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Abstract

Background: Workplace absenteeism increases significantly during influenza epidemics. Sick leave records may
facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued
by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in
comparison to traditional surveillance methods. The aim of this paper is to study the performance and the
feasibility of using a detection system based on sick leave data to detect influenza outbreaks.

Methods: Sick leave records were extracted from private French health insurance data, covering on average 209,
932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly
number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and
worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This
method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance
system currently in place.

Results: Using sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on
average 5.88 weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high
sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5 weeks earlier.

Conclusion: Sick leave surveillance could be a sensitive, specific and timely tool for detection of influenza
outbreaks.
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Background
Early outbreak detection is crucial for preparedness and
timely public health and medical responses. It provides use-
ful information to physicians, companies, and the public,
ensuring proper drug prescription, health service planning,
workplace preparedness, and continuity of operations in
case of high absenteeism [1], among many other uses.

Most countries face periodic influenza (or “flu”) epi-
demics that vary in size and severity from year to year
[2]. Seasonal flu can be highly virulent and, like many re-
spiratory viruses, can spread rapidly through populations
highlighting a need for a robust epidemiological surveil-
lance system to detect emerging outbreaks. Surveillance
system guidelines developed by the US Centers for Dis-
ease Control and Prevention (CDC) suggest that systems
should be simple, reliable, flexible, timely, and readily ac-
cepted by diverse individuals and organizations to ensure
participation [3].
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Flu surveillance systems vary by country and rely
on various types of data. National health agencies
monitor flu epidemics using healthcare records, med-
ical sentinel systems, pharmaceutical sales and other
data sources. Most of these systems rely on data from
healthcare settings that rely on patient healthcare
seeking behavior or after results of clinical tests,
which often reflects those with symptoms or relatively
advanced stages of the disease. These systems fail to
capture individuals who do not seek medical care,
whether due to asymptomatic infection, perceived
mildness of infection or a general reluctance to seek
care [1, 4]. Given these gaps, alternative data streams
from non-healthcare settings may provide a valuable
complement to classical surveillance systems [5].
Human resources data collected at the workplace have

received relatively little attention for outbreak detection,
but present characteristics that are useful for infectious
disease surveillance. In many settings, absenteeism data
are routinely collected and centralized either for the use
by companies themselves or for health insurance pur-
poses. Due to legal purposes and to the implication of
work absence on salaries, these data are comprehensive
and reliable. Though a handful of studies have assessed
the role of sick leave data for outbreak detection, they
did not develop a comprehensive assessment of its per-
formance and robustness. Bollaerts et al., Patterson et al.
and Groenewold et al. [1, 6, 7] assessed the usefulness of
work absenteeism surveillance as a tool for early warning
systems for influenza. Work absenteeism study can also
supplement more traditional medical data by providing
information about an epidemic’s socioeconomic impact
[1, 4]. As a consequence, the US National Institute for
Occupational Safety and Health (NIOSH) has been mon-
itoring health-related workplace absenteeism among
full-time workers using data received monthly from the
Current Population Survey since 2017 and making this
data available online [8].
A great challenge in epidemiological surveillance lies

in identifying data streams that allow for sensitive,
specific and timely outbreak detection. In the context
of outbreak detection, surveillance sensitivity can refer
to both (i) the proportion of true cases detected, and
(ii) the probability of detecting an outbreak, including
the changes in the number of cases over time [3].
Surveillance specificity refers to the probability of cor-
rectly identifying when an outbreak is not occurring
[9]. Lastly, surveillance timeliness generally refers to
the time difference between an event and its standard
reference [5]. Some studies have suggested that absen-
teeism data along with others such as over-the-
counter pharmaceutical sales and emergency visits
seem to be more timely than sentinel Influenza-Like
Illness (ILI) surveillance [5, 6], other traditional flu

data sources [7], physician diagnoses [5], and viro-
logical data [5].
In this study, we assess the sensitivity, positive predict-

ive value and timeliness of workplace absenteeism data
for detection of flu outbreaks in France. Our hypothesis
is that monitoring sick-leave data at the workplace might
help anticipate outbreaks in a timely manner using rou-
tinely collected data. We then compare the performance
of a sick leave based monitoring system to the perform-
ance of the national standard surveillance system of in-
fluenza in France which is based on ILI data.

Methods
Data
Sick-leave data
The study relies on the sick leave record system of
the French health insurance company Malakoff Médé-
ric. Malakoff Médéric insures sick leaves for 114,707
to 245,973 French companies in a wide range of sec-
tors, covering between 290,056 and 2,765,400 em-
ployees per year. This wide variation is due to the
fact that some companies were no longer required to
report these data to the insurer after 2015. The in-
sured companies have on average 18.7 employees per
year. Nearly half of the companies (46%) were in ser-
vices, 36% in commerce, 12% in industry and con-
struction, and 5% in health.
These data are routinely collected and annually re-

ported in the system DADS (Déclarations Annuelles de
Données Sociales). These data are reported by companies
for payroll administration and is then transferred to the
appropriate agencies (such as insurers) for administrative
purposes. For our purposes, we used the weekly inci-
dence rate of sick leave spells (per 100,000 workers) ag-
gregated at the regional level across the 12
administrative regions of metropolitan France over the
period 2010–2017.

Workers leave data
The number of workers on non-sick leave (e.g. paid
holiday) is not reported in DADS, so the denominator
of the weekly sick leave incidence rate was defined as
the number of workers actively employed by their
company during the observed week, and not the
number of workers actually working during the week.
To adjust our data, we used data from statistics de-
partment of the French Ministry of labour (DARES)
to build an indicator (the worker-leave-peak indicator)
describing weeks with a peak in non-sick leave [10].
Peaks were identified during the Christmas school
holidays (last week of December and first week of
January) and during summer (second week of July to
third week of August).
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Influenza-like illness data
Weekly sick leave incidence was compared to weekly ILI
incidence (per 100,000 inhabitants), derived from the
French influenza surveillance database of the GP Senti-
nelles network, coordinated by Santé Publique France.
In 2018, the Sentinelles network was composed of 1314
general private practitioners and 116 private pediatri-
cians, all voluntary participants and spread widely across
the whole of France’s territories. Detailed information
on this network can be found elsewhere [11]. This ILI
incidence data is the main source of data used to declare
influenza epidemics in France. ILI are defined by Senti-
nelles as a fever above 39 °C, with sudden onset, accom-
panied by myalgia and respiratory signs. We can visually
identify the ILI peak each year as the week where the ILI
rate is highest between the 26th week (middle of the
year) of year t and the 26th week of year t+ 1.
In addition to providing weekly ILI incidence data, the

French Sentinelles network also proposes an ILI-
outbreak detection algorithm. The algorithm is based on
a Serfling method [12]. It has been adapted for routine
surveillance of epidemics of ILI in France [13]. The
method implemented by Sentinelles is based on a peri-
odic regression model including a biannual seasonal ef-
fect of clinical influenza, a linear trend and an intercept
adjusting for a baseline diagnostic activity (which corre-
sponds to the number of influenza syndromes that
would be diagnosed in the absence of influenza virus
during the off-season).
This study exclusively relied on non-identifying, aggre-

gated data for which no specific authorisation or ethical
clearance was required. The sick-leave data are owned
by Malakoff Humanis and we obtained authorization for
the analyses.

Methods
Identification of influenza outbreak episodes
Dates of influenza outbreak episodes from Sentinelles
are publicly unavailable so we trained the model de-
scribed above on data from 1984 to 2009 to mimic the
sentinel system. Weekly ILI incidence rates per 100,000
residents and per region from 2010 to 2017 were then
compared to an outbreak detection threshold. This was
defined as the upper bound of the 95% prediction inter-
val from this model, and to increase specificity an alert
was only declared when this threshold was crossed twice
consecutively.
As reported in the literature [12, 14], we find here that

the model correctly identifies all ILI peaks and does not
detect false outbreak.

Determination of sick leave outbreak episodes
To detect sick leave outbreak episodes, an algorithm
based on the Serfling method was used. The regression

includes an intercept to adjust for the baseline sick-leave
activity and the worker-leave-peak indicator to adjust for
seasonality.
Similarly, to the Sentinelles method, an outbreak was

declared if the true sick leave incidence rate crossed the
95% prediction interval twice consecutively. An alert was
lifted when the incidence fell below the threshold, again
for two consecutive weeks [15].
To mimic a prospective study, the model was fitted on

sick leave data from 2010 to 2015 and years 2016 and
2017 were used to evaluate model performance: only
historical data were then used for outbreak detection. As
timing of ILI outbreaks may vary geographically, ana-
lyses were conducted separately for each of mainland
France’s 12 administrative regions. For simplicity, some
results were plotted in the main text for three regions
only, chosen to reflect a North-South gradient (respect-
ively Haut-de-France, Ile-de-France and Provence-
Alpes-Côte d’Azur). Full results are included as supple-
mentary results.

Criteria for assessing the proposed surveillance system
Evaluation criteria were selected to answer two ques-
tions: (i) Does the sick leave model efficiently detect ILI
outbreaks? and (ii) How does it compare to the Senti-
nelles model? Results are presented for each French ad-
ministrative region and are also aggregated at the
national level.

Performance of the sick leave model to detect ILI
outbreaks To answer the first question, we calculated
sensitivity and the positive predictive value to evaluate
whether our model correctly detected all ILI outbreaks.
The two criteria are:

Sensitivityper episode ¼
Number of Influenza outbreak peaks detected by the Sick Leave model

Number of Influenza outbreaks

Positive Predictive Value ¼ Number of Sick Leave outbreak peaks crossing an Influenza outbreak
Number of Sick Leave outbreaks

We calculated a positive predictive value rather than a
specificity since a specificity would require weeks with
and weeks without outbreaks. This is impossible since
outbreaks are only defined by a model, Sentinelles in our
case, and this model is imperfect. We therefore do not
have no outbreak episodes but only the peaks of those
outbreaks that are identifiable without a model.
To evaluate our model’s timeliness, we calculated the

detection time we defined as the delay between the out-
break detection of our algorithm compared to the an-
nual influenza outbreak peak. The influenza outbreak
peak was defined as the week with the highest number
of reported ILI cases between June 1st and May 31st of
the subsequent year.
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Performance of the sick leave model compared to the
Sentinelles model To evaluate the performance of the
sick leave model, we calculated its sensitivity and specifi-
city with respect to the Sentinelles model. Unlike the
previous criteria, we define these indicators at the level
of the week rather than the episode. The objective is to
assess whether our two models are similar. The two cri-
teria are defined as follows:

SensitiviySentinelles ¼
Number of weeks with a Sentinelles alert and with a Sick Leave alert

Number of weeks with a Sentinelles alert

SpecificitySentinelles ¼
Number of weeks with no Sentinelles alert and with no Sick Leave alert

Number of weeks with no Sentinelles alert

We also computed a Youden-index, an indicator that
combines both sensitivity and specificity:

Younden index ¼ SensitivitySentinelles
þ SpecificitySentinelles − 1

The timeliness of the sick-leave model compared to
the Sentinelles model was also evaluated: the delay be-
tween the outbreak detection of the first model com-
pared to the second one is computed.
For the sake of clarity and because the Sentinelles

model is also imperfect, the comparison to the gold-
standard Sentinelles will be presented in the Supplemen-
tary Material.

Results
Incidence curves obtained from the Sentinelles surveil-
lance networks from 2010 to 2017 reveal annual peaks
of influenza-like illness (ILI), from 163 to 1290 per 100,
000 per week, occurring approximately between
December and February (Figs. 1 and S1). During the
summers, the incidence approaches zero. By compari-
son, weekly sick leave incidence varied about an annual

average of 1021 to 1335 per 100,000 per week, depend-
ing on the region (Figs. 1 and S1). They exhibit greater
variability and more peaks per year than ILI incidence.
However, based on visual inspection, the highest sea-
sonal peaks tend to coincide with ILI incidence peaks.
Moreover, most of the seasonal sick-leave troughs coin-
cide with Christmas and summer school holidays pe-
riods, which can be explained by a decrease of the at-
risk population, i.e. an increase in the number of
workers on paid leave. Finally, there is no apparent
change between 2014 and 2015 despite the strong vari-
ation in the volume of workers in the database.
For three French regions, Fig. 2 presents the incidence

of sick leaves and ILI for the 2015–2017 time period. In
each region, the Sentinelles surveillance system identi-
fied exactly one alert per year, triggered a few weeks be-
fore or during the peak of ILI incidence (Figs. 2 and S2).
The exception was Bretagne, where no alert was identi-
fied during winter 2016–2017 (Figure S2). By compari-
son, the sick leave surveillance system triggered one to
three alert episodes per year.
We assessed the sick leave surveillance system on its

ability to detect and anticipate ILI incidence peaks.
Table 1 summarizes the indicators of its performance re-
garding ILI peak detection and anticipation in each re-
gion, averaged over the 2 years of the model test. The
sensitivity per episode (probability of detection of the ILI
outbreak) had a mean of 0.92 (range 0.5–1) across re-
gions, while the positive predictive value per episode had
an average of 0.58 (range 0.2–1). The sick leave alert
generally occurred prior to the peak ILI incidence, on
average 5.88 weeks (range 2.5–11) before the peak.
We also compared the performance of our sick leave

model with the Sentinelles surveillance system. The re-
sults can be read in Table S1 (Supplementary Material).

Fig. 1 Incidence of influenza-like illness and sick leave in Ile-de-France. Incidence per 100,000 per week of influenza-like illness and sick leave in
Ile-de-France, the most populous region in France, 2010–2017. Christmas and summer school holidays (increased worker leave periods) are
shown at the bottom
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Fig. 2 Incidence of influenza-like illness and sick leave and results from Sentinelles and Sick-Leave models. Incidence per 100,000 per week of
influenza-like illness and sick leave, 2015–2017, and alerts from the Sentinelles (blue) and the sick-leave (red) models, in three French regions (A:
Hauts-de-France, B: Ile-de-France, C: Provence-Alpes-Côte d’Azur). Alerts show as purple when Sentinelles and sick-leave alerts overlap. Christmas
and summer school holidays (increased worker leave periods) are shown at the bottom (green)

Table 1 Performance of the sick-leave model to detect ILI outbreaks

Sensitivity per episode Positive predictive value Detection time (weeks) before ILI peak

Auvergne-Rhone-Alpes 0.5 0.2 7

Bourgogne-Franche-Comte 0.5 0.2 11

Bretagne 1 1 2.5

Centre-Val de Loire 1 0.5 6.5

Grand Est 1 0.5 5

Hauts-de-France 1 0.5 7

Ile-de-France 1 1 3

Normandie 1 0.33 6

Nouvelle-Aquitaine 1 0.5 6.5

Occitanie 1 1 3

Pays de la Loire 1 0.5 6.5

Provence-Alpes-Cote-d’Azur 1 0.66 6.5

Total mean 0.92 0.58 5.88

For each region, the values of these indicators are averaged over the 2 years evaluated
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The main result is that the sick leave model alert was al-
ways triggered earlier than the Sentinelles model when
both alerts match, with an average lead time of 2.5 weeks
(range: 0.5–4).

Discussion
Workplace absenteeism data can be used by public
health surveillance systems to detect emerging infectious
disease epidemics [16]. Despite this, to this date, few
health authorities worldwide use absenteeism data to in-
form outbreak surveillance. Here, we assessed the poten-
tial of workplace absenteeism data to monitor influenza
and detect epidemics in France, using an adapted statis-
tical method to analyze this data. We applied this
method to a comprehensive national database of work-
place absenteeism and validated it against the French na-
tional surveillance system based on sentinel GPs. Our
results suggest that a system based on workplace absen-
teeism could be highly sensitive and detect influenza epi-
demics earlier than the current French surveillance
system.
We found that the surveillance system we propose

would be able to detect outbreaks 5.9 weeks before the
peak and about 2.5 weeks before the Sentinelles system.
This suggests that sick-leave data could be almost as
timely as emergency visits data that has a timeliness of
3 weeks compared to ILI data systems [17]. Our findings
in this regard are in line with previously published stud-
ies in several contexts worldwide. In a French study
from 1994, sick-leave data from a large company allowed
to detect flu epidemics with up to 2 weeks of advance
[9]. In a more recent Belgian study, worker absenteeism
data from the Belgian Medical Expertise and from the
Belgian railway system was shown to start rising 2–3
weeks in advance and to peak 2 weeks in advance, as
compared with ILI data from the Belgian sentinel GP
surveillance system [6]. In the UK, data on workplace
absenteeism among employees of Transport for London
peaked up to 2 weeks before the NHS ILI surveillance
data [7]; and monitoring workplace absence due to
“cold”, “cough” or “influenza” among the staff of a large
hospital organization was shown to allow the detection
of flu epidemics with a significant advance of up to 9
weeks [18].
Very few of these previously published studies in-

cluded an assessment of the sensitivity, specificity or
positive predictive value of an absenteeism-based surveil-
lance system. However, in the French study from 1994,
the sensitivity and specificity of surveillance based on
sick-leave data from a large company were estimated at
74 and 67% for the identification of epidemic weeks
(Youden index: 0.42) and 67 and 94% for the detection
of epidemics (Youden index: 0.61), with an 80% positive
predictive value [9]. The UK study based on hospital

staff absenteeism also noted that the resulting system
did not lead to more false positives than the NHS sur-
veillance data in London.
The quality of the developed model depends strongly

on the quality of the data collected within companies.
Sick-leave data have the advantage of describing quasi-
real individual behavior regarding sick-leave and pres-
ence at the workplace. These data are in fact used to
enter employees’ pay and are subsequently fulfilled by
obligation in the computer system. Our data may not be
representative of French population because it describes
data from a health-insurer. For instance, it insures few
construction companies because they have their own
specific insurer. The data also do not include un-
employed people. However, representativeness is not ne-
cessarily required to build up an outbreak detection
system. In fact, outbreak detection aims to detect any
unusual, expected number of cases to generate signal
alarms. Similarly, the GP Sentinelles network does not
include all GPs but a small subset of the same practi-
tioners over time.
Another downside of our data is related to the defin-

ition of the sick leave rate. The denominator of this rate
is the number of workers and it includes workers that
are on holiday. The sick leave rate therefore drops dur-
ing school holidays and the systems do not detect any
alerts during those holidays even if they are included in
the statistical model as covariates. This is an issue if the
epidemic occurs during the holidays and this is the case
during the year 2016–2018 where the peak occurs dur-
ing the Christmas break for two regions. The model
could then be more sensitive if the denominator was the
number of employees actually at work.
Furthermore, the model accuracy estimated by the

false positive rate is strongly related to the definition of
cases to detect. The time series of cases is based only on
flu cases. However, other epidemics such as gastroenter-
itis can influence sick leaves data and could be consid-
ered for future works: the sick leaves outbreaks may
correspond to other disease and may explain the poor
positive predictive value in some cases. The detection al-
gorithm could also be improved if the estimation of ex-
pected cases could adjust for any potential past
exogenous environmental factors such as a terrorist at-
tack, strikes or unexpected bad weather episodes. The
model accuracy is moreover strongly related to the
method chosen for the algorithm. The Serfling method
may actually not be the more accurate model and was
chosen to be consistent with the Sentinelles method.
Some other regression-based models are known to be
more specific, like the Farrington algorithm [19, 20].
Another limitation of our study is linked to the fact

that we relied on data that were consolidated on an an-
nual basis, and not in real-time. As such, the system is
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able to detect outbreak based on the dates of sick-leaves,
but only retrospectively. A proper integration of sick-
leave data into a health surveillance system would thus
require an effort to ensure sick-leave data are consoli-
dated and made available in real time. Our results sug-
gest that the resulting increased timeliness of a
surveillance system including this data stream may jus-
tify this effort. Moreover, these data sometimes already
exist in near-real time because of local legislation. For
instance, French companies must declare sick leave
within 5 days.
Sick leave could then be an alternative source of data

for the detection of sick leave. Many other data sources
have already been used for near real-time prediction of
influenza outbreaks: GP networks of course, but also
Google queries with Google flu [21], social network
database [22], large epidemiological databases [23] and,
more recently, wastewater have been used for COVID-
19 monitoring [24]. Sick leave data is however more ro-
bust than Google (and probably social network) data,
which has shown its limitations. Google queries for rele-
vant keywords are indeed not only correlated to the epi-
demic but is also correlated with Google’s practices: the
data generation process changes over time and Google
sometimes recommends certain keywords for commer-
cial purposes [25]. Moreover, large epidemiological data-
base may be more sensitive and specific but are much
more complex to handle. Sick leave data can be simple
to retrieve, easy to analyze and most of all very timely
compared to the data usually used. These data could
thus enable near real-time prediction, which would allow
for reactive monitoring of influenza outbreak.

Conclusion
Many of the previously published studies assessing the
potential of workplace absenteeism data for flu surveil-
lance simply provided visual analyses comparing and
correlating absenteeism data with ILI surveillance data
[6, 7]. By contrast, in this work, we propose a statistical
approach and algorithm to analyze the French workplace
absenteeism data, and to raise alarms when outbreaks
are detected. This allows us to both propose a complete
surveillance system that could be used in practice pro-
vided the data is available, and to fully assess the per-
formance of this surveillance system.
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