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France

(2) BDTLN, LIFAT, University of Tours, Tours, France
(3) Dedan Kimathi University of Technology, Nyeri, Kenya

Abstract. Cooperative Intelligent Transport Network is one of the most
challenging issue in networking and computer science. In this area, huge
amount of data are exchanged. Smart analysis of this collected data could
be achieved for many purposes: traffic prediction, driver profile detec-
tion, anomaly detection, etc. Anomaly detection is an important issue
for road operators. An anomaly on roads could be caused by various
reasons: potholes, obstacles, weather conditions, etc. An early detection
of such anomalies will reduce incident risks such as traffic jams, acci-
dents. The aim of this paper is to collect message exchanges between
vehicles and analyze trajectories. This analysis becomes difficult since
a privacy principle is applied in the case of C-ITS. Indeed, each mes-
sage sent is generated with an identifier of the sender. This identifier is
kept only over a specified time interval thus one vehicle will have mul-
tiple identifiers. We first have to solve Trajectory-User Linking problem
by chaining anonymous trajectories to potential vehicles by considering
similarity in movement patterns. After that we apply various methods
to check variations of trajectories from normal ones. When we observe
some differences, we can raise an alarm about a potential anomaly. In
order to check the validity of this work, we generated a large amount
of messages exchanges by many vehicles using the Omnet ++simulator
together with the Artery, Sumo plug-in. We applied various variations
on some obtained trajectories. Finally, we ran our detection algorithm
on the obtained trajectories using different parameters (angles, speed,
acceleration) and obtained very interesting results in terms of detection
rate.
keywords: Trajectory-User Linking, Moving objects, Similarity mea-
sure, Anomaly detection, Data analysis.

1 Introduction

C-ITS eco-system generates a very huge amount of data. The collection of mo-
bility data is done by online or offline means through devices attached/carried
by the moving objects, road side units among other techniques. Usually, such
data includes details that explain the movement of vehicles. Each trajectory of a
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moving entity is considered a multi-attribute, time-ordered sequence of locations
traversed by the entity.

Trajectory mining is a process which entails the analysis of movement traces
with the main goal being the extraction of spatial, spatial-temporal and behav-
ioral patterns [1]. The main techniques used for this analysis perform classifica-
tion, clustering, point of interest detection and anomaly detection. We can look
at trajectory data mining as a three phased process which includes [2]: data pre-
processing, data management (indexing and data storage) and pattern mining.
The key drivers can be “economic (logistical optimization, customer behavior
analysis, targeted advertising), scientific (animal behavior analysis, healthcare),
administrative (urban planning, criminal investigation), or private” [3]. How-
ever, there remains a challenge on how to obtain knowledge and information
from these data which can assist in mobility improvement [4].

The paths of moving objects on road networks are affected by the environ-
mental and traffic conditions. To gain a better understanding of the movement
patterns one needs to incorporate the environmental information in the analysis
[5]. Further, to characterize the behavioral and lifestyle aspects of an entity, an
analysis of daily trajectories is imperative. Trajectory pattern mining comes in
handy in public security systems, recommender systems and path planning in
emergency evacuations [6].

To obtain meaningful information from trajectories, the raw points need to
be enriched with semantic attributes, which is basically a daunting process.
To solve this issue, semantic annotations can be done by experts or users can
add semantic labels to their trajectories. We can also label trajectories with
points of interest (POIs) using their location information [2], [7]. Working with
semantically enriched trajectories enhances querying and pattern identification
[8] which simplifies behaviour analysis of the moving object. Trip recommender
systems, life experience sharing and context-aware computing are some of the
applications which benefit from semantic trajectory analysis [2].

The advances in battery technology and availability of low cost storage de-
vices have facilitated the capture of highly sampled trajectory data over an
extended period of time. With the increased data, it is now possible to discover
more interesting patterns during pattern mining. Nevertheless, the analysis of
raw un-simplified trajectories can be virtually impossible and computationally
resource intensive. This can be alleviated by the use of compression and pruning
techniques during pattern mining [6].

When reporting their locations to a central repository, moving objects can
have various strategies such as time-based, distance-based, and prediction-based
strategies. Communication with a central server may also be interrupted for a
while and restored later. This results in segmented trajectories with gaps due to
missing readings and also variation in trajectory lengths. Also, for privacy rea-
sons, the device identification(ID) numbers which uniquely identify a trajectory
may be changed periodically. In order to reconstruct the movement of a vehicle
over a long period of time, the device IDs from the consecutive trips must be
identified through a linking process and the missing gaps filled.
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We propose to solve the Trajectory-User Linking (TUL) problem by chaining
anonymous trajectories to potential vehicles by considering similarity in move-
ment patterns. This will be performed as a pre-processing step for the char-
acterization and semantic analysis of moving objects though behavior analysis.
Occurrence of obstacles on the road causes the vehicles passing the affected
section to exhibit an avoidance behavior which can be viewed as a drift. We
investigate the avoidance behavior through observation of movement variations
on the obtained trajectories. When some threshold is reached, an anomaly is
possible and is detected.

We make the following contributions: (a) we present a detailed state of the
art on trajectory linking, trajectory mining, anomaly detection, and identify the
open research issues; (b) we investigate trajectory linking problem using a real
dataset of messages generated in Cooperative Intelligent Transportation System
(C-ITS); (c) we perform anomaly detection based on concept drift on C-ITS
messages.

The rest of this paper is structured as follows: Section 2 presents the state of
the art investigation on Trajectory-User Linking, trajectory mining and anomaly
detection. Section 3 presents the problem statement, methodology and descrip-
tion of the dataset. Section 4 presents the experiments and results, and Section
5 presents the conclusion and future work.

2 Related Works

This section introduces works on Trajectory-User Linking, trajectory mining and
anomaly detection.

2.1 Trajectory-User Linking (TUL)

A recent area of research in location-based social network applications (LBSNs)
is Trajectory-User Linking [9]. It is driven by the huge volume of data generated
in these applications. To preserve privacy in LBSNs user identifiers are removed
from the data during anonymization. Conversely, the ability to link the trajec-
tories to the real users through analysis of check-in data and phone signals can
be very useful in recommender and criminal identification systems. Due to the
abundance of user classes and the sparsity of data, solving TUL is a challeng-
ing task. In [9], a semi-supervised learning model based on Recurrent Neural
Networks (RNN), called TULER (TUL via Embedding and RNN) is proposed.
TULER learns the semantic mobility patterns of spatio-temporal data by corre-
lating trajectories to the users who generated them. It identifies the dependencies
inherent in check-in data and infers hidden user patterns.

Additionally, TULVAE (TUL via Variational AutoEncoder), a semi-supervised
learning technique is presented in [10]. TULVAE applies a neural generative ar-
chitecture with stochastic latent variables in the analysis of geo-tagged social
media data. It considers the fact that human trajectories exhibit a hierarchical
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semantic structure with high-dimensionality and data sparsity. Through process-
ing vast quantities of unlabeled data, TULVAE tackles the data sparsity issue,
thus generating useful knowledge and distinct mobility patterns.

The proliferation of location based services has resulted in the availability
of heterogeneous mobility data from the various service providers. There is also
a growing need for a better understanding of user behaviour across multiple
services. To deal with the data heterogeneity issue, DPLink an end-to-end deep
learning based framework for performing user identity linkage is proposed in [11].
It extracts representative features from the trajectory using a feature extractor,
a location encoder and a trajectory encoder. The decision to link two trajectories
as the same user is made using a comparator. The low-quality problem of mo-
bility data is handled by a multi-modal embedding network and a co-attention
mechanism in DPLink.

2.2 Trajectory mining

Moving objects can be categorized into various classes based on their trajectories
through trajectory classification. The aim of classification is to identify modes
of transport, vessel types or user classes based on trajectory patterns [12]. The
classification process is a three step process [2]: (i) Trajectory segmentation,
(ii) Feature extraction from the segments, and (iii) Building of the classification
model. The process requires as input a sequence of spatio-temporal points.

Clustering is one of the classification techniques applicable to trajectories
where the clusters formed should have a low inter-class similarity and a high
intra-class similarity. The output of clustering, especially in relation to behav-
ior prediction can be applied in destination prediction, urban planning, market
research and location recommendation [13]. The open research issues include:
finding appropriate features for trajectory representation, similarity measures
and development of algorithms for spatial data clustering [14]. The key chal-
lenge is how to identify relevant class distinguishing features and how to select
the most discriminate features to be used in building the classification model[15].
One of the frequently used discriminant features is the distance between two tra-
jectories which is computed using a distance measure or metric.

In evaluating user similarity, several literature studies focus on the geometric
or sequential features of trajectories. Trajectory similarity is measured based on
the co-location frequency (feature-based representations), which is the number of
times two moving objects appear spatially close to one another. Other measures
include subsequence similarity metrics such as the length of the Longest common
subsequence (LCSS) [16], Edit Distance on Real Sequences (EDR) [17], Common
Visit Time Interval (CVTI) [18], Maximal Semantic Trajectory Pattern (MSTP)
[19], Multidimensional Similarity Measure (MSM) [20], and Stops and Moves
Similarity Measure (SMSM) [21].

By defining distance and matching thresholds, LCSS reduces the effect of
noisy data. When distance in LCSS is less than a given threshold in all dimen-
sions, two points match. However, LCSS ignores gaps in sequences, resulting in
the same similarity value for different pairs of trajectories for some problems.
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EDR uses an edit distance to calculate the similarity between elements where all
dimensions are taken into account for a match to occur. Penalties are assigned
based on the length of the gaps between two matched sub-sequences resulting in
more precise results than LCSS. The semantic dimension of stops is integrated
by CVTI with the temporal dimension. It does not allow heterogeneous data to
be modeled and calculated together, such as stops and moves.

During similarity analysis of semantic trajectories, MSTP considers the fre-
quency at which stops are visited. It does not consider moves between stops and
multiple data dimensions. The similarity rating in MSM is based on the match-
ing scores of all pairs with at least one matching dimension. It allows definition
of different similarity weights for every dimension and may assign a high score
to trajectories with similarity only in a small portion of their length. SMSM
considers both stops and moves within the trajectory and, by assigning weights,
performs partial dimension matching and partial stop ordering. However, for
users, calculating weights can be difficult.

LCSS and EDR require all elements to match across all dimensions when
looking at the applicability of similarity measures based on trajectory dimen-
sions, whereas MSM considers matching pairs in a single dimension. In situations
where the trajectory contains outliers LCSS, EDR, MSM and SMSM which are
robust to noise are applicable. MSM and SMSM are good options when dealing
with semantic trajectories, though LCSS and EDR can be extended for semantic
trajectory mining. The best measure is MSM when considering apps that use
GPS trajectories annotated with stops only or trajectories extracted from social
media, as it manages sparse data. MSM is useful when one wants to find users
who visited the same place at similar times irrespective of the order of visits.
When extracting the most similar paths or most popular routes between stops,
SMSM is applicable.

2.3 Anomaly detection

Anomalies can be defined as “patterns in data that do not conform to a well-
defined notion of normal behavior” [22]. These patterns can also be referred to
as outliers or exceptions, and represent new, rare or unknown data which may
be of interest in a specific domain. In the presence of labeled data, anomaly
detection can be done using supervised learning techniques where it is consid-
ered a binary classification problem with data instances being either normal or
abnormal. However, this is rarely the case due to the limitation in availabil-
ity of labeled data and the fact that the anomalous events are quite rare. Due
to availability of massive amounts of unlabeled data, most anomaly detection
approaches adopt unsupervised learning techniques.

Anomalies can be viewed in two ways: (i) erroneous data generated due to de-
vice failure or system faults, and (ii) unusual data representing rare/exceptional
activities/events which are anomalous but actually happened [23].Some of the
anomalies linked to road networks include: vehicle collisions, vehicle breakdowns,
debris on the road, pot holes, and vehicle(s) stopped in the middle of the road.
Most of these can be attributed to driving behavior and the status of the road.



6 Authors Suppressed Due to Excessive Length

The main aim of traffic management is to reduce the number of anomalies and
improve traffic flow. It is desirable to know the locations, time and frequency of
occurrence of these anomalies for efficient traffic management.

Anomaly detection techniques are usually focused at identifying patterns
which do not conform to expected behavior. However, according to [24] the
challenge lies in the fact that: (i) there is no well-defined boundary between
what is normal and what is considered abnormal; (ii) there is a high possibility
of a normal behavior evolving to an abnormal representation in the future; (iii)
it is difficult to apply anomaly detection techniques developed in one field to
another field due to difference in applications and concepts; (iv) presence of
noise in the data makes it difficult to distinguish between noise points and the
real anomalous points.

3 Problem Statement and Methodology

3.1 Problem Statement

The vehicles of a Cooperative Intelligent Transport Network (C-ITS) exchange a
lot of messages. Each message contains an identifier of the transmitting vehicle.
In order to protect the privacy of users, each vehicle’s identifiers are updated
periodically. Given the various identifiers assigned to a vehicle, we wish to in-
vestigate whether it is possible to group all identifiers which belong to the same
vehicle. We adopt the definition of [9] for Trajectory User-Linkability problem:

Let Tvi = mi1,mi2, . . . ,min denote a trajectory generated by the vehicle vi
during a time interval, where mij(j ∈ [1, n]) is a message sent from a specific
location at time tj . Given that the identifier is changed after a time period,
trajectory Tx = m1,m2, . . . ,my generated by the same vehicle in the next time
interval with a different identifier is considered unlinked. TUL can thus be defined
as:

Suppose we have a number of unlinked trajectories T = t1, . . . , tm generated
by a set of vehicles V = v1, . . . , vn(m � n), TUL learns a function that links
unlinked trajectories to the vehicles: T → V

Information on the presence of obstacles on the road is useful to road opera-
tors as it can enhance road safety through planned interventions to treat them.
We intend to detect anomalies which are as a result of stopped cars and potholes
on the road.

3.2 Methodology

In a C-ITS environment cooperative awareness is achieved through exchange
of CAMs which contain position information. This can serve as a privacy risk
especially in a scenario where an eavesdropper is able to recreate a comprehen-
sive mobility pattern of the driver. In order to lessen the risk, pseudonyms are
used to provide anonymous communication. To ensure unlinkability of actions,
multiple pseudonyms are used per vehicle [25].This involves the periodic change
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of pseudonyms so as to prevent linkability of one pseudonym to another which
can in turn result in the identity of a vehicle and consequently that of the driver
being revealed if one is able to identify the home address.

We begin by grouping as much as possible the different identifiers which
represent sub-trajectories of one vehicle. A complete grouping with all the iden-
tifiers of each vehicle may be difficult to obtain but grouping some identifiers
can be achieved. For example, if the last message of an identifier is spatially and
temporally close to the first message obtained with another identifier and the
change in attributes like speed and heading angle is consistent, then the change
of identifier from the last message to the first one is obtained for the same vehi-
cle. Thus the two identifiers are linked and belong to the same vehicle. In this
example, the work consists in defining a reliable link between two messages with
different identifiers.

Then we detect the contradictions between messages. For instance, if two
messages give the same localization at the same time, then their identifiers cannot
belong to the same vehicle. These contradictions help to define the group of
identifiers for each vehicle by rejecting the identifiers leading to a contradiction.
The framework to be followed in the analysis is shown in Fig.1.

Definition: Trajectory : A raw trajectory consists of a sequence of n points
T = [p1, p2, . . . , pn], in which pi = x, y, z, t, A, where x, y ,z represent the posi-
tion of the moving object in space, t is the timestamp and A represents other
attributes associated with the point (i.e. speed, heading angle and drive direc-
tion)

In this study a trajectory is considered as the consolidation of messages
uniquely identified by a single identifier. The second step is to detect obstacles
on the road where we are interested in concept drifts with a sudden appearance
(stopped vehicle scenario) and those of a slow appearance (growing pothole sce-
nario). The assumption is that an obstacle will block the whole lane requiring
the other vehicles to change lane as they avoid it.

3.3 Dataset Description

In our study we used a real dataset of Cooperative Awareness Messages (CAM)
generated by the OMNET simulator together with SUMO, artery plug-in. A
vehicle sends CAMs to its neighbourhood using Vehicle-to-Vehicle (V2V) or

Fig. 1. Trajectory mining framework.
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Vehicle-to-Infrastructure (V2I) communications. The frequency of CAM message
generation varies from 10Hz to 1Hz (100 milliseconds to 1000 milliseconds). Each
CAM is uniquely defined by a stationid (Pseudonym) and timestamp. In this
dataset each vehicle has a defined stationid which changes periodically in order
to guarantee privacy of drivers.

In this study, each message is defined by eight variables: an identifier asso-
ciated with the transmitting vehicle, a timestamp, the location of the vehicle
(latitude, longitude and altitude), speed, heading angle and the drive direction.
The speed, heading angle and drive direction variables are used as descriptive
variables of the behavior of the transmitting vehicle.

4 Performance evaluation

In order to link the trajectories we consider the following conditions for triggering
CAM generation as specified in ETSI EN 302 637-2 standard [26]:

– If the absolute difference between the current heading value of the vehicle
and the heading value included in the last transmitted CAM by the same
vehicle exceeds 4 degrees;

– If the distance between the current position of the vehicle and the position
included in the last transmitted CAM by the same vehicle exceeds 4 metres;

– If the absolute difference between the current speed of the vehicle and the
speed included in the last transmitted CAM by the same vehicle exceeds 0.5
m/s.

We performed trajectory mining using PostgreSQL database with the spa-
tial extension PostGIS used for storing and processing spatial data. We also
used Quantum GIS (QGIS) an open-source cross-platform desktop geographic
information system application that supports viewing, editing, and analysis of
geospatial data. QGIS was majorly used for visualization and map matching of
the trajectories as a validation step.

Considering the fact that each vehicle was assigned multiple identifiers, we
sort out to group identifiers which occurred on the same day by comparing origin
and destination pairs. Taking the destination points, we extracted the nearest
origin point within 170 meters (since the highest speed recorded in the dataset
was 163m/s) and also filtered out the results by implementing the CAM genera-
tion trigger conditions as additional constraints. The distance computation was
done using the ST DistanceSpheroid function in PostgreSQL which gives the
linear distance between two longitude/latitude points. We also used the CAM
generating frequency of 100 – 1000 milliseconds as a constraint in order to get
exact matches in time and space.

4.1 Obstacle detection

In our study we have performed anomaly detection mainly focusing on road
obstacle detection. We handle the data collected from vehicles as a data stream.
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There can be different kinds of change in a data stream. From time to time an
outstanding value appears, this is called an outlier. When the data is changing
from one behavior to another, this is called a concept drift. A concept drift
detector is designed to find when the data is changing from one concept to
another, but it should be robust to outliers so as to avoid false positive detection.
Different concept drift detection approaches are used for different kinds of data
and streams. The parameters of these algorithms are used to tune the algorithm
to avoid a trigger on outliers. However, too restrictive parameters can result
in the algorithm not triggering at all. Parameters are varied depending on the
context.

To handle data streams, the algorithms can store some global value relative
to the stream that are updated for each new data or rely on a window model to
store part of the stream and calculate the values on the stored data. In a window
model, data is stored until the window is full and since the memory is limited
older data will be removed from the window [28]. Here are some window models
that can be used:

Sliding window model: In this window model the data is treated in a first-in
first-out manner. The size of the window can be fixed or variable but when
the window is full, oldest data are deleted so new data can be treated.

Damped window model: This window model associates an exponentially de-
caying weight to the observations and delete the data at the point when the
weight is equivalent to zero.

Landmark window model: The landmark model rely on chunks of data sepa-
rated by landmarks. A landmark can be a time value (hour, day, month, . . . )
or a number of observed elements. Every data in the landmark is treated un-
til the next landmark is reached. When it is reached, the old data is removed
and replaced by the new one.

In this study, we used two algorithms: Page-Hinkley and ADWIN. These are
really popular approaches due to their effectiveness on many types of data, and
we aim to know if they are adapted to our type of data:

The Page-Hinkley algorithm [27] [29] analyzes the data sequentially to detect
change and does not use a window model since no data is stored except a mean
and a sum. It recalculates the mean value of the data at each input. And it also
recalculates the sum of the difference to the mean with the alpha and the delta
parameters to adjust the sensitivity. The alpha and the delta parameters help to
mitigate outliers both in different ways, the greater they are the more outliers
will be needed to detect a drift. If this sum passes over the lambda threshold
value then a drift signal is raised. The greater the threshold is, the fewer false
positives are but actual errors could be missed or the detection delayed. Also the
higher the alpha and delta values are the harder it is to detect small variations.
Page-Hinkley consumes very few resources since it is not storing any part of the
data stream. But its strongest issues are its sensitivity to outliers when trying
to detect concept drift on low varying data and its delay on the detection of
concept drift when tuned to resist to outliers.
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The ADaptative WINdowing (ADWIN) algorithm [30] is based on a sliding
window system. The size of the window, instead of being fixed, is recomputed: if
a drift is detected, the window is reduced, if not, it is growing to its maximal size
defined by the user. To change the window size, it is made into a bucket list that
is split in bucket rows of the same size, and these bucket rows contains buckets.
The algorithm takes data as input, stores it in a bucket that is put in the last
bucket row. If the bucket list is full, the two oldest bucket rows are reduced and
merged. The process to detect the drift is triggered every clock number of new
data, only if the length of the window is greater than the minimal sub-window
length. To detect a drift, the buckets are separated in two sub-windows, one
containing the oldest data (this one is bigger than the second one) and the other
containing newer data. If the data between these two windows are too different
(according to the delta value) then a drift signal is raised, and the window size
is reduced. ADWIN has a small memory consumption due to its bucket system
and can detect quickly concept drift since part of the stream is stored. But since
a small part is stored long and slow drift is hard to detect because the buckets
are updated with more and more drifting data without noticing it. And if the
algorithm is more sensitive to detect such change the rate of false-positive will
be higher. In order to detect avoiding behaviors and the change of frequency of
them, we use ADWIN, and Page-Hinkley algorithms.

Fig. 2 presents the results for the Page-Hinkley algorithm for the stopped
car scenario. And Fig. 3 the result of Page-Hinkley on the pothole scenario. The
red dots represent the number of messages with an avoiding behavior (real drift)
in the last 600 messages and the blue dots, the number of drifts detected by
the algorithm. The x-axis represents the generation time (corresponding to the
number of messages). The y-axis represents the number of messages detected
that contain an avoiding behavior.The higher on the y-axis the dots are, the
stronger the change is on the period.

For the Page-Hinkley algorithm, it is difficult to have an accurate detection
of large changes because the detection is highly delayed. That is why we used
parameters to detect the smallest changes. This allows us to track the frequency
of changes in the overtaking behaviors. We can see that the frequency increases
as we enter the period when the overtaking rate is the highest. But by design,
the Page-Hinkley algorithm has a certain delay in detecting new concepts, so
the points do not directly follow the change. The performance of this algorithm
is encouraging for the stopped car scenario since we can see the increase in the
number of detections when the change occurs. But the delay in the detection of
the events is a strong backlash because we need a filtering step that will delay
the detection even more. For the pothole scenario, we can see a slight increase
in the detection rate of changes with few spikes but this is not enough to be
significant. And with the delay in detection, it is not possible to have a correct
view of the detection until the concept stabilizes.

Fig. 4 presents the results for the ADWIN algorithm for the stopped car
scenario and Fig. 5 the result for ADWIN on the pothole scenario.
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Fig. 2. Detection of Page-Hinkley algorithm for stopped car scenario

Fig. 3. Detection of Page-Hinkley algorithm for pothole scenario

Fig. 4. Detection of ADWIN algorithm for stopped car scenario

For the ADWIN algorithm, in the stopped car scenario, there is little detec-
tion in the low avoiding rates, but they do not hide the high number of detections
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Fig. 5. Detection of ADWIN algorithm for pothole scenario

when large changes occur. In this scenario, the results are really convincing and
should be tested in real cases. But in the case of the pothole scenario, the detec-
tion is not accurate. Initially, the algorithm manages to detect the change, but
when the avoidance rate reaches 25%, the algorithm cannot detect the changes
correctly. This is because the algorithm is designed to adapt to changes, and
then, it fails to detect the next changes accurately because the avoiding behav-
ior has become part of the concept it has learned and the difference in rates is
no longer large enough for it to detect them. For this type of behavior, other
algorithms may be better suited. Such algorithms should use a window model
with a fixed historical window as a basis for learning since we want to detect
abnormal behavior compared to typical behavior. But the loss of adaptability to
change will require reconfiguration of the history window each time a change is
made to the road, its environment, or driver behavior (the latter change could
be due to an increasing number of C-ITS, automated vehicles or other technical
improvements or recommendations).

5 Conclusion

In this work we considered the trajectory-linking problem and applied it to
messages generated by vehicles in C-ITS in order to detect anomalies described
by obstacles on roads. Based on our analysis, if other distinguishing attributes
and background information on message generation are taken into account, it is
possible to link trajectories to the vehicle which generated them. The detection
of anomalies is achieved thanks to data stream analysis. We have shown in
this study that such analysis should be done off-line in order to learn the main
behavior of the system and later it could be run on-line in order to detect any
dis-functioning at any time.

As future work, we plan to semantically enrich the trajectories and perform
frequent pattern mining on the data. It is foreseeable that autonomous vehi-
cles will need to communicate with C-ITS enabled vehicles which do not have
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embedded cameras. It is then interesting to detect obstacles using C-ITS data
and for future works these obstacles could be confirmed by processing images
captured by autonomous vehicle cameras.
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