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Abstract: Articular cartilage experiences mechanical constraints leading to chondral defects that
inevitably evolve into osteoarthritis (OA), because cartilage has poor intrinsic repair capacity.
Although OA is an incurable degenerative disease, several dietary supplements may help improve
OA outcomes. In this study, we investigated the effects of Dielen® hydrolyzed fish collagens from
skin (Promerim®30 and Promerim®60) and cartilage (Promerim®40) to analyze the phenotype and
metabolism of equine articular chondrocytes (eACs) cultured as organoids. Here, our findings
demonstrated the absence of cytotoxicity and the beneficial effect of Promerim® hydrolysates on eAC
metabolic activity under physioxia; further, Promerim®30 also delayed eAC senescence. To assess the
effect of Promerim® in a cartilage-like tissue, eACs were cultured as organoids under hypoxia with
or without BMP-2 and/or IL-1β. In some instances, alone or in the presence of IL-1β, Promerim®30
and Promerim®40 increased protein synthesis of collagen types I and II, while decreasing transcript
levels of proteases involved in OA pathogenesis, namely Htra1, and the metalloproteinases Mmp1-3,
Adamts5, and Cox2. Both Promerim® hydrolysates also decreased Htra1 protein amounts, particularly
in inflammatory conditions. The effect of Promerim® was enhanced under inflammatory conditions,
possibly due to a decrease in the synthesis of inflammation-associated molecules. Finally, Promerim®

favored in vitro repair in a scratch wound assay through an increase in cell proliferation or migration.
Altogether, these data show that Promerim®30 and 40 hold promise as dietary supplements to relieve
OA symptoms in patients and to delay OA progression.

Keywords: chondrocyte; equine model; matrix-associated autologous chondrocyte implantation
(MACI); osteoarthritis; collagen; collagen hydrolysates; interleukin-1; catabolic markers; senescence;
in vitro repair

1. Introduction

Articular cartilage is a highly specialized tissue covering the extremities of bones,
thereby ensuring smooth joint movements as well as shock absorption. Hyaline articular
cartilage is composed of an abundant extracellular matrix (ECM) and a main cell type,
the chondrocyte, which is present in small quantities (1 to 2% of the cartilage volume) [1].
Chondrocytes synthesize an ECM composed of characteristic molecules, such as type II, IX,
XI collagens and aggrecan, especially during embryonic stages, although these molecules
also ensure the homeostasis of the tissue in adulthood, albeit with low turnover [2].
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Hyaline cartilage synthesis can be promoted by growth factors, such as transforming
growth factor-ß (TGF-ß) or bone morphogenic proteins (BMP) [3]. Cartilage is not inner-
vated and is avascular; for this reason, chondrocytes subsist in hypoxia [4]. Oxygen is
delivered to the cartilage via the synovial fluid, in part secreted by synoviocytes, or through
diffusion from the subchondral bones; oxygen concentrations range from 1 to 10% depend-
ing on the depth of the tissue [5].

One of the hallmarks of osteoarthritis (OA) is the disruption of cartilage homeosta-
sis [6–9], further aggravated by the poor intrinsic capacity of cartilage for self-repair [10].
Subsequently, cartilage degradation occurs, eventually exposing the subchondral bone,
and leading to stiff and painful joints. In OA, catabolism is increased and anabolism is
downregulated. Nevertheless, the first response following cartilage injury is a transient
increase in chondrocyte proliferation, whereby chondrocytes form clusters and enhance
their ECM production, particularly by synthesizing type I collagen [6,7,9]. However,
type I collagen does not share the same biomechanical properties as typical cartilage col-
lagens, and thus makes for a brittle cartilage matrix called fibrocartilage. Fibrocartilage
no longer fulfills hyaline cartilage function and degrades more quickly. In an OA pro-
inflammatory context, cytokines such as interleukin-1 (IL-1) and the tumor necrosis factor-
alpha (TNF-alpha) cause tissue degradation by decreasing anabolism and inducing the ex-
pression/activation of proteases including metalloproteinases (MMPs) and aggrecanases [6,7].
Although the OA etiology is diverse, it is generally due to repeated shocks, and/or joint
overload, combined with ageing. Other factors such as obesity and genetic factors may
also be related to OA.

Humans and horses have very similar cartilage in many ways, particularly in terms of
their biochemical composition, cell composition, and the thickness of articular cartilage [11].
In addition, like humans, horses can develop OA spontaneously. Moreover, humans and
sport horses can experience comparable biomechanical stresses, and the causes of the onset
of the OA process are very similar, namely sports activities and ageing. Numerous studies
aimed at improving OA treatments in the equine model are therefore directly transposable
to humans, and the horse represents the best large mammal model for pre-clinical studies in
the context of osteo-articular disorders, particularly arthropathies. Additionally, the size of
horse joints makes the horse an ideal model from an experimental point of view, because a
large amount of cartilage can be recovered and in vivo experiments can be carried out in the
horse. Joint injuries also represent the main cause of the decrease in physical performance
and lameness in horses [12]. They generally lead to the premature cessation of the horse’s
sport career, incurring significant financial losses for the equine industry [13].

To date, there are no long-term solutions to treat OA, either in humans or in horses.
For the management of OA, the use of a combination of pharmacological and non-
pharmacological treatments is highly recommended. The main pharmacological treatments
aim to reduce inflammation and pain through the use of non-steroidal anti-inflammatory
drugs (NSAID) and analgesics. For severe OA, intra-articular injections of corticosteroids
or hyaluronan can be prescribed and, in the final stages of OA, especially in humans,
only prosthetic surgery is efficient [14–16]. The use of nutraceuticals, or dietary supple-
ments, represents an ongoing strategy for the management and prevention of OA as a
complement to classical clinical therapies [17].

Horse owners are becoming increasingly interested in alternatives to traditional clin-
ical approaches, such as nutritional supplements [18]. Numerous dietary supplements,
such as glucosamine, chondroitin sulfate, and collagen hydrolysates represent promising
therapeutic alternatives to favoring cartilage homeostasis when they are used alone or in
combination [17,19–23]. The most common products used as nutraceuticals are chondroitin
sulfate and glucosamine [17]. One study demonstrated that chondroitin sulfate improves
pain symptoms in the short term, with a low risk of adverse events [22]. Chondrocyte cul-
ture in the presence of glucosamine may promote the production of proteoglycans [19].
Other food supplements, such as curcumin or frankincense (Boswellia sp.), also appear to
hold promise [17,20,21]. Dietary supplements can be combined with surgical techniques
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to help patients to recover properly. However, to date, no food supplement has been
demonstrated to be able to regenerate hyaline articular cartilage.

Matrikines, which are bioactive peptides resulting from the degradation of the ECM,
may be promising therapeutic possibilities for OA, because some of them have been de-
scribed as playing a role in wound healing and in the synthesis of anabolic components in
fibroblasts [24]. Other studies have shown that, in women with moderate knee osteoarthri-
tis, daily oral intake of collagen peptides for 6 months reduces pain and increases mobility
of the affected joint [25]. Promerim®30, made of fish skin collagens, is a main ingredient
in the dietary supplement Osteocalm®, which has proven, like other collagens (such as
undenatured type II collagen (UC-II®)), to be clinically effective for treating joint pain and
stiffness associated with OA in humans [17,26,27]. Moreover, recent investigations show
that enzymatically hydrolyzed collagens are absorbed and distributed to joint tissues and
have analgesic and anti-inflammatory properties [28].

In the present study, we assessed the effects of three collagen hydrolysates of ma-
rine origin (derived from fish skin (Promerim®30 and Promerim®60) and fish cartilage
(Promerim®40)) on the metabolism of chondrocytes cultured as cartilage organoids, as pre-
viously described [9,29,30]. The cartilaginous quality of the organoids and the effects of
Promerim® were assessed through an extensive study of transcripts and protein amounts
of typical and atypical markers of hyaline chondrocytes. Additionally, we characterized
the effect of Promerim® on chondrocyte proliferation/viability and senescence. This study
attempted to identify some of the molecular mechanisms that may be responsible for the
potential beneficial effects of hydrolyzed collagens on chondrocyte metabolism.

2. Results

2.1. Promerim®30, 40, and 60 Have no Cytotoxic Effects on Equine Articular Chondrocytes,
They Promote Their Metabolic Activity and Promerim®30 Downregulates Cellular Senescence

eACs were cultured as cell monolayers. At 80% confluency, Promerim®30, 40, or 60 was
added at concentrations ranging from 0.1 µg/mL to 250 µg/mL. Then, eACs were grown
either in normoxia or in hypoxia, in serum-free medium, or in the presence of 2% FCS for
72 h. Hypoxia and the serum-free media were used to mimic the in vivo microenvironment
of chondrocytes as much as possible. Regardless of the oxic condition or the FCS concen-
tration, none of the Promerim® hydrolysates, regardless of concentration, were cytotoxic
for eACs (Figure 1 and Figure S1).

We then investigated the effect of Promerim® on the mitochondrial metabolic activity
of eACs (XTT assay) in serum-free media. In hypoxia, regardless of the duration of the
incubation and the concentration of Promerim®30, eAC mitochondrial activity remained
unchanged, compared with the control 0% FCS condition (Figures 2A and 3A). On the
other hand, Promerim®40 at 0.1 µg/mL, 0.5 µg/mL, 50 µg/mL, and 100 µg/mL for a 48 h
incubation period led to a significant increase in the metabolic activity of eACs compared
with the 0% FCS control (Figures 2B and 3B).

After 48 h of treatment with Promerim®60 used at 0.1 µg/mL, 0.5 µg/mL, 1 µg/mL,
and 100 µg/mL, eAC metabolic activity increased significantly, compared with the 0%
FCS control. We observed the same trend at the other concentrations of Promerim®60 for
48 h or for all the concentrations when Promerim®60 was added for 72 h, although the
results were not significant (Figures 2C and 3C). We observed similar results when eACs
were cultured in normoxia, especially for Promerim®40 and Promerim®60 at low and high
concentrations after 48 h of incubation (Figures S2 and S3).
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Figure 1. Promerim®30, 40, and 60 have no cytotoxic effect on equine articular chondrocytes cultured in hypoxia. Equine ar-
ticular chondrocytes were amplified and seeded at P3. At 80% of confluency, the cells were treated with Promerim®

hydrolysates at several concentrations (0.1, 0.5, 1, and 10 µg/mL) (A,B) and (10, 50, 100, 250 µg/mL) (C,D) in the absence
(0% (A,C)) or presence of 2% fetal calf serum (FCS) (B,D) and then cultured for 72 h in hypoxia. Controls with 0, 2, and 5%
of FCS were included, as well as a death control (triton-induced death). The levels of adenylate kinase were measured in the
media after 72 h of culture (Toxilight kit, Interchim). Data are represented as box plots (n = 5). Statistical analyses were
performed using the Mann–Whitney test (* p < 0.05, ** p < 0.01),and the 2% and 0% FCS conditions were used as references.
P30, P40, and P60: Promerim®30, Promerim®40, and Promerim®60.
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chondrocytes cultured in the absence of serum. Equine articular chondrocytes were amplified and seeded at P3. At 80% of
confluency, the cells were treated with Promerim®30 (A), 40 (B), 60 (C) at several concentrations (0.1, 0.5, 1, and 10 µg/mL)
in the absence of FCS and then cultured for 24, 48 and 72 h in hypoxia. Controls with 0%, 2% and 5% of fetal calf serum
(FCS), and a death control (triton-induced death) were included. The levels of formazan were measured (OD) in the media
at the end of the incubation period (XTT kit, Roche). Data are represented as box plots (n = 5). Statistical analyses were
performed using the Mann–Whitney test (* p < 0.05; ** p < 0.01) and the 0% FCS condition was used as a reference. P30, P40,
and P60: Promerim®30, Promerim®40 and Promerim®60.

Because subsequent redifferentiation experiments were performed in the presence of
2% FCS, we also assessed the effects of Promerim® on eACs (metabolic activity, senescence)
cultured in presence of 2% FCS and in hypoxia (Figures 4–6). The effect of normoxia was
also evaluated (Figures S4 and S5).

In hypoxia, Promerim®30 increased eAC mitochondrial metabolic activity after 72 h
of treatment, regardless of the concentration used, reaching levels similar to those observed
with 5% FCS (Figures 4A and 5A). Regardless of its concentration of use, Promerim®40
started to increase eAC mitochondrial metabolic activity as early as 24 h of treatment.
This increase was confirmed when eACs were cultured for 72 h in the presence of Promerim®40.
A trend was also observed for 48 h of incubation in the presence of Promerim®40 (Figures 4B and 5B).
Promerim®60, like Promerim®30, induced a significant increase in eAC metabolic activity
when the incubation time lasted 72 h, although the same trend was observed for shorter
incubation times (Figures 4C and 5C).
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Figure 3. Effect of high concentrations of Promerim®30, 40, and 60 on the mitochondrial activity of equine articular
chondrocytes cultured in the absence of fetal calf serum (FCS). Equine articular chondrocytes were amplified and seeded at
P3. At 80% of confluency, the cells were treated with Promerim®30 (A), 40 (B), 60 (C) at several concentrations (10, 50, 100,
and 250 µg/mL) in the absence of FCS and then cultured for 24, 48, and 72 h in hypoxia. Controls with 0%, 2% and 5% of
FCS, and a death control (triton-induced death) were included. The levels of formazan were measured (OD) in the media
after 24, 48 and 72 h of culture (XTT kit, Roche). Data are represented as box plots (n = 5). Statistical analyses were based
on the Mann–Whitney test (* p < 0.05; ** p < 0.01) and the 0% FCS condition was used as a reference. P30, P40 and P60:
Promerim®30, Promerim®40, and Promerim®60.

When eACs were cultured in normoxia, the Promerim® hydrolysates led to similar
effects on eAC mitochondrial activity, although their kinetics of action changed slightly.
We observed an increase in activity when eACs were cultured with Promerim®30 or
Promerim®40 for 72 h and an increase as early as 24 h of incubation with Promerim®60
(Figures S4 and S5).

We then investigated the effect of Promerim® hydrolysates on eAC senescence. To do
so, eACs were treated with Promerim®30, 40, or 60 used at 50 and 100 µg/mL for 72 h,
and in the presence of 2% FCS either under hypoxia or in normoxia. Then, we assessed
SA-β-galactosidase activity. In hypoxia, Promerim®30 significantly downregulated SA-
β-galactosidase activity compared with the 2% FCS control (Figure 6A). Although no
significant differences were observed when eACs were treated with Promerim®40 or
60, the activity of SA-β-galactosidase also tended to decrease. In normoxia (Figure 6B),
the activity of SA-β-galactosidase was not significantly modulated, compared with the 2%
FCS control. However, Promerim®30 used at 50 µg/mL tended to decrease the activity of
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β-galactosidase. Altogether, these data show that Promerim®30, 40, and 60 are not cytotoxic
for eACs; on the contrary, they favor eAC mitochondrial activity, and Promerim®30 inhibits
cell senescence.
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Figure 4. Effect of low concentrations of Promerim®30, 40, and 60 on the mitochondrial activity of equine articular
chondrocytes cultured in the presence of 2% fetal calf serum (FCS). Equine articular chondrocytes were amplified and
seeded at P3. At 80% of confluency, the cells were treated with Promerim®30 (A), 40 (B), 60 (C) at several concentrations
(0.1, 0.5, 1, and 10 µg/mL) in the presence of 2% FCS and then cultured for 24, 48 and 72 h in hypoxia. Controls with 0%,
2% and 5% of FCS, and a death control (triton-induced death) were included. The levels of formazan were measured (OD)
in the media at the end of the incubation period (XTT kit, Roche). Data are represented as box plots (n = 5). Statistical
analyses were based on the Mann–Whitney test (* p < 0.05; ** p < 0.01) and the 0% FCS condition was used as a reference.
P30, P40 and P60: Promerim®30, Promerim®40, and Promerim®60.

2.2. Effect of Promerim® Hydrolysates on the Expression of mRNAs Encoding Characteristic
Biomarkers of Chondrocytes

Then, we assessed the effect of Promerim®30 and 40 when chondrocytes were cultured
as cartilaginous organoids. In this culture model, chondrocytes evolve in a microenviron-
ment similar to an in vivo context. Furthermore, the cells were cultured in the presence
of BMP-2 to maintain a chondrogenic environment, or in the presence of IL-1β to mimic
the pro-inflammatory environment that occurs during OA. The combination of BMP-2 and
IL-1β was used to mimic an early stage of OA. Organoids were cultured in the presence
of Promerim® hydrolysates at low concentrations (0.1 and 0.5 µg/mL) and at relatively
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high concentrations (50 and 100 µg/mL) for 7 days. The control condition corresponds to
organoids cultured in the presence of the 3D medium alone.
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chondrocytes cultured in the presence of 2% fetal calf serum (FCS). Equine articular chondrocytes were amplified and
seeded at P3. At 80% of confluency, the cells were treated with Promerim®30 (A), 40 (B), 60 (C) at several concentrations (10,
50, 100, 250 µg/mL) in the presence of 2% of FCS and then cultured for 24, 48 and 72 h in hypoxia. Controls with 0%, 2% and
5% of FCS, and a death control (triton-induced death) were included. The levels of formazan were measured (OD) in the
media at the end of the culture period (XTT kit, Roche). Data are represented as box plots (n = 5). Statistical analyses were
based on the Mann–Whitney test (* p < 0.05; ** p < 0.01) and the 2% FCS condition was used as a reference. P30, P40 and P60:
Promerim®30, Promerim®40, and Promerim®60.
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When Promerim®30 and 40 were used at 0.1 µg/mL and 0.5 µg/mL, respectively,
the typical and atypical transcript levels of chondrocyte phenotypic markers both tended
to increase (Figure 7). Promerim®30 at 0.5 µg/mL and Promerim®40 at 0.1 µg/mL
had no effect on the steady-state amounts of the typical and atypical molecules. Thus,
the Col2a1:Col1a1 and Col2a1:Col1a2 mRNA ratios remained unchanged compared with the
control. Similar results were observed when Promerim®30 and 40 were used at 50 µg/mL
and 100 µg/mL, except a decrease in Acan mRNA levels (Promerim®30 at 100 µg/mL,
and Promerim®40 at both concentrations) (Figure 8). Interestingly, although Promerim®

hydrolysates used at low concentrations had no significant effect on Mmp3, Mmp1, or Htra1
transcript levels, they led to a decrease in the steady-state amounts of Mmp1 and Mmp3
when they were used at 50 µg/mL and 100 µg/mL. The Htra1 and Adamts5 mRNA lev-
els were downregulated only when Promerim®30 was used at 100 µg/mL, and when
Promerim®40 was used at 50 µg/mL (Figures 7 and 8). Only Promerim®40 tested at
50 µg/mL led to a decrease in mRNA levels of the proliferative marker Ki67, but also of
P53 and alinflammation-associated molecules (Cox2, Inos, and P65) (Figure 8).

In the presence of IL-1β, the use of Promerim®30 and 40 at 0.1 and 0.5 µg/mL led to
an increase in Col2a1 mRNA levels when compared to the IL-1ß treated samples, whereas
the mRNA levels of the other phenotypic markers remained unchanged (Figure 9). Thus,
the Col2a1:Col1a1 and Col2a1:Col1a2 ratios also increased. On the contrary, when both
Promerim® hydrolysate versions were tested at 50 and 100 µg/mL, the mRNA levels of the
phenotypic markers remained unchanged compared with the eACs cultured in the presence
of IL-1β only (Figure 10), even though Col2a1 mRNA levels tended to increase slightly.
The mRNA levels of proteases, as well as inflammatory markers, proliferative/senescence
markers were not modulated by the addition of Promerim® at 0.1 and 0.5 µg/mL (Figure 9).
Although a statistically significant decrease of the mRNA steady-state amounts of Adamts5
was observed only when Promerim®30 was used at 100 µg/mL, Promerim®30 (50 and 100
µg/mL) and 40 (50 µg/mL) tended to decrease the mRNA levels of the proteases Htra1,
Mmp1 and Adamts5 (Figure 10). mRNA levels of Cox2 also tended to be downregulated,
although only Promerim®30 used at 50 µg/mL led to a statistically significant decrease.
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Figure 7. Comparison of mRNA expression in equine articular chondrocytes in the presence or absence of low concentrations
of Promerim®30 and 40. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage (P3).
They were incubated for 7 days in hypoxia in the absence (C: control) or presence of Promerim®30 or Promerim®40 (P30 and
P40) (0.1 and 0.5 µg/mL), or BMP-2 (B), or IL-1 (I), or BMP-2 and IL-1 (IB). At the end of incubation period, their mRNA
was extracted as described in Materials and Methods. The mRNAs were estimated using RT-qPCR after normalization with
respect to the β-actin reference gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2
ratios are given. The results are shown as histograms and the significance of the values between the different treatments
and the control (C) was tested using a Mann–Whitney test; n = 3. eAC: mRNA extracts obtained from equine articular
chondrocytes released from cartilage after overnight enzymatic digestion were used as controls. D0: cells seeded in sponges
and arrested after 16 h of incubation.
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Figure 8. Comparison of mRNA expression in equine articular chondrocytes in the presence or absence of high concentra-
tions of Promerim®30 and 40. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage
(P3). They were incubated for 7 days in hypoxia in the absence (C: control) or presence of Promerim®30 or Promerim®40
(P30 and P40) (50 and 100 µg/mL), or BMP-2 (B), or IL-1 (I), or BMP-2 and IL-1 (IB). At the end of incubation period,
their mRNA was extracted as described in Materials and Methods. The mRNAs were estimated using RT-qPCR after
normalization with respect to the β-actin reference gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1
and Col2a1:Col1a2 ratios are given. The results are shown as box plots (median, quartiles, extreme values) and the signifi-
cance of the values between the different treatments and the control (C) was tested using a Mann–Whitney test (* p < 0.05;
** p < 0.01); n = 6. eAC: mRNA extracts obtained from equine articular chondrocytes released from cartilage after overnight
enzymatic digestion were used as controls. D0: cells seeded in sponges and arrested after 16 h of incubation.



Int. J. Mol. Sci. 2021, 22, 580 12 of 30Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 13 of 34 
 

 

 
Figure 9. mRNA expression in equine articular chondrocytes treated with Promerim®30 and 40 used at low concentrations 
in the presence of IL-1. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage (P3). 
They were incubated for 7 days under hypoxia in the absence (C: control) or both the presence of IL-1 + P30 and IL-1 + 
P40, or BMP-2 alone (B), or IL-1 alone (I), or BMP-2 together with IL-1 (IB). The Promerim® were used at the concentrations 
of 0.1 and 0.5 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with respect to the β-actin reference 
gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2 ratios are given. The results 
are shown as histograms and the significance of the values between the different treatments and the control case (IL-1) 
was tested using a Mann–Whitney test; n = 3. eAC: mRNA extracts obtained from equine articular chondrocytes released 
from cartilage after overnight enzymatic digestion were used as controls. D0: cells seeded in sponges and arrested after 16 
h of incubation. P30 and P40: Promerim®30 and 40. 

Col2a1 Acan Col11a1Sox9

Col2a1/Col1a1

Alp
Col1a1 Col1a2

Col2a1/Col1a2

Col10a1

Mmp13Runx2

Htra1

Ki67P53

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C 0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40
D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

Mmp3Mmp1

Cox2

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

Adamts 5 Inos

P65

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C 0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

0.
1
0.
5

P30

0.
1
0.
5

P40

D
0
C B I IB eA
C

Figure 9. mRNA expression in equine articular chondrocytes treated with Promerim®30 and 40 used at low concentrations
in the presence of IL-1. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage (P3).
They were incubated for 7 days under hypoxia in the absence (C: control) or both the presence of IL-1 + P30 and IL-1 + P40,
or BMP-2 alone (B), or IL-1 alone (I), or BMP-2 together with IL-1 (IB). The Promerim® were used at the concentrations of
0.1 and 0.5 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with respect to the β-actin reference
gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2 ratios are given. The results are
shown as histograms and the significance of the values between the different treatments and the control case (IL-1) was
tested using a Mann–Whitney test; n = 3. eAC: mRNA extracts obtained from equine articular chondrocytes released from
cartilage after overnight enzymatic digestion were used as controls. D0: cells seeded in sponges and arrested after 16 h of
incubation. P30 and P40: Promerim®30 and 40.
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Figure 10. mRNA expression in equine articular chondrocytes treated with Promerim®30 and 40 used at high concentra-
tions in the presence of IL-1. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage 
(P3). They were incubated during 7 days under hypoxia in the absence (C: control) or both the presence of IL-1 + P30 and 
IL-1 + P40, or BMP-2 alone (B), or IL-1 alone (I), or BMP-2 together with IL-1 (IB). The Promerim® were used at the con-
centrations of 50 and 100 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with respect to the β-
actin reference gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2 ratios are 
given. The results are shown as box plots (median, quartiles, extreme values) and the significance of the values between 
the different treatments and the control case (IL-1) was tested using a Mann–Whitney test (* p < 0.05; ** p < 0.01); n = 6. 
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Figure 10. mRNA expression in equine articular chondrocytes treated with Promerim®30 and 40 used at high concentrations
in the presence of IL-1. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage (P3).
They were incubated during 7 days under hypoxia in the absence (C: control) or both the presence of IL-1 + P30 and IL-1 +
P40, or BMP-2 alone (B), or IL-1 alone (I), or BMP-2 together with IL-1 (IB). The Promerim® were used at the concentrations
of 50 and 100 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with respect to the β-actin reference
gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2 ratios are given. The results are
shown as box plots (median, quartiles, extreme values) and the significance of the values between the different treatments
and the control case (IL-1) was tested using a Mann–Whitney test (* p < 0.05; ** p < 0.01); n = 6. eAC: mRNA extracts
obtained from equine articular chondrocytes released from cartilage after overnight enzymatic digestion were used as
controls. D0: cells seeded in sponges and arrested after 16 h of incubation. P30 and P40: Promerim®30 and 40.



Int. J. Mol. Sci. 2021, 22, 580 14 of 30

Under chondrogenic differentiating conditions, in the presence of BMP-2, Promerim®30
and 40 led to a slight increase in Col2a1 mRNA levels, only when they were added at
0.5 µg/mL when compared to the BMP-2 treated samples (Figure 11). The mRNA levels of
the other phenotypic markers, and also of Col1a1 and Col1a2, were unchanged upon the ad-
dition of the Promerim®30 or 40 used at 0.1, 50, and 100 µg/mL (Figure 11 and Figure S6).
Thus, the ratios Col2a1:Col1a1 and Col2a1:Col1a2 tended to increase, compared with the
BMP-2 control, only when Promerim®30 and 40 were used at 0.5 µg/mL. Promerim®30
and 40 (0.1 and 0.5 µg/mL) tended to increase the mRNA levels of the proteases Mmp3,
Adamts5, and Htra1 (for Promerim®30, only at 0.1 µg/mL for the latter). Cox2 and Ki67
mRNA amounts also increased. At concentrations of 50 µg/mL, only Promerim®40 led to
an increase in Mmp1, Adamts5, P65, and Cox2 (Figure S6). At 100 µg/mL, compared with
the BMP-2 condition, neither Promerim® led to any modulation of the mRNA levels of the
proteases, and inflammation- and proliferation-associated molecules studied.

Finally, in pre-arthritic conditions, in the presence of both IL-1β and BMP-2, Promerim®

hydrolysates at low concentrations (0.1 and 0.5 µg/mL) decreased the mRNA levels of most
of the atypical phenotypic molecules studied, notably Col1a1, Col1a2, and those encoding
the proteases, when compared to the IL-1β + BMP-2 control (Figure 12). Nevertheless,
even though Col2a1 mRNA levels were not modulated by Promerim®30 or 40, Col11a1,
Sox9, and Acan mRNA levels tended to decrease. The mRNA levels of the proliferation-
associated molecules ki67, but also p53, the inflammation-associated molecules Cox2 and
p65, and the hypertrophic markers (Col10a1, Mmp13, Runx2, and Alp) decreased slightly.
In contrast, when both Promerim®30 and 40 were added at the highest concentrations
(50 and 100 µg/mL), all the effects detected at low Promerim® concentrations were lost,
because none of the mRNA of all the markers studied remained modulated (Figure S7).

2.3. Effect of Promerim® Hydrolysates on the Protein Expression of Type II and I Collagens
and Htra1

We then assessed the quality of the neo-synthesized extracellular matrix of the
organoids by monitoring the protein levels of type IIB, II, and I collagens, as well as
the serine protease Htra1. We used eACs at P3 to better observe a possible increase in
type II collagen isoforms, because eACs cultured in control conditions produced a very
low amount of type II collagen, as previously reported [31]. Promerim®30 did not show a
striking increase in the synthesis of the type II collagen isoforms, regardless of its concen-
tration (Figures 13A,B and 14A,B). Nevertheless, in the presence of IL-1β, Promerim®30
systematically led to a slight increase in type IIB collagen expression, compared with the
IL-1β treatment. Additionally, without BMP-2 or IL-1β, Promerim®30 (0.5, 50, and 100
µg/mL) led to an increase in type I collagen protein amounts (Figures 13B and 14A,B).
Although in the presence of BMP-2, Promerim®30 had no obvious effect, it was able to sys-
tematically counteract the decrease of the type I collagen protein amounts observed in the
presence of IL-1β. In combination with both BMP-2 and IL-1β, Promerim®30 (0.1, 0.5, and
50 µg/mL) also increased type I collagen protein levels. IL-1β practically systematically
decreased Htra1 expression (Figures 13A–C and 14A–D). The inflammatory conditions
mimicked by incubation in the presence of IL-1β favored the effect of the Promerim®30 on
the downregulation of Htra1 expression.

Altogether, these data suggest that Promerim®30 holds promise for enhanced extra-
cellular matrix accumulation in an inflammatory microenvironment.

Regarding Promerim®40 at 0.1 µg/mL, used alone or in combination with IL-1β,
type IIB collagen protein levels remained unchanged and expression was very weak.
Type I collagen protein amounts increased when Promerim®40 was used alone or in
combination with IL-1β. Htra1 protein levels tended to decrease when Promerim®40 was
combined with IL-1β or with the combination of both IL-1β and BMP-2, compared with
the respective controls.
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of 0.1 and 0.5 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with respect to the β-actin reference 
gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2 ratios are given. The results 
are shown as histograms and the significance of the values between the different treatments and the control case (BMP-2) 
was tested using a Mann–Whitney test; n = 3. eAC: mRNA extracts obtained from equine articular chondrocytes released 
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Figure 11. mRNA expression in equine articular chondrocytes treated with low concentrations of Promerim®30 and 40 in
the presence of BMP-2. Equine articular chondrocytes were grown in type I/III collagen sponges at the third passage (P3).
They were incubated during 7 days under hypoxia in the absence (C: control) or both the presence of BMP-2 + P30 and
BMP-2 + P40, or BMP-2 alone (B), or IL-1 alone (I), or BMP-2 and IL-1 (IB). The Promerim® were used at the concentrations
of 0.1 and 0.5 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with respect to the β-actin reference
gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2 ratios are given. The results are
shown as histograms and the significance of the values between the different treatments and the control case (BMP-2) was
tested using a Mann–Whitney test; n = 3. eAC: mRNA extracts obtained from equine articular chondrocytes released from
cartilage after overnight enzymatic digestion were used as controls. D0: cells seeded in sponges and arrested after 16 h of
incubation. P30 and P40: Promerim®30 and 40.
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Figure 12. mRNA expression in equine articular chondrocytes treated with low concentrations of Promerim®30 and 40 in
the presence of both IL-1 and BMP-2. Equine articular chondrocytes were grown in type I/III collagen sponges at the third
passage (P3). They were incubated for 7 days under hypoxia in the absence (C: control) or both the presence of P30 + IL-1 +
BMP-2 and P40 + IL-1 + BMP-2, or BMP-2 alone (B), or IL-1 alone (I), or BMP-2 together with IL-1 (IB). The Promerim®

were used at the concentrations of 0.1 and 0.5 µg/mL. The mRNAs were estimated using RT-qPCR after normalization with
respect to the β-actin reference gene. Transcript expression is shown in arbitrary units. The Col2a1:Col1a1 and Col2a1:Col1a2
ratios are given. The results are shown as histograms and the significance of the values between the different treatments and
the control case (IL-1 + BMP-2) was tested using a Mann–Whitney test; n = 3. eAC: mRNA extracts obtained from equine
articular chondrocytes released from cartilage after overnight enzymatic digestion were used as controls. D0: cells seeded in
sponges and arrested after 16 h of incubation. P30 and P40: Promerim®30 and 40.
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Figure 13. Effect of low concentrations of Promerim® on chondrocyte protein expression of types II 
and I collagens and Htra1. Equine articular chondrocytes (eACs) at P3 were inoculated in collagen 
sponges with different treatments: 3D control culture medium (3DM), B (BMP-2), I (IL-1), B + I 
(BMP-2 + IL-1), P30 (Promerim®30), P40 (Promerim®40). (A) P30 at 0.1 µg/mL; (B) P30 at 0.5 µg/mL; 
(C) P40 at 0.1 µg/mL; (D) P40 at 0.5 µg/mL. Protein expression of equine articular chondrocytes was 
evaluated after 7 days of 3D culture in the presence and absence of treatment. The total protein 
extracts were separated by electrophoresis in 10% acrylamide gel in denaturing condition. The mo-
lecular weights expressed in kDa are shown on the left part of the panels and the antibodies used 
on the right part of the panels. Representative blots from different eAC strains are shown (at least n 
= 3). eAC: protein extracts obtained from equine articular cartilage are used as controls. 

Figure 13. Effect of low concentrations of Promerim® on chondrocyte protein expression of types II
and I collagens and Htra1. Equine articular chondrocytes (eACs) at P3 were inoculated in collagen
sponges with different treatments: 3D control culture medium (3DM), B (BMP-2), I (IL-1), B + I
(BMP-2 + IL-1), P30 (Promerim®30), P40 (Promerim®40). (A) P30 at 0.1 µg/mL; (B) P30 at 0.5 µg/mL;
(C) P40 at 0.1 µg/mL; (D) P40 at 0.5 µg/mL. Protein expression of equine articular chondrocytes
was evaluated after 7 days of 3D culture in the presence and absence of treatment. The total
protein extracts were separated by electrophoresis in 10% acrylamide gel in denaturing condition.
The molecular weights expressed in kDa are shown on the left part of the panels and the antibodies
used on the right part of the panels. Representative blots from different eAC strains are shown
(at least n = 3). eAC: protein extracts obtained from equine articular cartilage are used as controls.
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µg/mL; (B) P30 at 100 µg/mL; (C) P40 at 50 µg/mL; (D) P40 at 100 µg/mL. Protein expression of equine articular chondro-
cytes was evaluated after 7 days of 3D culture in the presence and absence of treatment. The total protein extracts were 
separated by electrophoresis in 10% acrylamide gel in denaturing condition. The molecular weights expressed in kDa are 
shown on the left part of the panels and the antibodies used on the right part of the panels. Representative blots from 
different eAC strains are shown (at least n = 3). eAC: protein extracts obtained from equine articular cartilage are used as 
controls. 

Regarding Promerim®40 at 0.1 µg/mL, used alone or in combination with IL-1β, type 
IIB collagen protein levels remained unchanged and expression was very weak. Type I 
collagen protein amounts increased when Promerim®40 was used alone or in combination 
with IL-1β. Htra1 protein levels tended to decrease when Promerim®40 was combined 
with IL-1β or with the combination of both IL-1β and BMP-2, compared with the respec-
tive controls. 

When Promerim®40 was used at 0.5 µg/mL, we did not observe any variation in type 
II collagen or Htra1 protein amounts (Figure 13D). Type I collagen synthesis was increased 
when Promerim®40 was concomitantly added with IL-1β alone or in association with 
BMP-2. 

Promerim®40 used at 50 µg/mL or 100 µg/mL did not seem to modulate type II col-
lagen expression (Figure 14C,D). On the other hand, when used alone, Promerim®40 at 50 
µg/mL strongly increased type I collagen expression. Finally, Promerim®40 led to a de-
crease in Htra1 protein amount in the presence IL-1β. 

Figure 14. Effect of high concentrations of Promerim® on chondrocyte protein expression of types II and I collagens and
Htra1. Equine articular chondrocytes (eACs) at P3 were inoculated in collagen sponges with different treatments: 3D
control culture medium (3DM), B (BMP-2), I (IL-1), B + I (BMP-2 + IL-1), P30 (Promerim®30), P40 (Promerim®40). (A) P30
at 50 µg/mL; (B) P30 at 100 µg/mL; (C) P40 at 50 µg/mL; (D) P40 at 100 µg/mL. Protein expression of equine articular
chondrocytes was evaluated after 7 days of 3D culture in the presence and absence of treatment. The total protein extracts
were separated by electrophoresis in 10% acrylamide gel in denaturing condition. The molecular weights expressed in kDa
are shown on the left part of the panels and the antibodies used on the right part of the panels. Representative blots from
different eAC strains are shown (at least n = 3). eAC: protein extracts obtained from equine articular cartilage are used as
controls.

When Promerim®40 was used at 0.5 µg/mL, we did not observe any variation in
type II collagen or Htra1 protein amounts (Figure 13D). Type I collagen synthesis was
increased when Promerim®40 was concomitantly added with IL-1β alone or in association
with BMP-2.

Promerim®40 used at 50 µg/mL or 100 µg/mL did not seem to modulate type II
collagen expression (Figure 14C,D). On the other hand, when used alone, Promerim®40
at 50 µg/mL strongly increased type I collagen expression. Finally, Promerim®40 led to a
decrease in Htra1 protein amount in the presence IL-1β.

Promerim®40 used at 100 µg/mL, alone or in combination with IL-1β or IL-1β +
BMP-2, upregulated the type I collagen accumulation (Figure 14D). On the other hand,
a decrease in type I collagen synthesis was observed when Promerim®40 was combined
with BMP-2.
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2.4. Promerim®30 and 40 Promote Proliferation, Whereas Promerim®60 Promotes Migration
of eACs

Enhancing proliferation of eACs and promoting the migration of eAC/progenitors to
the chondral lesion areas is of particular interest to try to delay OA outcomes. The effects
of Promerim®30, 40, and 60 on the proliferation/migration of eACs was assessed using
a wound healing assay. At 48 h post-scratching, eACs treated with Promerim®40 and
60 colonized the wound areas to a higher extent compared with eACs cultured with the
control medium containing 2% FCS (control) (Figure 15A). Thus, the cell confluence in
the wound area increased significantly when eACs were treated with Promerim®40 and
60 (Figure 15B). Although the results were not statistically significant, the same trend
was observed when eACs were cultured with Promerim®30. Whereas the increase in the
confluence when eACs were incubated in the presence of Promerim®30 and 40 seemed
to be due to an increase in cell proliferation, Promerim®60 seemed to favor migration,
because we observed spindle-shaped eACs, characteristic of migrating cells (Figure 15C).
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Figure 15. Wound-filling analysis following a scratch wound assay. Equine articular chondrocytes
(eACs) were seeded at P2. At 90% of confluency, a scratch wound assay was performed using a
WoundMakerTM kit (Essen BioScience) and then the treatments were added. eACs were incubated in
the presence of a culture medium containing 2% fetal calf serum (FCS) (Control), and P30, P40, or P60
at 100 µg/mL. The cells were also incubated in the presence of 10% FCS. The wound areas (A) were
monitored until 96 h of incubation, and the wound confluences (B) were calculated using the ImageJ
software. Every 24 h, photographs (C) of the wound were taken with Incucyte. The significance of
the values between the different treatments and the control case was tested using a two-way ANOVA
followed by Bonferroni test for multiple comparisons (n = 4). P30, P40 and P60: Promerim®30,
Promerim®40, and Promerim®60.
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3. Discussion

Numerous nutraceuticals have been studied to relieve discomfort associated with ar-
ticular disorders, including OA [17,32]. There are hundreds of food supplements available
on the market to treat OA. Among them are the most frequently used active ingredi-
ents, such as collagen hydrolysates [33], Curcuma longa and curcumin extracts [34,35],
and Boswellia serrata [36,37], which have demonstrated highly and clinically significant
short-term reduction in pain [38]. Others, such as undenatured type II collagen [39],
avocado and unsaponifiable soy [40], glucosamine, and chondroitin have shown statis-
tically significant improvements in pain management [22,41,42], but their clinical signif-
icance has not been clearly identified, because long-term effects on inflammation and
matrix regeneration still remain to be demonstrated [38]. Studies have also shown that,
in women suffering from moderate knee OA, daily oral intake of collagen peptides for
6 months reduces pain and increases the mobility of the affected joint [25]. Additionally,
McAlindon and collaborators performed double-blind clinical trials on 29 individuals aged
49 years and older with severe to moderate OA of the knee. Patients were treated with
collagen hydrolysates versus placebo and showed an increase in the quality of the ECM
quality after 24 weeks of treatment [15]. These results are in agreement with those we
observed in vitro and confirm that the use of collagen hydrolysates in the treatment of OA
is relevant.

Collagen hydrolysates belong to one of the most interesting class of nutraceuticals to
improve OA condition or delay its outcomes, especially through the downregulation of the
inflammation and degradation molecules [28]. The use of collagen hydrolysates in vivo
dates back to a 2000 study that reported that collagen hydrolysates were able to reduce
pain in patients with knee or hip OA, and increase the blood concentration of hydrox-
yproline [43]. Since then, different sources of collagens have been studied. For example,
chicken collagen hydrolysates keep inflammation and ECM degradation in check in mice,
and improve joint mobility in humans [44,45]. Likewise, shark collagen hydrolysates can
act on whole joint tissues to counteract OA outcomes in rabbits [46]. Collagen hydrolysates
used in our present study were derived from enzymatic hydrolysis into peptides that are
more easily absorbed and have a strong affinity with water [47]. The marine environ-
ment is very specific—fish evolve in cold, salty environments, and can be subjected to
high pressures. These elements differ from collagens derived from farmed land animals
(cattle, pigs) and give them different physico-chemical properties due to their amino acid
composition. Collagens of marine origin have antibacterial, antioxidant, neuroprotective,
and anti-aging properties [48–51]. In addition, marine peptides are believed to promote
skin healing in rats [52]. Further in vitro studies to assess the effect of these hydrolysates
on cartilage matrices remain to be performed. In this study, we studied the effect of three
collagen hydrolysates of marine origin (Promerim®30 and Promerim®60 from fish skin,
and Promerim®40 from fish cartilage) on the metabolic activity, senescence, and phenotype
of eACs, and on the subsequent quality of cartilaginous organoids.

We first showed that Promerim® hydrolysates are not cytotoxic for eACs. Cell viability
tests also allowed us to choose four preferential Promerim® concentrations to investigate
their effects on eAC phenotypes. Promerim® concentrations of 0.1 and 0.5 µg/mL were
sufficient to obtain an increase in eAC cell metabolic activity. We also selected higher
concentrations (X500; X1000) to assess whether the effects of Promerim® depended di-
rectly on their concentrations, which was an essential question because Promerim® hy-
drolysates are intended to be taken by mouth as a dietary supplement. During digestion,
oligopeptides are further metabolized into bioactive di- and tri-peptides in the gastroin-
testinal tract, and are then released into the bloodstream [53]. Although it is well-known
that peptides from dietary supplements can be found in the bloodstream, the concentration
of the dietary supplement that actually circulates in the body is unknown. For example,
upon oral ingestion of gelatin hydrolysates derived from porcine skin, chicken feet, and car-
tilage after 12 h of fasting, the peptide form of hydroxyproline increases significantly and
reaches a maximum level (20–60 nmol/mL of plasma) after 1–2 h, and then decreases
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to half the maximum level 4 h after ingestion [48]. The main constituents of food colla-
gen peptides in human serum and plasma have been identified as Pro-Hyp. In addition,
small but significant amounts of Ala-Hyp, Ala-Hyp-Gly, Pro-Hyp-Gly, Leu-Hyp, Ile-Hyp,
and Phe-Hyp have been detected [54]. Here, we demonstrated that regardless of their tested
concentration, both Promerim® hydrolysates were able to increase collagen production
and metabolism activity, and decrease catabolism at the mRNA level (see below). Thus,
the effect of Promerim® is maintained in a large range of concentrations, which makes
them relevant as food supplements.

OA is an evolutive disease characterized by sequential events. Following an initi-
ating event, intra-articular inflammation occurs. Then, as a first response, chondrocytes
increase their proliferation and ECM production composed of atypical collagen molecules,
notably type I collagen. Finally, chondrocytes become senescent, undergo apoptosis,
and cartilage ECM is inevitably degraded. These events accompany an imbalance in
anabolism and catabolism, with an upregulation of several matrix metalloproteinases,
aggrecanases, and serine proteases. Among serine proteases, Htra1 is upregulated in syn-
ovial fluid and articular cartilage in patients with OA and rheumatoid arthritis. Htra1 mRNA
levels can increase seven-fold in OA cartilage compared with healthy cartilage [55]. Htra1 plays
a pivotal role in the emergence of OA because it degrades directly and indirectly, particularly via
the upregulation of metalloproteinases, ECM molecules, and inhibits anabolic signaling
by antagonizing the receptor of the TGF-β family [56]. Here, we demonstrated for the
first time that the pro-osteoarthritic IL-1β downregulates Htra1 in articular chondrocytes.
However, another cytokine, IFN-γ, has been reported to significantly inhibit basal and LPS-
induced Htra1 expression in macrophages and fibroblasts, two cell types mainly involved
in Htra1 synthesis in rheumatoid arthritis, through activation of the p38 MAPK pathway
and subsequent activation and binding of STAT1 to the Htra1 promoter [57].

Promerim® hydrolysates seem to have promising effects to prevent or delay, at least
in part, OA pathogenesis. They antagonize the initial steps of OA pathogenesis by de-
creasing inflammation and inhibiting proteases. Promerim® hydrolysates were able to
decrease the expression of Cox2, as well as proteases such as Mmp-1, -3, Adamts5, and Htra1,
confirming previous reports. For example, collagen hydrolysates, associated with curcum-
inoid extracts, exhibit anti-inflammatory properties when added to in vitro cultures of
bovine and human chondrocytes [58]. Other dietary supplements, such as methionine,
unsaponifiable extracts of avocado, soybean, and plant flavonoids and bioflavonoids also
have anti-inflammatory properties, notably through the modulation of the NFkappaB or
oxidative stress pathways [59–62]. Many dietary supplements have been described as act-
ing on the EPA/DHA (eicosapentaenoic acid/docosahexaenoic acid) pathway, leading to
the synthesis of prostaglandin E2 (PGE2) and LT4 pro-inflammatory factors, such as fish oil,
ginger, or devil’s claw (Harpagophytum procumbens) [63–65]. Various supplements are also
described as simply playing an antioxidant role, such as glycosaminoglycans, frankincense,
plant flavonoids and bioflavonoids [66–70]. On the contrary, we had previously shown that
shell extracts of marine origin promote the catabolic pathway of human dermal fibroblasts,
or the activity of MMP-1 in chondrocytes [71,72]. Nevertheless, the composition of the
Promerim® is very different from shell extracts—it does not contain high concentrations of
marine minerals. We assume that the effects of Promerim®, at least in part, derive from
matrikines. Indeed, the hydrolysates tested here are of marine origin. During specific
enzymatic digestion, protein fragments are released and they can then be the source of
small bioactive peptides, also called matrikines [73], that may be the main players that
make dietary supplements promising sources in rheumatology and for the treatment of
OA to favor chondral defect healing. For example, some matrikines have been described
as playing a role in wound healing and in the synthesis of anabolic components of fi-
broblasts [24]. In particular, the GHK tripeptide present in types I, V, and XI collagen is
known to stimulate collagen and proteoglycan synthesis [23]. Altogether, our data demon-
strate a promising role of Promerim® in the prevention of the initial events triggering
OA. In fact, OA is a degenerative pathology that most often evolves from micro-lesions.
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The results obtained in the present study prompted us to believe that hydrolysates could
have effects at different stages of OA, such as in the earliest stages of OA by limiting the
loss of chondral substance, limiting degradation by proteases, and promoting collagen
syntheses. Promerim® could also have an effect when the microenvironment becomes
inflammatory, where the articular cartilage suffers from deleterious damage. We showed
that when chondrocytes evolve in a pro-inflammatory environment (through addition of
IL-1), marine collagen hydrolysates may prevent the dedifferentiation of equine articular
chondrocytes, limiting their senescence, and they also ensure the maintenance of ECM
synthesis. Thus, Promerim® favors collagen production and metabolism, especially in
an inflammatory environment, and these collagen hydrolysates may therefore delay OA
progression throughout the entire pathological process, from the earliest to the latest stages.
Previous studies have also demonstrated an increase in the synthesis of type II collagens or
proteoglycans when collagen hydrolysates are added to bovine chondrocytes (derived from
bovine skin) that were cultured in vitro [74,75]. Other supplements have demonstrated an
increase in the synthesis of proteins characteristic of hyaline cartilage. These include gly-
cosaminoglycans [76], olive oil [77], or unsaponifiable extracts of avocado and soybean [78].
Other products of marine origin can stimulate the synthesis of type I and III collagens,
as well as that of sulfated glycosaminoglycans (GAGs) on human fibroblasts [79].

The increase in ECM production (especially collagens) induced by Promerim®30 and
40 in control and pro-inflammatory conditions, as observed on Western blots, can be at-
tributed to a decrease in the expression and activity of several proteases. Nevertheless,
in some conditions, Promerim® hydrolysates also upregulated the mRNA steady-state
amounts of ECM molecules, notably the collagens. Thus, in addition to inhibiting catabolism,
Promerim® favors anabolism. The mechanism of action of the upregulation of anabolism
remains to be elucidated, even though the downregulation of Htra1 may be partly re-
sponsible. In particular, Htra1 plays a double role—on the one hand, it degrades the
ECM and on the other hand, it degrades the receptors of the TGF-β family [56]. TGF-β
signaling pathways play a major role in maintaining chondrocyte differentiation [80,81].
This increase in Htra1 expression detected upon the development of OA is thought to
be due to the activation of discoidin domain receptor-2 (DDr-2), which is a cell surface
receptor that, when negatively regulated, leads to an increase in ECM degradation [82,83].
Further studies could be carried out to determine whether the Promerim® has an effect on
these receptors.

Chondrocyte senescence is a major event in OA pathogenesis, which precedes the
later stages of OA, and subchondral bone exposure in particular. Senescence can be in-
duced by a range of factors, such as age, being overweight, mechanical or oxidative stress,
dedifferentiation, or apoptotic phenomena [84–88]. Studies have shown that the suppres-
sion of senescent chondrocytes delays the progression of induced OA in mice [89]. Thus,
Promerim®30 may help delay OA evolution because it is able to inhibit eAC senescence.

Because we had already demonstrated the ability of marine-origin products to slightly
enhance cell migration and in vitro repair [79], we addressed the question of whether
Promerim® hydrolysates were able to promote eAC migration, which is of in vivo interest.
Thus, we carried out a wound-healing assay when eAC were cultured in the presence
of Promerim®. Even though these results will require further investigation to define the
mode of action of Promerim®, the increase in confluence in the wound area when eACs
were cultured in presence of Promerim®30 and 40 seemed to be due to an increase in cell
proliferation. This increase is consistent with the increase in metabolic activity—related in
part to proliferation—observed in the XTT assays. On the contrary, Promerim®60 seemed
to favor migration, because we observed spindle-shaped eACs, characteristic of migrating
cells. Therefore, Promerim® 60 may favor migration of the chondrocytes to the chondral
defect, and eventually enhance cartilage synthesis to fill the defect, whereas Promerim®30
and 40 may be useful for enhancing the proliferation and the reservoir of chondrocytes
located near the cartilage defect.
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To reconstitute cartilage of hyaline quality, cartilage cell-based therapies using chon-
drocytes or mesenchymal stem cells (MSCs) derived from several tissues have been de-
veloped [9,90]. These techniques were initially based on the autologous chondrocyte
implantation (ACI) procedure developed by Brittberg and colleagues [91]. Basically,
these approaches can be divided into two steps: amplification and subsequent differ-
entiation/redifferentiation of the cells. Over time, these techniques have been improved
in several aspects (use of chondrogenic 3D biomaterials, hypoxia, cell sourcing, etc.).
Several cell sources have been used, such as chondrocytes or stem cells from various
adult/neonatal tissues, as well as several differentiation protocols [30,31,92]. Neverthe-
less, despite the high quality of the in vitro synthesized cartilage substitute, they are not
strictly identical to in vivo healthy hyaline cartilage. Thus, differentiation strategies can
be improved. In this context, Promerim® represents a good candidate to foster hyaline-
like ECM production. Western blot experiments revealed that both Promerim®30 and
40 increase collagen biosynthesis in control conditions, demonstrating that they could
be chondrogenic, such as BMP-2. Interestingly, both Promerim®30 and 40 systematically
counteracted the inhibitory effects of IL-1β on collagen protein amounts, with levels at
least reaching those observed in control conditions and even those of eAC cultures treated
with pro-chondrogenic BMP-2. Therefore, Promerim® may be useful during the two phases
of the ACI procedure to increase the proliferation/amplification of cells and foster their
synthesis during the differentiation/redifferentiation step, while inhibiting their senescence
(Promerim® 30). Furthermore, collagen hydrolysates may be of interest to enhance MSC
chondrogenesis, all the more so if these hydrolysates are as active as some of the members
of the TGF-β family [92–97].

We showed here that Promerim® is not cytotoxic for eACs, but enhances their metabolic
activity, even inhibiting their senescence (Promerim®30 only). The Promerim® hydrolysates
also favored ECM accumulation in organoids, increasing collagen production while pos-
sibly decreasing its catabolism. Interestingly, the beneficial effects of Promerim® were
enhanced under pro-inflammatory conditions. This study is the first to demonstrate the
beneficial effects of marine collagen hydrolysates to counteract each step of the OA patho-
genesis. Hence, in vivo, Promerim® may enhance the first response of chondrocytes to
chondral injuries and further delay OA progression. Furthermore, because Promerim®

downregulates several proteases, ECM degradation may also be delayed.

4. Materials and Methods
4.1. Collagen Hydrolysates

Promerim® peptides are produced by enzymatic hydrolysis characterized by the
control of hydrolysis time, acidity (pH), and temperature. There is no chemical process of
hydrolysis. Promerim® are hydrolysates of fish skin and cartilage proteins composed of
collagen peptides. These are oligopeptides, that is, small peptides characterized by low
molecular weights below 1500 Dalton. They are composed of 2, to a maximum of 15 amino
acids. The minimum amount of hydroxyproline is 5 g/100 g and the two major amino
acids are proline (9 g/100 g) and glycine (21 g/100 g).

4.2. Isolation and Cell Culture

Equine articular chondrocytes (eAC) were isolated from cartilage biopsy of healthy
equine metacarpal joint from adult horses (4–10 years). Chondrocytes derived from
12 different horses were used in this study. All procedures described in the present
study were approved by the Ethics Committee for Animal Experimentation (ComEth
ANSES/ENVA/UPEC, 94 701 Maisons-Alfort, France; n◦ 15-023 (10 March 2015), n◦ 10-0051
(10 September 2014). Healthy equine cartilage was cut into small slices, then sequentially
incubated with type XIV protease Streptomyces griseus (2 mg/mL) (Sigma-Aldrich, Saint-
Louis, MO, USA) for 45 min at 37 ◦C and type I collagenase from Clostridium histolyticum
(2 mg/mL) (Invitrogen Life Technologies, Carlsbad, CA, USA) overnight, at 37 ◦C. The sus-
pension was filtered through a 70 µm mesh nylon membrane and centrifuged, and eAC
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were counted in the presence of trypan blue to assess their viability. eAC were seeded in
plastic flasks at a density of 2 × 104 cells/cm2 and cultured in DMEM-high glucose (HG,
4.5 g/L BioWest, Nuaillé, France) supplemented with 10% of fetal calf serum (FCS) (Euro-
bio Scientific, Courtaboeuf, France). In addition, antibiotics and antifungal were added in
all the media used (100 IU/mL of penicillin, 100 µg/mL of erythromycin, and 0.25 mg/mL
of fungizone (Eurobio Scientific, Courtaboeuf, France).

4.3. XTT Assay

After the third passage (P3), eAC were seeded in a 96-well plate at a density of
2 × 104 cells/cm2, then cultured with DMEM HG with 10% FCS for 72 h (37 ◦C, 5% CO2)
to allow the cells to adhere and reach 80% confluence. The cells were then treated with
different concentrations (0.1, 0.5, 1, 10, 50, 100, and 250 µg/mL) of Promerim®30, 40, or 60.
The Promerim® were diluted in series either in DMEM HG supplemented with 2% FCS or in
serum-free DMEM HG (0% FCS). As controls, eAC were also cultured without Promerim®

in DMEM HG in the absence of serum or supplemented with 2% or 5% FCS. Experiments
were performed under normoxia (21% O2) or in chondrocyte physioxic conditions in hy-
poxia at 3% O2. Cell metabolism activity was assessed 24 h, 48 h, or 72 h after the addition
of the treatments. At the end of each culture period, XTT assay was performed according to
the manufacturer’s instructions (Roche, Bale, Switzerland). Optical density (OD) measure-
ments were made at 490 nm, and the background (690 nm) was subtracted. Measurements
were made with a microplate reader (Spark control Magellan, TECAN®). All experiments
were performed in triplicate, and are presented as the mean of five experiments.

4.4. Toxilight Assay

eAC were cultured under the same conditions as for the XTT assays. After 72 h of
treatment, for each condition, 80 µL of the culture medium was transferred to a 96-well
plate. One hundred µL of AK Reagent working solution (Interchim® Bioluminescence Cy-
totoxicity Assay Kit, Interchim, Montluçon, France) were added in each well and incubated
for 5 min at room temperature. The bioluminescence was then measured by a microplate
reader (TECAN®). All experiments were carried out in triplicate and are presented as the
mean of five experiments.

4.5. β-Galactosidase Activity

β-galactosidase activity was measured using the Cell Biolabs Cell Senescence Assay
Kit (Cell Biolabs, San Diego, CA, USA). eAC were seeded at 2 × 104 cells/cm2 in the
presence of DMEM HG (2% FCS). At 80% of confluency, the Promerim®30, 40, or 60
were added (50 or 100 µg/mL, in normoxia or hypoxia). Then, the media were removed,
eAC were washed with PBS 1X. The 1X cell lysis buffer containing PMSF (5 µL/mL) was
added to the eAC. The lysates were recovered and centrifuged at 300 g (10 min, 4 ◦C).
The supernatants were then transferred to a 96-well plate and incubated (16 h, 37 ◦C) in the
presence of the substrate of the β-galactosidase (reaction buffer). Finally, the stop solution
was added, and the fluorescence was measured at 465 nm. All experiments were performed
in triplicate, and are presented as the mean of four experiments.

4.6. eAC Redifferentiation

At the third passage, eAC were seeded into type I/III collagen sponges (Symatèse
Biomatériaux, Chaponost, France) at a density of 8 × 105 cells/sponges in the presence
of 3D medium (DMEM HG, 2% FCS + ascorbic acid (A2p) (5 µL/mL) (Sigma-Aldrich,
Saint-Louis, MO, USA) and antibiotics). These collagen sponges (100% of collagen, 2 mm
thickness, 5 mm diameter, corresponding to a volume of 0.04 cm3, approximately 100 µm
pore size) are composed of native type I collagen (90–95%) and type III collagen (5–10%)
from calf skin; they are crosslinked with glutaraldehyde to increase their stability and then
sterilized with β-radiation, and they do not swell after rehydration [30,89,90]. After 16 h of
seeding, treatments with Promerim® (30, 40, 60) were added at several concentrations (0.1,
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0.5, 50, or 100 µg/mL) in the presence or absence of recombinant human BMP-2 (50 ng/mL,
Inductos®) and/or Interleukin-1β (IL-1β; 10 ng/mL; Miltenyi Biotec Bergisch Gladbach,
Germany). The media were renewed after three days of treatment. After seven days of
incubation, the sponges were rinsed with PBS and placed at −80 ◦C until their protein or
total RNA extractions.

4.7. RNA Isolation and RT-qPCR

Total RNAs were extracted using the TRIzol Reagent® (Thermo Fisher Scientific,
Waltham, MA, USA). One microgram of total RNA was reverse-transcribed into cDNA
using iScript® reverse transcript supermix (Bio-Rad, Hercules, CA, USA). Samples were
diluted (1/100) in DEPC-water, and real-time PCR was performed on the CFX96 Touch
(Bio-Rad, Hercules, CA, USA) using the “SYBR® Green supermix” (Bio-Rad, Hercules,
CA, USA). The sequences of the primers used are indicated in Supplementary Table S1.
Relative gene expression was calculated using the 2−∆∆Ct method expressed as the mean of
triplicate samples. Each sample was normalized to β-Actin and PPIA house-keeping genes.

4.8. Western Blots

Sponges were crushed and lysed with RIPA containing a cocktail of protease inhibitors,
as previously described [31]. The protein concentration was evaluated by a Bradford as-
say (Bio-Rad, Hercules, CA, USA). Then, 12 µg of total proteins were separated in 10%
polyacrylamide gels containing 0.1% SDS, and transferred to a polyvinylidene membrane
(PVDF, Bio-Rad, Hercules, CA, USA). Unspecific binding sites of the membranes were
blocked with 10% non-fat milk powder in tris-buffered saline with 0.1% Tween (TBST) for
1 h. Then, membranes were incubated overnight at 4 ◦C with rabbit anti-human type I col-
lagen (Novotec, Bron, France), rabbit anti-human type II collagen (Novotec, Bron, France),
rabbit anti-human type IIB collagen (Covalab, Villeurbane, France), rabbit anti-human type
X collagen (Abcam, Cambridge, UK), rabbit anti-human Htra1 (Merck Millipore, Biller-
ica, MA, USA), rabbit anti-human GAPDH (Santa Cruz Biotechnology, Dallas, TX, USA),
and mouse anti-human tubulin (Santa Cruz Biotechnology, Dallas, TX, USA). The following
day, membranes were washed in TBST, and incubated with the secondary antibody (HRP-
conjugated goat anti-rabbit or mouse IgG antibody (Jackson Immunoresearch; West Grove,
PA, USA)). After a washing step, membranes were incubated with the Clarity Western
ECL (Bio-Rad, Hercules, CA, USA) and signals visualized with the Chemidoc (Bio-Rad,
Hercules, CA, USA).

4.9. Scratch Wound Assay

eAC were seeded in monolayers (P2) at a density of 20,000 cells per well in 96-well
ImageLock plates (Essen BioScience, Michigan, USA) and were cultured for three days
to form a confluent monolayer. A WoundMakerTM (Essen BioScience) was used to cre-
ate uniform and reproducible wounds in all wells (four wells per condition) according
to the manufacturer’s instructions. Then, the treatments were added, and the wound
areas were monitored until 96 h, thanks to the IncuCyte ZOOM living cell imaging sys-
tem (Essen BioScience). Wound surface area and cell confluence were measured using
ImageJ software.

4.10. Statistical Analysis

All experiments were repeated at least four times with eAC from different horses.
Values are presented as mean ± SD or as boxplots. Statistical analyses were performed
using the Mann–Whitney U-test to determine significant differences between two groups,
or using a two-way ANOVA followed by a Bonferonni test for multiple comparisons.
Statistical analyses were done using Prism (Graphpad, San Diego, CA, USA). A p-value of
≤0.05 was considered to be significant.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/2/580/s1, Figure S1: Promerim® 30, 40, and 60 have no cytotoxic effect on equine articular
chondrocytes in normoxia; Figure S2: Effect of low concentrations of Promerim® 30, 40, and 60 on
the mitochondrial activity of equine articular chondrocytes cultured in normoxia in the absence of
serum; Figure S3: Effect of high concentrations of Promerim® 30, 40, and 60 on the mitochondrial
activity of equine articular chondrocytes cultured in normoxia in the absence of fetal calf serum;
Figure S4: Effect of low concentrations of Promerim® 30, 40, and 60 on the mitochondrial activity
of equine articular chondrocytes cultured in normoxia in the presence of 2% fetal calf serum (FCS);
Figure S5: Effect of high concentrations of Promerim® 30, 40, and 60 on the mitochondrial activity
of equine articular chondrocytes cultured in normoxia in the presence of 2% fetal calf serum (FCS);
Figure S6: mRNA expression in equine articular chondrocytes treated with high concentrations
Promerim® 30 and 40 in the presence of BMP-2; Figure S7: mRNA expression in equine articular
chondrocytes treated with Promerim® 30 and 40 at high concentrations in the presence of both IL-1
and BMP-2; Figure S8: Complete gel and PVDF membranes analyzed in the western-blots; Figure
S9: Under- and over-exposure of the blots presented in Figure 13; Figure S10: Complete gel and
PVDF membranes analyzed in the western-blots; Figure S11: Under- and over-exposure of the blots
presented in Figure 14; Table S1: Sequences of the primers used in RT-qPCR.
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