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a b s t r a c t

This manuscript describes the derivation of systems of equations for weakly nonlinear
gravity waves in shallow water in the presence of constant vorticity. The derivation is
based on a multi-layer generalization of the traditional columnar Ansatz. A perturbative
development in a nonlinear parameter and a dispersive parameter allow us to obtain
sets of equations, for the horizontal fluid velocity and the free surface, able to describe
propagation of weakly nonlinear and dispersive surface waves moving in water with
some prescribed initial constant vorticity. We have shown that vorticity plays a central
role on the dispersive properties of the system. When it is weak, it acts as a correction in
linear and nonlinear dispersive terms. When stronger, it can also influence the nondis-
persive behavior of the system. Explicit steady solutions of the system corresponding to
zero, weak, normal or strong vorticity are obtained. They correspond to solitary waves.
Evolution of the soliton celerity, amplitude and width for these four cases are discussed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

When propagating in coastal waters, surface waves often encounter currents. These currents, with intensities ranging
rom weak to very strong are generated through various mechanisms, such as oceanic circulation, tides, wind action or
ave breaking. Given these generation processes, the currents are often observed to vary with depth, and result in an
nderlying vorticity. Such background vorticity, included within strong tidal currents [1] or in wind driven currents [2]
ould be important and should be taken into account in modeling the propagation of water waves [3]. This underlying
orticity is especially observed in shallow water environments. For instance, strong currents, linearly sheared, were
bserved in the surf zone, in strong rip currents, in situ [4] or in laboratory experiments [5]. More recently, a similar
ertical structure of the current was observed over coral reefs [6].
From a theoretical point of view the role played by constant or variable vorticity constitutes a vast and classical subject

n fluid mechanics. Da Silva and Peregrine have studied [7] steady surface waves in water of finite depth with constant
orticity. In Refs. [8–12], Constantin et al. have developed a complete study of exact steady periodic water waves with
orticity. Castro and Lannes [13] investigated fully nonlinear long-waves under the action of vorticity with a Green–
aghdi equation. Numerical studies of this problem can be found in references Ko and Strauss [14,15] and Milewski,
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anden-Broeck and Z. Wang [16] However very few works have concentrated to modeling nonlinear dynamics of long
urface waves in finite depth under the actions of a sheared current. The pioneering work in this domain was that of
enjamin [17] who generalized the classical solitary wave theory to surface waves under the action of vorticity. Freeman
nd Johnson [18] derived a Korteweg-de Vries equation in a flow of arbitrary vorticity. Choi has derived the Green–Naghdi
quation and the associated Boussinesq equation for small amplitude wave. In Ref. [2] Johnson studied the problem of
wo-way propagation as described by the Boussinesq equation and derived a new Boussinesq-type equation valid for
onstant vorticity. The solitary-wave solution for this new equation is exhibited. The Camassa–Holm equation for water
aves with constant vorticity and its solitary-wave solution were described. Kharif, Abid and Touboul have studied the
ction of vorticity on the rogue waves dynamics [19]. More recently Kharif and Abid [20] have studied the role played by
onstant vorticity on surface waves using a generalized Whitham equation [21].
The main objective of this work is to derive higher order evolution equations for weakly nonlinear long surface

ravity waves in shallow water in the presence of constant vorticity beyond all orders in nonlinearity, dispersion and
onlinear dispersion. The employed method is based on the Johnson’s work [22]. A generalized columnar pattern Ansatz
s introduced, together with the two perturbative parameters : the nonlinear parameter α = a/h < 1 and the dispersive
parameter δ = kh < 1, where h refers to the constant depth of the fluid while a and k are a typical amplitude and
wavenumber of the wave being studied. This generalization is based on two main hypothesis. Firstly, the horizontal
velocity of the fluid is represented by means of an infinite series in powers of z2δ2. Secondly, the conservation of vorticity
is enforced, which provides a consistent closure of the problem. This results in a generalized Serre-Green–Naghdi model
with vorticity equivalent to a multi-layer model in place of the single-layer model (see Kim et al. [23,24]). An interesting
advantage of this approach is that it provides an inter-comparison of the terms describing frequency dispersion, and
nonlinear dispersion, even when they involve vorticity. The main result in relation to previous studies is that Ω plays
a fundamental role on the dispersive properties of the system. Furthermore, when it is of stronger order of magnitude,
vorticity also acts as a corrective term in the non dispersive terms of the system. The role of vorticity can thus be discussed,
considering nil, weak, normal or strong vorticity. Furthermore, solitary wave solutions are derived in these four cases, and
the role of vorticity on the solitonic properties are fully investigated.

2. The combined effect of vorticity, dispersion, and nonlinearity on long water waves

2.1. General equations of the problem

We consider the water particles to be located by a to a two-dimensional Cartesian coordinate system with origin 0 and
axes x, z, z being orientated upward in the vertical direction. The governing equations are the Euler equations and the
equation of mass conservation in x, z and t (time) completed with appropriate surface and bottom boundary conditions.
Before perturbations the fluid lies between the impermeable bottom at z = 0 and the still water free surface at z = h with
h constant. The undisturbed initial state is incompressible, inviscid, with zero surface tension and with a superimposed
current profile in the x direction and depending only linearly on z i.e U⃗ = Ωze⃗x with e⃗x the unitary vector in the x
direction. The perturbations to the free surface, horizontal and vertical velocities and pressure (relative to the hydrostatic
pressure in the undisturbed initial state) are η(x, t), u(x, z, t), w(x, z, t) and p(x, z, t) respectively. The governing equations
are made nondimensional as follow (primes mean dimensionless variables): z ′

= z/h, x′
= kx, t ′ = kt

√
gh, η′

= η/h, with
an average or a typical wavenumber, a the amplitude and g the gravity. This brings to

u′
=

u
√
gh

, w′
=

w

kh
√
gh

, p′
=

p
ρgh

, Ω ′
=

Ω

k
√
gh

,

We now introduce the two small parameters α = a/h ≪ 1 and δ = kh ≪ 1, which are used as perturbative parameters,
as it is classically done in small perturbative methods for studying surface water waves problems. The final form of the
governing equations require to scale u′, w′, p′ and η′ with α i.e.: (u′, w′, p′, η′) → α(u′, w′, p′, η′). As a result we obtain
for 0 ≤ z ≤ 1 + αη and dropping the primes

ux + wz = 0, ut + (δΩz + αu) ux + w(δΩ + αuz) + px = 0, wt + (δΩz + αu) wx + αwwz +
αpz + 1

αδ2
= 0 (1)

p = 0 and ηt + [δΩ(1 + αη) + αu] ηx − w = 0, on z = 1 + αη; and w = 0, on z = 0. (2)

A classical treatment of the system (1)–(2) relies on its linearization, which admits solutions for the horizontal and vertical
velocities uL and wL as:

uL(x, z, t) = 2aiδ exp{iθ (x, t)} cosh δz, wL(x, z, t) = 2a exp i{θ (x, t)} sinh δz

with exp{iθ (x, t)} = exp{i(x − σ t)} and σ the linear frequency of expression

σ = δΩ −
Ω

2
tanh δ ±

{
Ω2 tanh2 δ

4
+

tanh δ

2

} 1
2

.

The Johnson derivation of the single-layer model equations (in Ref. [22]) means, from a physical mathematical point
of view, the lower order in δ of the linear horizontal velocity solution u proportional to exp iθ (x, t) is replaced by
L

2
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n unknown function u(x, t) which is supposed to bring an approximate solution of the entire nonlinear problem. Our
approach can be viewed as a generalization of this columnar hypothesis where each one of the orders

δ0z0 exp{iθ (x, t)}, δ2z2 exp{iθ (x, t)}, δ4z4 exp{iθ (x, t)}, . . .

is replaced by

u0(x, t), δ2z2u2(x, t), δ4z4u4(x, t), . . . so, u(x, z, t) =

∞∑
n=0

u2n(x, t)δ2nz2n, ∀n (3)

In these two developments, only even terms are retained in the decomposition of u, while uneven terms are kept for
he decomposition in w. This assumption, classical in Boussinesq type equations, is justified by the Taylor’s expansions of
osh(δz) and sinh(δz) respectively. From the continuity equation and the boundary condition w = 0 on z = 0 it follows
hat

w(x, z, t) = −

∞∑
n=0

u2n,x
δ2nz2n+1

2n + 1
. (4)

Substituting u(x, z, t) and w(x, z, t) in the equation for wt integrating for z ∈ [z, 1 + αη] and using p = 0 at z = 1 + αη
e obtain p(x, z, t)

p = 1 + αη − z −
δ2

2

[
(1 + αη)2 − z2

] [
u0,xt + αu0u0,xx − αu2

0,x

]
−

δ3

3

[
(1 + αη)3 − z3

]
Ωu0,xx + O

(
δ4

)
. (5)

Using the expression of p in ut and integrating for z ∈ [0, 1 + αη] lead to

u0,t + αu0u0,x + ηx =
δ2

3(1 + αη)

{[
(1 + αη)3

(
u0,xt + αu0u0,xx − αu2

0,x

)]
x − (1 + αη)3

(
u2,t + α(u0u2,x − u2u0,x)

)}
+ δ3Ω

{
(1 + αη)3

(u2,x

6
−

u0,xxx

4
− αu0,xxηx (1 + αη)−1

)}
+ O

(
Ωδ5, δ4

)
.

(6)

Finally equation for η(x, t) using u(x, z, t) and w(x, z, t) at z = 1 + αη gives

ηt + (1 + αη) δΩηx + [u0 (1 + αη)]x +
δ2

3

[
u2 (1 + αη)3

]
x + O

(
δ4

)
= 0. (7)

Expressions (6) and (7) are a system of two coupled equations in three fields (and theirs derivatives): u0, u2 and η. In
order to reduce this system to only two fields u0 (and derivatives) and η we use the conservation of vorticity equation

Dω⃗

Dt
= 0

We obtain

ωt + (δΩz + αu)ωx + αwωz = 0, with ω = |ω⃗|, αω⃗ =
(
δΩ + αuz − αδ2wx

)
e⃗y, (8)

ith e⃗y the unitary vector in the y direction. This yields the following expression

u2n+2 = −
u2n,xx

(2n + 1)(2n + 2)
, n = 0, 1, 2, . . . (9)

his recurrence allows us to reduce (6) and (7), at any degree of approximation, in a system in u0, η and their derivatives.
oming back to Eqs. (6) and (7), we might substitute u2(x, t) with u0(x, t) by using the recurrence (9). Then, if dropping
erms of greater order than δ3 and rearranging, we obtain

u0,t + αu0u0,x + ηx −
δ2

2

{
(1 + αη)2

(
u0,xt + αu0u0,xx − αu2

0,x

)}
x

− δ3Ω

{
1
3
(1 + αη)3u0,xxx + α(1 + αη)2u0,xxηx

}
+ O

(
δ4, Ωδ4

)
= 0, (10)

ηt + (1 + αη)δΩηx + [u0 (1 + αη)]x −
δ2

6

[
u0,xx (1 + αη)3

]
x + O

(
δ4

)
= 0. (11)

The system of Eqs. (10)–(11) is obtained for small values of the parameter α and δ. However, it is emphasized that
no assumption was performed on the order of magnitude of Ω . The purpose of this work is to analyze the role played
by the vorticity on this system. Following this purpose in the next section, a further assumption is to be introduced, the
order of magnitude of the vorticity being compared to the dispersive parameter of the system δ. Indeed, three cases will be
distinguished, which are weak, normal or strong vorticity, assuming respectively that Ω = Ω0δ = O (δ), Ω = Ω0 = O (1),
and Ω = Ω0/δ = O

(
δ−1

)
. In this further decomposition, Ω0 is, of course, of order 0 in δ, setting the value of the constant

vorticity.
3
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.2. Long wave evolution equations

.2.1. The irrotational case Ω = 0
We shall start by considering the zero vorticity case, with Ω = Ω0 = 0. Starting from Eqs. (10) and (11), and

ntroducing this further assumption, we obtain

u0,t + αu0u0,x + ηx −
δ2

2

{
u0,xt + αu0u0,xx − αu2

0,x + 2αηu0,xt
}
x = 0, (12)

ηt + u0,x + α(u0η)x −
δ2

6
u0,xxx −

αδ2

2
(u0,xxη)x = 0. (13)

hese equations are different from the classical Green–Naghdi system because we have used the conservation of the
orticity theorem. En passant, we note that if Dω⃗/Dt = 0 had been used independently from the order in δ, the
reen–Naghdi system would be reduced (as it can easily be shown) to the Shallow Water Equation.
e now make a further assumption, by searching for traveling waves. Though, we might introduce the change in variables
= x − ct , c being the speed of propagation. We thus exclude waves traveling to the (−x) direction. Inserting this new

variable in the system above, and integrating equation (12), we can eliminate the unknown δ from the system. We thus
obtain the equation(

1 − c2
)
u0 +

3α
2

cu2
0 + δ2

(
c2

2
−

1
6

)
u0,rr +

αδ2

2

[(
2c3 − 3c

)
u0u0,rr + cu2

0,r

]
= 0. (14)

.2.2. The weak vorticity case, Ω = Ω0δ
Now, we investigate the weak vorticity case, by introducing the relation Ω = Ω0δ = O(δ) in Eqs. (10) and (11).

o introduce this assumption in the system, we proceed as done in Section 2.2.1. By replacing the unknown u2 with its
xpression in u0, introducing the traveling wave hypothesis, integrating the system, and eliminating the unknown η, we
btain the equation on u0, which reads

(1 − c2)u0 +
3α
2

cu2
0 + δ2

[(
c2

2
−

1
6

)
u0,rr + Ω0cu0

]
+

αδ2

2

[(
2c3 − 3c

)
u0u0,rr +cu2

0,r + (c2 − 1)Ω0u2
0

]
= 0.

(15)

.2.3. The rotational case, Ω = Ω0 ̸= 0
Again, we shall start from Eqs. (10) and (11), and introduce the assumption Ω = Ω0 = O(1). We shall now follow the

rocedure described in Section 2.2.1, and obtain the equation

(1 − c2)u0 +
3α
2

cu2
0 + δΩ0cu0 −

αδ

2
(1 − c2)Ω0u2

0

+δ2
(
c2

2
−

1
6

)
u0,rr+

αδ2

2

[(
2c3 − 3c

)
u0u0,rr + cu2

0,r

]
= 0.

(16)

.2.4. The strong vorticity case, Ω = Ω0δ
−1

Finally, in this section, we examine the hypothesis where the vorticity is of great order of magnitude with respect
o the dispersive properties. This assumption writes Ω = Ω0/δ = O(δ−1). Again, the procedure applied in the previous
ubsections, with the further assumption of traveling waves, leads to the following equation

(1 − c2 + Ω0c)u0 +
α

2

(
3c + Ω0c2 − Ω0

)
u2
0 + δ2

[
c2

2
−

1
6

−
Ω0

6
(2Ω0 − c)

]
u0,rr

+
αδ2

2

[(
2c3 − 3c +

Ω0 + Ω0c (4Ω0 − 15c)
3

)
u0u0,rr + (c − Ω0)u2

0,r

]
= 0.

(17)

et, it is emphasized that the terms of order O(Ωδ4), which were dropped in the system (10)–(11) for sake of brevity
ere kept in this derivation, to insure the consistency of Eq. (17).

.3. The combined effect of vorticity, dispersion, and nonlinearity on long water waves

The four Eqs. (14)–(17) correspond to four long wave evolution equations, involving the influence of the vorticity, for
arious order of magnitude. The differences between the four equations are presented in Table 1, which collects each and
very term, as a function of their order of magnitude in α, δ and their combinations.
In this table, the line denoted Ω = 0 corresponds to our reference case, in the absence of vorticity. Collecting the

erms of Eq. (14), as it is classically done in Boussinesq like models, we identify the contribution of each and every term
n the dispersive properties of the system. The term in O(1) corresponds to the non-dispersive contribution, the term of
4
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able 1
odifications of the long wave equations in the presence of weak, normal or strong vorticity.

O(1) O(α) O(δ) O(αδ) O(δ2) O(αδ2)

Ω = 0 (1 − c2)u0
3
2
cu2

0

(
c2

2
−

1
6

)
u0,rr

(
2c3 − 3c

)
u0u0,rr

+ cu2
0,r

Ω = O(δ) (1 − c2)u0
3
2
cu2

0

(
c2

2
−

1
6

)
u0,rr

+Ω0cu0

(
2c3 − 3c

)
u0u0,rr

+cu2
0,r + (c2 − 1)Ω0u2

0

Ω = O(1) (1 − c2)u0
3
2
cu2

0 Ω0cu0 −
1
2
(1 − c2)Ω0u2

0

(
c2

2
−

1
6

)
u0,rr

(
2c3 − 3c

)
u0u0,rr

+ cu2
0,r

Ω = O(δ−1)
(1 − c2)u0

+ Ω0cu0

3c
2

u2
0

−Ω0(c2 − 1)u2
0

(
c2

2
−

1
6

)
u0,rr

−
Ω0

6
(2Ω0 − c)u0,rr

(
2c3 − 3c

)
u0u0,rr

+
Ω0 + Ω0c(4Ω0 − 15c)

3
u0u0,rr

+(c − Ω0)u2
0,r

order O(α) is the nonlinear correction, also known as shoaling effect, and the terms in O(δ2) and O(αδ2) are respectively
nown as the linear dispersion (or frequency dispersion) and nonlinear dispersion. More details about this classification
an be found in [25]. Table 1 provides a direct comparison of these terms, when vorticity is involved at various order,
amely Ω = O(δ), O(δO) and O(δ−1).
When weak vorticity is considered (Ω = O(δ)), the behaviour of the system is almost unmodified. The vorticity enters

he equation as a direct correction in terms O(δ2) and O(αδ2), but the structure of the equation remains unchanged. This
s understood to be a modification of the dispersive properties of long waves, both linear and nonlinear.

On the other hand, the cases of normal and strong vorticity are more complicated. For the first case, if Ω = O(δ0), two
ew terms appear in the evolution equation, in the sense these terms are expressed at an order of magnitude which was
ot involved precedently. These two terms are respectively of order O(δ) and O(αδ), and are respectively proportional
o u0 and u2

0. This is very similar to the first terms observed in Eqs. (14) and (15), expressed at orders O(1) and O(α). It
s thus understood that vorticity, when involved to this order of magnitude, acts as a non dispersive correction, at lower
rder, though (O(δ)). It also enters as a correction at lower in δ in the nonlinear term. In the meantime, it is emphasized
hat the dispersive behaviour of the equation (the terms in O(δ2) and O(αδ2)) are unaffected by the vorticity.

Finally, the strong vorticity case, involving Ω = O(δ−1), presents the largest complexity. In this case, the vorticity
s expressed in each and every term. First, it plays a role on non dispersive effects and nonlinear effects, at the leading
rder. In the meantime, vorticity is also involved in the dispersive terms of order O(δ2) and O(αδ2), also at the leading
rder. It is thus understood that when vorticity is strong, it changes completely the nature of the evolution equation,
laying a significant role on non-dispersive and nonlinear terms, but also on the dispersive properties of the system, both
n frequency and nonlinear dispersion.

. Effect of the vorticity on traveling waves solutions

.1. Solitonic solutions of the evolution equations

The four long wave evolution equations obtained in Section 2.2 exhibit an imbalance between linear dispersion and
onlinear dispersion terms. Thus, we expect these four equations to admit solutions describing solitary waves. Finding
hese solutions is the purpose of this subsection.

.1.1. The irrotational case Ω = 0
Starting from Eq. (14), we now seek for solitary waves solutions. This might be done by assuming the existence of

olutions in the form

u0(r) = Asech2(pr) + αBsech4(pr), (18)

ith c a supercritical velocity defined by

c = c0 + αV = 1 + αV ,

nd where V , p and B are constants in r , yet functions of A. Substituting u0(r) in (14), we obtain the unknown V , p, B,
hich read

V =
A
,

2
5
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p =

√
3αA
2δ

[
1 −

3
4
αA

]
,

B =
3A2

20
.

hus, the soliton solution for u0(x, t) reads

u0(x, t) = Asech2 [p(x − ct)] + α
3A2

20
sech4 [p(x − ct)] , c = c0 + α

A
2
.

inally, the soliton solution in terms of η is obtained by introducing the expression of u0(r) (and its derivatives) in Eq. (13).
e obtain

η(x, t) = A(1 − αA)sech2
[p(x − ct)] + α

19
10

A2sech4
[p(x − ct)]. (19)

urthermore, the parameter α = a/h is, by definition, the dimensionless amplitude of η. The maximum of η being observed
t x − ct = 0, the relation α = η(0) has to be fulfilled. Thus, the dependence of A with respect to α is necessarily the
ositive solution of the quadratic polynomial

A2
(
19
20

− 1
)

α + A − α = 0. (20)

.1.2. The weak vorticity case, Ω = Ω0δ
We now seek for solitary solutions for the cases involving weak vorticity, as described by Eq. (15). This is achieved by

reproducing the previous, and seeking for solitary solutions in the form of (18). Doing so, we obtain

c0 = 1 +
1
2
δ2Ω0,

V = A
[
1
2

+
1
4
δ2Ω0

]
,

p =

√
3αA
2δ

[
1 +

1
4
δ2Ω0

][
1 −

3
4
αA

(
1 +

1
2
δ2Ω0

)]
,

B =
3A2

20
,

the solitary wave, in terms of velocity, being given by

u0(x, t) = Asech2
[p(x − ct)] + α

3A2

20
sech4

[p(x − ct)], c = c0 + α
A
2

[
1 +

1
2
δ2Ω0

]
,

nd in terms of elevation,

η(x, t) = A
(
c0 − αA

[
1 +

5
4
δ2Ω0

])
sech2

[p(x − ct)]

+αA2
[
19
10

+
93
40

δ2Ω0

]
sech4

[p(x − ct)].
(21)

inally, the wave elevation at the crest has to be α, which compels the value of A. Indeed, the latter is obtained as the
ositive root of the quadratic polynomial

A2
(

−
1
20

+
179
120

δ2Ω2
0

)
α + c0A − α = 0. (22)

.1.3. The rotational case, Ω = Ω0 ̸= 0
Again, we reproduce the procedure described in Section 3.1.1. We seek for solutions of Eq. (16) in the form (18). In

this equation, the critical velocity satisfies: 1 + δΩ0c0 − c20 = 0, which admits the positive solution

c0 = 1 +
1
2
δΩ0 +

1
8
δ2Ω2

0 .

Thus, if u0(r) is a solitary wave of the form (18) with a supercritical velocity c = c0 + αV , we find

V = A
[
1
2

+
1
4
δΩ0 +

1
6
δ2Ω2

0

]
,

p =

√
3αA

[
1 +

1
δΩ0 +

19
δ2Ω2

0

][
1 −

3
αA

(
1 +

1
δΩ0 +

1
δ2Ω2

0

)]
,

2δ 4 96 4 2 3
6
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F

A

B =
3A2

20
.

ence, examining the case of constant vorticity Ω of order O(δ0), we obtain the expression

u0(x, t) = Asech2
[p(x − ct)] + α

3A2

20
sech4

[p(x − ct)], c = c0 + α
A
2

[
1 +

1
2
δΩ0 +

1
3
δ2Ω2

0

]
,

for u0(x, t), and for η(x, t),

η(x, t) = Asech2
[p(x − ct)]

(
c0 − αA

[
1 +

5
6
δΩ0 +

13
12

δ2Ω2
0

])
+ αA2

[
19
10

+
93
40

δΩ0 +
303
160

δ2Ω2
0

]
sech4

[p(x − ct)],
(23)

inally, the crest amplitude of the solitary wave having an elevation of α, the value of A is provided by the positive root
f the polynomial

A2
(

−
1
20

+
179
120

δΩ0 +
389
480

δ2Ω2
0

)
α + c0A − α = 0. (24)

.1.4. The strong vorticity case, Ω = Ω0δ
−1

Finally, we examine the case of strong vorticity, when Ω = O(δ−1). Starting from a solution in the form

u0(r) = Asech2(pr) + αBsech4(pr),

e obtain the expression of the constants

c0 =
Ω0

2
+

√
1 +

Ω2
0

4

V = Ac0
3 + Ω2

0

3(2c0 − Ω0)
,

p =
1
2δ

√
αAc0(3 + Ω2

0 )
Ω2

0 − c20 + 2

[
1 +

αAc0(3 + Ω2
0 )

2(2c0 − Ω0)(Ω2
0 − c20 + 2)

(
5Ω0

6
− c0)

]
,

B =
3A2

20

[
Ω2

0 c0 + 6Ω0 + c0
Ω2

0 − c20 + 2

]
.

ollowing the procedure described previously, we obtain the expression of the solitary wave, in terms of velocity u0(x, t),

u0(x, t) = Asech2
[p(x − ct)] + α

3A2

20

[
Ω2

0 c0 + 6Ω0 + c0
Ω2

0 − c20 + 2

]
sech4

[p(x − ct)], c = c0 +
αAc0(3 + Ω2

0 )
3(2c0 − Ω0)

,

and in terms of elevation η(x, t),

η(x, t) = c0Asech2
[p(x − ct)]+c0(3 + Ω2

0 )
(

1
3(2c0 − Ω0)

+
2Ω0 − 3c0

6(Ω2
0 − c20 + 2)

)
αA2sech2

[p(x − ct)]

+
3c0

Ω2
0 − c20 + 2

(
Ω2

0 c0 + 6Ω0 + c0
20

+
(3 + Ω2

0 )(3c0 − 2Ω0)
12

)
αA2sech4

[p(x − ct)],

(25)

being determined as the positive root of the polynomial

A2
(

c0(3 + Ω2
0 )

3(2c0 − Ω0)
−

c0(3 + Ω2
0 )(2Ω0 − 3c0)

12(Ω2
0 − c20 + 2)

+
3c0(Ω2

0 c0 + 6Ω0 + c0)
20(Ω2

0 − c20 + 2)

)
α + c0A − α = 0. (26)

3.2. Characteristics of the solitary waves

The quasi-steady solutions obtained in the previous section present various behavior, depending on the order of
magnitude considered for the vorticity. The purpose of this section is to describe the influence of vorticity magnitude
on the properties of solitary waves.
7
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Fig. 1. Comparison of the free surface elevation η (a) and the mean velocity u0 (b) obtained with the four model equations. The red lines correspond
o the case without any vorticity (Ω = 0), the green lines are the model with weak vorticity (Ω = Ω0δ), the blue lines describe the model with
nit vorticity (Ω = Ω0), and the yellow lines correspond to the strong vorticity case (Ω = Ω0/δ). The parameters used are α = 0.6, and δ = 0.5.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.2.1. Effect of the vorticity on the soliton properties
The purpose of this section is to describe the influence of vorticity magnitude on the properties of solitary waves. Fig. 1

resents the main characteristic of the solitary waves obtained for all cases of vorticity. Fig. 1(a) corresponds to the water
levation η, while Fig. 1(b) illustrates the distribution of the mean horizontal velocity u0 induced by the perturbation. In
oth subfigures, non dimensional parameters are chosen such as α = 0.6, δ = 0.5. In every case considered the reference
orticity Ω0 is chosen to be unity. In these figures red lines describe the results obtained when no vorticity is considered.
reen lines correspond to the weak vorticity case, the blue lines are the result obtained with the normal vorticity, while
he yellow lines describe the results obtained when the vorticity is strong. Since the value of α is prescribed, the four
urves describing water elevation (Fig. 1(a)) present the same maximum values. Differences appearing only concern the
aves width, and thus the local slopes. The four curves presented in Fig. 1(a) show a similar tendency. Solitary waves are
arrower in the presence of vorticity. Indeed, if the curves obtained with no vorticity, and with weak vorticity are almost
erfectly superimposed, one can notice that the model involving a unit vorticity describes a slightly narrower wave. The
ffect of vorticity when considering these two vortical conditions is almost insignificant, in terms of wave width. On
he other hand, when considering the model assuming strong vorticity, the wave obtained is clearly narrower than the
revious ones. The trend observed previously emphasized, and is more visible here.
When considering the average velocity u0, differences are much more significant induced by the solitary wave. These

elocities are presented in Fig. 1(b). From this figure, it clearly appears that the maximum velocity induced by the free
urface disturbance is strongly affected by the magnitude of the vorticity. Namely, the stronger is the vorticity, the
eaker is the fluid disturbance. It appears that the maximum of the velocity disturbance can be reduced up to 40% when
he vorticity becomes strong. From Eq. (17), we observed that strong vorticity adds a dispersive term and a nonlinear
ispersive term. It is responsible for the trend leading to the weakest solitonic profile downstream propagating for strong
orticity. The effects on u0(x, t) of normal and weak vorticities occur only through η(x, t). For strong vorticity u0(x, t)
irectly depends on Ω through the new dispersive and nonlinear dispersive term.
The evolution of the fluid velocity, observed in previous figures has to be related with the kinematic properties of

he solitary wave. The evolution of its velocity and width are depicted in Fig. 2. On Fig. 2(a), the evolution of the wave
elerity c of the solitary wave is plotted as a function of the vorticity Ω , for the four models. Here again, the nonlinear and
ispersive parameters (α, δ) are set equal to (0.6, 0.5), while Ω varies. Since the models do not cover the same range of

values for Ω , four colors are used, in order to distinguish the area described by each model. Obviously, the model without
vorticity corresponds to a single point in this diagram, while the green line correspond to the model with weak vorticity,
the blue line is the model of vorticity of order unity, and the yellow line is the strong vorticity assumption. The first result
observed is an opposite trend to the behaviour shown by the fluid disturbance velocity u0. Namely, the celerity of the
wave increases with vorticity, while the components of the fluid disturbance decreases with vorticity. For the parameters
considered, the celerity is increased by about 85%. Another interesting remark, here, is to notice the relative continuity
exhibited by the four models. Indeed, they have been derived independently, under various asymptotic assumptions, but
present very compatible trends, and values. In Fig. 2(b), the evolution of the width of the wave, λ, defined as λ = 1/p, is
presented versus vorticity Ω for the four models. This figure confirms the trend forebode on Fig. 1(a). Here again, the four
models are juxtaposed, where the model without vorticity corresponds to a single point, a red square, in this diagram,
the green line correspond to the model with weak vorticity, the blue line is the model of vorticity of order unity, and
the yellow line is the strong vorticity assumption. The three models involving vorticity present a similar trend, the width
decreasing when vorticity increases.

3.2.2. Effect of the vorticity on the korteweg–de Vries soliton
The behavior of λ(Ω) is quite difficult to analyze from the soliton expressions of u0(x, t) and η(x, t) of (10)–(11).

However this becomes possible with soliton solutions of the Korteweg–de Vries equations associated to the system (10)–
(11). Let us have a look at λ(Ω) of the soliton solutions of KdV equations for u (x, t) in the two extreme cases Ω = 0 and
0

8
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a
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F

Fig. 2. Evolution of the wave velocity (a), and the wave width (b) as a function of the vorticity. The red squares correspond to the case without any
vorticity (Ω = 0), the green lines are the model with weak vorticity (Ω = Ω0δ), the blue lines describe the model with unit vorticity (Ω = Ω0),
nd the yellow lines correspond to the strong vorticity case (Ω = Ω0δ

−1). The parameters used are α = 0.6, and δ = 0.5. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

= Ω0δ
−1. Using asymptotic methods (see [21]) in (14) and (17) we obtain u0,t for these two extreme cases. They read

u0,t +
3
2
αu0u0,x +

δ2

6
u0,xxx = 0, Ω = 0, (27)

(Ω2
0 + 4)

1
2 u0,t + c0(Ω2

0 + 3)αu0u0,x +
δ2

6
(c20 − Ω2

0 )u0,xxx = 0, Ω = Ω0/δ, c0 =
1
2
[Ω0 + (Ω2

0 + 4)1/2]. (28)

he soliton solutions of (27) and (28) read

u0 = Assech2
[
1
2δ

(3αAs)
1
2 (x −

Asα

2
t)], u0 = Assech2

{
1
2δ

(3αAs)
1
2 [

c0(3 + Ω2
0 )

3(c20 − Ω2
0 )

]
1
2 [x − (

αAsc0(3 + Ω2
0 )

3(4 + Ω2
0 )

)t]}, (29)

with As an arbitrary constant amplitude. The associated soliton widths read

λ(Ω = 0) =
2δ

(3αAs)
1
2
, λ(Ω =

Ω0

δ
) =

2δ

(3αAs)
1
2
[

c20 − Ω2
0

c0(1 +
Ω2

0
3 )

]
1
2 . (30)

rom expressions (30) (taken Ω0 = 1) we obtain λ(Ω=
1
δ
)

λ(Ω=0) ∼ 0, 5 < 1, and (29) in the case Ω = Ω0δ
−1 is a downstream

wave narrower than in the case Ω = 0. So for downstream propagation the stronger the vorticity the narrower the width.
This is a very well known result not only for KdV but also for the Boussinesq equation and the Camassa–Holm equation
(see [22]).

3.2.3. Effect of the vorticity on the inner flow
Another interesting point with this approach is to take into account the evolution of the velocity field within the fluid

layer. Indeed, accordingly to Eqs. (3) and (4), the velocity can be reconstructed as a power series of δ2z2. If closed with
the recurrence relation (9), the velocity in the total fluid layer might be reconstructed, as

u(x, z, t) = u0(x, t) −
1
2
u0xx (x, t)δ

2z2 + O(δ4z4), (31)

w(x, z, t) = −u0x (x, t)z +
1
6
u0xxx (x, t)δ

2z3 + O(δ4z4). (32)

These are the fields shown in Fig. 3, for a solitary wave of nonlinear parameter α = 0.6 and dispersive parameter δ = 0.5,
where Ω0 is taken equal to unity. In this figure, the horizontal components of the velocities within the fluid layer are
presented on the left column, while the vertical components of the velocity are shown on the right column. Each line
corresponds to one of the models. Thus, sub-figures (a-e) present the two components of the velocity obtained in the
absence of vorticity, sub-figures (b-f) are the fields obtained under the assumption of weak vorticity, sub-figures (c-g)
describe the velocity fields obtained with the assumption of unit vorticity, while sub-figures (d-h) correspond to the
fields obtained under the assumption of a strong vorticity. From these figures, two main results are observed. First, the
magnitude of the velocity field decreases when vorticity increases. This result was obtained when considering the mean
velocity u0. It is confirmed here within the entire fluid layer, concerning both components (u, w) of the velocity. Secondly,
these figures allow to compare the evolution of the velocity fields with depth. It appears that the velocity disturbance
vanishes faster with depth when vorticity increases. This comes from the fact that in the presence of vorticity, for waves of
a given height α, the velocity disturbance diminishes when vorticity increases. Thus, the second term in the decomposition
(31),(32) is relatively smaller with respect to the first term, than it is when considering no vorticity.
9
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Ω

3

Fig. 3. Distribution of the horizontal (left column) and vertical (right column) components of the velocity within the fluid layer. (a–e) Ω = 0, (b–f)
= Ω0δ, (c-g) Ω = Ω0 , (d–h) Ω = Ω0δ

−1 . The parameters used are α = 0.6, and δ = 0.5.

.2.4. Effect of α and δ on the soliton properties
Another interesting aspect of this approach is to allow comparisons of the influence of the parameters α and δ on the

wave properties. Following that purpose, Fig. 4 describes the evolution of the wave width λ in the parameter map (α, δ).
Sub-figure (a) corresponds to the behavior of a solitary wave propagating in the absence of vorticity, sub-figure (b) is the
weak vorticity case, sub-figure (c) is the unit vorticity model, while sub-figure (d) is the strong vorticity configuration.
First, it has to be emphasized that these figures present very different color scales, confirming the trends observed in
Fig. 2. In the meantime, it is striking to notice that the qualitative dependence on both the nonlinear and the dispersive
parameters are very similar. Oppositely, Fig. 5 illustrates the evolution of the wave celerity in the parameter map (α, δ).
Sub-figure (a) corresponds to the behavior of a solitary wave propagating in the absence of vorticity, sub-figure (b) is the
weak vorticity case, sub-figure (c) is the unit vorticity model, while sub-figure (d) is the strong vorticity configuration. It
is interesting to notice that, in the absence of vorticity, the traveling celerity does not depend on the dispersive parameter
δ, which confirms classical behavior of traveling solitary waves in the absence of vorticity. Noteworthily, this result does
not hold when vorticity is involved. Indeed, it is interesting to notice that, when weak or unit vorticity are considered, the
10
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Ω

Fig. 4. Evolution of the width of the wave as a function of the dispersive parameter δ and the nonlinear parameter α. (a) Ω = 0, (b) Ω = Ω0δ, (c)
= Ω0 , (d) Ω = Ω0δ

−1 .

Fig. 5. Evolution of the wave celerity as a function of the dispersive parameter δ and the nonlinear parameter α. (a) Ω = 0, (b) Ω = Ω0δ, (c)
Ω = Ω0 , (d) Ω = Ω0δ

−1 .
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ave celerity exhibits a strong dependence on α and δ. However, the respective influence of α and δ on this quantity is
ot completely similar. In the weak vorticity model, the dispersive parameter δ seems to play a less significant role than
n the unit vorticity approach. Finally, when considering the strong vorticity case, the celerity becomes constant again
ith respect to δ. This asymptotic case exhibits characteristics very similar to those observed in the absence of vorticity.

. Conclusions and perspectives

We have introduced a new hierarchy of weakly nonlinear equations for surface gravity in finite depth in the presence
f constant vorticity Ω . The members of the hierarchy are systems of equations for the z-integrate horizontal velocity

u(x, z, t) and the wave amplitude η(x, t). They involve weak nonlinearities, dispersion and nonlinear dispersion and are
characterized by the powers of two perturbative parameters α and δ (nonlinearity and dispersion) and their products
(nonlinear dispersion). The vorticity Ω appears in the equations of motion in factors Ωδs (s = 1, 3, . . . ), so we have
scaled Ω as Ω = Ω0δ

q with Ω0 ∼ O(δ0) and q integer. The negatives values of q must be chosen such that the neglected
term O(Ωδ5, δ4) in Eq. (6) remains negligible. A remarkable finding is that the physical origin of dispersion and nonlinear
dispersion for u0(x, t) can be associated or not with the vorticity Ω . In the η(x, t) dynamics, vorticity is never directly
associated with nonlinear dispersion. In order to analyze some physical-mathematical consequences while remaining
relatively simple in formalism, we have only discussed equations at orders α, δn and αδn with n = 1, 2. Non zero cases
clearly shown that vorticity changes linear and nonlinear dispersive behavior of the system with respect to the zero
vorticity case. Normal vorticity adds a weak correction to the non-dispersive and nonlinear terms. For strong vorticity the
same modification is observed, but at the leading order. Furthermore, a modification in the linear and nonlinear dispersion
terms is present simultaneously.

Furthermore, the solitonic solutions of these long wave evolution equations have been obtained analytically when
involving nil, weak, normal and strong vorticity. For each case we have numerically analyzed these solitonic solutions,
and their properties (celerity, amplitude and wave width).
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