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Introducing group theory with its raison d’être for students 
Hiroaki Hamanaka1, Koji Otaki2

 and Ryoto Hakamata3 
1Hyogo University of Teacher Education, Japan, hammer@hyogo-u.ac.jp, 

2Hokkaido University of Education, Japan, 3Kochi University, Japan 
This paper reports results of our sequence of didactic situations for teaching 
fundamental concepts in group theory—e.g., symmetric group, generator, subgroup, 
and coset decomposition. In the situations, students in a preservice teacher training 
course dealt with such concepts, together with card-puzzle problems of a type. And 
there, we aimed to accompany these concepts with their raisons d’être. Such raisons 
d’être are substantiated by the dialectic between tasks and techniques in the 
praxeological perspective of the anthropological theory of the didactic. 
Keywords: 2. Teaching and learning of specific topics in university mathematics, 9. 
Teaching and learning of linear and abstract algebra, Group theory, Raison d’être, 
Praxeology. 

INTRODUCTION AND MAIN THEORETICAL RESOURCES 
Abstract algebra is one of the major areas of undergraduate and graduate mathematics. 
And it has been pointed out by several authors that many students have difficulty in 
transiting from elementary algebra to abstract algebra (e.g., Dubinsky et al., 1994; 
Hausberger, 2017, 2018; Bosch et al., 2018). In abstract algebra, we consider the 
algebraic structures, group, ring, field, etc, which inherit the property of the familiar 
calculations among numbers or equations as objects of elementary algebra. Among 
such algebraic structures, group is the simplest but difficult topic. The reason is that a 
group has only one operation from the first, and non-commutativity is primary in group 
theory: these properties cannot be observed in standard number systems. Then, we 
problematize that, in the teaching of abstract algebra, students usually do not 
experience inquiry where the notion of group with one operation can grow. In fact, 
Bosch et al. (2018) points out that, regarding the learning of group theory, the raison 
d’être of group theory is seldomly questioned—roughly speaking, a raison d’être of 
knowledge means a problematic situation the study of which naturally produces the 
knowledge as a significant tool. According to this problematization of the teaching of 
group theory, let us pose our research question as the follows: what problems and 
situations could become raison d’être of group theory for students? Larsen (2009) 
seems to be a representative previous work which studies this question. Larsen’s 
approach aimed students’ reinvention of the concept of group and isomorphism in 
geometric context. In this paper, we would like to propose another possible approach 
with above features. As well as Larsen’s approach, we assume teacher’s guide, and we 
expect students to develop the notion of group, subgroup, generators of a group, coset 
decomposition on their interest and with proactive motivation through this approach. 
Let us highlight that our approach does not aim the complete abstraction process of the 
concept of group. Rather, this approach may be the introductory program of the 



  
abstract group theory, which promotes students to notice the notion and to enhance the 
definition of group on their own consideration. 
In the presentation and the analysis of our program, we make use of the praxeology 
model within the framework of the ATD, i.e., the anthropological theory of the 
didactic (cf. Chevallard, 2019). The praxeology in the ATD is a model for describing 
any bodies of knowledge, e.g., different mathematical domains, i.e. algebra, geometry, 
and so on. Such domains are based on their own theoretical foundations consisting of 
axioms, fundamental theorems, problematic questions, basic objects of study, etc. Each 
theoretical foundation is simply called a theory denoted by Θ in the ATD. In turn, a 
theory Θ describes and justifies many specific statements, particular objects of study, 
local problems, and so on. The system of such second-level theoretical entities is called 
the technology θ in the ATD. A theory Θ and a technology θ constitute a logos part of 
a given praxeology, i.e. [θ / Θ]. Let us emphasize here that any logos part originally 
comes from more concrete, specific, even ad hoc human actions which are called 
praxis parts of the given praxeology. The praxis part is reduced to two subparts of the 
type of tasks T and the technique τ, that is, [T / τ]. A type of tasks T is any motivation of 
a given praxeology which is handled by some technique τ. The overall picture of a 
praxeology is denoted by [T / τ / θ / Θ]. The order of emergence of each part of a 
praxeology depends on the program: a traditional group theory course may start from 
technology or theory. In our program, we propose to start the program from the 
extra-mathematical task of card puzzles explained below. 
From perspective of the theory of praxeologies, we define the notion of raison d’être as 
any system of interrelated tasks (and each task of the system) satisfying the following 
two conditions: 1) it allows the inquirers to (re)produce a given whole praxeology (and 
praxeological elements); and 2) it is lively or familiar for the inquirers’ viewpoint. Let 
us emphasize here that raisons d’être of praxeologies are relative and changeable. It 
depends on performers of the praxeologies like mathematicians and students. 

THE CARD PUZZLE FOR TEACHING GROUP THEOTY 
Task design 
Let us recall the studying process of vector and vector space. Among the algebraic 
objects taught in secondary mathematics, vectors have exceptionally different 
algebraic structures from number systems. In secondary mathematics, vectors are 
introduced in a constructive way based on planer or spatial geometry, not in the 
axiomatic way, and the focus is on individual vectors and their calculations. It is on this 
basis that concepts of abstract vector spaces are studied later. Thus, the study on the 
vectors performs as the previous step towards abstract linear algebra. Likewise, we 
would like to propose giving opportunities first to experience constructive algebraic 
structures which have only one non-commutative operation. Studying planer vectors is 
a nice beginning towards linear algebra because the planer vector space is easy to grasp 
and possesses typical properties as a vector space. Then, what is the most typical 



  
group? We propose that the symmetric group 𝑆𝑆𝑛𝑛 could be an appropriate candidate. In 
fact, it is well-known that any finite group is a subgroup of 𝑆𝑆𝑛𝑛  for some large 𝑛𝑛. 
Moreover, 𝑆𝑆𝑛𝑛  can be introduced in a constructive way, for example, 𝑆𝑆4  can be 
introduced as permutating operations of 4 numbered cards. 
The students in this experimentation belonged to a preservice teacher training course, 
therefore advanced group theory could not be included. We designed an introductory 
program dealing with symmetric groups, which would naturally introduce fundamental 
concepts in group theory without forcing their definitions from the first. This program 
was conducted in the first term in 2019 for three third-year undergraduate students as a 
seminar with the first author as a teacher. This seminar started in May and continues for 
two years; however, we focus on the first seven sessions. As the prerequisite 
knowledge, they had already studied fundamental set theory including concepts of map, 
injection, surjection, equivalence relation and quotient set in other courses. 
The initial and central type of tasks T designed for the seminar is the following:  

 We have 𝑛𝑛 cards arranged in a row and each number from 1 to 𝑛𝑛 is written on one of the 
cards. The objective is to rearrange them in the ascending order using particular available 
operations only. Less number of operations is preferred. 

We call each task t(i)
T of T, which consists of 

the number of cards and available operations, 
a puzzle. Based on T, several puzzles are 
proposed to students and regarding each 
puzzle t(i)

T, students struggled not only with 
analysing them, but also with related 
questions raised in the analysing processes. 
Such related tasks will form other derived 
task types *T and **T, which shall be 
explained in later sections. The first example 
is Puzzle 1 (t(1)

T) indicated in Fig 1. It deals 
with 3 cards and the available operations are 
A, switching first and second cards, and B, 
switching second and third cards. All puzzles 
proposed to students are indicated in Fig 2.  
First session: From puzzle to non-numerical equational representation 
 In the first session, T was explained, and Puzzle 1 (t(1)

T) was provided for students. 
Thus, this program started from an extra-mathematical context to analyse a puzzle, 
which was proposed without using any terms of group theory. As the solving method, it 
was supposed beforehand to draw the Cayley graph, which consists of vertices of all 
possible orders and edges each of which connects two orders possible to change one to 
the other by one available operation. Of course, students did not know Cayley graph, 
but we had expected them to spontaneously use such a graph representation. In fact, a 
student said: 

 
Fig 1: Puzzle 1 

 
Fig 2:  Puzzle 2, 3, 4, and 5 



  
Student A: Just 6 orders only are possible. Let’s list them all. 

Then they started to construct Cayley graph 
without knowing that term (Fig 3).  Students 
produced successfully the method of drawing 
Cayley graph, which is a technical element 
τ(1)

T in their praxeology (in this paper, we use 
“τ” for not only the whole technique but also 
its elements). This technique enables them to 
focus on and grasp the whole set of operations or orders. To emphasize that each 
operation corresponds to an order, the teacher stressed that 123 is the initial order. 
The following are students’ remarks regarding this graph representation. 

Student A: Operation B once and A twice are needed (to change 321 into 123). 

Student B: Operations A and B should be done alternatively. Doing A twice is useless. 

At this moment, they did not realize the binary operation among puzzle operations and 
their representations were based on the natural language. However, being asked how to 
change 321 into 123, they answered “𝐵𝐵𝐵𝐵𝐵𝐵  or 𝐴𝐴𝐴𝐴𝐴𝐴”; they used the composition 
operation unconsciously. It was after that time that the definition and the notation of 
the composition operation was confirmed: for two operations 𝑋𝑋 and 𝑌𝑌, we denoted the 
composition of them, doing 𝑋𝑋 and then 𝑌𝑌, by 𝑋𝑋𝑋𝑋. One student said “it’s like the 
multiplication”, and we discussed that 𝐴𝐴𝐴𝐴 ≠ 𝐵𝐵𝐵𝐵. Here, it should be remarked that 
these discussions were not rigorous because it was not defined what these operations 
mean mathematically. Strictly speaking, operations should be formulated as maps from 
{1,2,3} into itself, however such theorisation was postponed until some later sessions, 
that is, the teacher did not intervene in the students’ spontaneous praxeology to avoid 
developing praxeologies without any raison d’être.  
Also, in this session, based on the above Student B’s remark, we tried to express his 
remark as equations. This is a new derived task t(1)

*T. Specifically, being asked what 
happens when the operation 𝐴𝐴 is repeated, they considered how to express 2𝑛𝑛 + 1 
times repetition of operation 𝐴𝐴: 

Student A: May be (2𝑛𝑛 + 1)𝐴𝐴 … oh, it’s no good. 

Asked by the teacher, they discussed that doing twice and thrice of 𝐴𝐴 are 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴 
respectively and it was pointed out by students that they look like powers of 𝐴𝐴. Thus, 
we negotiated that we note n times repetition of 𝐴𝐴 by 𝐴𝐴𝑛𝑛 and obtained the equation 
𝐴𝐴2𝑛𝑛+1 = 𝐴𝐴. Then we discussed how to proceed the task t(1)

*T, that is, representing their 
findings that 2𝑛𝑛 times repetition of 𝐴𝐴 is the same as doing nothing: 

Student B: Doing nothing is 0 times repetition and it may be written as 0? 

Teacher: If it’s written as 0, 𝐴𝐴 and doing nothing equals 𝐴𝐴, then 𝐴𝐴0 = 𝐴𝐴, right? 

Students: Oh, it’s 1. 1 is better! 

 
Fig 3: Cayley graph drawn by students 



  
In this way, they faced the new type of tasks *T, to express relations between 
operations and to find new relations between them, and with need in coping with these 
tasks t(1)

*T, they developed a technical part τ(1)
*T of representing the relations between 

puzzle operations in algebraic way, even though they are not algebraic objects for them 
at this point. This enables them hereafter to use elementary algebraic representations 
and techniques to express and deal with properties among puzzle operations paying 
attention to the non-commutativity.  
Second and third session: inverse element and order of elements 
At the end of the first session, we agreed what puzzle to analyse next, i.e., Puzzle 2 
(t(2)

T). Thus, at the beginning of the second session, students presented their result (Fig 
4). Compared to puzzle 1, the structure of Puzzle 2 is rather complex, however, they 
engaged rather lively in elaborating the Cayley diagram, because it enables them to see 
the whole perspective of the permutations in t(2)

T: τ(1)
T functions as a tool to carry out 

t(2)
T. In the process, they naturally began to consider 1234 as the initial order to operate, 

and to regard operations as permutations as well as in the case of puzzle 1.  
After they elaborated this graph, they found 
many relations like (𝐴𝐴𝐴𝐴)2 = 1, (𝐴𝐴𝐴𝐴)3 = 1 and 
so on. Referring these equations, it was natural 
to ask the following question: for any operation 
𝑋𝑋 , does a natural number 𝑛𝑛  exist, such that 
𝑋𝑋𝑛𝑛 = 1? This is a new task t(2)

*T of *T. After 
some empirical attempts, they could understand 
that, if we assume that an operation 𝑋𝑋 had no 
natural number 𝑛𝑛  such that 𝑋𝑋𝑛𝑛 = 1 , there 
would be different natural numbers 𝑖𝑖 and 𝑗𝑗 such 
that 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗. Thus, we focused on the question 
whether the statement “𝑌𝑌𝑌𝑌 = 𝑍𝑍𝑍𝑍 implies 𝑌𝑌 =
𝑍𝑍 ” is true or not; if it is true, we can have 
𝑋𝑋𝑗𝑗−𝑖𝑖𝑜𝑜𝑜𝑜 𝑋𝑋𝑖𝑖−𝑗𝑗 = 1. In this context, we defined 
the inverse of an operation, and confirmed all operations have its inverse. Here, we can 
point out that the inverse element was introduced not for the axiom of group, but for the 
solution to the emerged question. 
In the third session, we dealt Puzzle 3 (t(3)

T), which includes operation R whose inverse 
𝑅𝑅−1 is different from the original. Thus, the notion of inverse became more clarified. 
Puzzle 3 was selected by the teacher for this purpose. 
Through carrying out t(2)

*T and t(3)
T in these sessions, the students elaborated the 

concept of inverse elements (τ(2)
*T). In more detail, the task t(2)

*T required the technique 
τ(2)

*T and this technique enabled them to carry out t(3)
T. Besides this, the students 

became to use algebraic expressions frequently and naturally in their discourse. It 
seemed that permutations had become algebraic elements, which can be dealt in 
algebraic ways through the composition operation.  

 
Fig 4: Cayley graph of puzzle 2 
drawn by students. 



  
Fourth session: Symmetric group and its generators 
Until the third session, every analysed puzzle involved all permutations, however 
Puzzle 4 (t(4)

T) had been assigned at the end of the third session and they had found that 
is not always true. Puzzle 4 is also selected by the teacher to highlight this phenomenon. 
In the fourth session they drew the Cayley graph of Puzzle 4 from the initial order 1234 
as usual and found it involves only 12 permutations. Moreover, students, as it was 
expected, added an optional graph which involves permutations that do not appear in 
the original graph (Fig 5). 

Then, they faced the question: why this diagram split into two parts, what is the 
difference from the previous puzzles? This is a new task t(1)

**T  belongs to the new type 
of tasks **T involving the structure of the group. To discuss them, it was necessary to 
formulate what operations are mathematically and to make the discussion more 
rigorous. On this account, we negotiated the notation representing a bijection 𝑓𝑓 from 
{1,2,3,4} to itself: 𝑓𝑓  is indicated by the result (written in framed numbers) of the 
corresponding permutations of 1,2,3,4. (This is different from the standard notation of 
permutation, however, their recognition is based on the permutation of 4 cards, this 
notation was rather acceptable for them.) For example, 1234 means the identity 
permutation and 1243 means the transposition of 3 and 4. And here the term 
“symmetric group of degree n” and the notation Sn was introduced by the teacher. Also, 
it was confirmed that the vertices of the graphs we have elaborated correspond to the 
elements of S3 or S4. Thus these formulation technique τ(1)

**T was carried out for the 
need to proceed the consideration on t(1)

**T. 
Next, students were asked to explain the difference between the situation of Puzzle 4 
and those of previous ones, for example Puzzle 2. They tried to express it: 

Student B: In the case of puzzle 2, all elements of S4 can be made by 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, however it 
isn’t in this case. 

Teacher: What do you mean by “can be made”? Please explain more precisely. 

Finally, they could not express it clearly, however, they entirely agreed on the 
description given by the teacher: “in the case of puzzle 2, all elements of S4 can be 
expressed as a finite composition of 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and their inverses in some order”. It was 
this moment that the definition of generators is provided. Here we remark that, though 

Fig 5: Cayley graph of puzzle 4 



  
the definitive expression was finally given by the teacher, their cognitive process was 
rather different from the usual studying process which starts from providing definitions. 
In fact, they could consider how to express it, since they could distinguish the case of 
being generated from otherwise. These notions of generators and property of being 
generated should be the new technique to cope with the task t(1)

**T  and at the same time 
they could be a technological element θ(1)

T within group theory, relative to the type of 
tasks T (we also use “θ” for the technological elements like in the case of τ).  
Fifth and sixth session: Coset decomposition and subgroup, at the same time. 
In the previous session, we realized the difference between Puzzle 2 and 4, however, it 
remained mysterious that in the case of Puzzle 4, whole elements of S4 split into two 
congruent graphs, that is, t(1)

**T was not solved completely. To consider its reason, they 
were suggested by the teacher to understand this splitting phenomenon as a quotient set 
by an equivalence relation: what equivalence relation is behind this splitting? This is 
the new emerged task t(2)

**T, based on the application of some notions within set theory 
(θ(2)

T). Since it was difficult to consider from one example only, they were encouraged 
to analyse one more case, Puzzle 5 (Fig 6). 
Considering these cases, 
students noticed that, in the 
case of Puzzle 4, two 
permutations 𝑃𝑃  and 𝑃𝑃′  are in 
the same connected graph, if 
and only if “𝑃𝑃 can become 𝑃𝑃′ 
using 𝑆𝑆  and 𝑇𝑇 ” (this is 
student’s exact description). 
Again, the student’s 
description was not accurate. 
Then, with teacher’s help, they 
managed to elaborate the 
description: “it is if and only if 𝑃𝑃′can be expressed by the composition of 𝑃𝑃 and a finite 
composition of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1.” Here, we denoted this binary relation as 𝑃𝑃 ∼ 𝑃𝑃′. 
This is the basic concept of coset decomposition included in θ(1)

T. 
Then, the above notion led them to the task t(3)

**T of considering whether this binary 
relation is an equivalence relation or not and its reason. We checked the three 
properties: reflexivity, symmetry, and transitivity. The following is the result of our 
discussion. 
– Reflexivity holds, since 1 is one of finite compositions of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1. 
– Symmetry holds, since the inverse of a finite composition of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1 is 

also a finite composition of the same elements. 
– Transitivity holds, since the composition of two finite compositions of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 
𝑇𝑇−1 is also a finite composition of 𝑆𝑆, 𝑇𝑇, 𝑆𝑆−1, and 𝑇𝑇−1. 

 
Fig 6: Cayley graph of puzzle 5 (the edges connecting  
the top and bottom are omitted) 



  
Through this consideration, we negotiated to denote the set of finite compositions of 𝑆𝑆, 
𝑇𝑇 , 𝑆𝑆−1 , and 𝑇𝑇−1  by 〈𝑆𝑆,𝑇𝑇〉, and realized that 〈𝑆𝑆,𝑇𝑇〉 has nice properties: it is these 
properties that make the corresponding binary relation ∼ to be an equivalence relation. 
Also, we reflected that what happens in cases of 〈𝐷𝐷,𝑅𝑅〉 in S4 (Puzzle 5) and 〈𝐴𝐴,𝐵𝐵,𝐶𝐶〉 in 
S4 (Puzzle 2), and found that the corresponding relation of 〈𝐷𝐷,𝑅𝑅〉 classifies S4 into 3 
classes and that of 〈𝐴𝐴,𝐵𝐵,𝐶𝐶〉 classifies S4 into just one class. 
Then, it was this moment that the definition of subgroup of Sn was provided: a subset K 
of Sn is a subgroup if and only if K includes 1 and is closed under the composition 
operation and the inversion. This definition was not forced from above, but rather 
naturally raised from the discussion to understand the splitting of Cayley graphs, and 
would be acceptable for students. These notions of subgroup, coset decomposition, are 
certainly elements of θ(1)

T in their praxeology. These were endowed with their raisons 
d’être from the first: the properties in the definition of subgroup were raised to support 
the concept of coset decomposition which was observed through the type of tasks **T. 
Seventh session: Coset and Lagrange theorem 
It was natural for students to focus on the question “Is there any subgroup whose 
corresponding coset decomposition consists of 4 classes or 5 classes?” In this manner 
we investigated the structure of a coset and found that each coset has the same number 
of elements (Lagrange theorem in symmetric groups). 

DISCUSSION 
The following is the list of praxeological elements at stake in the whole program. 

Table 1: Praxeological elements 

T: To find properties regarding puzzle operations 
 t(1)T, t(2)T, t(3)T,…: Puzzle 1, Puzzle 2, Puzzle 3, … 
*T: To express relations between operations and to find new relations between them 
 t(1)*T: To express the relation found in the first session 

t(2)*T: To consider whether every operation has a finite order 
**T: To consider and (or) explain the principle regarding the structure of the group 
 t(1)**T: To consider the principle of the splitting of Cayley graphs 

t(2)**T: To consider what equivalence relation is behind the splitting 
t(3)**T: To consider if the found binary relation is equivalence relation or not, why 
and what is behind it 

τ(1)T: To draw Cayley graphs 
τ(1)*T: To represent the relations between puzzle operations in algebraic way 
τ(2)*T: To deal with the inverse operations 
τ(1)**T: To formulate symmetric groups using set theoretical terms 
θ(1)T: Symmetric group theory—especially, notions of S3, S4, generator, subgroup, coset 

   
 
θ(2)T: Elementary set theory —maps, equivalence relation, and quotient set 
 (ΘT : General group theory) 



  
Up to this point, we have described the study process in the program, where different 
technical and technological entities in group theory emerged from a sequence of lively 
tasks. The bundle of these tasks constructs a raison d’être of group theory for the 
students. Let us clarify here the relationship between such tasks and 
technical-and-technological elements, as the first property of our experiment (Fig. 7). 
On the one hand, each task brings about a derived technical-and-technological element. 
On the other hand, such an element produces a certain new task and is applied to some 
tasks. In Fig 7, the arrows indicate these deriving, producing, and applying relations. 
This dialectical interplay between tasks and techniques is the first property of our 
implementation. Note that our analysis relies on a basic assumption of the ATD, that is, 
the postulate of the relativity of praxeological entities. θ(1)

T and θ(2)
T are technological 

for T—which is the motivation of this praxeology—, but technical for **T. Type of 
tasks, techniques, technologies, and theories are not the natures of praxeological 
elements but their functions. 

The second property is related to the incompleteness of theoretical elements in the 
program. The praxeology has the algebraic nature but excessively focuses on 
symmetric groups, that is, not get access to the general group theory. This is a main 
reason why we call this seminar an introductory program of abstract algebra. However, 
the praxeology at stake could reach to standard structural results in symmetric group 
such as coset decomposition and Lagrange theorem, which can be easily extended to 
general groups. This potentially extendable structural results might be a gate for 
proceeding to general group theory with raison d’être. 
The third property related to the second property is the implicitness of associativity. 
The definition of group involves three conditions: associativity, existence of an 
identity element, and existence of inverse elements. In our program, the identity 
element was required to make equational representation of found relations (τ(1)

*T), and 
inverse elements also emerged to accomplish the task t(2)

*T. However, in this program 
all objects in consideration were maps and associativity was always satisfied from the 
first. Students knew that associativity holds but never focused on it. It was used with no 
special consciousness. Associativity seems often trivial and tends to be transparent for 

 
 
 
 
 
 
 
 
 
 
 
Fig 7: The dialectic between tasks and techniques 
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students. Thus, the teacher had no chance to highlight associativity regarding group 
theory with raison d’être. 

FINAL REMARKS 
Winsløw et al. (2014) points out the two types of institutional transitions in university 
mathematical praxeologies. The first type is the transition where a praxis part of a 
praxeology without the logos part gets its logos part. On the other hand, in the second 
type, a logos part of a mathematical praxeology changes to a praxis part of another 
advanced praxeology. Our program should fit as the first type transition. Taking above 
three properties of our program into consideration, we might be able to proceed to a 
further development of didactic situation for teaching group theory as follows: one is a 
situation where their understanding of potentially extendable technology elements 
derives the general group theory. Such situation would require group-like objects in 
entirely other context, to which the existing technology elements can be applied. Also, 
to focus on associativity group-like objects, in which associativity is not trivially 
satisfied, would be needed. 
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