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In this report we analyze differences in reasoning about span by comparing written work of 126 linear algebra students who learned through a particular inquiry-oriented (IO) instructional approach compared to 129 students whose instructors used other instructional approaches. Our coding of students' responses to open-ended questions indicated that IO students' concept images of span were more aligned with the corresponding concept definition than the concept images of Non-IO students. Additionally, IO students exhibited richer conceptual understanding and greater use of deductive reasoning than Non-IO students. Importantly, we argue that in order to reason about span in conceptually rich ways, students had to make use of ideas about linear independence and dimension.

INTRODUCTION

Active approaches to learning have been linked to improved student learning in undergraduate science, technology, engineering and mathematics courses [START_REF] Freeman | Active learning increases student performance in science, engineering, and mathematics[END_REF]. Though, there is limited research that documented the differences in students reasoning about particular disciplinary ideas under particular instructional approaches. The purpose of this paper is to reveal these differences in reasoning about span of students whose instructors received instructional supports to teach linear algebra in an inquiry-oriented way (IO students) from those who did not (Non-IO students). Inquiryoriented (IO) instructional approaches feature student inquiry into mathematics through problem-solving and instructor inquiry into student reasoning, and foreground the importance of leveraging student ideas to move forward the mathematical agenda of the class [START_REF] Rasmussen | An inquiry-oriented approach to undergraduate mathematics[END_REF]. In this analysis we draw on a data from an assessment developed to assess student performance and reasoning around core concepts in linear algebra [START_REF] Haider | Using student reasoning to inform assessment development in linear algebra[END_REF]Haider, 2109). This report will focus on students' responses to two multi-part questions that offer insights into students' understanding of span. The central research question for this study is: How did IO and Non-IO students, reason differently about span?

LITERATURE & THEORETICAL FRAMING

Algebraic and geometric interpretations were salient in research on students reasoning about span. Several studies found that students were more likely to approach problems about span algebraically rather than using the geometric intuition [START_REF] Bogomolny | Raising students' understanding: Linear algebra[END_REF][START_REF] Aydin | Using example generation to explore students' understanding of the concepts of linear dependence/independence in linear algebra[END_REF]Ertekin, Erhan, Solak, & Yazici, 2010;Stewart & Thomas 2010). [START_REF] Bogomolny | Raising students' understanding: Linear algebra[END_REF] found that for some students, geometric and algebraic representations were not well-coordinated; students gave a geometric representation of the solution set of the homogeneous system 𝐴𝑥 = 0 instead of providing a geometric representation of the span of the columns of the matrix 𝐴. By definition, span does not require linear independence, but by involving this concept students successfully interpreted span as a subspace of certain dimension [START_REF] Wawro | Subspace in linear algebra: investigating students' concept images and interactions with the formal definition[END_REF].

In this paper we coordinate three theoretical constructs to gain insight into systematic differences in student reasoning under different instructional approaches. The first construct we leverage is [START_REF] Tall | Concept image and concept definition in mathematics with particular reference to limits and continuity[END_REF] notion of concept image which refers to the ways in which particular mathematical ideas are engaged by individuals, and concept definition which refers to formal definitions generally accepted by the broader community of mathematicians. The second construct we leverage is Hiebert and Lefevre's (1986) definition of conceptual knowledge as "knowledge that is rich in relationships. It can be thought of as a connected web of knowledge, a network in which the linking relatonships are as prominent as the discrete pieces of information" (pp. 3-4). We methodoligically operationalize conceptual understanding by examining connections between particular ideas related to span in the context of our assessment items. The third construct we use considers the use of deductive reasoning. In this work we also paid attention to proof-like arguments in which deductive reasoning, leveraging appropriate concepts and linking them with appropriate logical connections take place. [START_REF] Ayalon | Deductive reasoning: In the eye of the beholder[END_REF] described deductive reasoning as: "…unique in that it is the process of inferring conclusions from known information (called premises) based on formal logic rules, where conclusions are necessarily derived from the given information and there is no need to validate them by experiments" (pp. 235). Johnson Laird (1999) argued that "deduction yields valid conclusions, which must be true given that their premises are true (pp. 110)." Jean [START_REF] Dieudonne | Linear Algebra and Geometry[END_REF] considered logical deduction as the one and only true powerhouse of mathematical thinking.

DATA SOURCES AND STUDY CONTEXT

Our data comes from a study in which instructors received three instructional supports for inquiry-oriented mathematics instruction: instructional materials, a summer workshop focused on the intended implementation of the instructional materials, and weekly online meetings with other instructors during the term when materials were implemented. IO instructors received these instructional supports. For this analysis, we have analysed the work of a total of 255 students where 126 IO and 129 Non-IO students; to collect assessment data for comparison between performance and reasoning of IO and Non-IO students, six IO instructors were involved in these instructional supports and three Non-IO instructors from different institutions in the US. Non-IO linear algebra instructors were recruited either at the same institutions as IO instructors or at other similar institutions (e.g. similar size of student population, similar acceptance rate at institution, similar geographic area). The linear algebra assessment was administered in IO and Non-IO classes as a paper-pencil based test at the end of the semester. There were 9 assessment questions that include combinations of multiple-choice and open-ended items. Students were given one hour to complete the test. All questions were designed such that a calculator was not required. In this analysis, our focus will be on an in-depth analysis of students' reasoning on the assessment questions related to span.

Assessment items analyzed

The assessment questions analyzed for this analysis are shown below in Figure 1. Questions Q1a and Q1b offer insights into how students conceive span geometrically and Q1c and Q1d offer insights into how students interpret the elements of span. The choices in Q1a and Q1c will provide systematic insights on these students' concept images of span, whereas their open-ended responses Q1b and Q1d will provide information about nuances of students' reasoning and justification. 

IO instructional approach

Since the focus of this analysis is on items relating to span, we characterize the instructional sequence implemented in the IO approach aimed at supporting students understanding of these ideas. The approach draws on the instructional design heuristics of Realistic Mathematics Education (RME) that task sequences begin by engaging students in problem solving in an experientially real setting, that the sequence of tasks follow a trajectory that anticipates students' construction of understanding of important mathematical ideas, and that the sequence supports a shift in which models-of students' mathematical activity in one phase serve as models-for students' subsequent mathematical activity [START_REF] Wawro | An Inquiry-Oriented Approach to Span and Linear Independence: The Case of the Magic Carpet Ride Sequence[END_REF].

In the context of span, students begin with an experientially real setting in which they have two modes of transportation: a hover board and a magic carpet. Each can move only in a certain direction, with movement that is symbolized by a vector so that journeys can be described using linear combinations of vectors. The task sequence has 4 core tasks. In task 1, students work to determine if it is possible to use the two modes of transportation to take a journey that starts at home (the origin) and ends at a particular location. In the second task, students work to determine if there is any location they cannot reach with the two modes of transportation. This provides students with an intuitive way of exploring the set of all possible linear combinations of two vectors -or the span of two vectors in 𝑅 ; the instructor formalizes this definition after students have worked on task 2 and provides typical examples for them to practice applying the definition in 𝑅 and 𝑅 . Tasks 3 and 4 were designed to approach the linear dependence and independence concepts (see [START_REF] Wawro | An Inquiry-Oriented Approach to Span and Linear Independence: The Case of the Magic Carpet Ride Sequence[END_REF].

METHODS OF ANALYSIS

To answer our broad research question about students' reasoning about span, we will deal with three sub-questions. (1) How did IO students' reasoning compare to that of Non-IO students? (2) How did IO-students compare to Non-IO students connect between ideas as evidence of conceptual understanding? (3) How did IO-students compared to Non-IO students with regard to deductive reasoning? To identify differences between IO and Non-IO students' reasoning about span, we first look quantitatively at response patterns to multiple choice questions to Q1a and Q1c, and then look qualitatively at open ended responses to Q1b and Q1d to better understand the nature of student reasoning and differences between IO and Non-IO students. To qualitatively see how IO and Non-IO students reasoned, we engaged in open coding by first examining a subset of student responses to identify the variety of mathematically distinct ways students reasoned about each open-ended response question; we continued analyzing additional responses, refining categories as we did so, until our categories were saturated. This process led to 6 categories of students' reasoning about Q1b, and 2 categories about Q1d (see Table 1 &2). Items that did not fall into the categories described in the tables were labelled as "other" or marked if they were left blank. Student responses could be coded in multiple categories.

To gain insights into differences in students' conceptual understanding of span, particularly with regard to how they related span to other ideas, we examined students' responses to Q1b where they justify their choice on Q1a. As introduced above, conceptual knowledge is characterized in terms of relationships between ideas (Hiebert and Lefevre, 1986). The definition of span 1 , in isolation, does not provide students with sufficient information to answer Q1a. To answer Q1a and provide a complete justification on Q1b, one must first have a way to reason about why the set of all linear combinations of the given pair of vectors would trace out at least a plane in three-space (e.g. linear independence of the two given vectors guarantees that nothing less than a plane is traced out). Then one must also have a way to think about why the set of all linear combinations of the given pair of vectors would trace out not more than a plane in three-space (e.g. you would need a third vector that didn't lie in the plane spanned by the first two vectors in order to span the entire three-dimensional space).

1 Suppose 𝑣 , … , 𝑣 are in ℝ . We define Span 𝑣 , … , 𝑣 to be the set of all linear combinations of 𝑣 , … , 𝑣 . In other words, Span 𝑣 , … , 𝑣 is the collection of all vectors that can be written in the form 𝑐 𝑣 + ⋯ + 𝑐 𝑣 with 𝑐 , … , 𝑐 scalars. We developed a code that captured responses to Q1b that were "complete" in that they justified both why the span had to be at least and at most a plane. This was typically achieved by relating subsets of the following ideas to one another: linear independence, linear combinations, dimension, row reduction, or by coordinating with an appropriate geometric interpretation. For example, in Figure 2, Justification A is considered complete because it combined linear independence with dimension to conclude the span is a plane; Justification B used only linear independence ("not linear combinations of each other") to justify that the span of the two vectors is a plane.

Code Name

assigned when… Linear Independence Student's response refers to whether or not the two given vectors are linearly independent. This includes responses that note things like: the vectors are not (scalar) multiples of each other, or something that gives that meaning (e.g. observation that the two vectors point in different directions). Linear Combination Student's response refers to a linear combination of the two vectors (in words, or by giving the formula 𝑥𝑣 + 𝑦𝑣 = 𝑤, or stating something like 'getting anywhere' -such as in a plane or 3-space) Row Reduction Student row reduces a matrix comprised of the given vectors (possibly augmented with a column of zeros). Dimensionality Student's response makes explicit reference to the number of vectors (2), entries (3), pivots (2), that the vectors are linear independent and exist/are/create a plane in ℝ ; or claims that the two vectors are a basis AND uses these to form conclusion. Vector as e.g. Point/Line/Plane Student identifies each vector individually as corresponding to either a point, line, plane or 3-dimensional space.

Geometric or Graphical Representation

Response includes a drawing showing a geometric representation as a response or part of it.

Q1d (Span)

Augmented Matrix/Row Reduction Student row reduces the matrix comprised of the given vectors and concludes the vector is/is not in the span if the result is consistent/inconsistent or there is / is not a solution.

Linear Combination

Same description as in Q1b.

Justification A (Complete):

Justification B (Not Complete): Following our first round of coding, we also noticed that some responses were prooflike in nature in that they included deductive reasoning with logical connections between ideas. In order to capture this subtlety in relation to our codes, we conducted a second round of coding in which we identified when the mathematical idea corresponding to a particular code was employed in a mathematically deductive way.

As we analyzed student responses, we noticed that some explanations were better structured than others as evidenced by both the leveraging of appropriate combinations of ideas, and by the presence of logical connections linking those ideas. We see these as important features of arguments that are logical and deductive in nature (e.g. similar to the way mathematical proofs are structured, (Rota, 1997;[START_REF] Johnson-Laird | Deductive reasoning[END_REF]Ayalon and Even, 2007). To capture if students' reasoning is deductive in a systematic way, we looked at students' responses to identify if made use of logical deduction in their response. Responses that included terms like since, because, therefore, this implies, or this leads to, did receive the deductive reasoning code. For example, the response "since the two vectors are linear independent and they form a basis of dimension 2, they should be a plane,' was assigned a deductive reasoning code because this student used the term since, followed by two premises "linear independent and dimension," and then concluded deductively that the span of the set 𝑉 is a plane.

FINDINGS

We first look at student reasoning about span based on response patterns on multiplechoice questions and our coding of their open-ended responses and interpret this through the lens of concept image and concept definition. We then examine students' open-ended responses in greater detail to consider their conceptual understanding and use of deductive reasoning.

To gain insight into differences in students' interpretations of the span of a given set of two linearly independent vectors in ℝ , we examine the choices selected by students from the two groups. Almost twice as many as IO students correctly picked a "Plane." Non-IO students picked other incorrect choices at a higher rate; in the case of choices "Two points", "A line", and "Two Planes" the differences were statistically significant at 𝑝 < 0.05. When students were asked to identify whether or not given vectors lie in the span of a set of two vectors (Q1c), we noticed 2 trends. First, IO students correctly chose Q1c(iii); a scalar multiple of one of the vectors in the set, or Q1c(v); a linear combination of vectors in the set, at significantly higher rates than Non-IO students (see Table 6.) Second, Non-IO students incorrectly selected Q1c(iv); the vector [1,0,0], and Q1c(vi); any vector in 𝑅 , as being in the span of the given set of two vectors at significantly higher rates than IO students. Because the answer choices in this question offer insight into the ways in which a vector can be in the span of a given set of vectors, we interpret this to mean that IO students' concept image is better aligned with the concept definition of span (as compared with Non-IO students). By this we mean, IO students' concept image aligns better than Non-IO students with the concept definition. Note that the choice Q1c(iii) is similar to Q1c(v) in the sense that there should be a good understanding of the formal definition of span to see that the second scalar of the linear combination of the two vectors of 𝑉, should be 0 to get the choice Q1c(iii). Q1c(iii) and Q1c(v) We coded students' explanations of how they would check, in general, if some vector is in the span of a set of vectors (Q1d; see Table 6). Our findings suggest that IO and Non-IO students reasoned in terms of linear combinations at similar rates. However, the differences observed in Q1c provide evidence that students in the two groups have different interpretations of what is meant by linear combinations. IO students' selections suggest that their concept images of linear combinations tend to be more inclusive of scalar multiples and their sums and differences.

Complete justifications and use of logical reasoning

In addition to what we just presented about the reasoning of IO and Non IO students, we noted other differences between the two groups. Recall that we examined how students' ideas about span related to other ideas by examining the justifications (Q1b) for their choices on Q1a. According to our coding scheme, IO students provided "complete" justifications at significantly higher rates than Non-IO students (49.20% versus 18.60%, respectively). We interpret this to mean that IO students had more richly connected conceptual understandings of span as compared to Non-IO students.

As noticed above, when coding the data, we also noticed that IO students' responses seemed more proof-like when compared with the responses of Non-IO students; we used the deductive reasoning code to quantify this difference. Again, we noticed that 53.17% of IO students used deductive reasoning as compared to only 25.58% of Non-IO students in justifying their response to Q1a.

DISCUSSION

These results suggest that IO instructional approach and engagement in mathematical argumentation (in small group work and whole class discussion) could help explain why IO students gave better arguments. This is one possible explanation -basically that the IO learning environment is designed to give students more practice making mathematical arguments verbally in their problem-solving work and discussions and explanations during class time -so this could then be seen in improved written mathematical arguments on their assessment responses [START_REF] Reinholz | Peer-assisted reflection: a design-based intervention for improving success in calculus[END_REF]. Another possible explanation is that if they understood the ideas better, they would be better able to make arguments about them. A third possible explanation is the nature of this particular idea (span) is such that it cannot be understood in isolation but rather has to be coordinated with other understandings (especially linear independence and dimensionality). We suggest that a student who has these connections should have a good understanding of the formal definition of span, otherwise he/she would not have that rich connection as a result of a good conceptual understanding. This also is valid for students who used deductive reasoning in their response to the question about span.

For more details on how the instructional design helps improve the relations between the concept image and concept definition, a better conceptual understanding and promotes better deduction reasoning of span see (Bouhjar et. all, 2020).
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 3 Popularity of choices of Q1a Picked by IO and Non-IO StudentsWhen we qualitatively compared the reasoning of IO and Non-IO students, we noticed two main trends. First, IO students reasoned about span in terms of linear independence, dimensionality, or row reduction at significantly higher rates than Non-IO students. Second, significantly more Non-IO students, consistently with their selections in Q1a (Two Points and Two Planes), reasoned about the span of the set of two vectors by interpreting each vector individually as a geometric object as evidenced by more Non-IO student responses being assigned the Vector as Point/Line/Plane code.

	Codes	IO students	% (IO)	Non-IO students	% (Non-IO)	Significance (z-test)
	Linear independence	64	50.79%	30	23.26%	p<0.00001
	Linear Combination	25	19.84%	22	17.05%	p=0.56868
	Dimensionality	73	57.94%	44	34.11%	p=0.00014
	Row Reduction	15	11.90%	0	0%	p<0.00001
	Vector as Point/Line/Plane	18	14.29%	39	30.23%	p=0.00222
	Geometric/Graphical	22	17.46%	20	15.50%	p=0.67448

Table 4 :

 4 Codes for IO and Non-IO Students' Approaches to Q1b

Table 5 :

 5 represent two examples of vectors that belong to the span of vectors 𝑉 and they also relate to the formal definition of span by being written explicitly as linear combinations of vectors in the set. The selection of the vectors given in Q1c(iii) and Q1c(v) suggests that the students have an understanding of the formal definition of span and that made them recognize the elements that belong to span, which also suggest an alignment between the concept image and the concept definition. In other words, IO students showed a better sense of how to identify vectors in the span than Non-IO students. Popularity of Choices of Q1c Picked by IO and Non-IO Students

	Choices	IO	% (IO) Non-IO % (Non-IO) Significance (z-test)
	i. A point	1	0.79	1	0.77	p=0.984
	ii. Two points 0	00	5	3.9	p=0.026
	iii. A line	4	3.2	12	9.3	p=0.043
	iv. Two lines	6	4.8	8	6.2	p=0.617
	v. A plane	94	74.6	53	41.1	p<0.001
	vi. Two planes 5	4	17	13.2	p=0.009
	vii. A 3-D space 12	9.5	14	10.9	p=0.726

Table 6 :

 6 Codes for IO and Non-IO Students' Approaches to Q1d

  We highlight two additional key distinctions when comparing the open-ended responses of IO students with those of Non-IO students. First, IO students exhibited more richly connected conceptual understandings of span. Second, we observed deductive reasoning at higher rates among responses of IO students.

	Codes	IO	% (IO) Non-IO % (Non-IO)	Significance (z-test)
	Linear Combination	99	79%	97	75%	p=0.522
	Augmented Matrix (RR)	27	21%	10	8%	p=0.002
	Other	5	4%	18	14%	p=0.005
	Blank	5	4%	6	5%	p=0.787