetric, while it
becomes positively skewed and strongly peaked around small
positive values in the inertial and dissipative range. These
peaks are shifted to negative values of �T

� in Fig. 4(c) because
we display the PDFs with zero mean. Note that these results
differ from those reported in [77,78] for the inertial range of
solar wind turbulence. In their study, the authors compute the
PDFs of third-order moments from time series of Advanced
Composition Explorer. Although our results confirm that the
standard deviations of the PDFs are large compared to their
means, and observe backscatter as well, the authors of [77,78]
find that their PDFs resemble Gaussians with a small skew-
ness. Even though we refrain from quantifying the skewness
and kurtosis of the PDFs displayed in Fig. 4(c) as we doubt
that statistics of order 9 and 12 would be well converged,
the statistics we observe here are clearly not Gaussian and
further studies are needed in order to understand the origin

of these different results. Nonetheless, our results show good
agreement with previous studies from hydrodynamics [37,38].
Finally, it can be understood from our discussion in Sec. III D
that the structures we observe in Fig. 3 are clusters of events
constituting the tails of the PDFs, while their overall posi-
tive magnitudes are explained by the skewness of the PDFs.
However, the PDFs do not provide any further explanation
concerning the apparent decrease of the amount of space these
structures occupy as we investigate smaller scales.

This can be studied by computing the filling factor of
events which deviate more than some given threshold from
their mean. For this purpose, we search in our data for every
point where ∣∣�T

� − 〈
�T

�

〉
V
∣∣ � n × σ T

� (31)

for various values of n and �. Note that with this criterion we
focus on points belonging to the tails of the PDFs and which
therefore constitute structures if n is chosen not too small. The
fraction of points we detect will provide us with an estimate
of the fraction of space occupied by these structures, and the
total sum of �T

� at these points will yield an estimate for
their contribution to the energy cascade rate. The results are
reported in Fig. 5.

(a) (b)

(c)

FIG. 5. (a) Estimate of the fraction of space occupied by events which deviate more than n × σ T
� from their mean as a function of n.

(b) Estimate of the contribution to global scale-to-scale transfers of events which deviate more than n × σ T
� from their mean as a function of

n. (c) Fraction of space in which a given fraction of the global scale-to-scale transfers is contained. The scales represented are �/L = 0.0078
[blue (top) solid line], 0.0352 [red (top) dashed line], 0.125 [yellow (middle) solid line], 0.352 [purple (bottom) dashed line], and 0.996 [green
(bottom) solid line].
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Figure 5(a) displays the space filling factor of these points
as a function of n and �. First of all, we observe that it
decreases very rapidly as n is increased. For example, it
drops to 10% for n ≈ 1.5 at injection and inertial scales
[green (bottom) solid and yellow (middle) solid curves, re-
spectively] and for n ≈ 0.5 close to Kolmogorov scale [blue
(top) solid curve]. Second, we see that for n � 2 the filling
factor increases with scale if n is fixed, whereas it decreases
for n � 6. The faster decrease at smaller scales for n � 2 is
in agreement with our observation of Fig. 3 that structures
get more localized as � is decreased. However, the reversal
observed for larger values of n may be surprising. Indeed,
this means that the most statistically extreme events are more
abundant at smaller scales. This seems counterintuitive and
indicates that locally strong nonlinear effects exist and should
be studied in more detail, even in the dissipative range.

This remark is confirmed by Fig. 5(b), where the contri-
bution of the same events to the overall transfer rate 〈�T

� 〉V
is plotted. Again, this quantity is a decreasing function of n.
However, contrary to the space filling factor, it increases with
decreasing scale for almost all values of n. This shows that
there is an increasing contribution to 〈�T

� 〉V of the events in
the tails of the PDFs at smaller scales. For instance, events
with n � 10 contribute to 0.05% of the cascade rate at large
scale [green (bottom) solid curve], 1% at inertial scale [yellow
(middle) solid curve], and 10% close to Kolmogorov scale
[blue (top) solid curve]. It is quite remarkable that such
extreme events contribute so greatly to the global transfer rate
at scales where viscous forces dominate the dynamics. Note
also that at this scale we have 〈�T

� 〉V = 0.0047 while σ T
� =

0.019. This means that events which are characterized by
n � 10 have a magnitude larger than 5.7εT in absolute value.
The existence of strong nonlinear effects close to Kolmogorov
scale was observed in experimental hydrodynamic flows [37],
and their study is left for future work in the MHD case. To
summarize, the results from Figs. 5(a) and 5(b) show that the
events which are far in the tails of the PDFs of �T

� , and which
are organized into structures in Fig. 3, become increasingly
localized as � is decreased, but contribute to an increasing
part of the cascade rate. This result can be made more explicit
by plotting the fraction of global transfers due to the events
characterized by a certain value of n as a function of the
fraction of space they occupy, i.e., the ordinate in Fig. 5(b) as
a function of the ordinate in Fig. 5(a). This plot is displayed
in Fig. 5(c), each point of a curve corresponding to a different
value of n. We can clearly see the increasing importance of
localized structures to the cascade rate as � decreases. For
instance, events corresponding to n � 1 occupy roughly 20%
of space and contain 40% of the global transfer rate at large
scale [green (bottom) solid curve], while they occupy 15%
and 5% of space at inertial [yellow (middle) solid curve]
and dissipative scales [blue (top) solid curve] and contribute,
respectively, to 40% and 60% of the global transfer rate. This
confirms that structures of strong events get more localized for
decreasing scales while contributing to an increasing fraction
of the global transfers. This also emphasizes the importance
of local strong events of scale-to-scale transfers, even in the
dissipative range, and the value of the local approach to the
study of the turbulent cascade.

Finally, let us note that the results displayed in Fig. 5(c)
differ from those presented in [66]. In their study, the authors
find only a small difference of the repartition of scale-to-scale
transfers in space as � is varied, whereas we observe an
increasing difference as we investigate smaller scales. More-
over, we find that these transfers are much more concentrated
into smaller regions of space than what is seen in their results.
However, these differences can be explained easily. As we
noted in Sec. II C, their expression for the local scale-to-
scale transfers differs from ours due to different definitions
of the large-scale energy. More importantly, they consider the
distribution in space of the absolute value of these transfers
rather than their algebraic sum, which changes the estimation
of the filling factors. Finally, their data come from a 2D Hall-
MHD DNS with nonzero mean magnetic field, in which the
local mechanisms leading to the energy cascade are expected
to be different from the 3D MHD case without mean magnetic
field.

F. Three-dimensional structures of energy transfers
and space gradients

One of the main assets of DNSs is that they allow us to
study the three-dimensional organization of the local struc-
tures of cross-scale transfers. Figure 6 displays the isosur-
faces corresponding to n = 4 at �/L = 0.125 (inertial scale
where nonlinear effects are the strongest), in a cubic volume
corresponding to a quarter of the whole cube. For this set of
parameters, the structures occupy close to 1% of space and
contribute to approximately 10% of the overall scale-to-scale
energy transfer rate. We observe in Fig. 6(a) that there exist
structures of various sizes, almost all of them being elongated
in one or two directions of space. Examples are displayed in
Figs. 6(b) and 6(c). Figure 6(b) is obtained by zooming in
on the isosurface in the center of Fig. 6(a). In this particular
example, the length and width of the structure are of the same
order of magnitude (they differ by a factor 2), but its thickness
is around 60 times smaller than its length. This allows us to
qualify it as quasi-2D, or sheetlike. On the other hand, the
structures displayed in Fig. 6(c) have a length approximately
10 times larger than their width and can be considered as
quasi-1D, or filamentlike.

It seems natural to seek the origin of this three-dimensional
organization in the topology of the velocity and magnetic
fields. Indeed, the local transfers are determined by these
two quantities, and a key question is to understand how
the local structures of cross-scale transfers, observed, for
instance, in Fig. 3, are related to the local configuration of
both u and b (displayed in the same plane in Fig. 1). It
is known from hydrodynamics (b = 0) that there exists a
link between the finiteness of �T

� at small scales and the
possible existence of singularities in Navier-Stokes equations.
In particular, for infinitely small scales, �T

� converges (in the
sense of distributions) to a scalar field which can only be
nonzero in areas where u has infinite space gradients [33,35].
The detection or study of such singularities in the MHD case
is not the subject of this paper. However, as we noted in
Sec. III D, structures of cross-scale transfers exist on a wide
range of scales and get more localized as � is decreased. As
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FIG. 6. Three-dimensional organization of cross-scale transfer structures at �/L = 0.125 (inertial scale) for n = 4. We observe that the
structures are (b) sheetlike or ribbonlike or (c) filamentlike.

a consequence, they might be the signature at finite scales of
singularities in the velocity and magnetic fields. This idea has
been investigated in the hydrodynamic case with encouraging
results [37–39]. If this is actually correct, structures should

appear in the same areas as strong velocity or magnetic field
gradients, even after filtering. Figure 7 displays two maps, in
the same plane as in Figs. 1 and 3, of ωy,� = ∂zux,� − ∂xuz,�

and jz,� = ∂xby,� − ∂ybx,�, at �/L = 0.125. Comparing with

(a)

ω

(b)

j

FIG. 7. Slices of (a) the vorticity component ωy,� and (b) the electric current density jz,� in the same plane as in Figs. 1 and 3, at �/L = 0.125
(inertial scale). Comparing with Fig. 3(b), we observe that structures of scale-to-scale transfers are located in regions of either high vorticity
or vertical currents.
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Fig. 3(b), we see that areas of strong scale-to-scale transfers
correlate well with areas of either strong vorticity or strong
vertical current. Let us note that other components such as
jx,�, jy,�, or ωx,� do not display much correlation with local
nonlinear transfers, or are highly correlated with the forcing,
like ωz,�. The observed regions of strong vertical current are
elongated over many (x, y) slices (several tens of them), so
what we see in Fig. 7(b) are vertical current sheets and ribbons
or filaments. Therefore, vorticity and electric current could
be used to localize areas of large cross-scale transfers. One
might be surprised that we display curls to highlight areas of
strong gradients instead of the gradients themselves. Indeed,
each component of the curl is expressed as a difference of
gradients, so fields may have strong gradients and small curl.
We have made this choice for mainly three reasons. First, in
our study, we have not seen any regions of strong gradients
with small curl. Second, vorticity and electric current density
correspond to widely studied physical quantities which can
be estimated from numerical as well as experimental data.
Finally, recent studies have shown that when deformations of
the pressure tensor are retained, they show high correlation
with the vorticity [79,80], suggesting that ω can play a role
in energy transfers when kinetic effect are implemented in
the plasma description [81]. However, note that even if both
ω� and j� seem complementary when comparing with cross-
scale transfers, it is interesting to note that in the case shown
here, the electric current is much more correlated to �T

� than
the vorticity. This asymmetry may be due to the flow being
forced only through Navier-Stokes equations, so contrary
to the electric current density, vorticity displays features of
the forcing which can be observed on maps of ωz,� even
at inertial scales (figure not shown here). Whether this is a
particular case or has more general implications needs further
investigation.

IV. CONCLUSION

In this article we have shown the importance of investi-
gating the local processes of nonlinear energy transfers in
turbulent flows. Using a filtering approach, we are able to
obtain a local Kármán-Howarth-Monin equation (10) which
provides the exact expression for local cross-scale transfers at
all scales � (12), without assuming homogeneity or isotropy.
From this expression, a local form of Politano and Pouquet’s
4/3 law can be derived (18), and the link with usual statistical
results of turbulence can be established. The study of scale-
to-scale energy transfers reveals that they fluctuate in space
and organize into structures which can be locally extremely
strong (more than one order of magnitude larger than the
global cascade rate), even close to Kolmogorov scale. Some
of these structures are observed over the whole available range
of scales, and the computation of their filling factor shows that
they get more localized as � is decreased, while contributing
to an increasing fraction of the cascade rate. In particular, we
note that even close to Kolmogorov scale, locally strong non-
linear effects persist. Finally, the three-dimensional study of
these structures reveal that they are filamentlike, or sheetlike
or ribbonlike, in agreement with their expected occurrence
in areas of strong gradients of u and b. This last point is

confirmed by comparing maps of local cross-scale transfers
with maps of vorticity and electric current density.

The results presented herein provide alternative perspec-
tives for the study of the mechanisms leading up to the
turbulent cascade. The local features of scale-to-scale trans-
fers that we are able to highlight constitute a first step for
future studies, which should allow us to gain new insights
into the physics of turbulent MHD flows. As possible future
investigations we mention the following.

(i) MHD is characterized by a double direct cascade of both
energy and cross helicity. In this paper we have focused on
the former in order to highlight the local (in space and time)
features of the turbulent energy cascade. However, the cascade
of cross helicity is another important mechanism of turbulent
MHD flows and should not be left aside. Performing the same
study considering the local transfer rate �C

� := (�+
� − �−

� )/2
of this quantity should yield a more complete understanding
of the local processes generating the double MHD cascade.

(ii) Other DNSs with different characteristics should be
investigated, for instance, what happens in the presence of a
mean magnetic field [82] or for two-dimensional turbulence.

(iii) A detailed analysis of the topologies of the veloc-
ity and magnetic fields at the location of strong cross-scale
transfers should be performed in order to understand how the
structures we observe emerge from the local configuration of
the physical fields. Such a study may reveal local patterns pro-
ducing these transfers such as what was observed in [37,39]
and provide an explanation for their sign.

(iv) Studying the dynamics of these structures may also
shed some light on the local mechanisms generating scale-
to-scale transfers. However, for three-dimensional turbulence
with sufficiently high Reynolds numbers, this would require
one to process several time steps, which represents a huge
amount of data and computational resources.

(v) The existence of strong nonlinear effects close to Kol-
mogorov scale is an important result. Such locally extreme
events have recently been studied in hydrodynamic turbulence
[37,39], and their existence in MHD flows should be investi-
gated. Indeed, a key question in plasma physics is whether
the end of the MHD range is also the end of the cascade
[83–87] or whether there is some energy which continues to
be transferred to kinetic scales as suggested in [64,88–93].
Recent studies have shown a possible link between various
energy transfer channels, based on proxies for the local energy
cascade rate and for energy dissipation [94]. Applying the
more rigorous approach presented in this paper to kinetic
simulations and Hall MHD should help in understanding what
happens for energy transfers at scales where kinetic physics
becomes important, especially since the local Hall-MHD term
has been derived in [55].

(vi) Another subject worth exploring is the relation be-
tween the nonlinear and viscous terms. In particular, small-
scale dynamics is mostly governed by viscous forces, and it
seems natural to investigate whether structures of cross-scale
transfers exist in areas of enhanced viscous dissipation or
are completely uncorrelated. In the MHD regime, it might
be expected that since locally strong scale-to-scale transfers
appear in areas of strong gradients, these gradients also gen-
erate strong viscous dissipation, therefore inducing a good
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correlation. However, this is without taking the smallness of
the viscosity into account. Note that previous studies at kinetic
scales using partial variance of increments show that tempera-
ture anisotropy and particle distribution function distortions,
probably due to energy dissipation, are concentrated near
structures such as current sheets [95]. The relation between
nonlinear and viscous terms has been investigated at various
scales in hydrodynamic turbulence and results suggest that the
extreme events of interscale transfer correspond to the minima
of viscous dissipation and vice versa [40]. The same question
for plasma turbulence, however, is still to be addressed.

(vii) As we mentioned in Sec. II B, it is possible to de-
rive two local balances for the kinetic and magnetic ener-
gies separately (see the Appendix). Here such balances have
been derived using the point-split approach. However, their
counterparts using the LES point of view are known and
have been investigated [62–66]. As a consequence, these
results will allow us to compare the two approaches and
understand the local processes governing the transfers of
kinetic and magnetic energies separately. For instance, recent
studies using DNS of MHD turbulence indicate that kinetic
and magnetic energy exchanges only occur at large scales
on average [65]. This means that the two energy budgets
statistically decouple at intermediate and small scales and
suggests that the cascade phenomenology applies to kinetic
and magnetic energies separately, even though they are not
quadratic invariants. Formalizing such a phenomenology in
the spirit of K41 may therefore be possible. Additionally, the
authors find that the two cascade rates are equal. Checking
whether these results hold in the point-split approach, based
on the Appendix, could help supplement this work.

(viii) The study presented in this paper is also par-
ticularly relevant for solar wind physics where turbulence
seems to be a key mechanism to explain solar wind heat-
ing, observed from the slow decrease of its temperature
with distance from the Sun. Applying the approach pre-
sented in this paper to spacecraft data should therefore al-
low us to understand the mechanisms at work in the solar
wind.

(ix) Finally, let us mention the case of compressible tur-
bulence, where scale filtering has been used to investigate the
scale locality of the cascade using the LES approach and for
which the point-split technique should be worth investigating
[96,97].
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APPENDIX: DERIVATION OF SEPARATE BALANCES FOR
LARGE-SCALE KINETIC AND MAGNETIC ENERGIES

In this Appendix we derive two balances for large-scale
kinetic and magnetic energies separately, using the point-split
approach. They are given in Eqs. (A20) and (A21) and in
an alternative form in Eqs. (A22) and (A23). The derivation

is largely inspired by [34]. We start from the incompressible
MHD equations at point x,

∂t ui + u j∂ jui = −∂i p
∗ + b j∂ jbi + ν∂ j∂ jui, (A1)

∂ ju j = 0, (A2)

∂t bi + u j∂ jbi = b j∂ jui + η∂ j∂ jbi, (A3)

∂ jb j = 0, (A4)

and point x + r,

∂t ûi + û j∂ j ûi = −∂i p̂∗ + b̂ j∂ j b̂i + ν∂ j∂ j ûi, (A5)

∂ j û j = 0, (A6)

∂t b̂i + û j∂ j b̂i = b̂ j∂ j ûi + η∂ j∂ j b̂i, (A7)

∂ j b̂ j = 0. (A8)

The idea is the same as what we have done in the main text.
We will derive a balance for the point-split energy and then
apply a filter in order to obtain a coarse-grained balance at
scale �. We will start with the kinetic energy (KE). Let us
take the dot product of Eq. (A1) with û together with the dot
product of Eq. (A5) with u. We get

ûi∂t ui + ûi∂ j (uiu j ) = −∂i(ûi p
∗) + ûi∂ j (bib j ) + νûi∂ j∂ jui,

(A9)

ui∂t ûi + ui∂ j (ûiû j ) = −∂i(ui p̂∗) + ui∂ j (b̂ib̂ j ) + νui∂ j∂ j ûi.

(A10)

Summing these two equations, we obtain

∂t (uiûi )︸ ︷︷ ︸
time derivative

+ ui∂ j (ûiû j − b̂ib̂ j ) + ûi∂ j (uiu j − bib j )︸ ︷︷ ︸
nonlinear terms

= −∂i(ui p̂∗ + ûi p
∗)︸ ︷︷ ︸

pressure terms

+ ν(ui∂ j∂ j ûi + ûi∂ j∂ jui )︸ ︷︷ ︸
viscous terms

. (A11)

We have put time derivatives and nonlinear terms together
on the left-hand side and pressure as well as viscous terms
together on the right-hand side. Now we are going to treat the
viscous and nonlinear terms separately.

(a) The viscous term can be rewritten

ui∂ j∂ j ûi + ûi∂ j∂ jui = ∂ j∂ j (uiûi ) − 2(∂ jui )(∂ j ûi ).

(b) We know from [34] (Chap. III C) that nonlinear terms
containing only the velocity field can be written as a term
describing scale-to-scale transfers of KE plus a divergence
(those mixing both the velocity and magnetic fields are left
untouched for now and will be treated later)

ui∂ j (ûiû j ) + ûi∂ j (uiu j )

= − 1
2∂r j (δu jδuiδui )︸ ︷︷ ︸

2�u

+∂ j
(

1
2 ûiûiδu j + uiûiu j

)
.
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We can then write Eq. (A11) as

∂t (uiûi ) + ∂ j

(
uiûiu j + 1

2
ûiûiδu j + u j p̂∗ + û j p∗ − ν∂ j (uiûi )

)
= ui∂ j (b̂ib̂ j )︸ ︷︷ ︸

1©

+ ûi∂ j (bib j )︸ ︷︷ ︸
2©

+2�u − 2ν(∂ jui )(∂ j ûi ), (A12)

where 1© and 2© are the terms which have not yet been treated.
We now move on to the point-split magnetic energy (ME)

balance. The calculations are the same as what we have done
for the KE. Following the same procedure with Eqs. (A3) and
(A7) we get

b̂i∂t bi + b̂i∂ j (biu j ) = b̂i∂ j (uib j ) + ηb̂i∂ j∂ jbi, (A13)

bi∂t b̂i + bi∂ j (b̂iû j ) = bi∂ j (ûib̂ j ) + ηbi∂ j∂ j b̂i. (A14)

We sum these two equations,

∂t (bib̂i )︸ ︷︷ ︸
time derivative

+ bi∂ j (b̂iû j − ûib̂ j ) + b̂i∂ j (biu j − uib j )︸ ︷︷ ︸
nonlinear terms

= η(bi∂ j∂ j b̂i + b̂i∂ j∂ jbi )︸ ︷︷ ︸
dissipative terms

, (A15)

and after performing the same rearrangements as for the KE
balance we get

∂t (bib̂i ) + ∂ j

[
bib̂iu j + 1

2
b̂ib̂iδu j − η∂ j (bib̂i )

]
= bi∂ j (ûib̂ j )︸ ︷︷ ︸

3©

+ b̂i∂ j (uib j )︸ ︷︷ ︸
4©

+2�b − 2η(∂ jbi )(∂ j b̂i ).

(A16)

Again, 3© and 4© are the terms which have yet to be treated, and
we defined 2�b := 1

2∂r j (δu jδbiδbi ).

Let us now search for a relation which links the four terms
1©, 2©, 3©, and 4©. First, we note that

1© + 4© = uib̂ j∂ j b̂i − uib j∂ j b̂i︸ ︷︷ ︸
�1

+∂ j (uib̂ib j )

= uiδb j∂ j b̂i︸ ︷︷ ︸
�1

+∂ j (uib̂ib j ),

2© + 3© = bib̂ j∂ j ûi − bib j∂ j ûi︸ ︷︷ ︸
�2

+∂ j (ûibib j )

= biδb j∂ j ûi︸ ︷︷ ︸
�2

+∂ j (ûibib j ).

Here again we have followed the steps of [34] (Chap. III C).
Second,

∂r j (δb jδuiδbi ) = δb j∂r j (δuiδbi )

= δb j
(
δbi∂r j δui + δui∂r j δbi

)
= δb j (δbi∂ j ûi + δui∂ j b̂i )

= δb j (b̂i∂ j ûi − bi∂ j ûi + ûi∂ j b̂i − ui∂ j b̂i )

= δb j∂ j (ûib̂i ) − �1 − �2

= ∂ j (δb jûib̂i ) − �1 − �2.

We therefore deduce the relation

1© + 2© + 3© + 4© = −∂r j (δb jδuiδbi )︸ ︷︷ ︸
2�u,b

+∂ j (δb jûib̂i

+ uib̂ib j + ûibib j ). (A17)

Assembling Eq. (A12), (A16), and (A17), we can write

∂t (uiûi ) + ∂ j
(
uiûiu j + 1

2 ûiûiδu j + u j p̂∗ + û j p∗ − ν∂ j (uiûi ) − uib̂ib̂ j − ûibib j
) = 2�u − b̂ib̂ j∂ jui − bib j∂ j ûi − 2ν(∂ jui )(∂ j ûi ),

(A18)

∂t (bib̂i ) + ∂ j
(
bib̂iu j + 1

2 b̂ib̂iδu j − η∂ j (bib̂i ) − δb jδuib̂i
) = 2�b + 2�u,b + b̂ib̂ j∂ jui + bib j∂ j ûi − 2η(∂ jbi )(∂ j b̂i ). (A19)

Multiplying these two identities by the kernel G�(r) and integrating over r yields the coarse-grained KE and ME balances

∂t
(

1
2 uiui,�

) + ∂ j
{

1
2 uiui,�u j + 1

4 (uiuiu j )� − 1
4 (uiui )�u j + 1

2 (u j p∗
� + u j,� p∗) − ν∂ j

(
1
2 uiui,�

) − 1
2 [ui(bib j )� + ui,�bib j]

}
= −�u

� − 1
2 [(bib j )�∂ jui + bib j∂ jui,�] − ν(∂ jui )(∂ jui,�), (A20)

∂t
(

1
2 bibi,�

) + ∂ j
{

1
2 bibi,�u j + 1

4 (bibiu j )� − 1
4 (bibi )�u j − η∂ j

(
1
2 bibi,�

) − 1
2 [(uibib j )� − (bib j )�ui − (uibi )�b j + uibi,�b j]

}
= −�b

� − �u,b
� + 1

2 [(bib j )�∂ jui + bib j∂ jui,�] − η(∂ jbi )(∂ jbi,�), (A21)

where

�u
� := 1

4

∫
dr[∂ jG�(r)]δu jδuiδui,

�b
� := 1

4

∫
dr[∂ jG�(r)]δu jδbiδbi,

�u,b
� := −1

4

∫
dr[∂ jG�(r)]2δb jδuiδbi.
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Note that �u
� , �b

�, and �u,b
� are not the results of a filtering of �u, �b, and �u,b by G�. Of course, summing Eqs. (A20) and

(A21) yields the local KHM relation (10). Let us note that �u
� , �b

�, and �u,b
� are the local form of the three terms which appear

in Politano and Pouquet’s 4/3 law [27]. We also note that an additional term describing the exchanges between KE and ME
appears and takes the form [(bib j )�∂ jui + bib j∂ jui,�]/2. Since it appears with opposite signs in the two balances, it does not
contribute to the local balance for the total energy. Using the strain tensor Si j = (∂iu j + ∂ jui )/2, this term can be rewritten as
[(bib j )�Si j + bib jS�

i j]/2. In this form, it is interpreted as the kinetic energy expended by the flow to bend and stretch the magnetic
field lines (see [63] for the same discussion in the large-eddy simulation approach). Alternatively, it can be related to the work
of the Lorentz force f L on the particles. Denoting by j the electric current density, we get

(̂ j × b̂) · u = [(∇ × b̂) × b̂] · u

= [
(̂b · ∇ )̂b − ∇(

1
2 |̂b|2)] · u

= ui∂ j (b̂ib̂ j ) − ∂ j
(

1
2 b̂ib̂iu j

)
= −b̂ib̂ j∂ jui + ∂ j

(
uib̂ib̂ j − 1

2 b̂ib̂iu j
)
,

which after filtering gives

f �
L,iui = −(bib j )�∂ jui + ∂ j

[
ui(bib j )� − 1

2 (bibi )�u j
]
.

In the same way

fL,iui,� = −bib j∂ jui,� + ∂ j
(
ui,�bib j − 1

2 bibiu j,�
)
,

and we recover the interpretation of KE-ME exchanges due to the interactions of the plasma with the electromagnetic fields
through the Lorentz force (see also [63]). Equations (A20) and (A21) can then be rewritten

∂t
(

1
2 uiui,�

) + ∂ j
{

1
2 uiui,�u j + 1

4 (uiuiu j )� − 1
4 (uiui )�u j + 1

2 (u j p∗
� + u j,� p∗) − ν∂ j

(
1
2 uiui,�

) − 1
4 [(bibi )�u j + bibiu j,�]

}
= −�u

� + 1
2

(
f �
L,iui + fL,iui,�

) − ν(∂ jui )(∂ jui,�), (A22)

∂t
(

1
2 bibi,�

) + ∂ j
{

1
2 bibi,�u j + 1

4 (bibiu j )� − η∂ j
(

1
2 bibi,�

) − 1
2 [(uibib j )� − (uibi )�b j + uibi,�b j] − 1

2 ui,�bib j + 1
4 bibiu j,�

}
= −�b

� − �u,b
� − 1

2

(
f �
L,iui + fL,iui,�

) − η(∂ jbi )(∂ jbi,�). (A23)
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