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Abstract

We propose new sets of degrees of freedom, called weights, for the interpola-
tion of a differential k-form in Whitney finite elements of arbitrary polynomial
degree on simplices. They have a clear physical interpretation as integrals of
the k-form on k-chains. This allows to consider quite general distributions of
the supports, that are k-subsimplices not necessarily uniform, in a way here
defined. We exploit this flexibility to investigate distributions that minimize
the growth of the generalized Lebesgue constant when the polynomial degree
increases. Preliminary numerical results for the edge element case support the
nonuniform choice, in agreement with the well-known nodal case.
MSC 2020 : 65N30 65D05
Key words : Polynomial differential forms Lebesgue constant weights interpo-
lation uniform and nonuniform degrees of freedom edge finite elements

1. Introduction

New degrees of freedom, called weights to distinguish them from the classical
moments introduced in [9], have been firstly proposed in [11] for the interpo-
lation, on simplicial meshes, of physical fields, intended as k-differential forms,
in Whitney finite element spaces of high polynomial degree r ≥ 1 (see, [4], [3]).
These weights are integrals of the field under consideration on a distribution
of small k-simplices, that are particular subsimplices of dimension k in each
element of the mesh. In [1] we have generalised this construction and now we
develop that idea to establish how to select minimal and unisolvent sets of such
small simplices as supports of the weights. This new methodology yields a flex-
ibility, in the choice of the small simplices, that opens the way to nonuniform
distributions, where the term nonuniform needs some care for k 6= 0 and k 6= n,
being n the ambient dimension. The quality of the interpolation on uniform
and nonuniform distributions of small k-simplices can be analysed in terms of
the generalised Lebesgue constant defined in [2].

Finite element spaces extending Whitney forms to higher degrees are widely
used for discretizing physical balance laws in electromagnetism, fluid dynamics
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or elasticity. The degrees of freedom (dofs) associated with Whitney differential
forms have a direct physical relevance. When considering polynomial interpo-
lation of higher degree, dofs can be chosen in different ways. In [9] and its
extension [7] (see also [8]), higher moments are used. They are also considered
in the general framework of the finite element exterior calculus [3]. In [11], the
localization issue has been addressed, namely, the relationship between dofs and
measurable quantities (such as circulations, fluxes, densities) for the field they
are related with. In the framework of high order Whitney finite element spaces,
integrals on suitable subsimplices of the mesh are a valid alternative as dofs to
the classical moments. Their definition is based on the introduction of the small
simplices, that are subsimplices resulting from homothetic contractions of the
elements of the mesh1. New dofs are then the weights, integrals of a k-form on
these small k-simplices. The weights make the connection between physics and
geometry: the concept of small k-simplex was born from the necessity of extend-
ing to r > 1 the geometrical construction proposed for r = 1 by Weil-Whitney
in a context other than finite elements but more related with algebraic cohomol-
ogy and the proof of the de Rham’s theorem (see [14, 15]). Understanding and
generalizing this construction has been fundamental to provide explicit bases
for high order finite element spaces involved in the discretization of problems
from electromagnetism and other areas of physics.

The concept of weight on a small k-simplex has been an important theoretical
achievement to see that it was indeed possible to define an interpolation theory
for k-forms with k > 0 in the same way as the one for the more familiar case
k = 0. In the particular case of 0-forms the Whitney finite elements are in
fact the Lagrange ones and the integrals on the small 0-simplices are the dofs
used in the classical description of the Lagrange finite elements (see e.g. [5]),
namely the values at the points of the principal lattices of the elements of the
mesh. The weights of k-forms on small k-simplices for k > 0, can be intended as
a generalization of the values at nodes (small 0-simplices) of continuous scalar
functions (differential 0-forms). It is well-known that the Lagrange interpolation
at uniformly distributed points in the mesh elements yields poor approximation
as soon as the polynomial degree increases, even when the interpolated function
is rather smooth. This is due to the Runge’s phenomenon and mathematically
stressed by a rapid increase of the Lebesgue constant. For this reason there have
been several attempts in the literature (see [12, 13, 6, 10] and the references
therein) to produce nodal sets in a triangle or tetrahedron using direct (with
explicit formula) and indirect (undergoing an optimization procedure) methods,
satisfying criteria of low computational complexity and minimization of the
Lebesgue constant. It naturally arises the following question: “Is it possible to

1The small simplices are never constructed in reality, in the sense that they do not con-
stitute a refinement of the considered mesh. Even if in the text we propose a visualization
for some particular distributions of such subsimplices, they have to be intended virtually. For
k > 0, the number of subsimplices, and consequently of dofs, per element increases with the
degree r of the approximation, in the same way as it occurs for k = 0 when we consider many
nodes in each simplex for a more accurate reconstruction of scalar fields over the mesh.
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do the same for k > 0 ?”. In other words: “How small k-simplices, 0 < k < n,
should be thought distributed in a triangle or a tetrahedron in order to interpolate
differential k-forms by trimmed polynomial ones in a way that remains stable
with the growth of the polynomial degree r ?”

In this work, we provide an answer to the question by generalizing the con-
struction of nonuniform distributions of nodes to that of small k-simplices, for
k > 0. We investigate how to construct unisolvent and minimal sets of k-
simplices associated with distributions of nodes different from those of the prin-
cipal lattice of the elements. In particular, we exploit this flexibility to propose
new sets of weights on small edges that slow down the growth of the generalised
Lebesgue constant introduced in [2] when increasing the polynomial degree. The
generalized Lebesgue constant will be used to state the quality of the polyno-
mial interpolation of 1-forms at the new nonuniform distributions of the small
1-simplices in the mesh. For simplicity, we present in detail only the case k = 1,
but the construction is valid for any 0 < k ≤ n and coincides with the familiar
nodal one for k = 0.

The paper is organized as follows. In Section 2 we recall few notations and
basic notions of polynomial differential forms and recall the role of the Lebesgue
constant in the classical interpolation theory. In Section 3 we introduce different
sets of 1-subsimplices and we prove that the associated weights are unisolvent
for trimmed polynomial 1-forms. In Section 4, the notions of Vandermonde
matrix and Lebesgue constant are presented for k > 0. In Section 5 we consider
two classical choices of interpolation nodes in the interval [0, 1], namely the
uniform distribution and the Lobatto one, to construct two sets of 1-simplices
supporting unisolvent weights for trimmed polynomial 1-forms. We also test two
other sets of 1-simplices constructed from the symmetrised Lobatto and warp &
blend distributions of nodes in the simplex. We then compare numerically the
behaviour of the Lebesgue constant associated with these distributions for dofs
in two and three dimensions, when increasing the polynomial degree. The paper
ends in Section 6 with some concluding remarks that point out the attained
achievements.

2. Notation and preliminaries

In this section we explain the notation and some basic notions of polynomial
differential forms. Given n + 1 point in general position in Rn, the n-simplex
with these vertices is their closed convex hull. Any subset of k + 1 vertices of
a n-simplex defines a face of dimension k, with 0 ≤ k ≤ n. Faces are simplices
themselves. Let ∆k(T ) be the set of faces of dimension k (or k-subsimplices) of
the n-simplex T . The cardinality of ∆k(T ) is

(
n+1
k+1

)
elements.

If we introduce an ordering2 of the vertices of T , {x0, . . . ,xn}, then we can

2We can fix an orientation of the n-simplex. If T = [x0, . . . ,xn] ⊂ Rn denotes an oriented
n-simplex and ρ : {0, . . . , n} −→ {0, . . . , n} is a permutation, we get [xρ(0), . . . ,xρ(n)] =
[x0, . . . ,xn] if ρ is an even permutation and [xρ(0), . . . ,xρ(n)] = −[x0, . . . ,xn] if ρ is an odd
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identify univocally any k-face F of T with an increasing map σF : {0, . . . , k} →
{0, . . . , n}. The face F has vertices {xσF (0), . . . ,xσF (k)}. We denote by F −
[xσF (j)] the (k − 1)-face of F of vertices {xσF (0), . . . , x̂σF (j), . . . ,xσF (k)} where
the hat is used to indicate a suppressed argument. We extend this notation
to (k − r)-faces of F : F − [xσF (j1), . . . ,xσF (jr)]. For instance if n = 3, the set
T − [x0,x2] denotes the edge of vertices {x1,x3}. With each point x ∈ T we
may associate a (n + 1)-uple (λ0, λ1, . . . , λn) such that x =

∑n
i=0 λixi, with

the constraints
∑n
i=0 λi = 1 and λi ≥ 0. We call such functions barycentric

coordinates for x in T .
For the high-order case, multi-index notations are used. For each m ∈ N,

m ≥ 0 and q ∈ N we denote by I(m + 1, q) the set of
(
m+q
q

)
multi-indices of

length m+ 1 and weight s, namely

I(m+ 1, q) = {η ∈ Nm+1 :

m∑
i=0

ηi = q} .

Given α ∈ I(n + 1, s) we set λα =
∏n
i=0 λ

αi
i . We denote by Λk(T ) the space

of smooth differential k-forms in T . We associate with each F ∈ ∆k(T ) the
Whitney form ωF ∈ Λk(T ) defined in the following way (see, e.g. [15]):

ωF =

k∑
i=0

(−1)iλσF (i)dλσF (0) ∧ · · · ∧ d̂λσF (i) ∧ · · · ∧ dλσF (k).

If k = 0 then F is a vertex xi of T and ωxi = λi. If k = n then F = T and
ωT = dλ1 ∧ · · · ∧ dλn is the volume form. We finally denote by

P−s+1Λk(T ) := Span{λαωF : F ∈ ∆k(T ) and α ∈ I(n+ 1, s)}

the space of trimmed polynomial k-forms. Its elements are the Whitney poly-
nomial k-forms of degree s + 1. When k = n, we have that P−s+1Λn(T ) :=
Span{λαdλ1 ∧ · · · ∧ dλn : α ∈ I(n + 1, s)} = PsΛn(T ), the space of polyno-
mial n-forms of degree s. On the other hand, for k = 0, we get P−s+1Λ0(T ) =
Ps+1Λ0(T ), that coincides with Ps+1(T ).

The Lebesgue constant is a well known indicator to estimate the quality of
a set of nodes for the interpolation in Pr(T ), with T ⊂ Rn, n > 0, of scalar
functions. To have an idea of this effect, let us suppose to have a vector ũ of
values (ũj)j=1,N0,r

that are a perturbation of u, the array of data (uj)j=1,N0,r

at a set X0
r = {xj}j=1,N0,r

of N0,r nodes for the polynomial interpolation of
degree r of a continuous scalar function f in a simplex T . We recall that for
f ∈ C0(T ), we can define the maximum norm ||f ||∞ = maxx∈T |f(x)|. Being
{wj}j the dual basis associated with the values at the set of nodes X0

r , the
interpolating polynomials of degree r on the values uj and ũj are, respectively,

permutation. The n-simplex of Rn with vertices {x0, . . . ,xn} is called the support of the
oriented n-simplex [xρ(0), . . . ,xρ(n)].
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Π0
rf =

∑N0,r

j=1 uj wj and Π̃0
rf =

∑N0,r

j=1 ũj wj . We can estimate the maximum

norm of the continuous function Π0
rf − Π̃0

rf and we obtain

||Π0
rf − Π̃0

rf ||∞ = maxx∈T

∣∣∣Π0
r(x)− Π̃0

r(x)
∣∣∣ = maxx∈T

∣∣∣∑N0,r

j=1 (uj − ũj) wj(x)
∣∣∣

≤ maxx∈T

(∑N0,r

j=1 |wj(x)|
)

maxj=1,N0,r
|uj − ũj | = Λ0

X0
r
||u− ũ||∞

where Λ0
X0

r
= maxx∈T

(∑N0,r

j=1 |wj(x)|
)

is known as the Lebesgue constant. As a

consequence, we have that small changes on the data yield small changes on the
interpolating polynomial if the Lebesgue constant Λ0

X0
r

is small. This constant

thus plays the role of the condition number for the interpolation problem. More-
over, the Lebesgue constant appears when estimating the interpolation error.
Let f∗r be the best approximation polynomial of degree r of the scalar function
f in T , for which ||f −f∗r ||∞ ≤ ||f −zr||∞ for any other polynomial zr of degree
r defined in T . Then

||f −Π0
rf ||∞ = ||f −Π0

rf
∗
r + Π0

rf
∗
r −Π0

rf ||∞ ≤ ||f − f∗r ||∞ + ||Π0
rf
∗
r −Π0

rf ||∞
≤ (1 + ||Π0

r||∞) ||f − f∗||∞,

with ||Π0
r||∞ = supf∈C0(T )\{0}

||Π0
rf ||∞
||f ||∞ . It can be proven that ||Π0

r||∞ ≤ Λ0
X0

r
:

indeed, for any f ∈ C0(T ) we have

||Π0
rf ||∞ = max

x∈T

∣∣∣∣∣∣
N0,r∑
j=1

f(xj) wj(x)

∣∣∣∣∣∣ ≤
max

x∈T

N0,r∑
j=1

|wj(x)|

 max
j=1,N0,r

|f(xj)| ≤ Λ0
X0

r
||f ||∞.

This bound combined with the previous estimate of ||f − Π0
rf ||∞ yields the

following well-known result

||f −Π0
rf ||∞ ≤ (1 + Λ0

X0
r
) ||f − f∗r ||∞, ∀ f ∈ C0(T ). (1)

In (1), the growth of the Lebesgue constant Λ0
X0

r
determines the convergence

in the maximum norm. Moreover, the same inequality suggests that, when the
Lebesgue constant does not grow too fast, we can have an approximation of f
on T that is almost as good as the best approximation f∗r by taking Π0

rf , that
is easier to compute than f∗r . There is a significative literature for the case
k = 0 (see [? 6, 10] and the references therein), widely dedicated to the problem
of selecting a good and easy to be defined set of nodes X0

r for the high order
polynomial interpolation of continuous functions f on nontensorial domains as
the simplex T .

Very recently, in [2], the definition of the Lebesgue constant has been gen-
eralised to the case of interpolation of differential forms ω ∈ C0Λk(T ) by poly-
nomial k-forms ω ∈ P−r Λk(T ), for k ≥ 0 and a bound as (1) also holds for
ω ∈ C0Λk(T ). In Figure 1 we illustrate the interaction among the principal in-
gredients at play in the polynomial interpolation. The values of the dofs for the
elements of a given basis, say {wj}j , of the local discrete space constitute the
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Figure 1: Simplified visualization of the interaction among decisive ingredients or steps for
the success of the multivariate high-order polynomial approximation. The conditioning of
the Vandermonde matrix V matters when computing the dual basis and the growth of the
Lebesgue constant Λ with the approximation degree r has to be slow for a stable interpolation.
This analysis is done locally, on one mesh element, before performing the approximation over
the entire mesh.

entries of the so-called Vandermonde matrix V (e.g., Vij = wj(xi), i, j = 1, N0,r,
in the nodal case). This matrix has to be inverted once to construct the local
dual basis {wj}j associated with the selected dofs and its conditioning cond (V )
depends on the local basis {wj}j . In this work we analyse how it is possible to
define different sets of weights, in order to obtain a stable interpolation when
the local discrete space is P−r Λk(T ) with k > 0, by minimizing the Lebesgue
constant Λ. In the spirit of the geometrical construction proposed by Whitney,
the question becomes how to construct different distributions of k-subsimplices,
k > 0, that are unisolvent and minimal for the interpolation in P−r Λk(T ) of
differential k-forms and compare them in terms of the generalised Lebesgue
constant. The basis {wj}j we consider for P−r Λk(T ) yields acceptable values for
the conditioning of the Vandermonde matrix when the approximation degree r
increases, and its investigation is thus postponed.

3. Distributions of unisolvent and minimal 1-simplices

For simplicity, we present the construction for k = 1. We stress that the
same construction can be repeated for any value of k > 0. We consider a
symmetric3 distribution Qs of s points qi in the interval (0, 1) ⊂ R, such that

3The term symmetric is here used to denote a symmetry of the nodes’ distribution with
respect to the midpoint of the interval (0, 1). If s = 2 ` + 1, then q`+1 = 1

2
, q1 = 1 − qs,
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0 < q1 < q2 < · · · < qs < 1. For instance, we can have qi = i
s+1 , if we wish

a uniform distribution, or qi = (1 + cos( iπ
s+1 ))/2, if we prefer a nouniform one.

For each n-simplex T on Rn with vertices {x0,x1, . . . ,xn} we denote

Z(T,Qs) := {x ∈ T : λ0(x) 6= 0 and λi(x) ∈ {0, q1, . . . , qs, 1}, ∀ i ∈ {1, . . . , n}} ,

being {λi(x)}k0i=0 the barycentric coordinates on T . The set Z(T,Qs) consists of(
n+s
s

)
points of T and the only polynomial of degree lower or equal than s in n

variables that is equal to zero on each point of Z(T,Qs) is the zero polynomial.
For each ξ ∈ Rn we consider the map obtained as the composition of the

homothety x 7→ x0 + λ0(ξ)(x− x0) and the translation x 7→ x + (ξ − x0) ,
namely

τξ : x 7→ τξ(x) = x0 + λ0(ξ)(x− x0) + (ξ − x0).

We thus have

τξ(x) = ξ+λ0(ξ)(x−x0) =

n∑
i=0

λi(ξ)xi+λ0(ξ)(x−x0) = λ0(ξ)x+

n∑
i=1

λi(ξ)xi .

We denote Tξ := τξ(T ). If λ0(ξ) 6= 0 then Tξ is a n-simplex, similar to T with n
vertices in the (n− 1)-dimensional affine subspace πT containing {x1, . . . ,xn}.
Otherwise Tξ = ξ. (See Figure 2 .)

Figure 2: The dots represent the set Z(T,Q3) for a 2-simplex T in R2 and two differente
choices of Q3: on the left the uniform distribution {qi = i/4 with i ∈ {1, 2, 3}}, on the right
a non uniform distribution. The coloured 2-simplex are Tξ for ξ ∈ Z(T,Q3).

For each k such that 0 ≤ k ≤ n we denote

Σk(T,Qs) = {τξ(F ) : F ∈ ∆k(T ), ξ ∈ Z(T,Qs)}.

Remark 1. If k > 0 the total number of elements of Σk(T,Qs) is
(
n+1
k+1

) (
n+s
s

)
,

namely, the product of the number of k-faces of an n-simplex by the number
of points in the set Z(T,Qs). This because each element of Σk(T,Qs) belongs
to exactly one n-simplex Tξ. On the other hand, the number of elements of
Σ0(T,Qs) is equal to

(
n+s+1
s+1

)
because some elements of Σ0(T,Qs) belong to

two or more n-simplex Tξ. Similarly, if 0 < k < n the number of elements of
Σk(T,Qs) contained in the (n − 1)-face opposite to x0 is

(
n
k+1

) (
n+s
s

)
because

q2 = 1− qs−1, and so on.
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each n-simplex Tξ has exactly
(
n
k+1

)
k-faces in the (n − 1)-face of T opposite

to x0. On the other hand the number of points of Σ0(T,Qs) contained in any
k0-face F of T is

(
k0+s+1
s+1

)
.

For each k0 ∈ N with 0 ≤ k0 ≤ n and each F ∈ ∆k0(T ) we can define
analogously

Z(F,Qs) :=
{
x ∈ F : λF0 (x) 6= 0 and λFi (x) ∈ {0, q1, . . . , qs, 1}, ∀ i ∈ {1, . . . , k0}

}
,

being λFi (x) the barycentric coordinate on F , namely λFi (x) = λσF (i)|F , for
i ∈ {0, 1, . . . , k0}, and

Σk(F,Qs) = {τξ(f) : f ∈ ∆k(F ), ξ ∈ Z(T,Qs) }, 0 ≤ k ≤ k0.

The set of elements of Σk(T,Qs)) supported on F ∈ ∆k0(T ) contains Σk(F,Qs)
for each k ∈ N with 0 ≤ k ≤ k0. They coincide if and only if x0 ∈ F . (See
Figure 3 .)

Figure 3: The elements of the set Σ1(T,Q3) supported on two different edges of T : on
the right the edge [x0,x2], on the bottom the edge [x1,x2]. Notice that the set on the

left coincides with Σ1([x0,x2], Q3) so it has
(1+1
1+1

)(1+3
3

)
= 4 elements while the set on the

bottom has
( 2
1+1

)(2+3
3

)
= 10 elements. In this case Q3 is the uniform distribution, namely,

{qi = i/4 with i ∈ {1, 2, 3}}.

We start by proving that the set of k-simplices Σk(T ;Qs) is unisolvent for
P−s+1Λk(T ). We proceed as in [? ]. The proof is based on two lemmas.

Lemma 1. Let T ⊂ Rn be an n-simplex, and let ω ∈ PsΛn(T ) be such that∫
Tξ
ω = 0 for all ξ ∈ Rn with λ0(ξ) 6= 0. Then ω = 0.

Proof of Lemma 1. Identify ω with its coefficient p(x). Since s < ∞, the
graph of p(x) defines a finite number of connected regions in which p(x) 6= 0
and there exists ξ ∈ Rn such that the interior of Tξ (that is different from the
empy set, since λ0(ξ) 6= 0) is contained in one of such regions. Then it follows
that ω ≡ 0 in Tξ but then, being ω ∈ PsΛn(Rn), we have ω = 0. �

8



Note that Lemma 1 is valid also for any k0-face F ⊂ Rn: as soon as ω ∈
PsΛk0(F ) (with k0 = dimF ) is such that

∫
Fξ
ω = 0 for all ξ ∈ Rn with

λF0 (ξ) 6= 0, we can conclude that ω = 0.
In the following Πk

T denotes the interpolation operator onto Whitney k-forms
of lowest order determined by the simplex T . If ω ∈ Λk(Rn) then τξω ∈ Λk(Rn)
denotes the pullback of ω by τξ, namely

(τξω)(x) = ω(ξ + λ0(ξ)(x− x0)) .

Lemma 2. Let T ⊂ Rn be an n-simplex with vertices {x0,x1, ...,xn}, and let
ω ∈ PsΛk(Rn), with 0 < k < n, be such that Πk

T (τξω) = 0 for all ξ ∈ Rn with
λ0(ξ) 6= 0. Then ω = 0.

Proof of Lemma 2. The proof is similar to that of Lemma 3.13 in [? ]. If
Πk
T (τξω) = 0 for all ξ ∈ Rn with λ0(ξ) 6= 0, then by Lemma 1 the pullback

of ω to any affine k-dimensional subspace of Rn parallel to a k-face of T not
contained in T − [x0] is 0. We show that this is enough to conclude that ω = 0.

For each x ∈ Rn let us denote u` = τx(x0−x`), with ` ∈ {1, . . . , n}, and hF
the affine k-space of Rn parallel to F ∈ ∆k(T ) passing through x.

Each hF with F 6⊂ T − [x0] is generated by a choice of k different elements
of {u`}n`=1 and each choice of k different elements of {u`}n`=1 generates hF for
some F ∈ ∆k(T ), F 6⊂ T − [x0].

From Lemma 1, if v1, . . . ,vk ∈ hF for some F ∈ ∆k(T ), such that F 6⊂
T − [x0], then ωx(v1, . . . ,vk) = 0.

If v̂1, . . . , v̂k are k generic vectors of Rn then

ωx(v̂1, . . . , v̂k) = ωx

(
n∑
`=1

c`(v̂1)u`, . . . ,

n∑
`=1

c`(v̂k)u`

)
=

∑
σ∈Σn,k

Cσ ωx(uσ(1), . . . ,uσ(k))

being Σn,k the set of combinations of k elements taken from the {1, . . . , n}. It is
equal zero because uσ(1), . . . ,uσ(k) are in hF for some F ∈ ∆k(T ), F 6⊂ T − [x0].
�

Proposition 1. If ω ∈ P−s+1Λk(T ) is such that
∫
σ
ω = 0 for all σ ∈ Σk(T,Qs)

then ω = 0.

Proof of Proposition 1. First we recall that if ω ∈ P−s+1Λn(T ) then ω =
p(x)ωT with p ∈ Ps. Hence the map

ξ ∈ Rn → q(ξ) =

∫
T

p (ξ + λ0(ξ)(x− x0)) ωT

is a polynomial of degree s in ξ. By assumption q is zero at each point of
Z(T,Qs) and then q ≡ 0. From Lemma 1, it follows that ω = 0. We fix k0 ∈ Z
such that 0 ≤ k0 < n and we assume that the result holds true for each k′ ∈ Z
such that k0 < k′ ≤ n. We thus prove that the result holds true for k = k0.
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We have to state that, if ω ∈ P−s+1Λk0(T ) is such that
∫
τξ(F )

ω = 0 for each

F ∈ ∆k0(T ) and ξ ∈ Z(T,Qs), then ω = 0.
For such ω we have dω ∈ P−s+1Λk0+1(T ) and∫

Kξ

dω =

∫
∂Kξ

ω = 0

for each K ∈ ∆k0+1(T ) and ξ ∈ Zs(T ). Then by the inductive hypothesis
dω = 0 and hence ω ∈ PsΛk0(T ). Denoting Πk0

T the interpolation operator

onto Whitney k0 forms of lowest order we have that Πk0
T (τξω) is a polynomial of

degree s in ξ which is zero at each point of Zs(T ) hence it is zero. Then, from
Lemma 2, ω = 0. �

In particular in R2 it holds that the set

Σ1
min(T,Qs) := {e ∈ Σ1(T,Qs)) : e 6⊂ T − [x0]}

⋃
Σ1(T − [x0], Qs)

is unisolvent for P−s+1Λ1(T ), namely it is such that(
ω ∈ P−s+1Λ1(T ) and

∫
σ

ω = 0, ∀σ ∈ Σ1
min(T,Qs)

)
=⇒ ω = 0.

In fact, when it occurs that
∫
σ
ω = 0 for all σ ∈ Σ1

min(T,Qs), we have in
particular

∫
σ
ω = 0 for all σ in Σ1(T − [x0], Qs) hence the resctriction of ω to

T − [x0] is zero and
∫
σ
ω = 0 for all σ in Σ1(T,Qs). Then ω = 0 results from

Proposition 1.
Now it is easy to check that in R3 the set of 1-simplices

Σ1
min(T,Qs) := {e ∈ Σ1(T,Qs) : e 6⊂ T − [x0]}⋃

{e ∈ Σ1(T − [x0], Qs) : e 6⊂ T − [x0,x1]}⋃
Σ1(T − [x0,x1], Qs)

that can be rewritten as

Σ1
min(T,Qs) = {e ∈ Σ1(T,Qs) : e 6⊂ T − [x0]}

⋃
Σ1
min(T − [x0], Qs)}

has the same property of unisolvence for P−s+1Λ1(T ).
If
∫
σ
ω = 0 for all σ in Σ1

min(T,Qs) then in particular
∫
σ
ω = 0 for all

σ ∈ Σ1
min(T − [x0]), Qs). Hence the restriction of ω to T − [x0] is zero and∫

σ
ω = 0 for all σ in Σ1(T,Qs). Proposition 1 yields ω = 0.

Moreover, since
(
k0+1

2

)
−
(
k0
2

)
= k0 for all k0, from Remark 1 the number of

elements of Σ1
min(T,Qs) is equal to

3

(
3 + s

s

)
+ 2

(
2 + s

s

)
+ s+ 1 = dim

(
P−s+1Λ1(T )

)
= (s+ 1)

(
s+ 4

2

)
,

hence it is minimal in the sense that the proper subsets of Σ1
min(T,Qs) are not

unisolvent.

10
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Figure 4: The sets X1(F ;Q3) for a 2-simplex F (on the left) and X1(T,Q2) for a 3-simplex
T (on the right) for a uniform distribution of points.

Remark 2. In order to avoid an overlapping between portions of different 1-
simplices, it is convenient to chop the 1-simplices of the set Σ1

min(T,Qs) at their
intersection points (compare Figure 3 to Figure 4, left). We denote by X1(T,Qs)
the set of 1-simplices obtained in this way. In the case of a uniform distribution
of the points qi in the interval (0, 1), one thus obtains a set of small edges, a
particular subset of those defined in [11]. (See Figure 4 for a visualization in
two and three dimensions.) For k = 0 we have Σ0(T,Qs) = Σ0

min(T,Qs) =:
X0(T,Qs).

4. Polynomial interpolation of differential forms and the Lebesgue
constant

In order to introduce the definition of the generalized Lebesgue constant, we
recall few essential concepts and refer to [2] for more details. The mass |σ|0 of
a k-simplex σ ⊂ Rn is its k-dimensional Hausdorff’s measure. In particular, the
mass of a point is 1. A simplicial k-chain c is a formal (finite) sum of k-simplices

with real coefficients. The mass |c|0 of a simplicial chain c =
∑I
i=1 ai σi is defined

as |c|0 =
∑I
i=1 |ai| |σi|0. We denote by Ck (resp. Ck(T )) the space of simplicial

k-chains in Rn (resp., supported in T ). Given a set Xk
r = {σ1, ..., σNk,r

} of

Nk,r = dim(P−r Λk(T )) distint k-simplices in T (not necessarily subsimplices
of T ), the interpolation problem for a given differential k-form ω ∈ C0Λk(T )
consists in finding a Whitney differential k-form, Πk

rω ∈ P−r Λk(T ), such that∫
σi

Πk
rω =

∫
σi
ω for all σi ∈ Xk

r . As in the case of Lagrange’s interpolation,

chosen a basis B = {wj}
Nk,r

j=1 for the space P−r Λk(T ) the interpolation problem
is well-defined if and only if the generalized Vandermonde matrix VXk

r ,B with

entries (VXk
r ,B)i,j =

∫
σi
wj , i, j = 1, . . . , Nk,r, is invertible.

We say that the set Xk
r of k-simplices supported in T is unisolvent for the

space P−r Λk(Rn) if the interpolation problem is well-defined. Note that this
means that Nk,r, the number of elements in the set Xk

r , coincides with the
dimension of P−r Λk(Rn). Moreover, if ω ∈ P−r Λk(Rn) is such that

∫
σj
ω = 0 for

all σj ∈ Xk
r then ω = 0. In fact, being B = {wj}

Nk,r

j=1 a basis of P−r Λk(T ), we can

11



write ω =
∑
j aj wj . Then,

∫
σj
ω = 0 for all σj ∈ Xk

r means that VXk
r ,B a = 0.

If VXk
r ,B is invertible, it follows that the vector a, and thus the k-form ω, is zero.

In particular, in Section 3, we have proved that the set X1
r = X1(T,Qr−1) is

unisolvent for the space P−r Λk(T ).

With any unisolvent setXk
r , it is possible to associated a dual basis {wX

k
r

j }
Nk,r

j=1

of P−r Λk(Rn) (namely, such that
∫
σi
w
Xk

r
j = δi,j). Definition 1 introduces the

generalised Lebesgue constant as it firstly appeared in [2].

Definition 1. Given a set Xk
r = {σ1, ..., σNk,r

} of Nk,r k-simplices supported in

the n-simplex T that is unisolvent for the space P−r Λk(T ), the Lebesgue function
LXk

r
: Ck(T )→ R+ is defined as

LkXk
r
(c) =

Nk,r∑
j=1

|σj |0
∣∣∣∣∫
c

w
Xk

r
j

∣∣∣∣
with {wX

k
r

j }
Nk,r

j=1 ⊂ P−r Λk(T ) the dual basis associated with Xk
r . The Lebesgue

constant is then ΛkXk
r

= supc∈Ck(T )

Lk

Xk
r

(c)

|c|0 .

Note that the supremum is taken on the set of all k-chains in T . In order to
estimate ΛkXk

r
this supremum is taken on the k-simplices of an additional mesh

in T that is much finer than the one of small k-simplices adopted to compute
the dual basis {wj}j of P−r Λk(T ). The following pseudo-algorithm allows to
estimate the Lebesque’s constant introduced in Definition 1, given a degree
r ≥ 1 and a value k > 0.

Preliminary steps :

1. Choose an unisolvent set Xk
r = {σ1, ..., σNk,r

} of Nk,r
distint k-simplices in T .

2. Choose a basis B = {wj}j=1,Nk,r
for the space P−r Λk(T ).

3. Construct the generalized Vandermonde matrix V with entries
(V)i,j =

∫
σi
wj , i, j = 1, . . . , Nk,r.

4. Compute the inverse W of V by solving the linear system W = V \ I
with I the identity matrix of size Nk,r.

5. Define a fine mesh τ in T and the set Yk = {c`}`=1,Mk
containing

the k-simplices of τ .

12



Numerical evaluation of the Lebesgue constant :
Lebfunc = zeros(Mk,1)

for ` = 1:Mk

compute |c`|0
for j = 1:Nk,r

compute |σj |0
compute the dual functions

w
Xk

r
j =

∑Nk,r

i=1 (W)ij wi at the quadrature nodes

compute val =
∫
c`
w
Xk

r
j by the quadrature rule

Lebfunc(`) = Lebfunc(`) + |σj |0 |val|
end % j
Lebfunc(`) = Lebfunc(`)/|c`|0

end % `
Lebconst = norm(Lebfunc,’inf’)

5. Estimation of the Lebesgue constant for some families of 1-simplices

Let us start recalling some well-known results in the case k = 0. The term
uniform recalls the fact that the N0,r = dimP−r Λ0(T ) nodes are those of the
principal lattice of T . Any other distribution that does not fulfill this require-
ment will be referred to as nonuniform. If T is the interval [−1, 1] a classical
nonuniform distribution of nodes is the one corresponding with the zeros of the
Lobatto polynomials provided we add the interval extremities ±1. It is well
known that it is optimal for the scalar interpolation in [−1, 1] (see [? ]). The
Lobatto polynomial of degree s is defined as Los(t) = L′s+1(t), where L′s+1(t)
is the first derivative of the Legendre polynomial of degree s+ 1 in t ∈ (−1, 1).
Therefore, Lobatto nodes {ti}i=0,r associated with a degree r = s+ 1 in [−1, 1]
are the zeros of (1−t2)L′s+1(t) = (1−t)2 Los(t). The nonuniform Lobatto distri-
bution of nodes in the unit simplex T is defined, starting from the corresponding
values of tj in [−1, 1], by

{
vi = (1 + ti)/2,
i = 0, ..., r

 (vi, vj),
i = 0, ..., r,
j = 0, ..., r + 1− i


(vi, vj , v`),
i = 0, ..., r,
j = 0, ..., r + 1− i,
` = 0, ..., r + 2− i− j.

in the unit interval [0, 1], in the unit triangleT, in the unit tetrahedronT.

These are the points of the set X0
r = X0(T,Qr−1) when Qr−1 = {(1 + ti)/2 :

ti are the roots of Lor−1(t), i ∈ {1, . . . , r − 1}}.
In high order interpolation of scalar functions over a simplex T , the nodes

are generally nonuniformly distributed and endowed of a rotational symmetry.
In this way, the Runge phenomenon is minimized (thus spectral convergence of
the interpolation error is ensured for smooth scalar functions) and the complex-
ity of the generation algorithm is reduced. The existing literature deals with
the complex problem of generating such points in a precise and efficient way,
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starting from the Lobatto distribution along the edges E ∈ ∆1(T ) (see [? ?
12, 10] and the references therein). Among all the possibilities, we consider the
Lobatto, the symmetrised Lobatto (Lbs) and the warp & blend (WB) nodes, see
[? 13]. They have been chosen because of their attractive features with respect
to convergence and also because they are given through an explicit formula,
which is of great practical interest, especially in three dimensions where the
optimization procedures involved in the definitions of other nonuniform distri-
butions become quite complicated. These nonuniform distributions of nodes in a
simplex T are obtained by a modification of the uniform one through a suitable
mapping, therefore the incidence matrices of the small k-simplices, namely the
small edge-to-small node, small face-to-small edge and small tetra-to-small face
tables, for the nonuniform case are the same as those of the uniform case as they
don’t encode informations associated with spatial coordinates. The generation
of the warp & blend node distribution in a triangle or tetrahedron T has been
performed by running the Matlab software available in [13] for the triangle and
in [? ] for the tetrahedron.

In the case k = 1, we consider four different unisolvent sets X1
r . Two of

them are 1-simplices parallel to the edges E of T . They are two instances of
X1(T,Qr−1) as defined in Remark 2.

• The uniform distribution of 1-simplices, namely, X1
r = X1(T,Qr−1) with

Qr−1 = {qi = i/r with 1 ≤ i ≤ r − 1}.

x
1

x
0

x
2

Figure 5: Construction, in a triangle, of a uniform and parallel distribution of small edges
with ending points in the nodes of the principal lattice (here drawn for the scalar interpolation
of degree r = 4). On the left, the set of points X0(T,Qr−1); on the right, the set of edges
X1(T,Qr−1).

Once the uniform distribution of (green) nodes in Figure 5 is defined on
the edges of T (left), connect these points by segments parallel to the n
edges E ∈ ∆1(T ) that have one ending point in x0. Chop these segments
at the intersection (red) points in T (center). The red points together
with the green points on the boundary of T constitute a unisolvent set of
nodes for the interpolation of 0-forms, which is indeed the principal lattice
of order r in T . A unisolvent and minimal set of small edges is defined
by all the small segments between two points among the green or the red
ones (right).

• The nonuniform distribution of 1-simplices associated with the Lobatto
nodes on [0, 1]. In this case, X1

r = X1(T,Qr−1) with Qr−1 = {(1 + ti)/2 :
ti are the roots of Lor−1(t) = L′r(t)}.
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x
1

x
0

x
2

Figure 6: Construction, in a triangle, of a nonuniform distribution of small edges that are ‖ to
E ∈ ∆1(T ), with ending points in the Lobatto nodes (here drawn for the scalar interpolation
of degree r = 4). On the left, the set of points X0(T,Qr−1); on the right, the set of edges
X1(T,Qr−1).

To improve the interpolation accuracy, in [? ] the uniform distribution
was cleverly modified by expanding or contracting the intervals between
neighboring nodes in the simplex, in order to coincide with the Lobatto
(Lb) distribution along the edges of the simplex. Once the Lobatto (green)
nodes in Figure 6 are defined on the edges of T (left), connect these points
by segments parallel to the n edges E ∈ ∆1(T ) that have one ending
point in x0 (center). Chop these segments at the intersection (red) points
in T . The red points together with the green points on the boundary of T
constitute a unisolvent set of nodes for the interpolation of 0-forms, which
is indeed the Lobatto distribution of degree r in T . A unisolvent and
minimal set of small edges is defined by all the small segments between
two points among the green or the red ones (right).

• The other two configurations X1
r have 1-simplices that are not parallel

to the edges E of T . Hence they are not of the form X1(T,Qr−1). The
proof of unisolvence presented in Section 3 does not cover this situation.
However the Vandermonde matrix associated with any of the considered
distributions is not singular. It can thus be inverted, and this yields the

construction of the dual basis {wX
1
r

j }j associated with X1
r , basis involved

in Definition 1.

Figure 7: Construction, in a triangle, of a nonuniform distribution of small edges that are 6‖
to E ∈ ∆1(T ), with ending points in the symmetrised Lobatto or warp & blend nodes (here
drawn for the scalar interpolation of degree r = 4). On the left, the set of points X0(T,Qr−1)
and edges X1(T,Qr−1); on the center and on the right, a possible set of nodes and edges (the
latters, not yet covered by the theory of the previous sections but for which the construction
of an invertible Vandermonde matrix is possible).

Once the Lobatto (green) nodes in Figure 7 are defined on the edges of T ,
connect these points by segments parallel to the n edges E ∈ ∆1(T ) that
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have one ending point in x0 (left). Chop these segments at the intersection
(red) points in T . Finally, move the red points at the interior of T in the
position corresponding with the symmetrised Lobatto or warp & blend
ones (center). The small segments at the interior, between two points
among the green or the red ones, which follow the node movement, are
thus stretched and their direction is no more parallel to the edges of T
(right).

We present some numerical results on the Lebesgue constant associated with
these distributions of k-simplices in a simplex T , for k = 1, in two and three
dimensions. The case k = 0 for high-order interpolations of scalar fields on a
simplex T has been widely studied in the literature and constitutes a reference
to comment on the new case k = 1. To construct the Vandermonde matrix,
and thus the dual basis, we consider the basis {wj}j of the space P−r Λ1(T ) with
elements wj that are products between Bernstein polynomials of degree (r− 1)
and Whitney 1-forms of polynomial degree 1 (see for example [? ]). With this
choice of local basis, the conditioning of the Vandermonde matrix varies in a
acceptable range of values when the approximation degree r increases. It is
known that, for r large, the classical Lagrange interpolation of a scalar function
at uniformily distributed nodes can become unstable whereas that for the same
function at particular families of not uniformily distributed nodes is stable [?
]. This is due to the way the Lebesgue constant increases with r. A theoretical
proof of this behavior in the scalar case exists in one dimension, see [? ] for
example. In higher dimensions and for k > 0, the generalised Lebesgue function
is evaluated over a fine mesh of k-simplices and the largest result selected as
Lebesgue constant. We refer to [10] (resp., [? ]) for results on the accuracy of
the proposed interpolation in two dimensions, for k = 0 (resp., k = 1 and the
uniform distribution).

5.1. In 2D

For the Lebesgue constant given in Definition 1, the computed values in two
dimensions for k = 1 are given in Table 2 and are compared with those of Table
1 for k = 0 taken from [? 13]. The results for k = 1 are obtained by considering
the supremum on an independent test mesh in T , that is much finer than the
one corresponding with degree 12 and not obtained as a refinement of those
associated with the analysed degrees. It has to be said that by modifying the
test mesh, the computed values can have slight changes in decimals but their
magnitude order does not change. These values are visualized in Figures 8 (for
the same k) and in Figure 9 (for the same type of distribution) in semi-log scale
with respect to the polynomial degree r of the k-forms to be interpolated, with
k = 0, 1.

By looking at Figure 8, we remark that the difference of behavior in the
Lebesgue constant for the uniform and nonuniform distribution, which is well-
known for k = 0, holds for k = 1 too, with a slight difference. For k = 0, the
warp & blend (WB) distribution is known to perform, in terms of the Lebesgue
constant growth, as one of the best, among those that are nonuniform with
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Figure 8: The Lebesgue constant in semi-log scale as a function of the polynomial degree
r ≥ 2 of the k-form in a triangle T , with k = 0 (left) and k = 1 (right), respectively. The two
sets of small k-simplices, the uniform and the not uniform ones, support unisolvent degrees of
freedom (weights) for the space P−

r Λk, for k = 0, 1.
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Figure 9: The Lebesgue constant in semi-log scale as a function of the polynomial degree r ≥ 2
of the k-form in a triangle T , uniform case (left) and nonuniform case (right), respectively.

rotational symmetry, thus better than the symmetrised Lobatto (Lb sym). In
Table 2, we see that the order of performance for the nonuniform distributions
of small edges has changed. Among the three considered distributions, the best
one in terms of Lebesgue constant for k = 1 is characterised by nonuniform small
edges parallel to edges E ∈ ∆1(T ), namely the Lobatto distribution. Indeed,
Whitney 1-forms of degree r are products of a polynomial of degree s = r − 1,
which largely benefits from a nonuniform distribution of the nodes (the red and
the green), and the Whitney 1-forms of degree 1, that have a memory, in their
definition, of the direction of the edges of T . The small edges interior to T
and associated with the warp & blend or the symmetrised Lobatto nodes, are
not all parallel to edges of T : this feature has an influence on the entries of
the Vandermonde inverse matrix which is involved in the Lebesgue constant.
The more the σi are not parallel to edges Ej of T , the smaller the weights
(VX1

r ,B)ij =
∫
σi
wj . The worst values of Λ1

X1
r

are thus associated with the small

edges insisting in the WB nodes, that are indeed the least parallel. Intermediate
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values are given for small edges insisting in the symmetrised Lobatto nodes since,
in this case, the direction of the small edges is closer to that of the edges of T .
In the left picture of Figure 9, we can see an exponential fit for both k = 0, 1,
as soon as the distribution of the small simplices over T is uniform. However,
we remark that Λ1

X1
r
< Λ0

X0
r

for q > 8. In the right picture of Figure 9, we have

instead an exponential fit for k = 0 and a linear one for k = 1, as soon as the
distribution of the small k-simplices over T is nonuniform.

5.2. In 3D
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Figure 10: Comparison of the Lebesgue constant in semi-log scale as a function of the polyno-
mial degree r ≥ 2 of the k-form in three dimensions (up to degree 9, only), with k = 0 (left)
and k = 1 (right), respectively.
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Figure 11: The Lebesgue constant in semi-log scale as a function of the polynomial degree
r ≥ 2 of the k-form in a triangle T , uniform case (left) and Lobatto nonuniform case (right),
respectively.

Computed values for the Lebesgue constant in three dimensions for k = 1 are
given in Table 4 and are compared with those of Table 3 for k = 0 taken from
[? 13]. Again, the results for k = 1 are obtained by estimating the supremum
on an independent test mesh in T , much finer than the one corresponding with
degree 9 and not obtained as a refinement of those associated with the analysed
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degrees. These values are visualized in Figures 10 (for the same k) and in
Figure 11 (for the same type of distribution) in semi-log scale with respect to
the polynomial degree r of the k-forms to be interpolated, with k = 0, 1. By
looking at Figure 10, we remark that the behavior of the Lebesgue constant for
the uniform and nonuniform distribution in two dimensions, also holds in three
dimensions. When passing from two to three dimensions, there is an acceleration
in the growth of the Lebesgue constant with the polynomial degree when k = 0
whereas for k = 1 the behavior is rather the same as the one for k = 1 in 2D.
The unisolvent and minimal configuration of small edges associated with the
Lobatto nodes is again the best in term of Lebesgue values for k = 1.

6. Conclusions

We have proposed a flexible rule to select a unisolvent set of small edges
to interpolate a differential 1-form ω using high order Whitney finite elements.
The interpolating polynomial differential form has the same weights (integrals on
the small edges) that ω. Weights are alternative degrees of freedom to moments
for high order trimmed polynomial spaces. We have tried different choices of
weight’s supports and we have studied the growth of the generalized Lebesgue
constant when increasing the polynomial degree

Numerical results have evidenced interesting breakthroughs on the criteria
qualifying a good distribution of small edges supporting the weights. They
are in agreement with the fact that to have a stable polynomial interpolation,
a nonuniform distribution of the geometrical supports for dofs is better than a
uniform one. They have also revealed that better Lebesgue constants correspond
to edges that remain parallel to those of the element T . This is connected with
the intrinsic nature of Whitney forms (the lower polynomial degree case) that
encodes the direction of the edges of T .

A deeper investigation is in progress concerning in particular the very natural
extension of this approach to differential k-forms for 0 < k < n being n the
ambient dimension.
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[9] J.-C. Nédélec, Mixed finite elements in IR3, Numer. Math., 35 (1980),
pp. 315–341.

[10] R. Pasquetti and F. Rapetti, Spectral element methods on unstruc-
tured meshes: which interpolation points?, Numer. Algorithms, 55 (2010),
pp. 349–366.

[11] F. Rapetti and A. Bossavit, Whitney forms of higher degree, SIAM J.
Numer. Anal., 47 (2009), pp. 2369–2386.

[12] M. J. Roth, Nodal configurations and Voronoi Tessellations for triangular
spectral elements, PhD thesis, University of Victoria, 2005.

[13] T. Warburton, An explicit construction of interpolation nodes on the
simplex, J. Engrg. Math., 56 (2006), pp. 247–262.
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k = 0 uniform in 2D nonuniform in 2D
r ΛUn ΛLb sym ΛWB

2 1.48 1.67 1.48
3 2.27 2.11 2.11
4 3.47 2.66 2.66
5 5.45 3.14 3.12
6 8.75 3.87 3.70
7 14.35 4.66 4.27
8 24.01 5.93 4.96
9 40.92 7.39 5.74

10 70.89 9.83 6.67
11 124.53 12.92 7.90
12 221.41 17.78 9.36

Table 1: Lebesgue constants associated with a uniform and not uniform (symmetrised Lobatto
and warp & blend) distribution of nodes in a triangle T for different polynomial degrees r ≥ 2,
as computed in [? 13].

k = 1 uniform in 2D nonuniform in 2D
r and ‖ and ‖ with Lb and 6‖ with Lb sym and 6‖ with WB

2 4.69 4.69 4.69 4.69
3 6.75 5.69 6.38 6.38
4 9.50 7.04 8.68 8.68
5 12.97 8.36 10.83 10.84
6 16.46 9.30 12.41 12.55
7 20.26 10.00 13.50 13.78
8 26.97 10.82 14.25 14.86
9 35.46 11.71 14.78 15.63

10 46.08 12.56 15.38 16.20
11 59.28 13.42 16.06 17.01
12 75.63 14.14 16.65 17.71

Table 2: Lebesgue constants in a triangle T , associated with uniform and nonuniform distri-
butions of small edges for different polynomial degrees r ≥ 2. The ending points of the small
edges are either in the uniform or in the nonuniform (Lobatto, symmetrised Lobatto or warp
& blend) sets.
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k = 0 uniform in 3D nonuniform in 3D
r ΛUn ΛLb sym ΛWB

2 1.77 2.00 1.77
3 2.94 2.93 3.11
4 4.88 4.07 4.07
5 8.09 5.38 5.32
6 13.66 7.53 7.01
7 23.38 10.17 9.21
8 40.55 14.63 12.54
9 71.15 20.46 17.02

Table 3: Lebesgue constants associated with a uniform and not uniform (symmetrised Lobatto
and warp & blend) distribution of small nodes in a tetrahedron T for different polynomial
degrees r ≥ 2, as computed in [? 13].

k = 1 uniform in 3D nonuniform in 3D
r and ‖ and ‖ with Lb and 6‖ with Lb sym and 6‖ with WB

2 5.35 5.35 5.35 5.35
3 7.26 6.04 7.10 7.10
4 9.90 7.18 9.43 9.43
5 12.54 8.00 11.05 11.19
6 15.32 8.61 12.01 12.43
7 19.42 8.90 12.58 13.02
8 24.86 9.49 12.72 13.28
9 32.13 10.11 12.99 13.43

Table 4: Lebesgue constants in a tetrahedron T , associated with uniform and nonuniform
distributions of small edges for different polynomial degrees r ≥ 2. The ending points of the
small edges are either in the uniform or in the nonuniform (Lobatto, symmetrised Lobatto or
warp & blend) sets.
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