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Abstract

We propose to extend results on the interpolation theory for scalar functions to
the case of differential k-forms. More precisely, we consider the interpolation of
fields in P−r Λk(T ), the finite element spaces of trimmed polynomial k-forms of
arbitrary degree r ≥ 1, from their weights, namely their integrals on k-chains.
These integrals have a clear physical interpretation, such as circulations along
curves, fluxes across surfaces, densities in volumes, depending on the value of
k. In this work, for k = 1, we rely on the flexibility of the weights with respect
to their geometrical support, to study different sets of 1-chains in T for a high
order interpolation of differential 1-forms, constructed starting from “good” sets
of nodes for a high order multi-variate polynomial representation of scalar fields,
namely 0-forms. We analyse the growth of the generalized Lebesgue constant
with the degree r and preliminary numerical results for edge elements support
the nonuniform choice, in agreement with the well-known nodal case.
MSC 2020 : 65N30 65D05
Key words : Polynomial differential forms Lebesgue constant weights interpo-
lation uniform and nonuniform degrees of freedom edge finite elements

1. Introduction

New degrees of freedom, called weights to distinguish them from the classical
moments introduced in [17], have been firstly proposed in [19] for the interpo-
lation, on simplicial meshes, of physical fields, intended as differential k-forms,
in Whitney finite element spaces of high polynomial degree r ≥ 1 (see, [6], [3]).
These weights are integrals of the field under consideration on a distribution
of small k-simplices, that are particular subsimplices of dimension k in each
element of the mesh. In [1] we have generalised this construction and now we
develop that idea to establish how to select minimal and unisolvent sets of such
small simplices as supports of the weights. This new methodology yields a flex-
ibility, in the choice of the small simplices, that opens the way to nonuniform
distributions, where the term nonuniform needs some care for k 6= 0 and k 6= n,
being n the ambient dimension. The quality of the interpolation on uniform
and nonuniform distributions of small k-simplices can be analysed in terms of
the generalised Lebesgue constant [2].
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Finite element spaces extending Whitney forms to higher degrees are widely
used for discretizing physical balance laws in electromagnetism, fluid dynamics
or elasticity. The degrees of freedom (dofs) associated with Whitney differential
forms have a direct physical relevance. When considering polynomial inter-
polation of higher degree, dofs can be chosen in different ways. In [17] and its
extension [14] (see also [15]), higher moments are used. They are also considered
in the general framework of the finite element exterior calculus [3]. In [19], the
localization issue has been addressed, namely, the relationship between dofs and
measurable quantities (such as circulations, fluxes, densities) for the field they
are related with. In the framework of high order Whitney finite element spaces,
integrals on suitable subsimplices of the mesh are a valid alternative as dofs to
the classical moments. Their definition is based on the introduction of the small
simplices, that are subsimplices resulting from homothetic contractions of the
elements of the mesh1. New dofs are then the weights, integrals of a k-form on
these small k-simplices. The weights make the connection between physics and
geometry: the concept of small k-simplex was born from the necessity of extend-
ing to r > 1 the geometrical construction proposed for r = 1 by Weil-Whitney
in a context other than finite elements but more related with algebraic cohomol-
ogy and the proof of the de Rham’s theorem (see [22, 23]). Understanding and
generalizing this construction has been fundamental to provide explicit bases
for high order finite element spaces involved in the discretization of problems
from electromagnetism and other areas of physics.

The concept of weight on a small k-simplex represents an important theo-
retical achievement to see that it is indeed possible to extend standard results
of polynomial interpolation theory to k-forms with k > 0. In the particular case
of 0-forms the Whitney finite elements are in fact the Lagrange ones and the
integrals on the small 0-simplices are the dofs used in the classical description
of the Lagrange finite elements (see e.g. [8]), namely the values at the points
of the principal lattices of the elements of the mesh. The weights of k-forms on
small k-simplices for k > 0, can be intended as a generalization of the values at
nodes (small 0-simplices) of continuous scalar functions (differential 0-forms).
It is well-known that the Lagrange interpolation at uniformly distributed points
in the mesh elements can yield a poor approximation as soon as the polyno-
mial degree increases, even when the interpolated function is rather smooth [4].
This is due to a rapid increase, with the approximation degree, of the Lebesgue
constant that influences the sharpness of the bound on the interpolation error.
In other words, the Lebesgue constant measures how the interpolating polyno-
mial is close to or far from the best fit. For this reason there have been several
attempts in the literature (see [20, 21, 10, 18] and the references therein) to

1The small simplices are never constructed in reality, in the sense that they do not con-
stitute a refinement of the considered mesh. Even if in the text we propose a visualization
for some particular distributions of such subsimplices, they have to be intended virtually. For
k > 0, the number of subsimplices, and consequently of dofs, per element increases with the
degree r of the approximation, in the same way as it occurs for k = 0 when we consider many
nodes in each simplex for a more accurate reconstruction of scalar fields over the mesh.
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produce nodal sets in a triangle or tetrahedron using direct (with explicit for-
mula) and indirect (undergoing an optimization procedure) methods, satisfying
criteria of low computational complexity and minimization of the Lebesgue con-
stant. It naturally arises the following question: “Is it possible to do the same
for k > 0 ?”. In other words: “How small k-simplices, 0 < k < n, should be
thought distributed in a triangle or a tetrahedron in order to interpolate differ-
ential k-forms by trimmed polynomial ones in a way that remains stable with
the growth of the degree r ?”

In this work, we provide an answer to the question when k = 1 by generaliz-
ing the construction of nonuniform distributions of nodes to that of small edges.
We first detail how to construct unisolvent and minimal sets of small edges with
ending points in distributions of nodes that are well-known in the literature2

. We then exploit this flexibility to analyse, for the weights on these new sets
of small edges, the growth of the generalised Lebesgue constant introduced in
[2] when increasing the polynomial degree. The behaviour of the generalized
Lebesgue constant will state the quality of the polynomial interpolation of 1-
forms at the new nonuniform distributions of the small 1-simplices in the mesh.
We will see that small changes on the data give rise to small changes on the
interpolating form if the Lebesgue constant is small. This constant plays the
role of the condition number for the interpolation problem.

The paper is organized as follows. In Section 2 we recall few notations and
basic notions of polynomial differential forms and of the role of the Lebesgue
constant in the classical interpolation theory. In Section 3, the notions of Van-
dermonde matrix and Lebesgue constant are presented for k > 0. In Section 4
we describe how to generate sets of 1-simplices supporting weights for trimmed
polynomial 1-forms that are unisolvent associated with classical choices of in-
terpolation nodes, namely the uniform, the symmetrised Lobatto and warp &
blend distributions. Section 5 starts with the adopted algorithm to compute
the generalised Lebesgue constant and ends with a numerical comparison of the
behavior, when increasing the polynomial degree, of such a constant associated
with the considered families of dofs in two and three dimensions. In Section 6 we
analyse the stability of the interpolation for k = 1 with respect to perturbations
on the data, i.e., the weights. The paper ends with Section 7 containing some
concluding remarks that point out the attained achievements.

2The reason is twofold. On the one side, we will be able to compare the results for k = 1
to those for k = 0, available in the cited literature. On the other hand, we can approximate
simultaneously, if necessary, a field, say for example the electric field E, for which the weights
on the small edges are physically meaningful, and its potential, a scalar function ξ such
that E = −∇ξ, starting from its values at the nodes extremities of the considered small edges.
Finding a minimal and unisolvent distribution of small edges that optimizes a chosen quantity
or property goes beyond the purpose of the present work.
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2. Notation and preliminaries

In this section we explain the notation and some basic notions of polynomial
differential forms. Given n + 1 point in general position in Rn, the n-simplex
with these vertices is their closed convex hull. Any subset of k + 1 vertices of
a n-simplex defines a face of dimension k, with 0 ≤ k ≤ n. Faces are simplices
themselves. Let ∆k(T ) be the set of faces of dimension k (or k-subsimplices) of
the n-simplex T . If we introduce an ordering3 of the vertices of T , {x0, . . . ,xn},
then we can identify univocally any k-face F of T with an increasing map
σF : {0, . . . , k} → {0, . . . , n}. The face F has vertices {xσF (0), . . . ,xσF (k)}.
With each point x ∈ T we may associate a (n+1)-uple (λ0(x), λ1(x), . . . , λn(x))
such that

x =

n∑
i=0

λi(x) xi,

n∑
i=0

λi(x) = 1, λi(x) ≥ 0.

We call barycentric coordinates for x in T the values λi(x) for i = 0, ..., n.
For the construction of small 1-simplices associated with particular sets of

nodes in T , we need to introduce the concepts of simplicial complex and map
(see, e.g., [16]). A simplicial complex K in Rn is a collection of simplices such
that every face of a simplex of K is also in K and if σ, σ′ are two simplices of
K then either σ ∩ σ′ = σ′′ ∈ K or σ ∩ σ′ = ∅. The union of simplices of K is a
subset of Rn, denoted by |K| and called underlying space of K. Now, let K and
K ′ be simplicial complexes and let ∆0(K) and ∆0(K ′) denote the set of vertices
of K and K ′, respectively. Let us suppose to have a map ϕ : ∆0(K)→ ∆0(K ′)
such that, whenever vertices x0, ...,x` of ∆0(K) span a simplex of K, the points
ϕ(x0), ..., ϕ(xk) are vertices of a simplex of K ′. Then ϕ can be extended to a
continuous map g : |K| → |K ′| such that

x =
∑̀
i=0

λi(x) xi =⇒ g(x) =
∑̀
i=0

λi(x)ϕ(xi)

and g is called the simplicial map induced by the vertex map ϕ. Moreover,
if the vertex map ϕ is a bijection between ∆0(K) and ∆0(K ′) and v0, . . . , v`
span a simplex of the complex K if and only if ϕ(v0), . . . , ϕ(vk) span a simplex
of the complex K ′, we say that the induced simplicial map g is a simplicial
isomorphism of K with K ′.

For the high-order case, multi-index notations are used. For each m ∈ N,
m ≥ 0 and s ∈ N we denote by I(m + 1, s) the set of

(
m+s
s

)
multi-indices of

3We can fix an orientation of the n-simplex. If T = [x0, . . . ,xn] ⊂ Rn denotes an oriented
n-simplex and ρ : {0, . . . , n} −→ {0, . . . , n} is a permutation, we get [xρ(0), . . . ,xρ(n)] =
[x0, . . . ,xn] if ρ is an even permutation and [xρ(0), . . . ,xρ(n)] = −[x0, . . . ,xn] if ρ is an odd
permutation. The n-simplex of Rn with vertices {x0, . . . ,xn} is called the support of the
oriented n-simplex [xρ(0), . . . ,xρ(n)].
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length m+ 1 and weight s, namely

I(m+ 1, s) = {η ∈ Nm+1 :

m∑
i=0

ηi = s} .

Given α ∈ I(n + 1, s) we set λα =
∏n
i=0 λ

αi
i . We denote by Λk(T ) the space

of smooth differential k-forms in T . We associate with each F ∈ ∆k(T ) the
Whitney form ωF ∈ Λk(T ) defined in the following way (see, e.g. [23]):

ωF =

k∑
i=0

(−1)iλσF (i)dλσF (0) ∧ · · · ∧ d̂λσF (i) ∧ · · · ∧ dλσF (k).

If k = 0 then F is a vertex xi of T and ωxi = λi. If k = n then F = T and
ωT = dλ1 ∧ · · · ∧ dλn is the volume form. We finally denote by

P−s+1Λk(T ) := Span{λαωF : F ∈ ∆k(T ) and α ∈ I(n+ 1, s)}

the space of trimmed polynomial k-forms. Its elements are the Whitney polyno-
mial k-forms of degree s+1. When k = 0, we get P−s+1Λ0(T ) = Ps+1Λ0(T ), the
spaces of polynomial 0-forms of degree s + 1. On the other hand for k = n we
have that P−s+1Λn(T ) := Span{λαdλ1∧· · ·∧dλn : α ∈ I(n+1, s)} = PsΛn(T ),
the space of polynomial n-forms of degree s.

We briefly recall classical notions for k = 0 (see, e.g., [8]). A set M =
{x}j=1,m of points in T ⊂ Rn, n > 0, such that a polynomial u ∈ Pr(T ) is
univoquely determined by its values u(xj) at these points is said to be unisolvent
for Pr(T ). If card (M) = dimPr(T ) then M is said to be minimal. The Lebesgue
constant is a well known indicator to estimate the quality of a set of nodes for
the interpolation in Pr(T ), with T ⊂ Rn, n > 0, of scalar functions. To have
an idea of this effect, let us suppose to have a vector ũ of values (ũj)j=1,N0,r

that is a perturbation of u, the array of data (uj)j=1,N0,r at an unisolvent and
minimal set X0

r = {xj} of N0,r nodes for the polynomial interpolation of degree
r of a continuous scalar function f in a simplex T . We recall that for f ∈ C0(T ),
we can define the maximum norm ||f ||∞ = maxx∈T |f(x)|. Being {wj}j the
dual basis associated with the values at the set of nodes X0

r (i.e., wj ∈,Pr(T )
such that wj(xi) = δij , for all xi ∈ X0

r , being δ.. the Kronecker symbol), the
interpolating polynomials of degree r on the values uj and ũj are, respectively,

Π0
rf =

∑N0,r

j=1 uj wj and Π0
r f̃ =

∑N0,r

j=1 ũj wj . We can estimate ||Π0
rf − Π0

r f̃ ||∞
and obtain

||Π0
rf −Π0

r f̃ ||∞ = maxx∈T

∣∣∣∑N0,r

j=1 (uj − ũj) wj(x)
∣∣∣

≤ maxx∈T (
∑N0,r

j=1 |wj(x)| ) max1≤j≤N0,r
|uj − ũj |

= Λ0
X0

r
||u− ũ||∞ .

The quantity Λ0
X0

r
= maxx∈T

(∑N0,r

j=1 |wj(x)|
)

is the Lebesgue constant associ-

ated with the distribution of nodes X0
r . This constant thus plays the role of
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the condition number for the interpolation problem. Moreover, the Lebesgue
constant appears when estimating the interpolation error. Let f∗r be the best
approximation polynomial of degree r of the scalar function f in T , for which
||f − f∗r ||∞ ≤ ||f − zr||∞ for any other polynomial zr of degree r defined in T .
The following well-known result holds:

||f −Π0
rf ||∞ ≤ (1 + Λ0

X0
r
) ||f − f∗r ||∞, ∀ f ∈ C0(T ). (1)

In (1), the growth of the Lebesgue constant Λ0
X0

r
determines the convergence

in the maximum norm. Moreover, the same inequality suggests that, when the
Lebesgue constant does not grow too fast, we can have an approximation of f
on T that is almost as good as the best approximation f∗r by taking Π0

rf , that is
easier to compute than f∗r . There is a significative literature for the case k = 0
(see [13, 10, 18] and the references therein), widely dedicated to the problem
of selecting a good and easy to be defined set of nodes X0

r for the high order
polynomial interpolation of continuous functions f on nontensorial domains as
the simplex T .

3. Polynomial interpolation of forms and the Lebesgue constant

In order to introduce the definition of the generalized Lebesgue constant, we
recall few essential concepts and refer to [2] for more details. The mass |σ|

0

of a k-simplex σ ⊂ Rn is its k-dimensional Hausdorff’s measure. In particular,
the mass of a point is 1. A simplicial k-chain c is a formal (finite) sum of k-

simplices with real coefficients. The mass |c|
0

of a simplicial chain c =
∑I
i=1 ai σi

is defined as |c|0 =
∑I
i=1 |ai| |σi|0 . We denote by Ck (resp. Ck(T )) the space of

simplicial k-chains in Rn (resp., supported in T ). Spaces of differential k-forms
ω in T are equipped with the norm

||ω||
0

= sup
c∈Ck(T )

1

|c|
0

∣∣∣ ∫
c

w
∣∣∣ .

Note that if ω ∈ C0Λk(T ) then ||ω||0 = ||ω||C0 , being the latter the maximum
norm for k = 0 (see, e.g., [11]).

Definition 1. We say that the set Xk
r = {σ1, ..., σNk,r

} of k-simplices supported

in T is unisolvent for the space P−r Λk(T ) if the weights
∫
σj
ω on the k-simplices

σj ∈ Xk
r are unisolvent degrees of freedom for ω ∈ P−r Λk(T ), that is, if the

unique differential k-form ω ∈ P−r Λk(T ) verifying
∫
σj
ω = 0 for all σj ∈ Xk

r ,

is ω = 0. We say that a unisolvent set Xk
r of k-simplices supported in T is

minimal if card (Xk
r ) = dimP−r Λk(T ).

Definition 2. Given a basis B = {wj}
Nk,r

j=1 for the space P−r Λk(T ) and a unisol-

vent set Xk
r of k-simplices supported in T , the generalised Vandermonde matrix

VXk
r ,B is the matrix with entries

(VXk
r ,B)i,j =

∫
σi

wj , ∀σi ∈ Xk
r , ∀wj ∈ B .
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Definition 3. Let Xk
r be a unisolvent and minimal set for the space P−r Λk(T ).

The collection {wX
k
r

j }
Nk,r

j=1 of differential k-forms of P−r Λk(Rn) verifying
∫
σi
w
Xk

r
j =

δi,j for i, j = 1, ..., Nk,r, is called the dual basis of P−r Λk(T ) associated with Xk
r .

Definition 4. Given a set Xk
r = {σ1, ..., σNk,r

} of Nk,r distinct k-simplices in

T , the interpolation problem associated with Xk
r for a given differential k-form

ω ∈ C0Λk(T ) consists in finding Πk
rω ∈ P−r Λk(T ), such that

∫
σi

Πk
rω =

∫
σi
ω

for all σi ∈ Xk
r .

The interpolation problem associated with the set of k-simplices Xk
r has

a unique solution if and only if the generalised Vandermonde matrix VXk
r ,B is

invertible, for any basis B of the space P−r Λk(T ). In fact, since B = {wj}
Nk

r
j=1 is

a basis of P−r Λk(T ) and we look for Πk
rω ∈ P−r Λk(T ), the interpolation problem

reduces to compute the vector c ∈ RNk
r such that

∫
σi

(

Nk
r∑

j=1

cj wj) =

∫
σi

ω , ∀σi ∈ Xk
r .

Hence, the interpolation problem is equivalent to solve VXk
r ,B c = d, being d

the vector of components di =
∫
σi
ω , with σi ∈ Xk

r that has a unique solution
if and only if the matrix VXk

r ,B is invertible.

Definition 5. We say that we interpolate a differential k-form ω over the set
Xk
r of k-simplices in T when we construct Πk

rω ∈ P−r Λk(T ) as follows

Πk
r ω =

∑
σj∈Xk

r (T )

(∫
σj

ω
)
w
Xk

r
j ,

being {wX
k
r

j }
Nk,r

j=1 the dual basis of P−r Λk(Rn) associated with Xk
r .

The definition of the Lebesgue constant has been generalised in [2] to the case
of interpolation of continuous differential k-forms ω ∈ C0Λk(T ) by polynomial
k-forms ω ∈ P−r Λk(T ), for k ≥ 0 and a bound similar to (1) also holds for each
ω ∈ C0Λk(T ) (see Prop. 2 in [2]).

Definition 6. (see [2]) Given a set Xk
r = {σ1, ..., σNk,r

} of Nk,r k-simplices

supported in T that is unisolvent and minimal for the space P−r Λk(T ), the
Lebesgue function LXk

r
: Ck(T )→ R+ is defined as

LkXk
r
(c) =

Nk,r∑
j=1

|σj |0
∣∣∣∣∫
c

w
Xk

r
j

∣∣∣∣
with {wX

k
r

j }
Nk,r

j=1 the dual basis of P−r Λk(T ) associated with Xk
r . The generalised

Lebesgue constant is then defined as ΛkXk
r

= supc∈Ck(T )

Lk

Xk
r

(c)

|c|
0

.
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Figure 1: Simplified visualization of the interaction among decisive ingredients or steps for
the success of the multivariate high-order polynomial approximation. The conditioning of
the Vandermonde matrix V matters when computing the dual basis and the growth of the
Lebesgue constant Λ with the approximation degree r has to be slow for a stable interpolation.

In Fig. 1 we illustrate the interaction among the principal ingredients at play
in the polynomial interpolation. The values of the dofs for the elements of a
given basis {wj}j of the local discrete space constitute the entries of the so-called
Vandermonde matrix, simply denoted by V in the figure. This matrix has to be
inverted once to construct the local dual basis {wj}j associated with the selected
set of dofs and its conditioning cond (V ) depends on the local basis {wj}j . Note
that the value of the Lebesgue constant is independent from the considered basis
{wj}j of the discrete space, here P−r Λk(T ). The choice of this basis has influence
on the values of the Vandermonde matrix conditioning when the approximation
degree r increases. In this work we analyse different sets of weights, characterised
by low values of the Lebesgue constant, in order to obtain a stable interpolation
when the local discrete space is P−r Λk(T ) with k = 1. This analysis is done
locally, on one mesh element, before performing the approximation over the
entire mesh. In the spirit of the geometrical construction proposed by Whitney,
the question becomes how to construct different distributions of k-subsimplices,
k > 0, that are unisolvent and minimal for the interpolation in P−r Λk(T ) of
differential k-forms and compare them in terms of the generalised Lebesgue
constant.

4. Families of unisolvent and minimal 1-simplices

Starting from a distribution of nodes in T that are unisolvent and minimal
for P−r Λ0(T ), we wish to generate a set of small edges that are unisolvent and
minimal for P−r Λ1(T ). With the term uniform distribution, we indicate that
the N0,r = dimP−r Λ0(T ) nodes are those of the principal lattice of order r of
T that is the set of points {x ∈ T, λi(x) ∈ { jr , j = 0, ..., r}, ∀ i = 0, ..., n}. Any
other distribution that does not fulfil this requirement will be referred to as
nonuniform. In [19], a family of small k-simplices naturally associated with the
uniform distribution of nodes in T has been defined. In [7] it has been proved
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that the set of the small k simplices is unisolvent, for any k. Following [1], a
minimal and unisolvent subset X1

r of small 1-simplices can be identified.

♦. On the edges of a simplex T : In the interval [−1, 1] a classical nonuniform
distribution of nodes is the one corresponding with the zeros of the Lobatto
polynomials provided we add the interval extremities ±1. The Lobatto poly-
nomial of degree s is defined as Los(t) = L′s+1(t), where L′s+1(t) is the first
derivative of the Legendre polynomial of degree s+ 1 in t ∈ (−1, 1). Therefore,
Lobatto nodes {ti}i=0,r associated with a degree r in [−1, 1] are the zeros of
(1− t2)L′r(t) = (1− t2)Lor−1(t). It is well known that the Lobatto set of nodes
is optimal for the scalar interpolation in [−1, 1], as proved in [9]. The nodal
distribution of degree r ≥ 1 on the edge E = [x0,x1] is the set of nodes

X0
r (E) = {x0+(x1−x0)ui}ri=0 , ui =

i

r
(uniform) , ui =

1 + ti
2

(Lobatto).

On the edge E = [x0,x1], uniform and Lobatto nonuniform distributions X1
r (E)

of small edges ( ) are obtained by chopping [x0,x1] at, respectively, the uniform
and Lobatto points (see an illustration drawn below for r = 4)

x0 • • • • •x1

x0 • • • • •x1

It is well known that both the uniform and nonuniform distributions of small
edges thus obtained in 1D are unisolvent and minimal for differential forms in
P−r Λ1(T ). Indeed, when k = n = 1 we have P−r Λ1(T ) ≡ Pr−1(T ). Numerical
results on the conditioning of the Vandermonde matrix are given here below, in
the Table 1. Assuming to move along E from x0 to x1, we label the small nodes
of X0

r (E) with an increasing index i from 0, when the small node is in x0, to r,
when it is in x1. By labeling the small edges X1

r (E) with the label of their first
extremity, both sets X1

r (E) are characterised by the same small edge-to-small
node connectivity table, whenever the spatial coordinates of the small nodes in
X0
r (E) are. Therefore, we can construct the nonuniform set X1

r (E) by relying
on the one defined for the uniform case, by just modifying the coordinates of the
small edge extremities in order to have them coincident with those of the nodes
belonging to the nonuniform Lobatto ones. This startegy will be extended to
the faces F and to the interior of T , since all nonuniform distributions of small
nodes we consider in T are obtained as suitable modifications of the uniform one.

♣. On the faces of a simplex T : To define X1
r (F ) on a triangle F we wish to

proceed with the same (chopping) strategy as the one adopted on the edges E
of T . Before, we need to generate the set X0

r (F ) of small nodes in F . As a first
attempt, we use the Cartesian product of distributions of small nodes defined
on two edges E of F as follows.

1. To construct the setX1
r (F ) of the uniform distribution of 1-simplices in the

triangle F = [x0, x1, x2], we start by considering the uniform distribution

9



Table 1: For k = 1 in a segment E: Conditioning of the Vandermonde matrix VX1
r ,B

with B
the Bernstein basis of P−r Λ1(E) and X1

r the considered sets of 1-simplices.

uniform nonuniform

r with Lb

2 0.5488 ×101 0.4519 ×101

3 0.7491 ×101 0.6396 ×101

4 0.2137 ×102 0.1424 ×102

5 0.6139 ×102 0.3115 ×102

6 0.1760 ×103 0.6732 ×102

7 0.5033 ×103 0.1441 ×103

8 0.1433 ×104 0.3060 ×103

9 0.4068 ×104 0.6459 ×103

10 0.1150 ×104 0.1357 ×104

11 0.3248 ×104 0.2837 ×104

12 0.9141 ×104 0.5912 ×104

13 0.2567 ×105 0.1228 ×105

14 0.7196 ×105 0.2545 ×105

15 0.2014 ×106 0.5261 ×105

of nodes in F defined as

X0
r (F ) = {x0 +(x1−x0)ui+(x2−x0)uj , i = 0, ..., r , j = 0, ..., r− i }

with ui = i/r (see in Fig. 2 left, the green and red points obtained for r = 4
in F ). On each edge E, we define X1

r (E) as described in ♦. To generate
the set X1

r (F̊ ) of small edges lying at the interior of F , we connect the
points of X0

r (F ) by segments parallel to the edges E of F that have one
extremity in x0. Chop these segments at the intersection points in F (see
in Fig. 2 center and right, respectively, the red nodes and the small edges
obtained for r = 4). The small nodes at the interior of F together with

x
1

x
0

x
2

Figure 2: Construction, in a triangle F , of a uniform and parallel distribution of small edges
with ending points in the nodes of the principal lattice (here drawn for r = 4). On the left,
the points of the principal lattice X0

r (F ); on the right, the set of edges X1
r (F ).

those on its boundary constitute a unisolvent and minimal set X0
r (F ) of

nodes for the interpolation of 0-forms, which is indeed the principal lattice
of order r in F = [x0, x1, x2], defined as

X0
r (F ) :=

{
x ∈ F : λi(x) ∈ {j/r : j ∈ {0, 1, . . . , r}}, ∀ i ∈ {0, 1, 2}

}
10



in terms of the barycentric coordinates of F .

2. To construct the set X1
r (F ) of the nonuniform distribution of 1-simplices

associated with the Lobatto nodes on the edges E of F , we proceed simi-
larly to the uniform case. We start by considering the Lobatto nonuniform
distribution of nodes in F defined as

X0
r (F ) = {x0 +(x1−x0)ui+(x2−x0)uj , i = 0, ..., r , j = 0, ..., r− i }

with ui = (1 + ti)/2, being ti ∈ [−1, 1] the roots of (1 − t2)L′r(t) (see in
Fig. 3 left, the green points obtained for r = 4 on the boundary of F ).
On each edge E, we define X1

r (E) as described in ♦. To generate the
small edges X1

r (F̊ ) lying at the interior of F , as in the uniform case, we
connect the small nodes of X0

r (F ) by segments parallel to the edges E
of F incident in x0 (see in Fig. 3 center and right, respectively, the red
nodes and the small edges obtained for r = 4). Note that the interior and

x
1

x
0

x
2

Figure 3: Construction, in a triangle F , of a nonuniform distribution of small edges that are
‖ to E ∈ ∆1(T ), with ending points in the Lobatto nodes (here drawn for r = 4). On the left,
the set of points X0

r (F ); on the right, the set of edges X1
r (F ).

the boundary points of X0
r (F ) constitute a unisolvent and minimal set of

nodes for the interpolation of 0-forms, which is the Lobatto distribution
of degree r in F . In term of the barycentric coordinates of F the set of
such points reads

X0
r (F ) :=

{
x ∈ T : λi(x) ∈ {(1 + tj)/2 : j ∈ {0, 1, . . . , r}},

∀ i ∈ {1, 2} , λ0(x) = 1−
∑2
i=1 λi(x)

}
.

The two sets X1
r (F ) of small edges lying on a face F of T , associated with

the uniform (in ♣.1) and nonuniform Lobatto (in ♣.2) distributions X0
r (F ), are

far from being “good” choices for the interpolation in P−r Λ1(F ). This is also
confirmed by the numerical results we present later. The reason is that, for
the uniform set, it is known that polynomial fitting on equally spaced nodes
(and consequently on edges) can lead to poor interpolation properties for high
degrees r. For the nonuniform ones, Lobatto points can be straightforwardly
extended to higher dimension, while keeping their property of being the zeros
or the extrema of orthogonal polynomials, only on tensorial domains (Cartesian
products of intervals).

In nontensorial domains, as triangles and tetrahedra here considered, there
are three important requirements to fullfil with nodes:

11



(i) interpolation nodes should be nonuniformly distributed and endowed of a
rotational symmetry. In this way, wild oscillations are minimized and spectral
convergence of the interpolation error is ensured for smooth functions;
(ii) the generating algorithm should be simple, ideally with an explicit formula;
(iii) the Lebesgue constant should not grow too fast with the degree r.
So, to define reasonable sets X1

r in F or T , we need to start from distributions
of nodes X0

r that are “good” for high order multivariate polynomial interpo-
lation. The existing literature deals with the complex problem of generating
interpolation points in a precise and efficient way by respecting the three re-
quirements above, starting from the Lobatto distribution along the edges E of
T (see [12, 20, 5, 18] and the references therein). Among all the possibilities,
we consider the set of points introduced in [21]. The definition of such a set
depends on a parameter α ∈ R. In the following, we refer to these points as
the symmetrised Lobatto (sym. Lb) nodes when generated with α = 0, and as
the warp & blend (WB) nodes when α = αopt(r) (see Table 7 in [21]). They
have been chosen because of their attractive features with respect to conver-
gence and also because they are given through an explicit formula, which is
of great practical interest, especially in three dimensions where the optimiza-
tion procedures involved in the definitions of other nonuniform distributions of
nodes become quite complicated. The generation of the symmetrised Lobatto
and warp & blend distributions X0

r in a triangle or tetrahedron T is performed
by running the Matlab software available in [21] for the triangle and in [13] for
the tetrahedron. These nonuniform distributions of nodes in 2D and 3D are
obtained by starting from the uniform one through a suitable vertex mapping,
that induces a simplicial isomorphism between simplicial complexes, as we are
going to explain.

3. To define X1
r (F ) on a triangle F = [x0, x1, x2] by starting from the set

X0
r (F ) of symmetrised Lobatto or warp & blend nodes in F , we proceed

as follows.

Figure 4: Construction, in a triangle F , of a nonuniform distribution of small edges that are
6‖ to the edges E of F , with ending points in either the symmetrised Lobatto or warp & blend
nodes (here drawn for the scalar interpolation of degree r = 4). On the left, the uniform set of
points and edges; at the center, points on edges and at the interior are moved in new positions
thus defining the new set X0

r (F ); on the right, the resulting set X1
r (F ) of small edges in F .

Define in F the uniform distribution X0
Un(F ) = X0

r (F ). Construct the set
of small edges X1

Un(F ) = X1
r (F ) corresponding with X0

Un(F ) as described
in ♣.1 (see in Fig. 4 left, the red nodes and the small edges obtained
for r = 4). We thus have in F a simplicial complex K = X0

Un(F ) ∪

12



X1
Un(F ). We apply the vertex map ϕ defined in [21] for the 2D case,

that makes corresponding X0
Un(F ) with the new (symmetrised Lobatto or

warp & blend) point configuration, say X0
new(F ), defined as ϕ(X0

Un(F )).
Hence, the points on the edges E and at the interior of F are in the
position corresponding with either the symmetrised Lobatto or the warp
& blend ones (see in Fig. 4 center and right, respectively, the red nodes and
the small edges obtained for r = 4). We thus obtain the new simplicial
complex K ′ = X0

new(F ) ∪ X1
new(F ) where X1

new(F ) is the set of small
segments on the edges and at the interior of F obtained from X1

Un(F )
by following the node movement towards the new position. We then set
X1
r (F ) = X1

new. Note that the new small edges are thus stretched and, for
those at the interior of F , their direction is no more parallel to the edges
of F .

♠. On a tetrahedron T : To define X1
r (T ) on a tetrahedron T we wish to proceed

with the same (chopping) strategy as the one adopted on the edges E and faces
F of T . Before, we need to generate the set X0

r (T ) of small nodes in T . To this
purpose, we use either the uniform or the nonuniform symmetrised Lobatto and
warp & blend distributions of small nodes in T and we proceed as follows.

1. To construct the set X1
r (T ) of the uniform distribution of 1-simplices in

the tetrahedron T = [x0, x1, x2, x3], we start by considering the uniform
distribution of nodes in T defined as

X0
r (T ) = {x0 + (x1 − x0)ui + (x2 − x0)uj + (x3 − x0)u` ,

i = 0, ..., r , j = 0, ..., r − i , ` = 0, ..., r − i− j}

with ui = i/r. On each edge E, we define X1
r (E) as described in ♦ and

on each face F , we define X1
r (F ) as explained before in ♣.1 (see Fig. 2).

Then, we repeat the uniform construction ♣.1 for X1
r (L) over all (r − 1)

triangular internal levels L which are parallel to the three faces F of T in-
sisting in x0. These levels are located at the heights defined by the points
on the edges of extremities x0 and T \ F , respectively. On each of these
internal levels, we keep only the generated small edges that do not belong
to one of the faces F of T . Note that, when moving from x0 towards T \F ,
while remaining parallel to a face F , the degree for the node distribution
on each new level has decreased of 1 with respect to the previous level.
We thus obtain X1

r (T ) collecting all the small edges defined on the edges,
faces and internal levels of T .

2. To define X1
r (T ) for the symmetrised Lobatto or warp & blend distribution

X0
r (T ) in T we consider the simplicial complex K = X0

Un(T ) ∪X1
Un(T ),

where X0
Un(T ) = X0

r (T ) and X1
Un(T ) = X1

r (T ) as defined for the uniform
distribution in ♠.1. We apply the vertex map Φ defined in [21] for the
3D case, that makes corresponding X0

Un(T ) with the new (symmetrised
Lobatto or warp & blend) point configuration, say X0

new(T ) in T , defined
as Φ(X0

Un(T )). Hence, the points on the edges, faces and at the interior
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of T are in the new position corresponding with either the symmetrised
Lobatto or the warp & blend ones. We thus obtain the new simplicial
complex K ′ = X0

new(T ) ∪ X1
new(T ) where X1

new(T ) is the set of small
segments obtained from X1

Un(T ) by following the node movement towards
the new position. We then set X1

r (T ) = X1
new(T ).

Even if these configurations are suitable perturbations of the uniform one, the
proof of unisolvence and minimality for their associated set of weights becomes
difficult to do. However, the Vandermonde matrix associated with any of the
considered distributions is not singular. It can thus be inverted, and this yields

the construction of the dual basis {wX
1
r

j }j associated with X1
r , basis involved in

Definition 6. The conditioning of VX1
r ,B when B is the Berstein basis of P−r Λ1(T )

is presented in Table 2 (resp., Table 3) for the sets X1
r in a triangle (resp., in a

tetrahedron) T .

Table 2: For k = 1 in a triangle F : Conditioning of the Vandermonde matrix VX1
r ,B

with B
the Bernstein basis of P−r Λ1(F ) and X1

r the considered sets of 1-simplices in F .

uniform nonuniform

r with Lb with Lb sym with WB

2 0.9639 ×101 0.9639 ×101 0.9639 ×101 0.9639 ×101

3 0.2637 ×102 0.2806 ×102 0.2976 ×102 0.2976 ×102

4 0.7157 ×102 0.7113 ×102 0.8017 ×102 0.8017 ×102

5 0.2003 ×103 0.1677 ×103 0.2029 ×103 0.2031 ×103

6 0.5632 ×103 0.3821 ×103 0.4946 ×103 0.5033 ×103

7 0.1587 ×104 0.8554 ×103 0.1174 ×104 0.1215 ×104

8 0.4478 ×104 0.2105 ×104 0.2733 ×104 0.2918 ×104

9 0.1263 ×105 0.6289 ×104 0.6269 ×104 0.6890 ×104

10 0.3561 ×105 0.1925 ×105 0.1421 ×105 0.1627 ×105

11 0.1002 ×106 0.5997 ×105 0.3194 ×105 0.3753 ×105

12 0.2816 ×106 0.1894 ×106 0.7138 ×105 0.8751 ×105

5. Estimation of the Lebesgue constant

In order to estimate ΛkXk
r
, the supremum on the set of all k-chains in T is

replaced by a maximum on the set ∆k(τ) of k-simplices c of an additional mesh
τ defined in T , finer enough to stabilize numerically the maximum. We thus

have ΛkXk
r
≈ maxc∈∆k(τ)

Lk

Xk
r

(c)

|c|0 . Hence, to estimate ΛkXk
r

we need to :
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Table 3: For k = 1 in a tetrahedron T : Conditioning of the Vandermonde matrix VX1
r ,B

with

B the Bernstein basis of P−r Λ1(T ) and X1
r the considered sets of 1-simplices in T .

uniform nonuniform

r with Lb sym with WB

2 0.1107 ×102 0.1107 ×102 0.1107 ×102

3 0.4297 ×102 0.4559 ×102 0.4559 ×102

4 0.1374 ×103 0.1544 ×103 0.1544 ×103

5 0.4276 ×103 0.4691 ×103 0.4811 ×103

6 0.1303 ×104 0.1341 ×104 0.1462 ×104

7 0.3936 ×104 0.3613 ×104 0.3950 ×104

8 0.1175 ×105 0.9471 ×104 0.1044 ×105

9 0.3478 ×105 0.2421 ×105 0.2661 ×105

1. Choose a unisolvent and minimal set Xk
r = {σ1, ..., σNk,r

} of k-simplices
in T .

2. Choose a basis B = {wj}
Nk,r

j=1 for the space P−r Λk(T ).

3. Construct the generalized Vandermonde matrix VXk
r ,B for all i, j =

1, ..., Nk
r , with (VXk

r ,B)i,j =
∫
σi
wj for all i, j = 1, ..., Nk

r ,

4. Compute the inverse W of V by solving the linear system W = V \I with
I the identity matrix of size Nk,r.

5. Define a fine mesh τ in T and the set Yk = {c`}`=1,Mk
of the k-simplices

of τ .

Algorithm 1 has been used for a numerical estimation of the Lebesque con-
stant introduced in Definition 6, given r ≥ 1 and k > 0.

Algorithm 1: The numerical estimation of the Lebesgue constant

Lebfunc = zeros(Mk,1)

for ` = 1:Mk

compute |c`|0
for j = 1:Nk,r

compute |σj |0
compute the dual functions w

Xk
r

j =
∑Nk,r

i=1 (W)ij wi at the nodes of
the quadrature rule

compute val =
∫
c`

w
Xk

r
j by the quadrature rule

Lebfunc(`) = Lebfunc(`) + |σj |0 |val|
end

Lebfunc(`) = Lebfunc(`)/|c`|0
end

Lebconst = norm(Lebfunc,’inf’)

We present some numerical results on the Lebesgue constant associated with
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these distributions of k-simplices in a simplex T , for k = 1, in one, two and
three dimensions. To construct the Vandermonde matrix, and thus the dual
basis, we consider the basis {wj}j of the space P−r Λ1(T ) with elements wj that
are products between Bernstein polynomials of degree (r − 1) and Whitney 1-
forms of polynomial degree 1 (see for example [7]). With this choice of local
basis, the conditioning of the Vandermonde matrix varies within an acceptable
range of values when the approximation degree r increases (see Tables 2 and 3).
Since the Lebesgue constant given in Definition 6 coincides, for k = 0, with the
classical one, we expect the results on this constant for k = 1 to be similar, in
a sense to be precised, to those for k = 0 on the same (uniform or nonuniform)
type of configurations of small supports for the degrees of freedom (the weights)
of polynomial differential k-forms belonging to the discrete space.

5.1. In 1D

For the Lebesgue constant given in Definition 6, the computed values in
one dimension for k = 0 and k = 1 are given in Table 4. Numerical results
on the Lebesgue constant confirm the interest of working with a nonuniform
distribution of small edges supporting the degrees of freedom for the space
P−r Λ1(T ).

Table 4: For k = 0 and k = 1 in 1D : Lebesgue constants associated with the uniform and
Lobatto distributions of nodes in a segment T for different numbers of subintervals r ≥ 2. For
k = 0 (resp. k = 1), r coincides with the degree (resp. the degree plus one) of the polynomial
differential form.

In 1D uniform nonuniform

r Λ0
Un Λ1

Un Λ0
Lb Λ1

Lb

2 1.25 2.00 1.25 2.00
3 1.63 3.32 1.67 2.66
4 2.21 5.31 1.80 3.15
5 3.11 8.47 1.99 3.54
6 4.55 13.71 2.08 3.86
7 6.93 22.68 2.20 4.12
8 10.94 38.30 2.27 4.33
9 17.85 65.97 2.36 4.52

10 29.90 115.57 2.42 4.67
11 51.21 205.40 2.49 4.79
12 89.32 369.40 2.54 4.89
13 158.09 670.91 2.59 4.97
14 283.18 1228.48 2.64 5.03
15 512.35 2264.77 2.69 5.07

5.2. In 2D

For the Lebesgue constant given in Definition 6, the computed values in two
dimensions for k = 1 are given in Table 6 and are compared with those of Table
5 for k = 0 taken from [5, 21]. The results for k = 1 are obtained by considering
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the maximum on an independent test mesh τ in T , that is much finer than the
one corresponding with degree 12 and not obtained as a refinement of those
associated with the analysed degrees. In 2D, the mesh τ has been created by
the software Triangle and it contains 513 edges with lenght between 0.011 and
0.120. It has to be said that by modifying the test mesh, the computed values
can have slight changes in decimals but their magnitude order does not change.

Table 5: For k = 0 in 2D: Lebesgue constants associated with a uniform and nonuniform
(symmetrised Lobatto and warp & blend) distributions of nodes in a triangle T for different
polynomial degrees r ≥ 2, as in [21].

uniform nonuniform

r Λ0
Un Λ0

Lb sym Λ0
WB

2 1.48 1.67 1.48
3 2.27 2.11 2.11
4 3.47 2.66 2.66
5 5.45 3.14 3.12
6 8.75 3.87 3.70
7 14.35 4.66 4.27
8 24.01 5.93 4.96
9 40.92 7.39 5.74

10 70.89 9.83 6.67
11 124.53 12.92 7.90
12 221.41 17.78 9.36

Table 6: For k = 1 in 2D: Lebesgue constants in a triangle T , associated with uniform and
nonuniform distributions of small edges for different polynomial degrees r ≥ 2. The ending
points of the small edges are either in the uniform or in the nonuniform (symmetrised Lobatto,
warp & blend or Lobatto) sets.

uniform nonuniform

r Λ1
Un Λ1

Lb sym Λ1
WB Λ1

Lb

2 4.94 4.94 4.94 4.94
3 7.92 6.71 6.71 6.67
4 12.17 8.16 8.16 9.17
5 18.92 9.61 9.60 14.51
6 29.95 11.80 11.62 23.49
7 48.31 14.71 14.51 41.55
8 79.45 18.13 17.65 77.15
9 133.03 20.99 20.32 154.18

10 226.20 28.74 24.44 327.36
11 389.59 38.15 29.19 827.80
12 678.10 52.97 35.85 2142.45

These values are visualized in Fig. 5 (for the same k) and in Fig. 6 (for the same
type of distribution) in semi-log scale with respect to the polynomial degree r
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of the k-forms to be interpolated, with k = 0, 1, apart from those corresponding
to the Lobatto distribution.

5

50

150

3 6 9 12

lo
g

 (
 L

e
b

e
s
g

u
e

 c
o

n
s
ta

n
t 

) 

polynomial degree r

k=0 uniform
k=0 not uniform Lb sym

k=0 not uniform WB

5

50

150

300

600

3 6 9 12

lo
g

 (
 L

e
b

e
s
g

u
e

 c
o

n
s
ta

n
t 

) 

polynomial degree r

k=1 uniform
k=1 not uniform Lb sym

k=1 not uniform WB

Figure 5: In 2D, the Lebesgue constant in semi-log scale as a function of the polynomial
degree r ≥ 2 of the k-form in a triangle T , with k = 0 (left) and k = 1 (right), respectively.
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Figure 6: In 2D, the Lebesgue constant in semi-log scale as a function of the polynomial
degree r ≥ 2 of the k-form in a triangle T , uniform case (left) and nonuniform case (right),
together with their fittings, respectively.

By looking at Fig. 5, we remark that the difference of behaviour in the
Lebesgue constant for the uniform and nonuniform distribution, which is well-
known for k = 0, holds for k = 1 too. For k = 0, the warp & blend (WB)
distribution is known to perform, in terms of the Lebesgue constant growth,
as one of the best, among those that are nonuniform with rotational symmetry,
thus better than the symmetrised Lobatto (Lb sym). In Table 6, we see that the
behaviour of the Lebesgue constant for the nonuniform distributions of small
edges is analogous to that for the corresponding nonuniform distributions of
nodes. The parallelism of the curves in Fig. 6 confirms the fact that the results
on the Lebesgue constant for k = 1 behave similarly to those for k = 0 on
the same (uniform or nonuniform) type of configuration of small supports for
the degrees of freedom of the discrete space. An exponential behaviour fits the
curves in Fig. 6 for both k = 0, 1, with a smaller coefficient in front of r as soon
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as the distribution of the small simplices is nonuniform ove T . Note that we have
Λ1
X1

r
> Λ0

X0
r

for all r and for sets of weights X0
r , X

1
r such that the ending points

of the small edges supporting the weights of X1
r are the small nodes supporting

the weights of X0
r . Note that the considered distributions of small edges do

not fullfil the rotational symmetry requirement over T . An improvement to get
more symmetric layouts on a face of T or at the interior of T is possible but the
strategy to perform it is not clear at the moment.

5.3. In 3D

Computed values for the Lebesgue constant in three dimensions for k = 1 are
given in Table 8 and are compared with those of Table 7 for k = 0 taken from
[5, 21]. Again, the results for k = 1 are obtained by estimating the supremum
on an independent test mesh in T , much finer than the one corresponding with
degree 9 and not obtained as a refinement of those associated with the analysed
degrees. In 3D, the mesh τ has been created as uniform, with nodes in the
principal lattice of degree 23 in T . It contains 13 800 edges with lenght varying
between 0.0435 and 0.0615. The Lebesgue constant values, apart from those
corresponding to the Lobatto distribution, are visualized in Fig. 7 (for the same
k) and in Fig. 8 (for the same type of distribution) in semi-log scale with respect
to the polynomial degree r of the k-forms to be interpolated, with k = 0, 1.

Table 7: For k = 0 in 3D: Lebesgue constants associated with a uniform and nonuniform
(symmetrised Lobatto and warp & blend) distributions of nodes in a tetrahedron T for different
polynomial degrees r ≥ 2, as in [21].

uniform nonuniform

r Λ0
Un Λ0

Lb sym Λ0
WB

2 1.77 2.00 1.77
3 2.94 2.93 3.11
4 4.88 4.07 4.07
5 8.09 5.38 5.32
6 13.66 7.53 7.01
7 23.38 10.17 9.21
8 40.55 14.63 12.54
9 71.15 20.46 17.02

By looking at Fig. 7, we remark that the behaviour of the Lebesgue constant
for the uniform and nonuniform distribution in two dimensions, also holds in
three dimensions. Once again, the parallelism of the curves in Fig. 7, for r > 4,
confirms the fact that the results on the Lebesgue constant for k = 1 behave
similarly to those for k = 0 on the same (uniform or nonuniform) type of
configuration of small supports. An exponential behaviour fits the curves in
Fig. 7 for both k = 0, 1, with a smaller coefficient in front of r as soon as the
distribution of the small simplices is nonuniform over T . Note that we have
again Λ1

X1
r
> Λ0

X0
r

for all r and for sets of weights X0
r , X

1
r such that the ending
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Table 8: For k = 1 in 3D: Lebesgue constants in a tetrahedron T , associated with uniform and
nonuniform distributions of small edges for different polynomial degrees r ≥ 2. The ending
points of the small edges are either in the uniform or in the nonuniform (Lobatto, symmetrised
Lobatto or warp & blend) sets.

uniform nonuniform
r Λ1

Un Λ1
Lb sym Λ1

WB

2 6.41 6.10 6.10
3 11.23 10.80 10.80
4 18.04 15.25 15.25
5 29.37 20.09 20.79
6 46.76 26.73 28.32
7 74.19 36.57 36.03
8 127.53 48.66 45.82
9 218.19 61.90 57.24
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Figure 7: In 3D, the Lebesgue constant in semi-log scale as a function of the polynomial degree
r ≥ 2 of the k-form in a tetrahedron T with k = 0 (left) and k = 1 (right), respectively.

5

10

50

100

2 4 6 8

lo
g

 (
 L

e
b

e
s
g

u
e

 c
o

n
s
ta

n
t 

)

polynomial degree r

k=0 uniform in 3D
y = exp(0.5262*r - 0.5118)

k=1 uniform in 3D
y = exp(0.4946*r + 0.8964)

5

10

50

100

2 4 6 8

lo
g

 (
 L

e
b

e
s
g

u
e

 c
o

n
s
ta

n
t 

)

polynomial degree r

k=0 nonuniform WB
y = exp(0.3041*r + 0.1166)

k=1 not uniform WB
y = exp(0.3070*r + 1.4049)

Figure 8: In 3D, the Lebesgue constant in semi-log scale as a function of the polynomial
degree r ≥ 2 of the k-form in a tetrahedron T , uniform case (left) and Lobatto nonuniform
case (right), together with their fittings, respectively.
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points of the small edges supporting the weights of X1
r are the small nodes

supporting the weights of X0
r .

By analysing the values of the Lebesgue constant in Tables from 4 to 8,
and their visualization, two interesting facts can be underlined. Firstly, the
Lebesgue constant, for a given distribution of small k-simplices associated with
a value of r, thus a given set Xk

r , grows with the spatial dimension n, namely

Λ{Xk
r in 3D} > Λ{Xk

r in 2D} > Λ{Xk
r in 1D}

and this occurs for any r, k and distribution type of small k-simplices. Secondly,
the fitting curve of the estimated Lebesgue constant curve changes of type with
the dimension n. Precisely, for the uniform case, the behaviour with r does
not depend on n, namely, the curves that fit the results in Tables from 4 to 8,
for the uniform configuration, are of exponential type for any n with the same
coefficient 0.5 in front of r. This is not the case for the nonuniform cases: the
small edges with ending points in either the symmetrised Lobatto or the warp
& blend nodes yield to estimated Lebesgue constants with fitting curves going
from polynomial (n = 1) to exponential types for n > 1, with coefficients 0.19
(n = 2) and 0.30 (n = 3) in front of r.

6. Stability of the interpolation

We now extend to the case k > 0 a classical result for k = 0, that relates
the Lebesgue constant with the stability of Lagrangian interpolation. We are
interested in studying the stability of the interpolation in P−r Λ1(T ), namely, in
stating how much perturbations of ω are transmitted to Π1

rω.

Proposition 1. Let ω, ω̃ be smooth k-forms such that ||ω − ω̃||0 ≤ ε . Then

||Πk
rω −Πk

r ω̃||0 ≤ ε ΛkXk
r
, (2)

where ΛkXk
r

is the generalised Lebesgue constant defined in (6).

Proof 1. of Proposition 1. Being Πk
rω and Πk

r ω̃ two polynomial differential
k-forms, we consider the quantity ||Πk

rω −Πk
r ω̃||0 , namely

||Πk
r ω −Πk

r ω̃||0 = sup
c∈Ck(T )

1

|c|
0

∣∣∣ ∫
c

(Πk
rω −Πk

r ω̃)
∣∣∣ = sup

c∈Ck(T )

1

|c|
0

∣∣∣ ∫
c

Πk
r (ω − ω̃)

∣∣∣
= sup
c∈Ck(T )

1

|c|
0

∣∣∣ ∫
c

[ ∑
σ∈Xk

r

(∫
σ

(ω − ω̃)
)
ϕσ

]∣∣∣
= sup
c∈Ck(T )

1

|c|
0

∣∣∣ ∑
σ∈Xk

r

∫
σ

(ω − ω̃)

∫
c

ϕσ

∣∣∣ .
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By using the triangular inequality and, then, the fact that Xk
r (T ) ⊂ Ck(T ), from

||ω − ω̃||0 ≤ ε we get

||Πk
rω −Πk

r ω̃||0 ≤ sup
c∈Ck(T )

1

|c|
0

∑
σ∈Xk

r

∣∣∣ ∫
σ

(ω − ω̃)
∣∣∣ ∣∣∣ ∫

c

ϕσ

∣∣∣
= sup
c∈Ck(T )

1

|c|0

∑
σ∈Xk

r

|σ|
0

|σ|0

∣∣∣ ∫
σ

(ω − ω̃)
∣∣∣ ∣∣∣ ∫

c

ϕσ

∣∣∣
≤ ε sup

c∈Ck(T )

1

|c|0

∑
σ∈Xk

r

|σ|0
∣∣∣ ∫
c

ϕσ

∣∣∣ ,
thus the result, by recalling the expression stated in (6). �

Proposition 1 provides a way to estimate the Lebesgue constant ΛkXk
r
. On

the same reference mesh τ , that has been used in (6) to compute the Lebesgue
constants, we estimate 1

ε ||Π
1
rω −Π1

rω̃||0 . We thus consider two regular 1-forms
such that 1

|σ|0
|
∫
σ
(ω− ω̃)| ≤ ε for all σ ∈ X1

r (T ). Indeed, what is important here

is not the expression of ω, ω̃, but the weights of their difference. We thus set

1

|σ|
0

∫
σ

(ω − ω̃) = (2∗rand(1)− 1)∗ε, ε = 10−m, m = 1, 2, . . . , 8

being rand(1) the Matlab command that gives random real positive values lower
than 1. In Fig. 9 we report the quantities 1

ε ||Π
1
rω − Π1

rω̃||0 and compare them
with their relative Lebesgue constants. For the sake of brevity, we have reported
only the cases ε = 10−2, ε = 10−5 and ε = 10−8. According to (2) results are
independent from ε.

Distribution of edges constructed from nodes that are more suitable for high
order Lagrange interpolation than the uniform ones, such as the symmetrized
Lobatto and the warp & blend, improve the stability for k = 1. The asymmetry
of the distribution of nodes with respect to the vertices of T in the Lobatto grid
results in a very fast increase of the amplification of the perturbation. Results
confirm the behaviour predicted by the Lebesgue constant. The amplification
of the perturbation on the data with respect to the polynomial degree increases
as the Lebesgue constant does. Indeed, a visual comparison in semilogarithmic
scale as in Fig. 9 shows that 1

ε ||Π
1
rω − Π1

rω̃||0 grow parallely to the Lebesgue
constant; we hence deduce that estimate (2) is sharp. In particular, Fig. 9
(left) depicts data relative to the uniform and warp & blend distributions. Data
relative to symmetrized Lobatto are not shown as they offer a very similar
behaviour to that of warp & blend. The same computation for the tridimensional
case, Fig. 9, right, shows a comparable behaviour. The value of the Lebesgue
constant estimated by (6) is thus an upper bound of 1

ε ||Π
1
rω − Π1

rω̃||0 , for any
ε, the numerical one.

7. Conclusions

We have proposed a flexible rule to select a minimal and unisolvent set of
small edges to interpolate a differential 1-form ω using high order Whitney
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Figure 9: Comparison between the estimated Lebesgue constants (straight lines) and the
numerical ones, computed through the stability test (non-continuous lines) for small edges
associated with uniform (red) and warp & blend (blue) node distributions, in 2D (left) and
3D (right).

finite elements. The interpolating polynomial differential form has the same
weights (integrals on the small edges) that ω. Weights are alternative degrees of
freedom to moments for high order trimmed polynomial spaces. We have tried
different choices of supports for the weights and we have studied the growth
of the generalized Lebesgue constant when increasing the polynomial degree r
and the degree k of the polynomial differential forms. Finding a minimal and
unisolvent distribution of small edges that is optimized on the basis of a given
property has not been considered in the present work.

Numerical results have evidenced the importance of the Lebesgue constant in
qualifying a good distribution of small simplices supporting the weights. They
are in agreement with the fact that to have a lower value of this constant,
a nonuniform distribution of the geometrical supports for dofs is determinant
both for k = 0, 1. They have also revealed that the behaviour of the Lebesgue
constant for k = 1 is similar to that for k = 0 (parallel curves), on each con-
figuration we have considered. Moreover, for a given degree r, the value of this
constant grows with k, once we fix the ambient dimension n, and with n, once
we fix the degree k of the differential form. The stability analysis confirms that
the amplification of the perturbations on the data behaves, with respect to the
polynomial degree r, as the Lebesgue constant does. Interpolation results give
further confidence on the quality of the warp & blend distribution. The very
natural extension of this approach to differential k-forms for 0 < k < n is also
ongoing and first results for k = 2 in 3D are in agreement with those provided
in this work for k = 0, 1.
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