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Topology Optimization of 2DOF Piezoelectric Plate

Energy Harvester Under External In-Plane Force

Abbas Homayouni-Amlashi1,2,∗ · Abdenbi

Mohand-Ousaid2
· Micky Rakotondrabe1

Abstract In this paper, the goal is to design a two degrees of freedom piezoelec-
tric plate energy harvester which can harvest the energy from external in-plane 
harmonic force coming from different directions. The most challenging problem in 
this case is the charge cancellation due to combination of tension and compression 
in different parts of the plate. Therefore, topology optimization method is utilized 
to find the best possible layout and polarization profile of the piezoelectric plate to 
maximize the electrical output and to overcome the problem of charge cancellation. 
To do so, a detailed two dimensional finite element modelling of the piezoelectric 
material suitable for topology optimization is presented primarily. The topology 
optimization algorithm is established based on the finite element model to have 
minimum amount of numerical instabilities. To follow the optimized polarization 
profile, the electrode in top surface of the piezoelectric plate is separated to two 
sections that can have potentials with different sign on the same surface. Numeri-
cal simulation by COMSOL Multiphysics finite element software and experimental 
investigation on the fabricated designs demonstrated that the optimized design is 
highly superior to the classical full plate in terms of produced voltage and electrical 
power while having less volume of piezoelectric material.
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1 INTRODUCTION

In recent years, a huge part of the industrial and research budget is devoted to
smart materials specially the piezoelectric materials. Thanks to their electrome-
chanical coupling effect, they have applications in three main areas: actuation
using inverse piezoelectric effect, sensing and energy harvesting using the direct
piezoelectric effect. Due to their satisfying power density at small scales [14] they
have applications in micro-electromechanical systems (MEMS) [15], wireless sen-
sor networks (WSN) [33] and small scale robots [7, 26] for the purpose of sensing
or energy harvesting. In the later case, although piezoelectric materials provide
acceptable power densities in small scales, researchers tried to improve their per-
formance in many ways including parametric optimization of the piezoelectric
structures [21,27], increasing the bandwidth [38], designing their structures on the
basis of interval techniques [22] such that prescribed performances are robustly
satisfied [13, 23], designing nonlinear and bi-stable systems [10], optimization of
the electrical circuit [8], etc.

One of the recent approaches for optimization of the piezoelectric energy har-
vesters is using the Topology Optimization (TO) method [6]. The idea behind
this method was started by integrating the Finite Element Method (FEM) to op-
timization methods. Later, several approach are proposed for implementation of
TO algorithm. The most applicable one is the density based approach and in par-
ticular the Soild Isotropic Material with Penalization (SIMP) approach [5] which
considers intermediary densities for the elements. The approach demonstrated its
potential for mechanical design problems in which the goal is to minimize the
structure’s deformation in a predefined boundary and load conditions. Thereafter,
several MATLAB codes are published to implement the SIMP-based TO algo-
rithm [3,9,29]. For a review on published topology optimization codes, readers are
referred to Ref. [37].

The idea behind the TO became interesting to optimize the piezoelectric struc-
tures. To do so, first the SIMP approach is extended for non-isotropic piezoelectric
material [30]. Then, the TO methodology is employed for piezoelectric actuators
and sensors [34,35] or energy harvesters [2,24]. For the energy harvesting applica-
tions, different cost functions and constraints are proposed to optimize the power
density of the piezoelectric structure under static force [36], dynamic or harmonic
force [20] and random force [18] while recent works in the field consist of coupling
the electrical circuit to the optimization algorithm [25]. However, in all of the
aforementioned researches, the main configuration of the piezoelectric structure
is a cantilever plate in which the boundary condition is a classical clamped-free
boundary condition while the applied force is a one directional bending force. This
configuration is interesting for the researchers since it is easy for fabrication and
experimental implementation. But it is unable to harvest the energy that comes
from different directions. Most importantly, the researches devoted to integration
of TO to piezoelectric energy harvesters are mostly theoretical and experimental
evaluation of the TO obtained results for piezoelectric energy harvesters hardly
can be found in the literature.

In this paper, the topology optimization is employed to design the layout of
a piezoelectric plate that can harvest the energy from in-plane force that can
comes from different directions. The volume fraction (desired optimized design
volume/volume of the full piezoelectric plate) is decreased to decrease the stiff-



ness of the piezoelectric plate against in-plane forces. In-plane forces can induce
tension and compression in different parts of the piezoelectric plate which results
in potential with different signs on the surface of the electrode. This phenomenon
is known as charge cancellation. To remedy, the polarization direction in different
parts of the plate is also optimized by the TO. The piezoelectric plate itself is a 2D
structure that cannot harvest the energy from in-plane deformations due to charge
cancellation. However, the proposed piezoelectric design is optimized to harvest
the energy from every possible combination of deformation in X and Y direction.
For this reason, the design is called a 2 Degree of Freedom (2DOF) piezoelectric
energy harvester.

In terms of fabrication, having different polarization direction in a single piezo-
electric plate is almost impossible. Therefore, to simulate the polarization profile
obtained by TO, the surface electrode of the parts that have different polariza-
tion direction are isolated. The obtained optimized design is firstly transferred to
COMSOL multi-physics software to compare the performance of the optimized de-
sign and the classical full plate design. Afterwards, the prototypes are fabricated
and their performances are investigated experimentally. The results show the su-
periority of the optimized design over the classical full plate in terms of voltage
and harvested power.

The structure of the paper is as follows: in section II, a detailed two dimensional
finite element modelling for piezoelectric plate is presented. The FEM is presented
in a way which makes it easy for implementation in TO and it reduces the numer-
ical instability during optimization iterations. In section III, the implementation
algorithm for piezoelectric material considering the polarization optimization is
explained. Section IV is devoted to numerical results which includes the TO re-
sults in MATLAB and simulation results by COMSOL Multiphysics software. In
section V, the fabrication process of piezoelectric designs, the experimental setup
and obtained results from experimentation are reported.

2 Modelling

2.1 2D Finite Element Modelling of Piezoelectric Material

The linear coupled mechanical and electrical constitutive equation of piezoelec-
tric materials by neglecting the thermal coupling can be written in the following
compact matrix form [17]

T̄ = cES̄ − eĒ

D̄ = eT S̄ + εSĒ (1)

In (1), T̄ and S̄ are the vectors of mechanical stress and strain while cE is the
mechanical stiffness tensor in constant electrical field. D̄ and Ē are the vectors of
electrical displacement and electrical field. e is the piezoelectric matrix while εS is
the matrix of permittivity in constant mechanical strain and T shows the matrix
transpose.

Here, the design domain is considered to be a thin piezoelectric square plate
sandwiched between two electrodes. Therefore, by considering plane-stress assump-
tion the matrices in constitutive equation (1) have this following format [12]



Fig. 1 Piezoelectric plate meshed with rectangular element

cE =





c∗11 c∗12 0
c∗12 c∗22 0
0 0 c∗66





eT =
[

e∗31 e∗31 0
]

ε =
[

ε∗33
]

(2)

where c∗ij , e∗ij and ε∗ij are the derived elements of plane-stress form of stiffness
matrix, piezoelectric coupling matrix and permittivity matrix. The derivation of
the constants in matrices of equation (2) from full 3D matrices are explained in
appendix.

Now, to discrete the design domain and obtain the FE formulation, the four
node rectangular element is employed as shown in figure 1. Two mechanical degrees
of freedom for each node of this four nodes element is considered. To model the
electrical degree of freedom it is assumed that the whole surface of the piezoelec-
tric plate is covered by perfectly conductive electrode which brings equipotential
condition. For this case, just one electrical degree of freedom is enough for each
element. Therefore, the strain and electric field can be written based on the shape
functions in the following form

S̄ = Buu

Ē = Bφφ (3)

u and φ are the elemental mechanical displacement vector and electric po-
tential value on the surface of the electrode. Bu and Bφ are the shape function
matrices. The calculation method for mechanical strain displacement matrix (Bu)



is explained in finite element method references [11]. By assuming uniform elec-
trical field in direction of thickness aligned with the polling direction and linear
variation of the potential in the thickness (h) of the piezoelectric plate [12]

Bφ = 1/h (4)

Now, by substituting equation (3) to constitutive equation (1) and utilizing
the Hamilton’s principle which is explained in [12, 36], after some simplification
the elemental matrices are

kuu = h

∫

v

BT
u cEBudξdη, kuφ =

∫

v

BT
u edξdη

kφφ = (ε∗33A)/h,m = ρh

∫

v

NTNdξdη (5)

In equation (5), kuu, kuφ, kφφ and m are the elemental stiffness, piezoelectric
coupling, dielectric and mass matrices respectively. A and h are the area and
thickness of the elements while ρ is the density of the piezoelectric material. Now,
by assembling the elemental matrices and forming the global matrices, the equation
of motion can be written as.

[

M 0
0 0

]

[

Ü

Φ̈

]

+

[

Kuu Kuφ

Kφu −Kφφ

] [

U
Φ

]

=

[

F
Q

]

(6)

where Kuu, Kuφ, Kφφ and M are the global stiffness, piezoelectric coupling, dielec-
tric and mass matrices respectively. U and Φ are the global vectors of mechanical
displacement and electrical potential. Q is the external charge and in energy har-
vesting applications is considered to be zero. F is the applied external harmonic
force. By considering a linear electromechanical system, the input force and re-
sponses of the system can be written as

F = F0e
iΩt

U = U0e
iΩt, Φ = Φ0e

iΩt (7)

in which, Ω is the excitation frequency. F0, U0 and Φ0 are the amplitudes of the
force, mechanical displacement and electrical potential. By substituting equation
(7) to (6)

[

Kuu −MΩ2 Kuφ

Kφu −Kφφ

] [

U
Φ

]

=

[

F
0

]

(8)

Global equation of motion (8) can not be solved in this format because of
the singularities in the stiffness matrices. The general approach to solve these
equations of motion is to apply the proper mechanical and electrical boundary
conditions. In addition to singularities, there is a huge scale difference between the
mechanical stiffness matrix, piezoelectric matrix and permittivity matrix which
brings numerical instabilities during solving the equation and specially during the



optimization. As such, before applying boundary conditions a normalization is
suggested in assembling elemental matrices

K̃uu =
1

k0

NE
∑

i=1

kuu, K̃uφ =
1

α0

NE
∑

i=1

kuφ

K̃φφ =
1

β0

NE
∑

i=1

kφφ, M̃ =
1

m0

NE
∑

i=1

m (9)

( ˜ ) shows the normalization. k0, α0, β0 and m0 are the highest values of the el-
emental stiffness, piezoelectric coupling, dielectric and mass matrices respectively.
After applying the normalization to the global matrices, the normalized global
equation of motion can be written as

[

K̃uu − M̃Ω̃2 K̃uφ

K̃φu −γK̃φφ

] [

Ũ

Φ̃

]

=

[

F̃
0

]

(10)

where

F̃ = F/F0, Ũ = U/U0, , Φ̃ = Φ/Φ0

U0 = F0/k0, Φ0 = F0/α0

Ω̃2 = m0Ω
2/k0, γ = k0β0/α

2

0 (11)

With applying the normalization in equations (9)-(11) the scale difference be-
tween the matrices will be eliminated and the value γ which appears in the equation
is having the scale of 101. This will extremely reduce the numerical instabilities
when solving the equation with numerical software. Now, to solve the equation
of motion in (10) boundary conditions should be applied. Application of the me-
chanical boundary conditions are basic FEM task [11]. For electrical boundary
conditions as it is mentioned previously it is considered that electrodes on the
surface of the piezoelectric plate are perfectly conductive. Hence, the equipoten-
tial condition should be applied which can be expressed in the following general
form [20]

Φ̃ = BVp (12)

In general, when there are various numbers of layers for piezoelectric plates with
several electrodes, B is a boolean matrix [20]. However, since here there is just one
piezoelectric layer, B is a vector of ones. By applying the equipotential condition
and mechanical boundary conditions the final format of the global equation of
motion can be written as

[

Kuu Kuφ

Kφu −Kφφ

] [

Ũ
Vp

]

=

[

F̃
0

]

(13)

in which



Kuu =
[

K̃uu − M̃Ω̃2
]

bc

Kuφ =
[

K̃uφB
]

bc

Kφφ = γBT K̃φφB (14)

where ([ ]bc) stands for applied mechanical boundary conditions. The finite ele-
ment modelling presented in equations (13)-(14) is now ready to be used in the
optimization process.

3 Topology Optimization

3.1 Cost Function

Generally, in the energy harvesting applications the goal is to maximize the elec-
trical output of the system regarding the input mechanical force applied on the
system. To do so, some researches defined the objective function of the optimiza-
tion algorithm as the ratio of the electrical energy to the input mechanical energy
(energy conversion factor) [20, 36] and other researches considered the electrome-
chanical coupling coefficient as the objective function [1,25]. Mathematically, these
two objective functions are the same and they have the same problems. The main
problem is the numerical instabilities during the optimization where to remedy,
penalization of mechanical energy is suggested [25]. The other problem is the ef-
fects of penalization factors on the final topology which is discussed in [20]. For
different penalization factors different layout can be obtained and in some cases
the obtained layout does not have any physical meaning. Furthermore, as ex-
plained in appendix the piezoelectric coefficients with plane-stress assumption is
different to full 3d piezoelectric coefficients. Particularly, the coupling coefficient
in plane-stress assumption is higher then the full piezoelectric coupling coefficient
(|e∗31| > |e31|) [19]. Higher coupling coefficient brings more electromechanical cou-
pling which is convenient for energy harvesting goal. But, it introduces numerical
instabilities to the optimization and it delays the convergence of optimization al-
gorithm. To tackle the mentioned problems, other form of cost function is defined
here. To define the cost function, first the input work due to the input force can
be calculated with the help of equation (13) as

WF =
1

2
ŨT F̃ =

1

2
(ŨT K̃uuŨ + ŨTKuφVp) =

1

2
(ŨT K̃uuŨ + V T

p K̃φφVp) (15)

By pre-multiplying the normalized displacement vector (ŨT ) to equation (13),
it will be cleared that the input energy to the system is converted to mechanical
energy (ΠS) and electrical energy (ΠE) which are defined as



ΠS = (
1

2
)ŨTKuuŨ

ΠE = (
1

2
)V T

p KφφVp (16)

Then, the cost function can be defined in the following form,

J = wjΠ
S − (1− wj)Π

E 0 ≤ wj ≤ 1 (17)

In which the wj is a weighting factor to determine the importance of minimizing
the mechanical energy or maximizing the electrical energy. If wj = 1 then the
optimization problem will convert to the classical compliance problem [3, 29]. On
the other hand if the wj becomes close to zero then the final obtained topology
may have no physical meaning. The cost function defined in equation (17), is
similar to the cost function defined in [31]. Indeed, this cost function can suffer
from trapping in local optima. On the other hand, it doesn’t have the numerical
instabilities of energy conversion factor as cost function.

The first step in gradient based optimization is to do the sensitivity analysis
in which the sensitivity of cost function regarding each element should be derived.
Following the same procedure presented in [36] and by considering normalized
equation (13), the sensitivity of mechanical and electrical energy can be calculated
as follows

∂ΠS

∂xi

= (
1

2
ũT
i + λT

1,i)
∂(k̃uu − m̃Ω̃2)

∂xi

ũi + λT
1

∂k̃uφ
∂xi

φ̃i+

µT
1,i

∂k̃φu
∂xi

ũi − µT
1,i

γ∂k̃φφ
∂xi

φ̃i (18)

∂ΠE

∂xi

=
1

2
φ̃T
i

∂k̃φφ
∂xi

φ̃i − µT
2,i

γ∂k̃φφ
∂xi

φ̃i + λT
2,i

∂(k̃uu − m̃Ω̃2)

∂xi

ui+

λT
2

∂k̃uφ
∂xi

φ̃i + µT
2

∂k̃φu
∂xi

ũi (19)

It should be noted that the sensitivity analysis is performed on the element
matrices in which λ and µ are the element size adjoint vectors and ũi and φ̃i are
the normalized elemental mechanical displacement and potential. These element
size adjoint vectors can be calculated by the following global system of equation,

[

Kuu Kuφ

Kφu −Kφφ

] [

Λ1

Υ1

]

=

[

−KuuU
0

]

[

Kuu Kuφ

Kφu −Kφφ

] [

Λ2

Υ2

]

=

[

0
−KφφVp

]

(20)

In (20), Λ and Υ are the global adjoint vectors which should be resolved to give
the element adjoint vectors λ and µ respectively. However, the other problem
in sensitivity equations (18)-(19) is the derivative of stiffness matrices respect to
element densities which leads us to the core conception of the SIMP methodology.



3.2 Solid Isotropic Material with Penalization (SIMP)

In order to deal with the optimization problem mentioned in equation (17), there
are several topology optimization method like binary compliance problem, Homog-
enization method [4] and SIMP [3,6,29] which is a density based approach to deal
with compliance problems.

In the SIMP methodology, relative density of each element (x) can have a con-
tinuous values between 0 and 1. Therefore, in the color space of the design domain,
if one considers white for the zero density and black for the density equals to one,
then in the SIMP method we can have also grey elements which have densities
between 0 and 1. However, the problem with grey elements is the production of
the final design for the real applications. Therefore, a penalization factor is de-
fined to push the optimized design toward the 0 and 1 structure [6]. Classical
SIMP method starts by defining a relation between element density and element’s
young’s modulus of elasticity. However, for non-isotropic piezoelectric materials
the extension of this methodology can be expressed with following interpolation
functions [16,20]

k̃uu(x, z) = xpuu k̃uu

k̃uφ(x, P ) = xpuφ(2P − 1)pP k̃uφ

k̃φφ(x) = xpφφ k̃φφ

m̃(x) = xm̃ (21)

In which, puu, puφ and pφφ are the stiffness, coupling and permittivity pe-
nalization coefficients while (P ) is the polarization. Following equations can be
written for the derivatives of the stiffness matrices,

∂k̃uu(x)

∂x
= puux

puu−1k̃uu

∂k̃uφ(x, P )

∂x
= puφx

puφ−1(2P − 1)pP k̃uφ

∂k̃φφ(x)

∂x
= pφφx

pφφ−1k̃φφ

∂m̃(x)

∂x
= m̃ (22)

With the help of the equation (22), the derivative of piezoelectric elemental
matrices are calculated and can be used in the sensitivity analysis (18) and (19) .
On the other hand, the piezoelectric coupling matrix (k̃uφ) is an interpolation func-
tion of the polarization (P ) as well. This representation of piezoelectric coupling
matrix comes from a methodology called "piezoelectric material with penalization
and polarization" (PEMAP-P) [16] which introduces the polarization (P ) as an
optimization variable that can have values between 0 and 1. In fact, this variable
determines the direction of polarization. If the (P = 1) then the polarization is in
the positive direction of the z axis which is perpendicular to the piezoelectric plate.
If (P = 0) then the polarization is in the negative direction of the z axis. By in-
troducing the polarization direction as an optimization variable then optimization



algorithm finds the topology layout of the piezoelectric plate plus the polarization
profile. In this case, the sensitivity of cost function respect to optimization variable
(P ) should also be calculated

∂ΠS

∂Pi

= λT
1

∂k̃uφ
∂Pi

φ̃i + µT
1,i

∂k̃φu
∂Pi

ũi (23)

∂ΠE

∂Pi

= λT
2

∂k̃uφ
∂Pi

φ̃i + µT
2

∂k̃φu
∂Pi

ũi (24)

In equation (23) and (24), the adjoint vectors λ and µ come from equation 20.
The derivative of the piezoelectric coupling matrix respect to the polarization is

∂k̃uφ(x, P )

∂P
= 2pP (2P − 1)pP−1xpuφ k̃uφ (25)

3.3 Updating Design Variables

After definition of cost function and analysing the sensitivity of cost function
respect to design variables, the optimization problem can be formulated as follows,

Minimize J = wjΠ
S − (1− wj)Π

E

Subject to V (x) =
NE
∑

i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (26)

In which, V is a volume constraint and is a fraction of the maximum pos-
sible volume. to solve the optimization problem in (26) the Method of Moving
Asymptotes (MMA) [32] is utilized which can deal with multi variable and multi
constraints optimization problems.

After updating the design variables in each iteration, density filter proposed
in [3] is applied to avoid mesh-dependency and checkerboard patterns which are
classical problems in topology optimization context.

3.4 Topology Optimization Algorithm

The general diagram of topology optimization method which is described above
can be seen in figure 2. Optimization algorithm stops when there are no significant
changes in design variables or energies.

When the optimization stops, the next step is post processing. Actually, it is
true that penalization will push the densities to zero and one. However, still in
the final design, there are some grey elements. To tackle this problem, the post
processing method mentioned in [28] which consist of two steps of Gaussian filter
and thresholding is used here.



Fig. 2 Topology Optimization Algorithm

Table 1 Piezoelectric plate properties

PZT Type PZT PSI-5H4E Volume Fraction 0.4
PZT density 7800 (kg/m3) Tip Magnet Weight 50 (milligram)

PZT Thickness 0.254(mm) puu 3
PZT Side Length 20 (mm) puφ 6

FEM Number of Elements 100× 100 pφφ 6
Density Filter Radius 6 pP 1
Clamping Fraction 0.2 wj 0.3

4 Numerical Results

4.1 MATLAB FEM Topology optimization

In this section, the results of TO algorithm on the design of two degrees of free-
dom piezoelectric plate energy harvester is presented. The specifications of the
piezoelectric plate and the optimization variables are reported in Table 1.

The chosen piezoelectric material is PZT-5H which has higher coupling coef-
ficients in comparison to other PZT material that makes it suitable for energy
harvesting purposes. The ratio of thickness to length of the PZT plate is 0.0127
which is well in the appropriate domain of plane-stress assumption [11]. The num-



ber of elements per length of PZT plate can be higher than chosen values. However,
the chosen density filter radius can almost eliminate the mesh dependency of the
final obtained layout. As such, higher number of elements will not affect the fi-
nal layout. On the other hand, smaller density filter radius can lead to optimized
layout with very small features which makes the fabrication procedure extremely
difficult.

The clamping fraction is defined as the ratio between the length of the clamped
part to the length of the square’s side. This clamping fraction is chosen to be 0.2.
For the same amount of applied force, by increasing the clamping fraction, the
amount of electrical output energy will decrease. Although reducing the clamping
fraction may seem favorable in this case, further reduction of chosen clamping part
increases the stress concentration on the edge of clamping section which may lead
to early fracture of the PZT plate due to applied force.

Based on the chosen volume fraction, the ratio of final optimized layout’s to
the full plate area is 0.4. Increasing this ratio will provide more surface of the
final optimized design which increases the stiffness of the final layout against the
applied force and decreases the amount of produced electrical potential. Contrarily,
decreasing the volume fraction, decreases the stiffness and increases the flexibility
of the optimized layout. However, The fabrication process is more complicated in
this case and the design is more vulnerable against the applied force in terms of
possibility of fracture.

The mass of the tip magnet is also considered as a lumped mass during FEM
modelling and optimization. But the ratio of tip magnet to the PZT plate is not
significant enough to affect the optimized layout within the bandwidth of the
excitation frequency considered here.

Generally, the topology optimization parameters are chosen in a trial error
procedure specially the penalization factors as explained by Noh et.al. [20]. But,

Fig. 3 Topology optimization result for 2D piezoelectric energy harvesters, a) Density layout,
b) Optimized Polarization Profile, c) Cost function and energy conversion factor d) Mechanical
and electrical energy



Fig. 4 Post processing of optimized design, a) Obtained boundaries by Gaussian filter and
thresholding [28], b) Transferred design to COMSOL Multiphysics

based on the cost function defined in equation (26), the effects of the penalization
factors on the final optimized layout are reduced. The combination of penalization
factors are chosen to remove the grey elements and steer the optimized layout to
black and white color space.

For choosing the weighting factor, It is obvious that the value of 0.5 gives equal
weight to electrical and mechanical energies during the optimization. On the other
hand, the maximum possible ratio of output electrical energy to input mechanical
energy that can be found in the literature is around 0.1 [20]. So for initial guess,
the weighting factor can be chosen between 0.1 and 0.5 to put more weight on
increasing the output electrical energy. With performing a trial error procedure,
the weighting factor of 0.3 is found. Choosing less values for weighting factor
brings three main problem: 1- Mechanically unstable design due to brittleness of
piezoelectric materials. 2- Obtained polarization profile will be more complicated
and the fabrication process can be extremely more difficult. 3- With very low
values of weighting factor, the optimization algorithm does not converge.

To start the topology optimization algorithm, the design domain, the clamped
boundary condition and applied force are shown in figure 1. The excitation fre-
quency is considered to be 20 Hz. Since this frequency is much smaller than the
resonance frequency, considering even five times higher frequency will not affect
the resulted layout. In figure 3, The final optimized layout and polarization profile
for PZT plate under excitation of two forces in two directions can be seen. In figure
3-(b), the red color and blue color represent positive and negative polarization in
z direction. The green color belongs to zero polarization which mostly belongs to
areas where there is no material.

Figure 3-(c) shows the cost function and energy ratio (electrical energy/mechanical
energy) in each iteration. The final value for the energy ratio is 0.026. The biggest
energy ratio reported in [20], is 0.09 for cantilever beam in bending configuration.
The reason of lower energy conversion factor here is the higher stiffness of the PZT
plate against in-plane forces.

As it is obvious from energy values in figure 3-(c) and (d), less than 100 iteration
was enough to reach the convergence while optimization manually stopped at 150
iterations. The design is well converged to a black and white areas which makes
the post processing step more easy to transfer the design to CAD software. The
polarization profile is also clean. There are some parts which are green in the area
where there are materials. In fact, these areas should be turn on to passive material



Fig. 5 Comparison of 1st principal strain in full plate and optimized design due to applied
force

based on the polarization profile. However, since these areas are not occupying a
big portion of the design, they can be neglected.

After obtaining the optimized layout, the last step is devoted to post processing
and transferring the obtained result to CAD and fabrication process. Therefore,
the post processed and transferred design to COMSOL Multiphysics can be seen in
figure 4. In part (b) of this figure, a separation line can be seen that passed through
the design to isolate the electrode to follow the polarization profile. In fact, this
separation of electrode does not completely follow the polarization profile as it is
shown in figure 3-(b). Since there is a small part on each side that the direction of
polarization is the same as other part. Indeed, with the considered separation those
small parts are neglected in terms of polarization. Otherwise, complete isolation
of electrode based on the polarization profile makes the fabrication extremely
difficult.

4.2 COMSOL Multiphysics FEM Simulation

To analyze the performance of the optimized design, COMSOL multiphysics is
used to evaluate the voltage, electrical and mechanical energy due to applied force
on the optimized design and the results are also compared with the full plate
performance.

In figure 5, the first principal strain of the full plate and optimized design is
illustrated. The important point is the better strain distribution in the optimized
design in comparison to full plate. In piezoelectric material more strain is required
to produce more electrical energy. Furthermore, the strain distribution in figure
5-(d), is highly similar to the obtained polarization profile in figure 3-(b). In fact,
the transverse force produce compression and tension in different parts of the
optimized design and the optimized polarization profile tries to avoid the charge
cancellation.

In figure 6, the goal is to investigate the performance of the optimized design
and full plate under excitation of an external force which can come from different



Fig. 6 COMSOL Multiphysics FEM results for piezoelectric plate under excitation by a force
in different directions

directions. In this case, as it is obvious from figure6-(a), the possible direction
of external force is defined by angle α respect to x axis. This angle can vary
from 0 to 2π and it is discretized by steps of π/24 and each point in figure6-(d)
is showing these steps while the distance of the points to the center shows the
amplitude of the force which is 10 (mN). The excitation frequency considered to
be 20 Hz. The points in figure 6-(b),(c),(d) and (f) again shows the direction of the
force. However, for these parts of the figure the distance from point to the center
shows the amplitude of voltage, electric power, mechanical power and power ratio
respectively.

Figure 6-(b) shows that the optimal design can have at least 3.26 times higher
voltage than the full plate for the same amount of force and direction. The im-
provement of electrical power from full plate to optimal design is at least 5.2 times.
While based on the part (e) of the figure 6 the amount of mechanical works for
both of the designs are the same. As such, in terms of power ratio (electrical
power/mechanical power), the optimized design is having maximum of 0.0257 en-
ergy conversion factor which is highly close to the factor obtained by topology
optimization code in figure 3 while the maximum conversion factor for full plate
is 0.0157.

Based on figure 6, it is obvious that the amount of produced voltage and
electrical power is not the same for every direction of the force. This is due to
the fact that the stiffness of the plate in different directions is not the same. As
such, although the proposed optimized design is showing promising improvement
in terms of electrical output in comparison to full plate, it is not harvesting the
same amount of energy from every directions.



Fig. 7 a) Experimental setup, b) Fabricated designs, magnet direction (1), c) Fabricated
designs, magnet direction (2) . 1: Oscilloscope, 2: Pico ampere meter, 3: Signal generator, 4:
Supported Design, 5: Micro positioner, 6: Electromagnet, 7: Anti-vibration table 8: Full plate
design 9: Optimized design, 10: Glued magnets, 11: 3D printed supports

5 Experimental Investigation

5.1 Fabrication

The fabrication process of designs started by cutting the designs from piezoelectric
plates (commercial piezoelectric material PSI-5H4E from Piezo Systems Inc) using
a laser machine (Siro Lasertec GmbH, Pforzheim, Germany). Then the wires are
glued to the electrodes of the PZT plates. To do that a mixture of silver glue and
epoxy is used. Then, to solidify the glue, the PZT plates with glued wires are
heated inside an oven at 120 degree Celsius for two hours and then cooled down.
Eventually, magnets are attached at the tip of the beam to generate vibrations
force when excited by an electromagnet. As it is shown in figure 7-(b) and (c), the
magnets are attached in two different directions so they can excite the designs in
two different directions.



5.2 Experimental Bench

As it is shown in figure 7(a), the experimental setup consists of signal generator
that produces sinusoidal voltage. The signal generator is connected to an elec-
tromagnet to excite the magnet attached at the tip of the designs. To clamp the
designs accurately based on the defined boundary condition, 3D printed supports
are utilized as it can be seen in figure 7-(b) and (c). The 3d supports are attached
to a micropositioner which can precisely determine the distance between designs
and the electromagnet. Whole setup is placed on an anti-vibration table to isolate
the setup from ambient vibration. To measure the produced voltage by the design
an oscilloscope (RHODE SCHWARZ, RTB 2004) with 4 input is used. To measure
the current a pico ampere meter (KEYSIGHT, B2987A) is utilized.

5.3 Experimental Results

In this section the goal is to measure the produced voltage and power of the opti-
mized design and classical full plate. To guarantee the same condition during the
two different experiments, the micro positioner assures that the distance between
the tip attached magnet and electromagnet device remains the same for optimized
design and for full plate. In this case, the reported voltage and power for opti-
mized design and full plate are for the same amount of input mechanical energy.
It is worthwhile to mention that since the optimized designs have two potential
electrodes, the measured voltage and power are the absolute summation of the
separately measured voltage and power for each of the potential electrodes.

Fig. 8 Experimental Measurements for full plate design and optimized design for different
excitation frequency and different magnet direction

In the first measurements, the direction of the magnet is as shown in figure 7-
(b). This direction of magnet will produce force in the direction previously shown
in figure 5-(b) and (d). For the frequencies that varies from 20 Hz to 100 Hz the
peak to peak voltage and current is measured separately. The same measurements



is performed for the direction (2) of magnet which is shown in figure 7-(c). The
force direction in this case is similar to the figure 5-(a) and (c).

The measurements are shown in the figure 8 for optimized design and for full
plate design. Based on this figure, for magnet in direction (1), the improvement
from full plate to optimized design is significant. For example, for excitation fre-
quency equal to 20 Hz, The voltage and power of optimized design are 8.75 and
7.54 times higher than the full plate. Based on the FEM simulation by COMSOL
multiphysics, the expected improvements for this direction of excitation were 10
times for both power and voltage. These improvements are due to the fact that
the optimized design is having better strain distribution and more importantly it
has separated electrodes that avoid charge cancellation.

For direction (2) of the magnet, the voltage and power of optimized design
is 3.25 and 3.82 times higher than the full plate for 20 Hz excitation frequency.
Based on the FEM simulation by COMSOL multiphysics, The improvement ratios
for this direction of the force in figure 6-(b) and (c) were expected to be 3.26
and 5.2. The reduction of improvements from COMSOL Multiphysics simulation
to experimental measurements can be due to fabrication process which will be
discussed in next section. As it is obvious the improvement of optimized design
from full plate design is more significant in the direction (1) of the magnet. In
fact, for direction (2) of magnet, there is no charge cancellation in the full plate
and just the optimized design is having better and higher strain distribution.

6 Discussion

Both simulation and results demonstrated promising improvement for optimized
design in terms of output voltage and power. However, the gains of improvement
in experimental measurements are lower than the simulation. The main reason
for this reduction of improvements is the fabrication process specially, the laser
cutting process. In fact, the laser beam heats up the design at the edges and
the material at the vicinity of the edge can pass the curie temperature and act
as passive material after. The effect of this phenomena is more extreme for the
optimized design due to the fact that optimized design is having more edges in
comparison to full plate. Hence, the performance of the optimized design deviates
from optimum.

It is worthwhile to mention that the reported voltages and powers are not
the maximum possible ones that can be obtained by the full plate and optimized
design. Since, the excitation frequencies are far from resonance frequency and the
applied force can be increased as well. In fact, the aim was to proof that for the
same amount of mechanical input the electrical output of the optimized design is
higher than the full plate. Besides, improvement in optimized design can be seen
while it has less volume of material (0.4 as a volume ratio) than the full plate.
As such, in terms of power density (power/volume), the gain of improvement in
optimized design will be increased even more.

The placement of magnet on the piezoelectric plate can produce a negligible
bending force. On the other hand, for one layer piezoelectric plate, the bending
force produces no potential because of the charge cancellation that happens in the
direction of the thickness [21]. But, still coming close to the bending resonance fre-
quency which is the lowest resonance frequency may affect the in-plane excitation



as well. This can be the only description for increasing the power by increasing
the excitation frequency as can be seen in figure 8-(d).

Excitation at resonance frequency is not investigated in this paper. Since, the
in-plane resonance frequency is extreme (more than 3200 Hz) due to high in-plane
stiffness of the piezoelectric plate specially at small scale. The in-plane resonance
frequency is much higher than the existence excitation frequencies in real applica-
tions.

In the literature, for the case of base excitation, usually a heavy tip attachment
is considered to whether match the natural frequency to the excitation frequency
or to maximize the inertia force of the attached mass. In this case, the inertia force
of tip attachment can be modelled by an external tip force which is the case of
the current investigation.

7 CONCLUSIONS

In this paper, a 2DOF piezoelectric plate energy harvester is designed by topol-
ogy optimization method. The method of separating the electrodes is employed
to follow the polarization profile and to avoid the charge cancellation. The perfor-
mance of the optimized design is compared with the full plate design numerically
via COMSOL Multiphysics FEM software and experimentally by fabricating the
optimized design. The superiority of the optimized design in comparison to full
plate design is demonstrated in harvesting energy from excitation coming from
directions. The future work would consider designing 3DOF piezoelectric energy
harvester that can harvest the energy coming from every possible direction in the
3D space.

APPENDIX

Plane-stress Assumption for Piezoelectric Plate

Based on the full 3D piezoelectric constitutive equation [17] the mechanical stiff-
ness matrix, piezoelectric matrix and permittivity matrix for a transverse isotropic
material like PZT class can be written as

cE =



















cE11 cE12 cE13 0 0 0

cE12 cE11 cE13 0 0 0

cE13 cE13 cE33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE44 0

0 0 0 0 0 cE66



















e =





0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0





εS =







εS11 0 0

0 εS11 0

0 0 εS33






(27)



Table 2 Piezoelectric Coefficients

PZT PSI-5H4E plane-stress Assumption

cE
11

16.9e10(N/m2) c∗E
11

7.24e10(N/m2)

cE
12

11.8e10(N/m2) c∗E
12

2.14e10(N/m2)

cE
13

10.9e10(N/m2) c∗E
22

7.24e10(N/m2)

cE
33

12.3e10(N/m2) - -

cE
66

2.5e10(N/m2) c∗E
66

2.5e10(N/m2)
e31 −12(C/m2) e∗

31
−28.12(C/m2)

e33 18.2(C/m2) - -

εS
33

1390× ε0 ε∗S
33

1694× ε0

Now by considering the plane-stress assumption all the nominal stresses per-
pendicular to the xy plane is zero [11]. Therefore, the elements of the reduced
order matrices mentioned in equation (2) can be derived as [12]

c∗E11 = cE11 −
(cE13)

2

cE
33

, cE∗

12 = cE12 −
(cE13)

2

cE
33

c∗E22 = cE22 −
(cE13)

2

cE
33

c∗E66 = cE66

e∗31 = e31 −
cE13e33
cE
33

, ε∗S33 = εS33 +
e233
cE
33

(28)

The coefficients of the PZT-5H which is fabricated for experimental investiga-
tion and the calculated plane-stress assumption is mentioned in Table 2.
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